
Automatic and efficient tomographic reconstruction
algorithms
Lagerwerf, M.J.

Citation
Lagerwerf, M. J. (2021, October 5). Automatic and efficient tomographic
reconstruction algorithms. Retrieved from
https://hdl.handle.net/1887/3214854

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3214854

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3214854

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 81PDF page: 81PDF page: 81PDF page: 81

Chapter 4

Neural Network
Feldkamp-Davis-Kress algorithm

4.1 Introduction

Circular cone-beam (CCB) Computed Tomography (CT) has become an integral
part of non-destructive imaging in a broad spectrum of applications, such as indus-
trial quality control [GUV11], materials sciences [Die+14; Bul+16] and medical
imaging [For+02; GKT17]. Limitations on the scanning process caused by the need
to scan a large number of objects in a short amount of time lead to measurements
with a low number of projection angles or high noise levels. Additionally, CT
reconstruction has become a big data problem due to the development of readily
available high-resolution CT-scanners [TESb; TESa; Can]. This stresses the need
for computationally efficient reconstruction methods that are applicable to a broad
spectrum of high-resolution problems and produce accurate results from data with
a high noise levels, low number of projection angles or large cone angles.

In practice, if computational efficiency is a constraint and especially for high-
resolution problems, direct methods (e.g., the filtered backprojection (FBP) al-
gorithm [Nat01], the Feldkamp-Davis-Kress (FDK) algorithm [FDK84] and the
Katsevich algorithm [Kat03]) are still the common choice of reconstruction method

This chapter is based on:

A computationally efficient reconstruction algorithm for circular cone-beam computed
tomography using shallow neural networks. MJ Lagerwerf, DM Pelt, WJ Palenstijn, KJ
Batenburg. Journal of Imaging (Submitted for publication).

77

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 82PDF page: 82PDF page: 82PDF page: 82

78 CHAPTER 4. NN-FDK ALGORITHM

[PSV09]. While iterative methods have been shown to be more accurate for noisy
and limited data problems [ROF92; BKP10; SP08; Jia+10; Niu+14; EF03], they
have a significantly higher computational cost. Consequently there have been
efforts to improve the accuracy of direct methods by computing data-specific or
scanner-specific filters [Zen12; Nie+12; BP12; PB14; Lag+20]. Although these
strategies do improve the reconstruction accuracy, they also add significant com-
putational effort or are specific to one modality, e.g., tomosynthesis [Kun+07].

An emerging approach for improving direct methods is to use machine learn-
ing to remove artifacts from the reconstructions. The idea is to use high-quality
reconstructions to train a neural network that removes artifacts from low-quality
reconstructions using a supervised learning approach. This post-processing ap-
proach has shown promising results for computed tomography using deep neural
networks (DNNs) [Jin+17; PBS18; Kid+18]. Deep neural network structures
contain a large number of layers, leading to millions of trainable parameters and
therefore require a large amount of training data [PS18]. This is problematic in CT
imaging, since there is often a limited amount of training data available, e.g., due
to scanning time, dose, and business-related concerns. Moreover, for the available
data there are often no reference datasets or annotations available [Wan+18]. The
large amount of training data and large number of parameters also lead to long
training times. While for standard 2D networks the training time ranges between
a couple of hours and a couple of days (see Section 4.5.1), for 3D networks the
training time becomes prohibitively long [Çiç+16] (i.e., weeks). Therefore, to
apply post-processing to 3D problems the reconstruction volume can be considered
as a stack of 2D problems [RFB15; PBS18] for which one 2D network is trained
and then applied in a slice-by-slice fashion to the 3D volume. Although this strategy
reduces the training time and the training data constraints, applying a 2D network
to all slices can still be computationally intensive due to the number of slices in
the 3D volume. A more in-depth discussion on current developments related to
machine learning methods in CT imaging is given in Section 4.2.

In this chapter we propose the Neural Network FDK (NN-FDK) reconstruction
algorithm. It is a direct reconstruction method that is designed to produce accurate
results from noisy data, data with a low number of projection angles, or a large
cone angle, but still maintains a similar computational efficiency and scalability as
the standard FDK algorithm. Moreover, the algorithm has a fast training procedure,
and requires a limited amount of training data.

The NN-FDK algorithm is an adaptation of the standard FDK algorithm using a
shallow multilayer perceptron network [Bis06] with one fully connected hidden
layer, a low number of trainable parameters and low memory constraints. We
will show it is possible to interpret the weights of the first layer of the perceptron

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 83PDF page: 83PDF page: 83PDF page: 83

4.2. RELATED WORK 79

network as a set of learned filters for the FDK algorithm. We can then use the FDK
algorithm to evaluate the network efficiently for all voxels simultaneously to arrive
at an accurate reconstruction for the CCB CT problem.

The NN-FDK algorithm is an extension of the method proposed in [PB13] for the
Filtered Backprojection (FBP) algorithm [Nat01]. The derivation of the approach
outlined in [PB13] relies on the shift-invariance property of the FBP algorithm.
We will show that, although the FDK algorithm does not have this shift-invariance
property, we can derive a similar method for the FDK algorithm. Moreover, the
proposed strategy can be extended to any linear filtered backprojection type
reconstruction method.

Using both simulated and experimental data, we compare the proposed method
with the standard FDK algorithm, SIRT [VV90] with a nonnegativity constraint
(SIRT+), which is a commonly used iterative algorithm for CT problems, and two
2D deep neural networks (U-net [RFB15] and MSD [PBS18]) trained to remove
reconstruction artifacts from slices of standard FDK reconstruction. We show that
the NN-FDK algorithm is faster to evaluate than all but the standard FDK algorithm
and orders of magnitude faster to train than the considered DNNs, with only a
slight reduction in reconstruction accuracy compared to the DNNs.

The chapter is structured as follows. In Section 4.3 we give definitions and
introduce our method. In Section 4.4 we introduce the data and the parameters
used for the experiments. The experiments and their results are shown and
discussed in Section 4.5. The chapter is summarized and concluded in Section 4.6.

4.2 Related work

Using machine learning methods is an emerging approach in CT imaging [Wan+18].
Deep learning methods have shown promising results for many applications within
the development of CT reconstruction methods [KMY17]. For the sake of exposi-
tion, we split these machine learning approaches into two categories: (i) Improving
standard reconstruction methods by replacing components of the reconstruction
method with networks specifically trained for the application; and (ii) improv-
ing the image quality of reconstructions computed with existing reconstruction
methods by training neural networks to perform post-processing in order to remove
artifacts or reduce noise.

Examples of the first strategy (improving standard reconstruction methods)
applied to iterative methods are the learned primal-dual reconstruction algorithm
[AÖ17; AÖ18], variational networks [Kob+17; Ham+18], plug and play priors
[VBW13; REM17; RS18], and learned regularizers [LÖS18; Muk+20]. These
methods achieve promising results in reconstruction accuracy and generalizability.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 84PDF page: 84PDF page: 84PDF page: 84

80 CHAPTER 4. NN-FDK ALGORITHM

However, their high computational cost limits the applicability if high throughput
is required. Examples for this strategy applied to direct methods are the NN-FBP
method [PB13], and also the NN-FDK method introduced in this chapter. These
methods are designed to improve the image quality of direct methods for data
with limitations (e.g., data with noise or a low number of projection angles) while
maintaining their computational efficiency.

