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Chapter 2

An interpolation approach for
determining regularization
parameters

2.1 Introduction

Tomography is a generic 3D imaging technique for reconstructing the interior of
an object from a series of its projections. Projections can be acquired using a broad
variety of modalities, such as Computed Tomography (CT) [Nat01], Magnetic
Resonance Imaging (MRI) [Fes10] and Electron Microscopy (EM) [Mid+01]. The
resulting image reconstruction problems all have a similar mathematical problem
structure: given a set of tomographic measurements and a description of the physics
process, determine a reconstruction of the measured object. If many projections
are available over a full angular range around the object, and if the projections
have low noise, the reconstruction problem can be solved in a straightforward
way by closed-form inversion techniques. For an overview see [Nat01; KS01]. In
practice, however, the number of tomographic measurements is typically limited
and the measurements can contain substantial noise.

This chapter is based on:

An Efficient Interpolation Approach for Exploring the Parameter Space of Regularized
Tomography Algorithms. MJ Lagerwerf, WJ Palenstijn, F Bleichrodt, KJ Batenburg.
Fundamenta Informaticae (Volume: 172), number 2, pp. 143–167, 2020.
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24 CHAPTER 2. DETERMINING REGULARIZATION PARAMETERS

In such limited data cases the information from the measurements and the
geometry of the acquisition setup is not sufficient to solve the reconstruction
problem accurately and some form of prior knowledge about the object must
be incorporated in the solution process. One way of incorporating such prior
knowledge in the reconstruction method is the use of regularization, where the
balance between the prior knowledge and solving the original problem is usually
determined by a regularization parameter [ROF92; BKP10; Goc16].

The choice for this regularization parameter depends on many properties of
the problem, such as the measured data and its noise level, or the reconstruction
method and its implementation. Moreover, the desired choice of regularization
parameter may also be application-specific, for instance with the aim of recon-
structing particular image features as sharply as possible at acceptable noise levels,
creating a reconstruction that is well-suited for subsequent segmentation, etc.

Consider for example the Total Variation (TV) reconstruction algorithm imple-
mented with a Primal-Dual Hybrid Gradient (PDHG) algorithm initially proposed
by Chambolle, Pock, Bischof and Cremers, as described in [SJP12]. Given all the
information about the reconstruction algorithm and its implementation, the effect
of a particular choice of the regularization parameter on the reconstructed image
still varies significantly for different instances of the reconstruction problems. If it
is not possible to specifically define and model additional information about the
object, it is common that the algorithm user computes a series of reconstructions for
different choices of the regularization parameter and chooses the preferred setting
by visual inspection. Although there have been strategies proposed to handle such
parameter space exploration in a structural manner, such as described in [Sed+14;
Pre+11], these strategies do not specifically address the key drawbacks we en-
counter here. The key drawbacks of such a trial-and-error method are twofold: (i)
computing many reconstructions for different regularization parameter values is
computationally intensive, as even computing a single reconstruction can already
be computationally demanding; (ii) with only a small number of reconstruction
evaluations, it is difficult to choose a regularization parameter in a consistent
manner as the actual desired value may lie somewhere in between the sampling
points.

For variational methods, of which TV is a well known example, there has
been extensive theoretical work on how to determine the “optimal” regularization
parameter, where each approach has a different concept of optimality. For example,
for the Tikhonov method, explicit analytic expressions are found based on the
singular value decomposition and discrepancy principle, see chapter 3 and 7 of
[Sch+09], and [Vai82]. Moreover, substantial analytical results have been obtained
on how the properties of a reconstruction change depending on the value of the
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2.1. INTRODUCTION 25

regularization parameters [Bur+13; Bur+16; Bri+18]. Although these results are
powerful, they also make strong assumptions on the reconstruction algorithm,
such as continuity of the solution with respect to the regularization parameter,
full convergence of the iterative algorithm, or the availability of certain prior
knowledge about the problem such as the noise level, which are not always valid
in practice. Other more general strategies, such as the discrepancy principle and
the L-curve criterion [Vai82; BM12; Han92; HO93; Han99], have been developed.
These methods also rely on a specific definition of the “optimal” reconstruction
and require many evaluations of the reconstruction algorithm. A key limitation of
all mentioned approaches is that they do not take the application-specific needs
into account. The criterion of optimality is based on a mathematical problem
formulation without involving the particular requirements of the user.

