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Chapter 3

Automated FDK-Filter selection
for cone-beam Computed
Tomography

3.1 Introduction

Research environments in academia nowadays have cone-beam (micro-)CT systems
that are used for imaging the 3D interior structure of highly diverse objects. These
systems may be shared by many users, each studying their own type of objects and
their own questions they would like to answer based on the interior structure. As
an example, one can think of a natural history department where various fossils,
meteor fragments, plant remains, insects, and a variety of other objects are all
scanned using the same system. Similarly, industrial research labs use micro-CT to
analyze their products ranging from detergents to dairy products and packaging
materials, all using the same CT system. For each new scan, the settings of the
scan (number of angles, dose, energy level, etc.) are chosen by the user, often
based on how much time is available or the dose sensitivity of the sample.

The Feldkamp-Davis-Kress algorithm (FDK) is the most common reconstruction
method used in laboratory circular cone-beam CT systems. It is well known that

This chapter is based on:

Automated FDK-Filter Selection for Cone-Beam CT in Research Environments. MJ
Lagerwerf, WJ Palenstijn, H Kohr, KJ Batenburg. IEEE Transactions on Computational
Imaging (Volume: 6), pp. 739–748, 2020.
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Figure 3.1: Schematic view of the proposed approach. Given a measured projection
dataset with a certain geometrical setup, we estimate a regularization parameter
and compute an FDK-filter that yields accurate results for common automated
tasks (such as segmentation by global thresholding, porosity quantification).

optimizing the filter, also referred to as filter kernel, in the FDK algorithm to the
characteristics of the scan (number of angles, dose, cone angle, etc.) can improve
the accuracy of the FDK algorithm [Hsi+09; Rus17] (see Ch. 3.4.2 and 35.4.3.3,
respectively). For high-throughput CT systems designed for a specific application
(e.g. medical CT-scanners, dental CBCT scanners) the scanner comes with a set of
proprietary pre-optimized filter [Com; Pla] that are chosen through a predefined
protocol or by the user. In contrast, the broad variety in scans made in research
scanners (many different objects with many different scan settings) require the user
to manually select the parameters of the filter on a case-by-case basis, requiring
specific expertise and time-consuming intervention from the user, or otherwise
resulting in sub-optimal image quality.

Several studies have been made on how to compute such filters in an automated
way, based on the geometrical parameters of the scanning process. In [GMD06;
Nie+12] the authors exploit the tomosynthesis geometry to compute an acquisition-
dependent filter. Alternatively, one can use the fact that the backprojection and
filtering step are interchangeable in the FBP algorithm — for the parallel beam
geometry — to optimize filters to approximate an iterative reconstruction method
[BP12; Zen12; PB13], or to fit towards a specific scanner [Kun+07].

For the parallel beam geometry, a more general strategy for determining filters
is proposed in [PB14], where a filter is computed that minimizes the residual error
of the FBP reconstruction in the least squares sense. So far, this general concept
has not been introduced in cone-beam tomography as the algorithm for computing
the filter does not scale well to the 3D case of cone-beam tomography, where the
full 3D volume must be taken into account.

In this chapter we present a computationally efficient and automated method
to compute an FDK-filter for a given measured projection dataset that is optimal
with respect to an objectively defined quality criterion based on the �2-norm of the
difference between the measured projection data and the computed projections
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3.2. METHOD 53

of the reconstructed volume (Figure 3.1). Since this criterion is often referred to
as the minimum residual, we will refer to our filters as Minimum Residual (MR)
filters. We show that for a variety of objects, scan settings (number of angles and
noise levels), and tasks (porosity quantification, threshold-based segmentation),
the MR filters computed by our approach yield accurate results in terms of several
different metrics (e.g. MAE, SSIM, MTF, which we will define later). In contrast,
using the same manually tuned filter in all scenarios only yields accurate results
for some of the cases, regardless of the particular choice of filter.

This chapter is structured as follows. In Section 3.2 we introduce our method
and describe how it allows for fully-automatic and efficient computation of the
MR filter. In Section 3.3 we describe how a set of experiments was carried out to
investigate the behavior of our method under various scanning conditions, using
both simulated and real experimental data. The results of these experiments are
presented in Section 3.4. Conclusions are drawn in Section 3.5.