Examples of the second strategy (learned post-processing) have demonstrated
substantial improvements in reconstruction quality for CT imaging [RFB15; KMY17;
PS18; Jin+17]. This is aided by the fact that the post-processing problem can be
viewed as a classic imaging problem — e.g., denoising, segmentation, inpainting,
classification — for which many effective machine learning methods have already
been developed [SLD17; PCC18; Zha+17]. Although the general trend is towards
deeper networks to make such networks more expressive [YHC18], this can lead
to problems with scalability for large 3D image datasets.

The rise in popularity of machine learning in CT is driven by the increased
computational possibilities and although these advances are sufficient to handle
most 2D problems, scaling towards 3D problems can be problematic, due to
memory constraints. This is illustrated in Figure 4.5 in Section 4.5.1, where we
plotted the memory constraints for applying a 2D and 3D U-net and MSD network
in terms of gigabytes (GiB) of memory as a function of the size of the image. This
shows that in theory one could apply a 2D MSD network to images of 7500×7500
pixels (with a 24GiB GPU), but in 3D this limit lies around 400×400×400 voxels.
Considering that CT problems range between 256× 256× 256 (small image size)
up to 4096 × 4096 × 4096 images, this gives an indication that scalability can
become an issue, especially for 3D problems.

When applying machine learning techniques for improving the reconstruction
quality in CT, a balance must be struck between image quality, running time, and
memory requirements. Here we propose a method that achieves relatively high
accuracy, while also being computationally efficient and scalable.

4.3 Method

The NN-FDK algorithm is a reconstruction algorithm with a machine learning
component, meaning that a number of parameters of the reconstruction algorithm
are optimized through supervised learning [AB09]. Similar to the network presented
in [PB13], the NN-FDK network is a two layer neural network with a hidden layer
and an output layer. We design the network such that it reconstructs one single
voxel, but handles all voxels in a similar manner. This means that we only have to
train one network for a full reconstruction. We consider the NN-FDK algorithm to

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 85PDF page: 85PDF page: 85PDF page: 85

4.3. METHOD 81

have three parts: The NN-FDK network, the NN-FDK reconstruction algorithm and
the training process.

We introduce the reconstruction problem, FDK algorithm, a filter approximation
method and the definition of a perceptron in Section 4.3.1. In Section 4.3.2 we
give the NN-FDK reconstruction algorithm and derive from this algorithm the NN-
FDK network. The input of the network that is needed in the training process is a pre-
processed version of the input of the reconstruction algorithm. In Section 4.3.3,
we discuss how to compute this pre-processing step for all voxels simultaneously
and we introduce the optimization problem and related notation for the training
process. Lastly, we summarize and discuss the characteristics of the method in
Section 4.3.4.

4.3.1 Preliminaries

Reconstruction problem

In this chapter we focus exclusively on the circular cone-beam (CCB) geometry,
where the object rotates with respect to a point source and a planar detector,
acquiring 2D cone-beam projections. The reconstruction problem for the CCB
geometry can be modeled by a system of linear equations

Wx= y, (4.1)

where x ∈ �n is the vector describing the reconstruction (i.e., every element
coincides with a voxel value), y ∈ �m is the vector describing the measured
projection data, and W ∈ �m×n is a discretized version of the cone-beam transform
or forward projection. For the sake of simplicity we assume that the volume consists
of n = N×N×N voxels and the detector consists of N×N pixels. We denote the
number of angles with Na, so we have m= Na × N × N .

FDK algorithm & filter approximation

The FDK algorithm, as presented in [FDK84], is a filtered backprojection-type
algorithm that solves the CCB reconstruction problem (4.1) approximately. First,
for each projection angle, it applies a reweighting step, r : �Na×N×N → �Na×N×N ,
that adapts the cone-beam data such that it approximately behaves as fan-beam
data. Second, it applies a filtering step, that convolves the data with a one-
dimensional filter h in a line-by-line fashion, (−∗−)1D : �2N×�Na×N×N → �Na×N×N .
Last, it applies a backprojection step. This step transforms the filtered projection
data to the image domain. Using the notation of (4.1), the FDK algorithm is given

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 86PDF page: 86PDF page: 86PDF page: 86

82 CHAPTER 4. NN-FDK ALGORITHM

by

FDK(y,h) =W T (h ∗ r (y))1D, (4.2)

with W T the transpose of W . The operator W T is also known as the backprojection
operator.

In [PB13; PB14; Lag+20] exponential binning is used to approximate filters,
leading to Ne ≈ log N coefficients to describe a filter. This approximation can be
seen as a matrix E ∈ �2N×Ne applied to a coefficient vector he ∈ �Ne :

h≈ Ehe. (4.3)

The implementation details of this filter approximation can be found in [Lag+20].

Perceptron

In a similar manner as in [Bis06] we define a perceptron or node P : �l → � as a
non-linear activation function σ : �→ � applied to a weighted sum of the input
η ∈ �l with the weights ξ ∈ �l and a bias b ∈ �:

Pξ,b(η) = σ(η · ξ− b) (4.4)

In this chapter we will only consider the sigmoid function as activation function,
i.e., σ(t) = 1/(1+ e−t).

A multilayer perceptron is a network structure containing two types of layers
with perceptrons, where each perceptron operates on the outputs of the previous
layer. These layers are, in order, any number of hidden layers, and the output layer.
Note that the number of hidden layers and number of hidden nodes Nh in these
layers can be chosen freely.

4.3.2 Reconstruction algorithm & Network design

We formulate the NN-FDK reconstruction algorithm in a similar fashion as the
NN-FBP method in [PB13]. See Algorithm 3 for a schematic representation.
The NN-FDK reconstruction algorithm consists of Nh individual FDK algorithms
executed on the input data y, each using its own (exponentially binned) filter
hk

e ∈ �Ne . It combines these Nh volumes into a single reconstruction, using
point-wise application of the activation function σ and an output perceptron
with parameters bo, bk ∈ �, and ξ ∈ �Nh .

We use θ = (ξ, bo,hk
e , bk) as short-hand for the full set of parameters of the

NN-FDK reconstruction algorithm. The full algorithm is then given by the following
equation.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 87PDF page: 87PDF page: 87PDF page: 87

4.3. METHOD 83

NN-FDKθ (y) = σ
� Nh∑

k=1

ξkσ
�
FDK(y, Ehk

e)− bk

�− bo

�
(4.5)

The FDK algorithm is a bilinear map in the input projection data and the used
filter. Therefore, for fixed input projection data y and an expanded exponentially
binned filter Ehe, the FDK algorithm can be written as a linear map Fy applied to
Ehe. The product FyE can be considered as a matrix of size N3 × Ne, and the v-th
voxel of the output of the FDK algorithm is given by the inner product of he with
(FyE)v:, the v-th row of the matrix FyE. Using the definition of a perceptron (4.4)
we can show the following:

(NN-FDKθ (y))v = σ
� Nh∑

k=1

ξkσ
�
(FyEhk

e)v − bk

�− bo

�
, (4.6)

= σ
� Nh∑

k=1

ξkσ
�
(FyE)v:h

k
e − bk

�− bo

�
, (4.7)

= Pξ,bo

�%
Phk

e ,bk
((FyE)v:)

&
k

�
. (4.8)

Therefore, we define the two-layer perceptron network Nθ : �Ne → �:

Nθ (q) = Pξ,b0

�%
Phk

e ,bk
(q)

&
k

�
. (4.9)

This is our NN-FDK network, and as we derived above, it has the following
relationship with the NN-FDK reconstruction algorithm:

Nθ ((FyE)v:) = (NN-FDKθ (y))v . (4.10)

This relationship shows that we can evaluate the NN-FDK reconstruction algorithm
efficiently on full input projection data at once, but also train the NN-FDK network
efficiently with each individual voxel (xHQ)v in a high quality reconstruction yielding
a training pair with input (FyE)v: and target (xHQ)v. A schematic representation
of the network is given in Figure 4.1.