In this chapter we propose an algorithmic approach for computationally effi-
cient exploration of the regularization parameter space. Once a relatively small
number of reconstructions have been computed for a sparse sampling of the reg-
ularization parameters, an approximation of the reconstructed image for other
parameter values can be computed with very high efficiency (linear time in the
number of pixels). In the case of manual selection of the regularization parameter,
our approach makes it possible to present the user with a real-time interface where
parameters can be adjusted on-the-fly and immediate visual feedback is obtained
on the effect of parameter changes on the reconstruction. In the case of automated
selection, the output of our approximation method can be used as input for any
image-based quality metric that one wants to optimize for.

Accurate approximation of the output of general regularization reconstruction
methods is a difficult problem. However, we found that if the output of the recon-
struction algorithm is available for just a small number of regularization parameter
values, a pixel-wise interpolation scheme is highly suitable for such approximations.
The choice of the sampling scheme is of particular importance to the effectiveness
of our approach. Through computational experiments we found that although the
major changes of the reconstructed image with respect to the regularization occur
in a relatively narrow region of the space of regularization parameter values, a
logarithmic sampling and corresponding interpolation scheme results in relatively
smooth behavior of the pixel values with respect to the regularization parameter
choice.

Our experimental results on simulated data for the parallel beam tomography
problem demonstrate that for three common variational reconstruction methods,
our approach results in accurate approximations of the reconstructed image and
that it can be used in combination with existing approaches for choosing optimal
regularization parameters. We also provide results for an experimental X-ray CT
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dataset. The approach is presented in such a manner that it can easily be extended
to different modalities and reconstruction methods.

This chapter is structured as follows. In Section 2.2 we introduce the problem,
related notation and mathematical descriptions of the methods used in this chapter.
In Section 2.3 we discuss our proposed method and how it can be used in existing
methods. Details about the implementation and experiments are discussed in Sec-
tion 2.4. The results are shown in Section 2.5 and in Section 2.6 we summarize
and conclude the chapter.

2.2 Notation and mathematical preliminaries

2.2.1 Problem Definition

We focus here on the two dimensional (2D) parallel beam tomography problem,
which we define below, and three different types of variational methods; see
Section 2.2.2. Our approach can be used for other tomography geometries (both
2D and 3D) and other reconstruction methods in a straightforward manner.

The 2D parallel beam tomography problem entails reconstructing a two-
dimensional unknown object from its parallel beam projection data. We will
consider the discrete version of this problem:

Wx= y, (2.1)

with x ∈ �N2
the unknown object, defined on a N × N pixel grid; y ∈ �NθNd the

parallel beam projection data, Nθ the number of projection angles, Nd the number
of detector pixels, and W : �N2 → �NθNd a discrete version of the Radon transform.
A more in depth description of this problem can be found in [Nat01; KS01].

We define a reconstruction method F : �NθNd ×�Nλ → �N2
with Nλ real-valued

regularization parameters for the problem (2.1) as a type of black-box operator:

F(y,λ) = xλF , (2.2)

with λ ∈ �Nλ a vector containing all the regularization parameters λi with i =
0, ..., Nλ − 1.

This definition fits general variational methods that incorporate regularization
as discussed in Section 2.2.2, but also fits the well-known Filtered Backprojection
(FBP) algorithm [Nat01], where bandwidth of a low-pass filter can be considered
as the regularization parameter, and the Simultaneous Iterative Reconstruction
Technique (SIRT) [VV90] with the number of iterations as a regularization para-
meter. As we consider F as a black-box operator, we will only make use of the
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result of applying F to the projection data for different values of λ, but will not
make use of specific properties of the operator F .

The key contribution of this chapter is to propose a computationally efficient
approach for approximating F(y,λ) for many values of λ. Having this ability, it
provides a way to choose the “optimal” value of the regularization parameter with
respect to any user-defined quality criterion: ‘Determine λ� such that xλ

�

F is the
optimal solution to (2.1).’ We do not specify here what an optimal solution is,
because this varies per problem, application or even user of the reconstruction
method.

2.2.2 Variational methods

In this section we discuss the choices for reconstruction methods F that we consider
in this chapter. The methods we consider are all variational methods and instead
of solving (2.1) directly these methods solve a related minimization problem. The
following problem formulation is specifically for one regularization parameter:

x�λ = argmin
x∈�N2

{�(Wx,y) +λR(x)} , (2.3)

where � is the data fidelity, R is the regularization term or the regularizer and
λ ∈ � the regularization parameter.