3.2 Method

3.2.1 Filter optimization problem

The 3D tomographic reconstruction problem can be modeled by a system of linear
equations

Wx= y, (3.1)

where x ∈ �n is a vector containing the voxel gray values, y ∈ �m is a vector
containing the measured projection data, and W ∈ �m×n is a discretized version
of the forward model, i.e. the Radon transform for parallel beam tomography and
the cone-beam transform for cone-beam tomography. In this chapter we focus
exclusively on the circular cone-beam geometry, where the object rotates with
respect to a point source and a planar detector, acquiring 2D cone-beam projections.
For the sake of simplicity we assume that the volume consists of n = N×N×N
voxels and the detector consists of 2N×N pixels. We denote the number of angles
with Na, so we have m= Na × 2N × N .

The FDK algorithm [FDK84] is an extension of the well-known Filtered Back-
projection algorithm that approximately solves (3.1) for the circular cone-beam
geometry. For each projection angle, it applies a reweighting step, that corrects for
some of the geometrical properties of the cone-beam transform, a filtering step,
that filters the projections line-by-line by convolving the data with a filter, and
a backprojection step that transfers the filtered projection into the image volume
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domain. Using the notation of (3.1), the FDK algorithm is given by

FDK(y,h) =W T (h ∗ r (y))1D, (3.2)

with W T the transpose of W , known as the backprojection operator, h ∈ �2N a
one-dimensional filter, r the reweighting operator, and ((h ∗ r (y))1D) the discrete
convolution between the data and the filter. While the standard Ram-Lak filter
corresponds to the analytical derivation of the reconstruction problem, a variety
of filters are used in practice for reaching a trade-off between artifacts, noise,
sharpness of the reconstruction, and other application-specific image properties.
The key contribution of this chapter is to propose a computationally efficient
numerical algorithm for computing a filter for a specific combination of scanned
object, geometrical parameters of the cone-beam acquisition, number of angles,
and noise level. The aim is to devise an approach that provides decent quality
results across a broad range of scenarios, such that the same automated approach
can be used to compute FDK reconstructions, yielding high quality results in all
cases.

A problem in automatically optimizing the FDK filter is that without access
to a high quality reference image of the scanned object, defining reliable quality
metrics is not straightforward. To solve this problem, we introduce a criterion that
is not based directly on the reconstructed image, but instead on the consistency
of the FDK-image with respect to the measured projection data y, measured by
simulating the projections of the FDK reconstruction and comparing these to the
measured projections. Specifically, we select the filter as the minimizer of this cost
function:

h� = argmin
h

‖W (FDK(y,h))− y‖2
2 +λ‖h‖2

2 (3.3)

The first term corresponds to the residual of the FDK-reconstruction for a given
filter h, computed by applying the cone-beam transform to the FDK-reconstruction
and comparing to the measured data y. This term will be low if the filter results in
an FDK-reconstruction that is consistent with the measured projections. Using a
detector of size 2N×N ensures that the convolution of the projected object with
the filter is fully supported on the detector discretization domain and the influence
of all filter coefficients on the reconstructed image is taken properly into account.
The second term is a Tikhonov-type regularization term that penalizes filters
with coefficients that have large absolute value. The regularization parameter
λ determines the relative weight of this term. Note that this objective function
only incorporates data specific information and general regularization, it does
not include task or problem specific assumptions. In computing these filters we
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are minimizing the residual, therefore we will refer to these computed filters as
Minimum Residual (MR) filters.

We also evaluated more sophisticated regularizers, such as a Tikhonov-type
term with the reconstructed image or the gradient of the reconstructed image,
but we have not included them in this chapter as they lead to similar filters with
similar performance as the proposed method.

We point out that the FDK algorithm is a bilinear operator with respect to the
projection data y and the filter h. This implies that for fixed projection data y,
the output FDK(y,h) of the FDK algorithm can be considered as a matrix-vector
product Fyh. Consequently, the minimization problem in (3.3) is a linear least-
squares problem for which the solution corresponds to the solution of the normal
equations1:

(F T
y W T W Fy +λI2N )h= F T

y W T y, (3.4)

with I2N ∈ �2N×2N the identity matrix. In the next subsection we will discuss how
(3.4) can be solved accurately and efficiently.