Note that we arrive at the same network structure as found in [PB13] for FBP,
using only the properties that the FDK algorithm is a bilinear map in the data and
the filter, and that all operations can be applied point-wise. Using this reasoning
we can derive a similar network structure for any FBP-type method satisfying these
conditions.

Even though we use the same network structure as [PB13], the way we compute
inputs to the network is different. In [PB13], the input to the NN-FBP network is

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 88PDF page: 88PDF page: 88PDF page: 88

84 CHAPTER 4. NN-FDK ALGORITHM

explicitly calculated by shifting and adding projection data for each reconstruction
pixel. The FDK algorithm has additional weighting factors and lacks the shift-
invariance property, which makes the approach presented in [PB13] not directly
applicable. In the next section, we detail an alternative method to compute the
input. The same approach could be applied to the NN-FBP method, similarly
simplifying the network input computations.

Algorithm 3 Neural Network FDK reconstruction algorithm

1: Given a set of parameters, θ :=
�
ξ, bo,hk

e , bk

�
.

2: Compute Hk for all nodes k of the hidden layer:
3: for k = {1,2, .., Nh} do
4: Hk(y) = σ

�
FDK(y, Ehk

e)− bk

�
5: Compute the output of the output layer:

NN-FDKθ (y) = σ
�∑Nh

k=1 ξkHk(y)− bo

�

...q

Ph1
e ,b1

Ph2
e ,b2

P
h

Nh
e ,bNh

·ξ1

...

·ξ2

·ξNh

−bo σ Nθ

Hidden layer Output layer

Figure 4.1: Schematic representation of the NN-FDK network, Nθ : �Ne → �, with
Nh hidden nodes. Note that if we take q = (FyE)v: we get q · hk

e = (FDK(y, Ehk
e))v

in the perceptrons of the hidden layer and the output of the network is equal to
the v-th voxel of the NN-FDK reconstruction algorithm.

4.3.3 Training process

Training and validation data

We will train our network using supervised learning, where we assume that we
have NTD and NVD datasets available for training and validation, respectively.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 89PDF page: 89PDF page: 89PDF page: 89

4.3. METHOD 85

These datasets consist of low quality tomographic input data and a high quality
reconstruction from which we randomly draw a total of NT training pairs and NV
validation pairs. Note that we ensure that every drawn pair is unique and that an
equal number of pairs is taken from each dataset. Moreover, to avoid selecting
too many training pairs from the background we only take training pairs from a
region of interest (ROI) around the scanned object. This ROI is defined from the
high quality reconstruction as the voxels in the reconstructed object plus a buffer
of roughly 0.2N voxels around it.

Recall from the previous section that given low quality tomographic data y
and a high quality reconstruction xHQ the matrix FyE contains each input vector
Z =

�
FyE

�
v: ∈ �Ne corresponding to the target voxel O = (xHQ)v. However, due

to memory constraints FyE cannot be computed directly as a matrix product.
Therefore, we observe that each column of FyE is an FDK reconstruction with a
specific filter:

(FyE): j = FyEe j = FDK(y, Ee j), (4.11)

with e j ∈ �Ne the unit vector with all entries equal to zero except for the j-th
element.

Learning problem

The parameters of the NN-FDK network are learned by finding the set of parameters
θ� that minimize the loss function � on the training set. We minimize the �2-
distance between the network output and the target voxel for all training pairs in
T :

θ� = argmin
θ

� (θ , T) = argmin
θ

1
2

NT∑
j=1

�
Oj −Nθ (Zj)

�2
. (4.12)

To minimize the loss function we use a quasi-Newton optimization scheme, the
Levenberg-Marquardt algorithm (LMA) as proposed in [Lev44; Mar63]. This is a
combination of gradient descent and the Gauss-Newton algorithm, improving the
stability of Gauss-Newton while retaining its fast convergence and it is specifically
designed to minimize a non-linear least squares problem such as (4.12). Note
that the small number of parameters of the proposed network allows us to use
such a method. Lastly, to avoid overfitting we check whether every update of the
parameters also reduces the loss function on the validation set. We discuss the
specifics of this algorithm in Appendix 4.7.2.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 90PDF page: 90PDF page: 90PDF page: 90

86 CHAPTER 4. NN-FDK ALGORITHM

Method comparison: Goals

Reconstruction Training
Method Time Accuracy Data Time

NN-FDK ++ ? ++ +++
DNN ± +++ ± - - -
FDK +++ - -
SIRT+ - - +

Table 4.1: Comparison of reconstruction methods with respect to the goals for-
mulated in Section 4.1. We consider a DNN to be 2D deep convolutional neural
network (U-net & MSD-net) applied in slice-by-slice fashion to a standard FDK
reconstruction. Reconstruction accuracy is defined as the accuracy of a method
when reconstructing low quality data, e.g., data with high noise or a low number
of projection angles.

4.3.4 Method characteristics & comparison

To conclude the method section we compare the characteristics of the NN-FDK
algorithm to those of several other methods. These methods are two 2D post-
processing DNNs (U-net [RFB15] and MSD-net [PS18]) applied in a slice-by-
slice fashion, the SIRT+ algorithm [VV90] and the FDK algorithm. We focus
our discussion on the goals formulated in Section 4.1 and show a summary of
this comparison in Table 4.1. The reconstruction accuracy will be discussed in
Section 4.5.

Computational efficiency

We approximate the reconstruction time by counting how many times it has
to evaluate its most expensive computations. For simplicity we assume that a
backprojection takes approximately the same time as a forward projection, TBP.

• FDK: The FDK algorithm consist of one reweighting, filtering and backpro-
jection step, i.e., :

TFDK ≈ TBP. (4.13)

• NN-FDK: The NN-FDK algorithm performs one FDK reconstruction per hid-
den node Nh. Therefore the reconstruction time becomes:

TNN-FDK ≈ NhTBP. (4.14)

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

4.3. METHOD 87

• SIRT+: The SIRT+ method evaluates a forward and backprojection for each
iteration. For Niter iterations, the reconstruction time becomes:

TSIRT+ ≈ 2NiterTBP. (4.15)

• DNN: To evaluate a DNN an FDK reconstruction is performed and a 2D
network is applied per slice of the FDK reconstruction.

TDNN ≈ TBP + N TDNN, (4.16)

with TDNN the time it takes to apply a 2D DNN.

On a modern GPU and with N = 1024 and Na = 360, we found in our experiments
that TBP ≈ 10 s and TDNN ≈ 0.5 s.

Comparing the reconstruction times, we see that NN-FDK is similar to FDK
when the number of nodes Nh is small, which is the case since we will take Nh=4
(see Section 4.4.3). For DNNs the computational load of applying a 2D network
leads to relatively high reconstruction times compared to the FDK algorithm. Lastly,
we note that the number of iterations Niter often lies between the 20 and 200,
making SIRT+ several times slower than the (NN-)FDK algorithm.

Number of trainable parameters

The number of trainable parameters is closely related to the amount of training
data required to train a network [PS18]. From the definition of the NN-FDK
network (4.5) we can compute the number of trainable parameters |θ |:

|θ |= (Ne + 2)Nh + 1, (4.17)

with N � Nh, Ne > 0. Taking Nh = 4 and N = 1024 gives |θ | = 61, which is
several orders of magnitude lower than the typical numbers of parameters in a
DNN (several tens of thousands to millions).

Training time

In the training step a solution to the minimization problem (4.12) is computed.
For the NN-FDK algorithm this problem has NT samples and |θ | unknowns. In
a similar fashion we can formulate a least squares problem for training a DNN.
Even assuming that we only take the same number of training samples to train the
DNNs, this least squares problem is already orders of magnitude larger than that
for NN-FDK due to the difference in the number of trainable parameters. Moreover,
the LMA (the algorithm used to train NN-FDK) approaches quadratic convergence,

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 92PDF page: 92PDF page: 92PDF page: 92

88 CHAPTER 4. NN-FDK ALGORITHM

which means it will need fewer iterations to converge than a first order scheme
such as ADAM [KB14], which is often used for training DNNs. Considering these
two observations we expect the training time of the NN-FDK algorithm to be lower
than the training time of the DNNs.

4.4 Experimental setup

We carried out a range of experiments to assess the performance of the NN-FDK
algorithm with respect to the goals formulated in Section 4.1 compared to several
alternative methods. In this section we introduce the setup of these experiments.
We describe the simulated data in Section 4.4.1 and the experimental data in
Section 4.4.2. In Section 4.4.3 we discuss the specific network structure for
the NN-FDK algorithm and the training parameters used. Finally, we give the
quantitative measures we use to compare the reconstruction in Section 4.4.4.

4.4.1 Simulated data

We consider two types of phantom families for the simulated data experiments: the
Fourshape phantom family and the Random Defrise phantom family. Examples are
shown in Figure 4.2 and Figure 4.3, respectively. The Fourshape phantom family
contains three random occurrences of each of four types of objects: an ellipse, a
rectangle, a Gaussian blob and a Siemens star. For evaluation and visualization of
the reconstructions we fixed one realization that clearly shows at least one of all the
four objects and we will refer to this phantom as the Fourshape test phantom. The
Random Defrise phantom family is a slight adaptation of the phantom introduced
in [KND98], which is a common phantom for assessing the influence of imaging
artifacts due to the cone angle. Here we vary the intensities, orientations and sizes
of the disks making sure they do not overlap. Again, we define a test phantom for
evaluation and visualization, which is in this case the standard Defrise phantom
without alternating intensities (right in Figure 4.3). To simulate realistic settings,
we scale the phantoms to fit inside a 10 cm cube, and use an attenuation coefficient
of μ = 0.22 cm−1, approximating that of various common plastics at 40 keV [HS95].
These phantoms are defined through geometric parameters, and can therefore be
generated for any desired N . For our experiments we will take N = 1024. Details
about how we generate the data are given in Appendix 4.7.1.

To compute a high quality reconstruction xHQ that can be used as target for
training (recall Section 4.3.3) we consider a simulated dataset with Na = 1500
projection angles, low noise (I0 = 220 emitted photon count) and cone angle of
0.6 degrees and reconstruct this problem with the standard FDK algorithm using a

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 93PDF page: 93PDF page: 93PDF page: 93

4.4. EXPERIMENTAL SETUP 89

x

y

y
z

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 4.2: Slices, (Left) z = 0, (Right) x = 0, of the Fourshape test phantom. This
phantom is designed such that at least one of all objects can clearly be observed in
the slices.

y

z

y

z

0.00

0.05

0.10

0.15

0.20

0.25

Figure 4.3: The x = 0 slice for a Random Defrise phantom (Left) and the standard
Defrise phantom without alternating intensities from [KND98] (Right).

Hann filter [Nat01].

4.4.2 Experimental data

For experimental data we consider a set of CT scans that were recorded using the
custom-built and highly flexible FleX-ray CT scanner, developed by XRE NV and
located at CWI [Cob+20]. This scanner has a flat panel detector with 972× 768

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 94PDF page: 94PDF page: 94PDF page: 94

90 CHAPTER 4. NN-FDK ALGORITHM

pixels and a physical size of 145.34×114.82 mm. This set of 42 scans was set up to
create high noise reconstruction problems and low noise reconstruction problems
with a low number of projection angles.

We acquired high-dose (low noise) and low-dose (high noise) scans of 21
walnuts. The datasets contain 500 equidistantly spaced projections over a full
circle. The distance from the center of rotation to the detector was set to 376
mm and the distance from the source to the center of rotation was set to 463 mm.
The scans were performed with a tube voltage of 70 kV. The high-dose scan was
collected with a tube power of 45 W and an exposure time of 500 ms per projection.
The low-dose scan was collected with a tube power of 20 W and an exposure time
of 100 ms per projection. To create a low noise reconstruction problem with a
low number of projection angles we considered the high-dose scan but only took
every 16-th projection angle. As high quality reference reconstructions we used
SIRT+ reconstructions with 300 iterations (SIRT+300) of the high-dose scans with all
available projection angles (Na = 500). We will refer to these reconstructions as
the gold standard reconstruction and we show such a reconstruction in Figure 4.4.
These datasets are available at Zenodo [LCB20].

Figure 4.4: The z = 0 (Left) and y = 0 (Right) slice of the gold standard
reconstruction of the high-dose dataset of the 21st walnut with full number of
projection angles. The projection data is acquired using the FleX-ray scanner
located at the CWI [LCB20].

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 95PDF page: 95PDF page: 95PDF page: 95

4.4. EXPERIMENTAL SETUP 91

4.4.3 Parameter settings NN-FDK

Network structure

In our initial experiments we found that taking more FDK-perceptrons improved the
accuracy of the networks, at the cost of increasing the training and reconstruction
time. We found that Nh= 4 FDK-perceptrons led to a good balance between
accuracy and reconstruction time, which is similar to the findings in [PB13].

Training data

We found that, similar to the findings in [PB13], taking NT = 106 voxels for training
and NV = 106 for validation is sufficient for training an NN-FDK network.

The network structures and training procedure used for the U-nets and MSD
networks are discussed in Appendix 4.7.1.

4.4.4 Quantitative measures

To quantify the accuracy of the reconstructions we consider two measures, the
test set error (TSE) and the structural similarity index (SSIM). These measures
compare the reconstructed image xr to a high quality reconstruction xHQ on the
ROI (as discussed in Section 4.3.3).

The TSE is the average loss1 of the test set, where the test set is all the voxels
defined in the ROI of xHQ:

TSE(xr ,xHQ) =
1

NROI
� (ROI(xHQ),θ), (4.18)

= 1
2NROI

�� ROI(xHQ − xr)
��2

2 . (4.19)

with ROI : �N3 → �N3
the masking function for the ROI and NROI the number of

voxels in the ROI.

The SSIM [Wan+04] is implemented based on the scikit-image 0.13.1 [Wal+14]
package, where all the constants are set to default and the filter is uniform with a
width of 19 pixels.