3.2.2 Computational aspects

Note that the matrix inverse problem in (3.4) is small enough to solve directly once
an explicit representation is available of the matrix M = F T

y W T W Fy. This matrix
is square and its size equals the number of entries in the FDK-filter h. However,
computing the matrix M explicitly is not straightforward as it involves much larger
matrices W and Fy and their transposes, which are too large to be represented
explicitly. Instead, we compute the columns Mj of the matrix M individually, by
evaluating the following expression 2N times:

Mj = Me j = (F
T
y W T W Fy)e j , (3.5)

with e j ∈ �2N a unit vector with all entries equal to zero except for the j th element.
The computation for each element Mj involves a forward and backprojection,

which can still impose a high computational load if the filter has many coefficients.
Therefore, to reduce the number of filter coefficients, the filter is represented with
respect to a small set of basis functions as h = Ehe on an exponentially binned
grid similar to [PB14]. As a result, we have Ne ≈ log(N), with Ne the number of
elements of he. Details about this approximation are discussed in Appendix 3.6.1.

The algorithm to compute a MR filter is summarized in Algorithm 2. Lastly,
we observe that the computational effort of computing a MR filter is roughly 2Ne
forward and backward projections and lies mainly in the computation of the matrix
M .

1Consider the first order optimality conditions of (3.3) and rearrange the terms to get (3.4).
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Algorithm 2 Computing a MR filter

1: for j = {0,1, 2, .., Ne − 1} do
2: Mj =

�
ET F T

y W T W FyE
�

e j

3: Compute: h�e =
�
M +λINe

�−1
ET F T

y W T y

3.2.3 Regularization parameter

The final component of our automated approach for computing the FDK-filter is to
determine a suitable value for the regularization parameter λ. Finding an optimal
value for this parameter is in general not possible as it requires knowledge of
the ground truth as well as detailed modelling of the application-specific quality
criteria. We therefore aim for a computationally efficient heuristic that yields
decent results across a broad range of imaging scenarios.

Our strategy involves three consecutive components:

• Computing a low-noise reference reconstruction at strongly reduced
spatial resolution. We compute a low-resolution reconstruction, where the
volume as well as the projection data are down-sized by a factor of 4 in
each dimension (so, 4×4×4 for the volume and 4×4 for each projection). In
this small reconstruction problem the signal-to-noise ratio is much higher
and the number of angles is much larger relative to the size of the volume
compared to the full problem. To compute the reference reconstruction,
200 iterations of the iterative SIRT algorithm are used, with a nonnegativity
constraint applied in each iteration.

• Optimizing the regularization parameter for the low-resolution prob-
lem using the noise characteristics of the full problem. We subsample
the high resolution data by taking every 4th pixel in the detector width and
height and compute the matrix MLR with this subsampled low resolution
data and compute reconstructions xλLR for several values of λ. Note that by
subsampling we do not reduce the noise levels, making the noise character-
istics of the low resolution problem similar to the original high resolution
problem. We choose the regularization parameter for which the difference
with the reference reconstruction is minimal in the �1-norm. This heuristic
choice of norm works well for our experiments. Other norms could also be
used.

Regularization parameters can vary strongly per problem. Therefore, we
scale the parameter to account for the influence of the operators W , Fy and
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E:

λ = λ̃
��WLRFy,LRELR

��= λ̃�‖MLR‖. (3.6)

Moreover, we consider a two step process for optimizing the parameter. First,
we optimize over a broad and coarse grid, more specifically a logarithmically
scaled grid spanning from 10−6 to 10 with 8 grid points. Second, we optimize
over a fine grid around the optimal parameter from the first grid.

• Scaling the regularization parameter to the full-resolution case. The
regularization parameter λ computed for the low-resolution problem cannot
be used directly in the high-resolution problem. To account for the scaling
differences between the problems, we apply the following conversion formula
(cf. (3.6)):

λHR = λLR

��W FyE
����WLRFyLR

ELR

�� = λLR

�‖M‖�‖MLR‖
. (3.7)

Once the regularization parameter λ and corresponding filter h have been com-
puted, this filter can be used in the FDK algorithm to compute a reconstruction of
the high-resolution data.