1Recall (4.12) in Section 4.3.3

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 96PDF page: 96PDF page: 96PDF page: 96

92 CHAPTER 4. NN-FDK ALGORITHM

0 2000 4000 6000 8000
Number of rows/cols of the input image

0

5

10

15

20

25

30

M
em

or
y
(G
iB
)

2D network requirements

0 200 400
Number of rows/cols/layers of the input image

0

5

10

15

20

25

30

M
em

or
y
(G
iB
)

3D network requirements

MSD

U-net

GTX 1050Ti

GTX 1060

GTX 1080Ti

TITAN RTX

Figure 4.5: The required memory to store all intermediate images for applying a
2D and 3D U-net and MSD network as a function of the input image size.

4.5 Results and discussion

4.5.1 Scalability

Memory scaling

The required memory to store all intermediate images for a forward pass of a
2D or a 3D U-net and MSD network as a function of the input image size is
shown in Figure 4.5. Considering that CT imaging problems typically range from
256× 256× 256 up to 4096× 4096× 4096 we conclude from these figures that
full 3D networks do not fit into GPU memory for higher resolutions and that even
for 2D U-nets not all resolutions fit on the GPU. As a forward pass of the NN-FDK
algorithm requires only one additional reconstruction volume2 compared to the
FDK algorithm, the memory requirements of the NN-FDK algorithm are roughly 2
times the memory required by the FDK algorithm.

Training time

In Figure 4.6 we compare the training processes by plotting the progress of the
network training (measured by the TSE) as a function of the number of voxels that
the network has seen during training. We see that the NN-FDK has seen 1.1 · 108

2Technically a forward pass of the NN-FDK algorithm can be done for every voxel separately,
however, for the sake of comparison we assume a forward pass is for a full reconstruction volume.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 97PDF page: 97PDF page: 97PDF page: 97

4.5. RESULTS AND DISCUSSION 93

0.00 0.25 0.50 0.75 1.00
#voxels seen in training ×109

10−7

10−6

10−5

10−4

10−3

T
S
E

10
ep
oc
hs

N
N
-F
D
K

10
0
ep
oc
hs

N
N
-F
D
K

1
fu
ll
3D

da
ta
se
t

Linear scaling

NN-FDK

MSD

U-net

107 109 1011

#voxels seen in training

10−7

10−6

10−5

10−4

10−3

T
S
E

1
ep
oc
h
N
N
-F
D
K

10
ep
oc
hs

N
N
-F
D
K

10
0
ep
oc
hs

N
N
-F
D
K

1
fu
ll
3D

da
ta
se
t

1
ep
oc
h
D
N
N

5
ep
oc
hs

D
N
N

Logarithmic scaling

Figure 4.6: The TSE as a function of the number of voxels the training process has
seen. We report the lowest TSE up till that point. The networks are trained on
randomly generated Fourshape phantoms with size N = 1024, Na = 32 projection
angles and no noise. (Left) Linear scaling in the number of voxels ranging from
1 epoch for the NN-FDK (106 voxels), to 1 full 3D dataset (109 voxels). (Right)
Logarithmic scaling in the number of voxels. Ranging from 1 epoch for the NN-FDK
network (106 voxels) to 5 epochs for a DNN (5 · 1010 voxels).

voxels when it converges to TSE= 1.4 · 10−5, whereas, MSD and U-net have seen
5.1 · 108 voxels and 3.2 · 109 voxels, respectively, at the point they first achieve a
similar TSE. Important to note is that both U-net and MSD are not yet converged
when they match the TSE of NN-FDK, and in general the DNNs achieve lower TSEs
than NN-FDK.

In Table 4.2 we show various timings and properties with respect to the training
process. These timings are recorded using one Nvidia GeForce GTX 1080Ti with
11GiB memory. We define a converged training process as 100 epochs without
improvement on the validation set error and the number of epochs to converge as
the epoch with the lowest validation set error during a converged training process.
From these results we see that the size of the training problem influences the time
per epoch as an NN-FDK epoch is sub-second and the time per epoch for DNNs is
in the range of hours.

In practice, we observed that after 2 days of training for the DNNs, any
additional training only achieved marginal improvements. Therefore, in the
following experiments we train all DNNs for 2 days with one Nvidia GeForce
GTX 1080Ti GPU, unless mentioned otherwise.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 98PDF page: 98PDF page: 98PDF page: 98

94 CHAPTER 4. NN-FDK ALGORITHM

Training process

NN-FDK4 MSD U-net
Voxels seen in one epoch 1 · 106 1.1 · 1010 1.1 · 1010

Time per epoch 0.1336 (s) 0.95 (h) 2.36 (h)
Time to converge 28 (s) ± 10 (d) ± 14 (d)
Epochs to converge 110 128 42
Epochs in 2 days - 45 18

Table 4.2: Timings and properties of the considered training processes. We define
a converged training process as 100 epochs without improvement on the validation
set error. The epochs to converge is therefore the epochs computed of such a
process minus 100. The training was performed using one Nvidia GeForce GTX
1080Ti GPU (11 GiB).

Reconstruction time

We measured the average reconstruction times and corresponding standard de-
viation over 120 reconstructions with resolution N3 = 10243 and Na = 360
projection angles. These reconstructions are computed using one Nvidia GeForce
GTX 1080Ti with 11 GiB memory. The results are shown in Table 4.3. We define
the reconstruction time as the time it takes to compute the full 3D volume. This
means for U-net and MSD, an FDK reconstruction needs to be computed and
the network needs to be applied N = 1024 times to a 2D slice. Although every
application can be done within a second (U-net ≈ 0.3s, MSD ≈ 0.7s) this leads to
long reconstruction times.

Reconstruction times

FDK SIRT+200 NN-FDK4 U-net MSD
28 ± 8 3225 ± 916 76 ± 8 382 ± 69 809 ± 86

Table 4.3: Average and standard deviation of the reconstruction times (in seconds)
computed over 120 reconstruction problems with N = 1024 and Na = 360
projection angles. These reconstructions are computed using one Nvidia GeForce
GTX 1080Ti GPU (11 GiB).

4.5.2 Reconstruction accuracy for simulated data

For evaluating the reconstruction accuracy using simulated data, we consider 16
cases: 6 different noise levels, 5 different numbers of projection angles and 5

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 99PDF page: 99PDF page: 99PDF page: 99

4.5. RESULTS AND DISCUSSION 95

different cone angles. For each case an NN-FDK, MSD and U-net network was
trained. For the training process of NN-FDK we used NT = 106 training voxels
and NV = 106 validation voxels from NTD = 10 and NVD = 5 datasets, respectively.
For U-net and MSD we took the same datasets for training and validation (10
for training and 5 for validation), and used all voxels in these datasets for the
training process. The NN-FDK networks were trained till convergence and the
DNNs were trained for 48 hours. Note that in a few cases we had to retrain the
DNNs because of inconsistent results (i.e., cases with more information achieving
a lower reconstruction accuracy), possibly because they got stuck in local minima
of the loss function.

In Figure 4.7 we show the average and standard deviation of the TSE and the
SSIM for the considered cases. We observe that U-net and MSD achieve the most
accurate results and that NN-FDK and SIRT+ closely follow. The FDK algorithm is
lowest in all categories. Between NN-FDK and SIRT+ we see that NN-FDK performs
best for the noisy reconstruction problems and SIRT+ achieves better results for
the reconstruction problems without noise. We visualize the noise for the lowest
and highest I0 in Figure 4.8 by showing a line profile through the center of the
z = 0 slice. Here we see that for the noisiest problems the amplitude of the noise
can be as high as the maximum value of the phantom. In Figure 4.9 we show 2D
slices of reconstructions of the test phantoms for the three types of reconstruction
problems. In all cases we still observe reconstruction artifacts, but comparing these
to the baseline FDK reconstructions, the majority is removed or suppressed.

4.5.3 Reconstruction accuracy for experimental data

In this section we use the datasets discussed in Section 4.4.2 to assess the recon-
struction accuracy on experimental data. In a similar fashion as for the simulated
data, we trained a network for the low-dose reconstruction problem and a network
for the high-dose reconstruction problem with Na = 32 projection angles with the
notable exception that U-net and MSD were trained till convergence. The results
are presented in Table 4.4.

Comparing the results to the simulated data experiments we see that SIRT+

performs worse on the experimental data, even with the additional regularization
of early stopping. This is most likely due to the high-dose datasets still containing
noise, whereas this is completely absent in the simulated data experiments. These
differences are illustrated in Figure 4.10 where 2D slices of the reconstructions for
the high-dose reconstruction problem with Na = 32 projection angles are shown.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 100PDF page: 100PDF page: 100PDF page: 100

96 CHAPTER 4. NN-FDK ALGORITHM

20 40 60 80 100 120

Na

10−5

10−4

10−3
T
S
E

Test Set Error

20 40 60 80 100 120

Na

0.2

0.4

0.6

0.8

1.0

S
S
IM

Structural Similarity

FDKHN

NN-FDK4

MSD

U-net

SIRT+
200

(a) The average and standard deviation of the TSE and SSIM as a function
of number of projection angles Na computed over 20 randomly generated
phantoms Fourshape family.

103

I0

10−5

10−4

10−3

10−2

T
S
E

Test Set Error

103 104

I0

0.0

0.2

0.4

0.6

0.8

1.0

S
S
IM

Structural Similarity

FDKHN

NN-FDK4

MSD

U-net

SIRT+
200

(b) The average and standard deviation of the TSE and SSIM as a function of
the emitted photon count I0 computed over 20 randomly generated phantoms
of the Fourshape family.

5 10 15 20 25 30

Cone-angle (degrees)

10−4

10−3

T
S
E

Test Set Error

10 20 30

Cone-angle (degrees)

0.4

0.6

0.8

1.0

S
S
IM

Structural Similarity

FDKHN

NN-FDK4

MSD

U-net

SIRT+
200

(c) The average and standard deviation of the average TSE and SSIM as a
function of the cone angle computed over 20 randomly generated phantoms
of the Defrise family.

Figure 4.7: The average and standard deviation of the TSE and SSIM. These
results are discussed in Section 4.5.2. For each number of projection angles, noise
level, cone angle and training scenario one specific network is trained and used to
evaluate the 20 reconstruction problems.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 101PDF page: 101PDF page: 101PDF page: 101

4.5. RESULTS AND DISCUSSION 97

0 200 400 600 800 1000
voxel position

−0.4

−0.2

0.0

0.2

0.4

vo
xe
l
va
lu
e

Line profile of the Fourshape test phantom

FDKHN , I0 = 256

FDKHN , I0 = 8192

Ground truth

Figure 4.8: Line profile through the center of the z = 0 slice of the Fourshape
test phantom. We show the ground truth profile, the profile of the FDK recon-
struction with lowest emitted photon count I0 = 256, and the profile of the FDK
reconstruction with the highest emitted photon count I0 = 8196.

Experimental data
High-dose, low number

of projection angles Low-dose
Method TSE SSIM TSE SSIM
FDKHN 5.54±3.43e-03 0.224±0.076 1.40±0.05e-03 0.334±0.104
SIRT+200/20 9.94±0.15e-04 0.603±0.087 1.92±0.08e-03 0.584±0.083
NN-FDK4 8.03±1.39e-04 0.946±0.010 1.14±0.23e-04 0.965±0.012
U-net 4.10±1.06e-04 0.964±0.009 1.02±0.45e-04 0.980±0.006
MSD 4.23±0.97e-04 0.964±0.009 7.82±2.86e-05 0.980±0.007

Table 4.4: Average and standard deviation of the quantitative measures computed
over 6 walnut datasets. The high-dose low projection angle reconstruction problem
has Na = 32 projection angles, the low-dose reconstruction problem has Na = 500
projection angles. The best results per experiment are highlighted.

4.5.4 Segmentation experiment for experimental data

To assess the performance of the different reconstruction approaches in a segment-
ation task, we focus here on the segmentation of the shell and kernel of walnuts,
based on our experimental CT data. The review [Ber+20] provides an overview of
segmentation problems in walnut imaging, and their relevance. For segmenting

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 102PDF page: 102PDF page: 102PDF page: 102

98 CHAPTER 4. NN-FDK ALGORITHM

I 0
=
10
24

FDKHN SIRT+
200 NN-FDK4 MSD U-net

N
a
=
32

co
ne

an
gl
e=

11
.5
◦

Figure 4.9: Two-dimensional slices of the reconstructions for the considered recon-
struction methods. (Top) Slice x = 0 of the Fourshape test phantom reconstruction
problem with Na = 360 projection angles and I0 = 1024 emitted photon count.
(Middle) Slice z = 0 of the Fourshape test phantom reconstruction problem with
Na = 32 projection angles. (Bottom) Slice x = 0 of the Defrise reconstruction
problem with Na = 360 projection angles and a cone angle of 11.5 degrees.

the 3D volume after the reconstruction, we used a deterministic segmentation al-
gorithm that combines thresholding, the watershed algorithm and prior knowledge
of the scanned objects. Details of this method are discussed in Appendix 4.7.1.

For determining the accuracy of the segmentation of an object — i.e., shell,
empty space and kernel of the walnut — we consider three metrics: volume error,
mislabeled voxels and the Dice coefficient [Dic45]. We define a segmentation S as
a reconstruction volume with value 1 if the voxel is in the object (shell, kernel or
empty space) and 0 if outside the object. Furthermore we define the norm of a

segmentation as the sum: |S| =∑N3

i (S)i . Using this notation we can compute the
measures in the following manner:

Verr =
|Srec|−|SGS||SGS| , MLerr =

|Srec−SGS||SGS| , DC= 2|Srec∩SGS||Srec|+|SGS| , (4.20)

with GS denoting the gold standard reconstruction.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 103PDF page: 103PDF page: 103PDF page: 103

4.5. RESULTS AND DISCUSSION 99

(a) FDKHN (b) SIRT+200 reconstruction.

x

y

y

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) NN-FDK4 reconstruction.

x

y

y

z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(d) MSD reconstruction.

Figure 4.10: Slices z = 0 and x = 0 of several reconstruction methods of the
high-dose dataset of the 21st walnut with 32 projection angles.

In Table 4.5 we show the results for computing these metrics on the 6 walnuts
not considered in the training process. We observe that MSD performs best in
segmenting the shell and U-net performs best at segmenting the empty space and
kernel and NN-FDK is close to both DNNs and in some cases even better than MSD
for segmenting the empty space and kernel. Comparing NN-FDK to standard FDK
we observe a significant improvement.

4.5.5 Data requirements

To test the influence of the amount of training data on the reconstruction quality
we performed an experiment with three different training scenarios:

• Scenario 1. One dataset available. Here we take the training and validation
data from the same dataset.

• Scenario 2. Two datasets available. Here we take the training and validation
data from the separate datasets.