3.3 Experiments

We performed a series of experiments to assess the properties of our proposed
MR filters. The goal of our experiments is twofold; (1) Compare the accuracy
of the FDK results for MR filters to manually selected filters for the experiments,
(2) Investigate the capability of MR filters to automatically adapt to a variety of
objects, scan settings and tasks.

To achieve this we consider the following four scenarios:

• Reconstruction problems with common data deficiencies. We vary the
noise levels, number of projection angles in the different input data and cone
angle and compare the results from the computed filters to the manually
tuned filters.

• Task specific reconstruction problems. We compute reconstructions of a
foam phantom similar to the one used in [PBS18] and use these to do
segmentations and compute the pore size distribution of this phantom.
For the segmentations we use Otsu’s global thresholding method [Ots79].
Details about the computation of the pore size distribution are given in
Appendix 3.6.4.
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• Filter comparison and analysis. We compare the computed filters and
their respective Modulation Transfer Functions (MTF) to the manually se-
lected filters. Details about the implementation of the MTF are given in
Appendix 3.6.5.

• Examples with experimental data. We show results for two experimental
datasets using the computed filters and compare the reconstructions to manu-
ally selected filters and the gold standard reconstruction (see Section 3.3.1).

The results are compared to several manually selected filters and analytic FDK
filters. As manually selected filters we consider the family of filters which combine
a low-pass filter with an analytic filter, e.g., the Shepp-Logan filter and a Gaussian
filter. The set of selected filters are chosen such that they are close to the optimal
quality metrics for each of the conducted experiments. We point out that a manually
selected filter from this set might actually yield sub-optimal results for experiments
other than it was selected for, which is exactly why an automated and deterministic
approach for computing filters can be beneficial.

Details on how the filters are combined, the definitions of the low-pass filters
and how these filters are selected are given in Appendix 3.6.2.

3.3.1 Data

Simulated data

In Figure 3.2 we show the FORBILD head phantom [LB], which is used in the
simulated data experiments. Note that with the chosen scanning conditions we
focus on the high contrast details and we do not expect to resolve the low contrast
objects in this head phantom.

For our simulated data experiments we take N = 1024, which means that a
reconstruction and the data are respectively defined on a 10243 equidistant voxel
grid and a 2048× 1024 equidistant detector grid per projection angle. To limit
the influence of the inverse crime, we generate2 a phantom with N = 1536, and
forward project this phantom to a data space with detector size 3072×1536. Then
interpolate the data per projection angle to a 2048× 1024 detector grid and use
this as input data. We set the source radius to 10 times the physical size of the
phantom, resulting in a cone angle of 5.7 degrees. Poisson noise is applied before
linearizing the data, i.e.,

y= − log
�

Inoise
I0

�
, Inoise ∼ Pois(I), (3.8)

2We also generated phantoms with higher resolutions, but did not observe noticeable differences.
Hence we chose for a sampling factor of 1.5, to limit computational and memory constraints.
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with I the noise-free photon count and I0 the emitted photon count. Higher I0
implies a higher dose and therefore less noise in the data.

x

y

x

z

0.095

0.100

0.105

0.110

0.115

0.120

Figure 3.2: Two-dimensional slices z = 0 (Left) and y = 0 (Right) of the FOR-
BILD head phantom [LB]. Note that the gray value scaling is different from the
reconstructions further in the chapter. This is done to highlight the low contrast
objects in the center, top, and bottom of the phantom. The phantom is continuously
defined and sampled on a chosen grid.

Experimental data

We acquired an experimental dataset of a pomegranate using the custom-built and
highly flexible FleX-ray CT scanner, developed by XRE NV and located at CWI. This
scanner has a flat panel detector with 1943× 1535 pixels and a physical size of
145.34× 114.82 mm. The datasets contain 500 equidistantly spaced projections
over a full circle. The distance from the center of rotation to the detector was set
to 109 mm and the source radius to 590 mm. The scans were performed with a
tube voltage of 70 kV. The high-dose scan was collected with a tube power of 45
W and an exposure time of 500 ms. The low-dose scan was collected with a tube
power of 20 W and an exposure time of 100 ms. These datasets are available at
Zenodo [CLB18].