• Scenario 3. Fifteen datasets available. Again the training and validation
data are picked from separate datasets, but now the training and validation
pairs come from several datasets, specifically 10 training datasets (NTD = 10)
and 5 validation datasets (NVD = 5). This is the scenario used in the previous
experiments.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 104PDF page: 104PDF page: 104PDF page: 104

100 CHAPTER 4. NN-FDK ALGORITHM

Segmentation errors

Method Shell Empty space Kernel
Volume errors

FDKHN 0.127 ± 0.078 0.146 ± 0.091 0.128 ± 0.092
SIRT+200 0.082 ± 0.047 0.104 ± 0.078 0.050 ± 0.074
NN-FDK4 0.068 ± 0.035 0.045 ± 0.035 0.029 ± 0.032
U-net 0.055 ± 0.019 0.029 ± 0.017 0.012 ± 0.016
MSD 0.028 ± 0.010 0.059 ± 0.075 0.035 ± 0.050

Mislabeled voxels
FDKHN 0.168 ± 0.087 0.190 ± 0.98 0.144 ± 0.081
SIRT+200 0.133 ± 0.026 0.182 ± 0.118 0.101 ± 0.048
NN-FDK4 0.103 ± 0.026 0.087 ± 0.023 0.072 ± 0.018
U-net 0.092 ± 0.028 0.073 ± 0.024 0.059 ± 0.019
MSD 0.086 ± 0.038 0.116 ± 0.094 0.061 ± 0.039

Dice coefficient
FDKHN 0.922 ± 0.036 0.895 ± 0.061 0.934 ± 0.033
SIRT+200 0.934 ± 0.016 0.908 ± 0.061 0.947 ± 0.028
NN-FDK4 0.951 ± 0.012 0.955 ± 0.013 0.964 ± 0.008
U-net 0.955 ± 0.013 0.963 ± 0.012 0.971 ± 0.010
MSD 0.957 ± 0.018 0.939 ± 0.055 0.971 ± 0.018

Table 4.5: The average and standard deviation of the three metrics computed over
the 6 low-dose walnut datasets with Na = 500 projection angles. The metrics are
computed using (4.20). The best results are highlighted.

We fix the number of voxels used for training and validation at NT = 106 and
NV = 106 for all scenarios. For comparison we trained a U-net and a MSD network
with the same training scenarios, with the exception that all voxels from the
datasets are used. For training scenario 1 the slices are divided into a training and
a validation set. More specifically, every fourth slice is used for validation.

We performed this experiment for two simulated data problems, a high noise
level (emitted photon count I0 = 256) and a large cone angle (29.3 degrees), and
the two experimental data problems. For the sake of brevity we show only the
results for the high noise simulated data reconstruction problem (Table 4.6) and
the high noise experimental data reconstruction problem (Table 4.7). The results
for the other reconstruction problems are given in Appendix 4.7.3. Comparing
quantitative measures between the different scenarios we see that the reconstruc-
tion accuracy improves as more data is used for the simulated data experiment,
but remains about the same for the experimental data experiment. This can be

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 105PDF page: 105PDF page: 105PDF page: 105

4.6. SUMMARY AND CONCLUSION 101

explained by the variation in the objects used in the reconstruction problems.
Recall that the Fourshape phantom family has a large variety in its phantoms,
i.e., three instances of four randomly generated objects, and the variety within the
walnut datasets is small, i.e., similar shapes, sizes and structures. This indicates
that if objects are similar, one training dataset may already be sufficient to train
networks that achieve a high reconstruction accuracy.

Note that although the training scenarios for NN-FDK and the DNNs use the
same number of datasets, the number of voxels considered for training the NN-FDK
network is constant over all three scenarios and is several orders of magnitude
lower than the number of voxels considered for training the DNNs. This opens up
future possibilities for reducing the training data requirements to only need a high
quality reconstruction of a certain region of interest.

Simulated data, high noise

TSE
Method 1 dataset 2 datasets 15 datasets

NN-FDK4 4.97±4.68e-05 4.19±3.60e-05 2.51±1.14e-05
U-net 1.06±1.36e-05 2.45±2.87e-05 8.06±3.63e-06
MSD 1.12±0.41e-05 1.12±0.40e-05 7.94±3.16e-06

SSIM
NN-FDK4 0.831±0.065 0.844±0.065 0.884±0.030
U-net 0.884±0.075 0.932±0.050 0.979±0.009
MSD 0.961±0.013 0.962±0.013 0.974±0.008

Table 4.6: Average and standard deviation of the quantitative measures computed
over 20 Fourshape phantoms for varying training scenarios. The reconstruction
problems have an emitted photon count of I0 = 256 and Na = 360 projection
angles. The best results are highlighted.

4.6 Summary and conclusion

We have proposed the Neural Network FDK (NN-FDK) algorithm, a reconstruc-
tion algorithm for the circular cone-beam (CCB) Computed Tomography (CT)
geometry with a machine learning component. The machine learning compon-
ent of the algorithm is designed to learn a set of FDK filters and to combine the
FDK reconstructions done with these filters. This leads to a computationally ef-
ficient reconstruction algorithm, since one only needs to compute and combine
the FDK reconstructions for this learned set of filters. Due to parametrization of

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 106PDF page: 106PDF page: 106PDF page: 106

102 CHAPTER 4. NN-FDK ALGORITHM

Experimental data, low-dose

TSE
Method 1 dataset 2 datasets 15 datasets

NN-FDK4 1.16±0.25e-04 1.23±0.25e-04 1.14±0.23e-04
U-net 1.27±0.38e-04 1.23±0.35e-04 1.02±0.45e-04
MSD 1.28±0.41e-04 1.16±0.35e-04 7.82±2.86e-05

SSIM
NN-FDK4 0.973±0.009 0.968±0.011 0.965±0.012
U-net 0.979±0.008 0.978±0.008 0.980±0.006
MSD 0.979±0.008 0.979±0.008 0.980±0.007

Table 4.7: Average and standard deviation of the quantitative measures computed
over 6 walnuts for varying training scenarios. The datasets are low-dose and have
Na = 500 projection angles. The best results are highlighted.

the learned filters, the NN-FDK network has a low number of trainable parameters
(<100) and can be trained efficiently with the Levenberg-Marquardt algorithm
with approximate quadratic convergence rate.

We compared the NN-FDK algorithm to SIRT with a nonnegativity constraint
(SIRT+), the standard FDK algorithm and two deep neural networks (DNNs),
namely a 2D U-net and a 2D MSD network applied in a slice-by-slice fashion
to a 3D volume. We have shown that the NN-FDK algorithm has the lowest
reconstruction time after the standard FDK algorithm. We have also shown that
the NN-FDK algorithm achieves a reconstruction accuracy that is similar to that of
SIRT+ for simulated data and a higher accuracy than that of SIRT+ for experimental
data. The DNNs achieved the highest reconstruction accuracy, but training those
networks took between 2 days (1 training and validation dataset) and 2 weeks (15
training and validation datasets), whereas all the NN-FDK networks were trained
within 1 minute.