In Figure 3.3 the gold standard reconstruction of the experimental data is
shown, obtained by computing a SIRT reconstruction with 300 iterations of the
high-dose dataset with 500 equidistant projection angles, where we set the voxels
in the background below a certain threshold equal to zero.
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Figure 3.3: The z = 0 (Left) and y = z (Right) slice of the gold standard recon-
struction of the pomegranate dataset. The projection data is acquired using the
FleX-ray scanner located at the CWI.

3.3.2 Quantitative measures

To quantify the accuracy of the reconstructions we consider two measures, the
mean absolute error (MAE) and the structural similarity index (SSIM). The MAE
and the SSIM compare the reconstructed image xr to the phantom image xp. The
MAE is defined as

MAE(xr ,xp) =

��xr − xp

��
1��xp

��
1

, (3.9)

The SSIM [Wan+04] is implemented based on the scikit-image 0.13.1 [Wal+14]
package, where all the constants are set to default and the filter is uniform with a
width of 19 pixels.

For experimental data there is no ground truth image available. Therefore, we
will use the high quality gold standard reconstruction as reference image xp.

Lastly, we are only interested in how the methods perform on the object itself
and not on the background. Therefore, we only consider the reconstructed object
and roughly 0.2N pixels away from the object. Here the position of the object is
determined in the ground truth or gold standard reconstruction.

3.3.3 Implementation

All the methods are implemented using Python 3.6.2, Numpy 1.12.1 [WCV11],
ODL [AKÖ17] and PyFFTW 0.10.4 [FJ05], and the forward- and backprojection
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are implemented on the GPU using the ASTRA-toolbox [Van+16], which provides
a collection of high-performance building blocks for tomography algorithm devel-
opment. Here, for performance reasons, the forward projection is not the exact
adjoint of the backward projection and vice versa. Our implementation of this
method is available on Github [Laga].

3.4 Results and discussion

3.4.1 Common data deficiencies

Sparse view and noisy data

Figure 3.4a and Figure 3.4b show the MAE and SSIM for reconstructions with
a varying number of projection angles and varying noise levels, respectively. We
observe that the MR filters are close to the optimal manually selected filter (see
Appendix 3.6.2 for details about manually tuned filters) for all considered cases
with respect to the quantitative measures. Moreover, we observe that the manually
selected filters are only optimal for a certain range of cases. This is illustrated in
Figure 3.5 where reconstructions of noisy data are shown with several filters.

Varying cone angles

So far we have considered a relatively small cone angle of 5.7 degrees. In this
section we show the effect of varying the cone angle. Figure 3.6 shows the MAE
and SSIM for a range of cone angles.

We observe that all the reconstruction methods react similarly to the change
in cone angle with unchanged relative performance. Figure 3.7 illustrates the
effect of a large cone angle with strong artifacts at the top and bottom of the
reconstruction. The effect of these artifacts are also reflected in the quantitative
measures.

3.4.2 Task based problems

In this section we test the performance of MR filters for specific tasks, namely
segmentation and porosity computation. Figure 3.8 shows the percentage of
misqualified voxels for an Otsu global thresholding segmentation [Ots79] for
several filters and varying noise levels.

We observe that the less smoothing filters lead to a lower percentage of
misqualified voxels. Looking at Figure 3.9 we observe that the MR filter still leads
to a less noisy reconstruction, but the smaller pores are lost in the segmentation.
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(a) Varying number of projections angles.
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Figure 3.4: Comparing quantitative measures of FDK reconstructions with varying
filters. The data is generated from the FORBILD head phantom.

Looking at Figure 3.9 we observe that reconstructions with the MR filter contain
less noise than the reconstructions with SL + BinN=5 filter, which is in line with
the experiments in Section 3.4.1. Additionally, we see that, although the SL +
BinN=2 has a lower percentage of misqualified voxels in this case, it still contains
noise in the object and false positives in the background.

From these segmentations we can also count the pores inside the phantom. A
pore is defined as an open space in the segmented volume and in Figure 3.10 we
show the pore size distributions for several noise levels. First of all, we note that
the segmentations with the SL + BinN=2 filter for I0 = 256 contain too much noise
to compute a sensible pore distribution. Second, we observe that the MR filter
underestimates the number of pores, whereas the filters with binomial smoothing
tend to overestimate the number of pores.

Considering these observations we can conclude that, although MR filters do
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(a) FDK reconstruction with Shepp-Logan fil-
ter.
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(b) FDK reconstruction with a SL + Gaussσ=5
filter.
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(c) FDK reconstruction with a SL + Gaussσ=8
filter.
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(d) FDK reconstruction with MR filter.

Figure 3.5: Reconstructions from the FORBILD phantom; the dataset has 360
equidistant projection angles and emitted photon count I0 = 256.
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Figure 3.6: Reconstruction quality measures computed from the FORBILD
phantoms with 360 equidistant projection angles, emitted photon count I0 = 1024,
and varying cone angles.

not lead to the best segmentations or pore size distributions, they still perform
robustly in all the considered cases.
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Figure 3.7: Reconstructions using Shepp-Logan filter (Left) and MR filter (Right)
computed on the FORBILD phantom with 360 equidistant projection angles, cone
angle of 62.6 degrees and an emitted photon count I0 = 1024.
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Figure 3.8: Segmentation errors for various filters. The projection data is simulated
with varying emitted photon counts I0 from a foam phantom.
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Figure 3.9: Reconstructions (top half, green border) and segmentations (bottom
half, red border) of projection data from a foam phantom with emitted photon
count I0 = 2048 and 360 projection angles.
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Figure 3.10: Pore size distributions for three different filters and the ground truth
distribution. The size of a pore is defined as the radius of the pore, which is
expressed in a number of voxels. Furthermore, the pores are grouped into bins
with similar radii (5 voxel intervals). The projection data is simulated with varying
emitted photon counts from the foam phantom.
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3.4.3 Filter analysis

In this section we analyse the MR filters. In Figure 3.11 we show the Fourier
representation of several types of filters, namely: analytic, manually tuned, and
MR filters. We show MR filters from four different cases. Comparing the filters we
observe that the shape of the MR filters is different from the manually selected
filters, i.e., they have a relatively lower amplitude and a longer tail. From the MTFs,
which are shown in Figure 3.12, we also observe a slight difference between the
three types of filters. The MTFs of the analytic and manually selected filters all
have a similar gradual drop in frequencies, whereas the MTFs of the MR filters
have a steeper drop and a longer tail compared to the SL + Gauss filters, which
were the filters that led to the most comparable results for the (NOI, 1) and (NOI,
2) scenarios.
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Figure 3.11: Fourier representations of various filters. Here the MR filters denoted
with (SV, 1) and (SV, 2), are computed on the FORBILD head phantom with 96
equidistant and 192 projection angles, respectively. The MR filters denoted with
(NOI, 1) and (NOI, 2) are computed on the FORBILD phantom with 360 equidistant
projection angles and emitted photon count I0 = 256 and I0 = 16384, respectively.

Lastly, we consider the image bias introduced by the MR filters. The MR filters
use the FDK algorithm to reconstruct the data. Therefore, their reconstructions will
suffer similar limitations as the reconstructions with standard filters. In Figure 3.13
we show the cross section along the x-axis of averaged reconstructions computed
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Figure 3.12: Modulation Transfer Functions of several filters in the positive ωx
direction. The MR filters are computed on datasets with 360 equidistant projection
angles of the FORBILD phantom and emitted photon counts I0 = 256 (NOI, 1)
and I0 = 16384 (NOI, 2).

over 500 random noise instantiations and their standard deviations of 3 phantoms:
a cylinder with constant density, a cylinder with a ramp in its density and the
FORBILD phantom. We clearly see the bias-variance trade-off between the more
smoothing filters and the Ram-Lak filter. Additionally, we see that the MR filters
adapt to the data and even try to fit the edges, at the cost of overshooting around
these edges.