To conclude, the NN-FDK algorithm is a computationally efficient reconstruc-
tion algorithm that can reconstruct CCB CT reconstruction problems with high
noise, low projection angles or large cone angles accurately. The training process is
efficient and requires a low amount of training data, making it suitable for applica-
tion to a broad spectrum of large scale (up to 4096× 4096× 4096) reconstruction
problems. Specifically, the NN-FDK algorithm can be used improve image quality
in high throughput CT scanning settings, where FDK is currently used to keep pace
with the acquisition speed using readily available computational resources.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 107PDF page: 107PDF page: 107PDF page: 107

4.7. APPENDICES 103

4.7 Appendices

4.7.1 Implementation

Data generation

For our simulated data experiments we take N = 1024, which means that recon-
structions and reference images are defined on a 10243 equidistant voxel grid,
and the projection data on a 10242 equidistant detector grid per projection angle.
However, to avoid using the same operator for reconstructions as for the data
generation we generate the input data at a higher resolution. More specifically, we
generate a phantom at N = 1536, forward project this phantom to the data space
with size Na × 15362 and apply a bilinear interpolation per projection angle to
arrive at a 10242 detector grid, resulting in input data with the desired resolution
Na × 10242. We set the source radius to 10 times the physical size of the phantom,
resulting in a cone angle of 5.7 degrees. To generate noise we compute a noise free
photon count I from clean projection data yc and use that to generate a Poisson
distributed photon count from which we compute y:

I = I0e−yc , Inoise ∼ Pois(I), y= − log
(

Inoise

I0

)
, (4.21)

with I0 the emitted photon count. Higher I0 implies a higher dose and therefore
less noise in the data.

Deep neural networks

Application strategy We train 2D DNNs to remove artifacts from 2D slices
of an FDK reconstruction. We train one network that handles all slices in the
reconstructions.

Training DNNs We train the DNNs with ADAM [KB14] and stop training after
48 hours of training on a Nvidia GeForce GTX 1080Ti GPU, the network with
the lowest validation set error during this training process will be used for the
reconstructions.

U-net and MSD network structures For U-net we will take four up and down
layers as presented in [RFB15]. For the MSD networks we take 100 layers with
one input and one output layer and the dilations as suggested in [PS18].

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 108PDF page: 108PDF page: 108PDF page: 108

104 CHAPTER 4. NN-FDK ALGORITHM

Code-base

We implemented the NN-FDK framework using Python 3.6.5 and Numpy 1.14.5
[WCV11]. For the parameter learning we used the Levenberg-Marquardt algorithm
implementation from [PB13]. The reconstruction algorithm is implemented using
ODL [AKÖ17], the ASTRA-toolbox [Van+16], PyFFTW [FJ05] and the exponen-
tial binning framework for filters from [Lag+20]. For performance reasons the
simulated phantoms are generated through C++ using Cython [Beh+11].

For the evaluation of U-nets we took the PyTorch [Pas+19] implementation
used in [Hen+19]. The MSD-nets are implemented using the package published
with [PBS18].

All the code related to this chapter can be found on Github [Lagb].

Segmentation algorithm

This algorithm consists of several steps:

1. Apply a Gaussian filter to the reconstruction.

2. Compute a histogram of the filtered reconstruction and determine the peaks
relating to the background, kernel and shell.

3. Determine the shell and kernel segmentations using a threshold based on
the found peaks.

4. Apply the watershed algorithm on the shell segmentation. This gives the
total volume inside the walnut.

5. Remove the kernel from the total volume inside the walnut to attain the
empty space segmentation.

Further details about this implementation can be found on our Github [Lagb].

4.7.2 Levenberg-Marquardt algorithm

Given the learning problem (4.12), the update rule for the Levenberg-Marquardt
algorithm (LMA) ([Lev44; Mar63]) is given by:

θ i+1 = θ i + ti , (4.22)

with ti the update vector. This is computed by solving the following equation for ti

�
J T

i Ji +λi I
�
ti = −∂�

∂ θ
(θ i , T) = −J T

i

NT∑
j=1

�
Oj −Nθ (Zj)

�
(4.23)

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 109PDF page: 109PDF page: 109PDF page: 109

4.7. APPENDICES 105

where λi > 0 is the step parameter and Ji the m× n Jacobian matrix of Nθ i (Z)
with respect to θ i , with Z the vector containing all inputs from the training set T .
We can solve (4.23) using a Cholesky decomposition.3

To ensure convergence, only updates that improve the training error are
accepted, i.e., if the following is true:

� (θ i , T)>� (θ i + ti , T), (4.24)

If this is not the case we change the step parameter λi to aλi with a > 1 and
compute a new update vector ti . When an update is accepted we change the step
parameter to λi+1 = λi/a.

We use two stopping criteria for the LMA. Firstly, we stop if we cannot find a
suitable θ i+1, using several indicators for this:

• The norm of the gradient ∂�∂ θ (θ i) is too small

• The step size λi is too big

• After Nup rejected updates.

The second stopping criterion checks whether the parameters θ i improve the
validation set error. More specifically, we terminate the LMA when the validation
set error has not improved for Nval iterations.

In Algorithm 4 the LMA is summarized. The random initialisation is done
with the Nguyen-Widrow initialization method [NW90]. For our experiments we
take Nup = 100, λ0 = 105, a = 10 and Nval = 100.

Algorithm 4 Levenberg-Marquardt algorithm

1: Compute random initialization θ0 using [NW90]
2: repeat
3: Compute ti until we accept an update θ i+1.
4: until Nup updates were rejected or
� (θ i , V) did not improve Nval times or�� ∂�
∂ θ (θ

i+1)
�� is too small or λi+1 is too big.

5: Set θ� equal to the θ i with the lowest validation error.

3J T
i Ji is positive semi-definite and λi > 0, therefore the left hand side of (4.23) is positive definite.

565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 110PDF page: 110PDF page: 110PDF page: 110

106 CHAPTER 4. NN-FDK ALGORITHM

4.7.3 Results data requirement experiment

Simulated data, large cone angle

TSE
Method 1 dataset 2 datasets 15 datasets

NN-FDK4 6.47±1.19e-04 4.70±1.16e-04 4.82±1.13e-04
U-net 1.04±0.27e-04 1.02±0.17e-04 8.23±0.85e-05
MSD 2.44±1.43e-04 1.53±0.17e-04 6.52±0.43e-05

SSIM
NN-FDK4 0.825±0.018 0.904±0.011 0.910±0.007
U-net 0.974±0.015 0.971±0.021 0.973±0.010
MSD 0.954±0.006 0.937±0.004 0.966±0.002

Table 4.8: Average and standard deviation of the quantitative measures computed
over 20 different Defrise phantoms for varying training scenarios. The reconstruc-
tion problems have a cone angle of 29.2 degrees and Na = 360 projection angles.
The best results are highlighted.

Experimental data, high-dose, 32 projection angles

TSE
Method 1 dataset 2 datasets 15 datasets

NN-FDK4 8.14±1.45e-04 8.68±1.43e-04 8.03±1.39e-04
U-net 7.56±1.52e-04 6.85±1.56e-04 4.10±1.06e-04
MSD 7.82±0.41e-04 6.51±0.35e-04 4.23±0.97e-04

SSIM
NN-FDK4 0.950±0.010 0.948±0.010 0.946±0.011
U-net 0.955±0.011 0.930±0.023 0.964±0.009
MSD 0.955±0.010 0.947±0.014 0.964±0.009

Table 4.9: Average and standard deviation of the quantitative measures computed
over the 6 datasets for varying training scenarios. These are the high-dose datasets
from [LCB20] with Na = 32 projection angles. The best results are highlighted.