3.4.4 Experimental data

In Table 3.1 the quantitative measures for the experimental data with respect to
the gold standard reconstruction (recall Section 3.4.4 and Figure 3.3). First we
observe that the MR filters have a lower MAE than the other filters. In Figure 3.14
we see that the intensity of the MR filter reconstruction is closer to the gold
standard reconstruction, which explains the difference in MAE. This difference is
less prominent in the SSIM, because the SSIM is designed to be less influenced by
scaling differences. Lastly, we observe that the reconstruction with the MR filter for
the low-dose dataset still contains noise, which explains the relatively low SSIM.
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Figure 3.13: Average reconstructions and standard deviation of the x-axis for
a (Left) constant cylinder phantom (Middle) ramp cylinder phantom (Right)
FORBILD phantom. The average and standard deviation are computed over 500
reconstructions with 2563 voxels of input data with different initialisations of
emitted photon count I0 = 256 and 360 projection angles.

This indicates that the estimation for the regularization parameter is relatively low,
which is most likely due to noise in the low resolution high quality reconstruction
used to determine this parameter.
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(a) FDK reconstruction with Shepp-Logan filter.

(b) FDK reconstruction with SL - Gaussσ=8 filter.

(c) FDK reconstruction with MR filter.

Figure 3.14: Reconstructions of the low-dose Pomegranate dataset with 500
equidistant projection angles.
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Table 3.1: Reconstruction quality measures from the high- and low-dose
Pomegranate1 dataset with 64 and 500 equidistant projection angles (Left &
Right), respectively.

High dose, 64 projection angles
Method MAE SSIM
Shepp-Logan 0.2290 0.1789
SL + BinN=2 0.2839 0.1948
SL + BinN=5 0.2620 0.2350
SL + Gaussσ=5 0.2112 0.5365
SL + Gaussσ=8 0.2037 0.6304
MR filter 0.0711 0.6500

Low dose, 500 projection angles
Method MAE SSIM
Shepp-Logan 0.2426 0.1799
SL + BinN=2 0.2794 0.2147
SL + BinN=5 0.2513 0.2745
SL + Gaussσ=5 0.2144 0.6983
SL + Gaussσ=8 0.2152 0.7294
MR filter 0.0636 0.5934

3.5 Conclusions and outlook

We have proposed a computationally efficient and automated method to compute
a FDK-filter for a given imaging scenario (scanned object, number of angles, dose)
that is optimal with respect to an objectively defined quality criterion. For cone-
beam CT scanners used in research environments, where many different objects are
scanned and parameters are often varied, our method can be used to automatically
determine a filter that yields accurate results across a range of scanning conditions
and tasks to be performed.

The experimental results demonstrate that for a variety of objects, scan settings
(number of angles and noise levels), and tasks (porosity quantification, threshold-
based segmentation), the MR filters computed by our approach are not task or
problem specific and yield accurate results in terms of several different metrics
that are comparable to manually selected filters.

Although the computational cost of computing an MR-filter is substantially
lower than running an iterative reconstruction algorithm, it is much higher than
the computational cost of FDK with a fixed filter. When carrying out batches of
scans for similar objects, one can reuse an MR-filter computed for a particular
object to further bring down the computational cost.

3.6 Appendices

3.6.1 Filter approximation

We want to design an expansion operator E to reduce the dimension needed
to describe a filter. Figure 3.15 shows five examples of analytic FDK filters as
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presented in [Nat01; Buz08]. From the figure we see that the filters are symmetric
and have most information on a fine grid around the origin.

u

h
(u
)

ω

ĥ
(ω

)

Ram-Lak

Shepp-Logan

Cosine

Hamming

Hann

Figure 3.15: Standard filters in the spatial (left) and Fourier (right) domain.

To emulate this behavior, we introduce a re-sampling scheme as used in [BK06;
PB13; PB14]. We do this by defining the discretised filter space �u to be a uniform
grid with 2Nu points on the interval [−Du, Du] and grid points uj. Now we re-
sample these points into bins βi with length:

di =

⎧⎪⎨
⎪⎩
Δu
2 , for i = 0,

Δu, for 0< i < b,

2b−iΔu, for i ≥ b,

(3.10)

with Δu =
Du
Nu

, the length of a single detector pixel. Here the indices i denote
the place of the bin with respect to the central bin, i.e., β0 = [0, d0] and β1 =
(d0, d0 + d1], etc. This binning strategy results in a grid with uniform spacing
around the origin and, depending on the binning parameter b, an exponentially
coarsening grid for the outer regions. Instead of piece-wise constant basis functions
as were used in [BK06; PB13; PB14], we will use piece-wise linear basis functions.
This is because we observed that filters computed with these basis functions behave
regularly in Fourier space. We define these functions as such:

φlin
i,u =

� si−uj

di−1
, for

  uj

  ∈ βi−1,
uj−si

di
, for

  uj

  ∈ βi ,
(3.11)

where si is the boundary value of the i th bin, such that βi = (si , si+1].
Spatial representations of filters created with piece-wise constant and linear

basis functions are shown in Figure 3.16. we use the binning parameter b = 2,
which strongly limits the computational effort of computing a filter. In experiments
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Figure 3.16: Examples of exponentially binned filters with piece-wise constant
and linear basis functions. Binning parameter b = 2.

we observed that selecting a binning parameter greater than 2 does not improve
the quality of the reconstructions substantially.

3.6.2 Filters selected for comparison

Manually selected filters for the FDK algorithm are often analytic filters combined
with low-pass filters. These filters are typically manually adapted to the scan
conditions. We selected several of such filters as reference methods for our results.
We consider two types of low-pass filters.

Binomional filters are defined as:

BinN = ([1 1]⊗ [1 1]⊗ · · · ⊗ [1 1])︸ ︷︷ ︸
N times

/2N+1, with N ∈ �>0, (3.12)

and N the order of the binomial filter.
Gaussian filters are defined as:

Gaussσ, j =
1

σ
�

2π
e
( j−Nu/2)2

2σ2 , with σ > 0, (3.13)

with Gaussσ, j the j th element of Gaussσ ∈ �Nu and σ the standard deviation of
the Gaussian in pixels.

We combine the filters by convolving the low-pass and analytic filters in the
spatial domain and cutting them off. These filters are specified by first referencing
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the analytic filter, then the low-pass filter and lastly the value of the parameter
related to this low-pass filter.

For comparing the results of our proposed MR filter with a set of low pass filters
combined with analytic filters (as defined above), we carried out a search over the
parameter space of these filters (specifically N ∈ {1, ..., 8} and σ ∈ {1, ..., 10}) and
selected four filter settings such that for each of the experiments reported in the
chapter, at least one of the selected filters has quality metrics close to the optimum
across the parameter space (with respect to MAE, SSIM, and task specific metrics).
The selected filters are the SL + Gaussσ=5,8 filters and the SL + BinN=2,5 filters.

3.6.3 Methods used in experiments

3.6.4 Pore size distribution

We derive the pore size distribution from the cumulative pore size distribution of a
segmentation. The cumulative pore distribution is computed through inverting
the segmentation, which leads to pores being particles, and step-wise erosion of
these resulting particles. By controlling the number of voxels that we erode, we
know how many pores there are with a certain radius (this radius is expressed in
the number of voxels).

3.6.5 Modulation transfer function

The modulation transfer function (MTF) of a reconstruction method is defined as the
magnitude of the Fourier transform of its point spread function (PSF). However, due
to aliasing, computing the MTF directly from the PSF is unstable. Therefore, instead
of measuring the PSF directly, we measure the edge spread function (ESF) and
compute its derivative, which coincides with the PSF. Following the ASTM standard
[AST13], we consider a homogeneous cylinder, with its axis on the z-axis, as the
measured object. Since the FDK algorithm and the object are radially symmetric,
every ray from the center of the cylinder to the edge of the reconstruction domain
is a realization of the ESF. Defining φ to be the angle that this ray makes with the
x-axis we can compute the average ESF over all φ, which we denote by �φ (we
limit ourselves to the z=0 plane). Next we compute the gradient of this average
ESF and use it to compute the MTF acting in the z=0 plane.

In mathematical terms, the MTF in the z=0 plane, or w.l.o.g. the x-direction,
due to the radial symmetry, related to a filter h in the FDK algorithm is defined as
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follows:

MTFh(ωx) = |
1D {PSFh} (ωx , 0, 0)| , (3.14)

=
  
1D

� d
d x ESFh

�
(ωx , 0, 0)

  , (3.15)

≈   
1D

� d
d x

�
�φ [F(y� ,h)z=0]

��
(ωx , 0, 0)

  (3.16)

where y� is the cone-beam projection data of the aforementioned cylinder.
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