The data fidelity term encodes the information of the original problem (2.1). It
determines the distance between the input data and the solution x. In this chapter
we will only consider the least squares norm as data fidelity:

�(Wx,y) = 1
2 ‖Wx− y ‖2

2 . (2.4)

The prior knowledge for our inverse problem is encoded in the regularization term.
The idea is to define a functional that is small when the image x has a certain
preferred property, such as smoothness or sparsity with respect to a certain set of
basis functions.

We consider three types of regularizers in this chapter:

Sobolev and Total Variation regularization These regularizers penalize the
gradient of the reconstruction x in the L2−sense and L1−sense, respectively. In
mathematical terms:

RS(x) = ‖∇x‖2
2 , RTV(x) = ‖∇x‖1 . (2.5)

Note that the resulting minimization problem (2.3) now has a single scalar value
λ ∈ � as the regularization parameter. For a more in depth discussion on these
regularizers see [Goc16; ROF92].
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Total Generalized Variation regularization The idea for Total Generalized Vari-
ation is that one can split the reconstruction into parts with a different order of
regularity. In this chapter we will consider the version which splits it into two parts:
TGV2

λ
. The priority between these parts is balanced by a minimization problem

with a second regularization parameter:

RTGV(x,λ) = argmin
v∈�2×N2

{‖∇x− v‖1 +λ‖�v‖1} , (2.6)

here � : �2×N2 → �4×N2
is the distributional symmetrized derivative.

The minimization problem (2.3) in this case has two regularization parameters
and two objects to minimize for:

x�λ,v�λ = argmin
x∈�N2 ,v∈�2×N2

� 1
2 ‖Wx− y ‖2

2 +λ1 (‖∇x− v‖1 +λ2 ‖�v‖1)
�

, (2.7)

with λ = (λ1,λ2). For a more in-depth discussion on this regularizer see [BKP10].
At this point we have only described the mathematical functions to be minim-

ized for a particular variational method. We use a Primal-Dual Hybrid Gradient
(PDHG) method presented in [CP11]. Note that such an algorithm will typically
be terminated before the solution has fully converged, and will therefore not reach
the exact solution x�

λ
. Taking this all into consideration we define our black-box

reconstruction method as follows:

F(y,λ) = xλPDHGVM
, (2.8)

with the variational method VM ∈ {S, TV, TGV}.
Details about the implementation and parameter choices for the PDHG al-

gorithm are discussed in Section 2.4.

2.2.3 Parameter optimization methods

Two well known methods for choosing the regularization parameter for single
parameter variational methods are the discrepancy principle and the L-curve
criterion, which we will briefly introduce here.

Discrepancy principle For the discrepancy principle one chooses the maximal
regularization parameter λ such that the projection data y satisfies:

‖W F(y,λ)− y ‖2
2 ≤ ε, (2.9)

where the specific norm is the same as the one used in the data fidelity and ε is a
parameter that corresponds to the expected noise level in the projection data. For
more information see [Vai82; BM12].
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L-curve criterion The L-curve criterion chooses the regularization parameter λ�

such that the log-log curve of the data fidelity and the regularizer has a maximum
curvature. We define ρ(λ) and η(λ) as the logarithm of the data fidelity and the
regularizer, respectively. The log-log curve can then be described as follows:

(ρ(λ),η(λ)) = (log(�(Wxλ,y)), log(R(xλ))), (2.10)

Using these expressions we define the λ� for the L-curve criterion as the λ for
which the curvature κ attains its maximum:

λ� = argmaxλ {κ(λ)}= argmaxλ

	
η′′ρ′ −ρ′′η′

((ρ′)2 + (η′)2)3/2



. (2.11)

The idea is that for any other λ the relative increase of the data fidelity is higher
than the relative decrease in the regularization term and vice versa. Therefore,
this λ� provides an “optimal” balance between the two terms. A more in depth
discussion with theoretical analysis is given in [Han92; HO93; Han99].

We point out that both the discrepancy principle and the L-curve criterion
implicitly assume that the reconstruction method only has one regularization
parameter. Moreover, as will also become clear from our simulation results, the
regularization parameter values obtained using both methods can be substantially
different. No application-specific properties of the reconstructed image are taken
into account, and these methods may not yield optimal results if the algorithm
user wants to optimize for a particular type of image quality metric.

2.3 Method description

In this section we propose our method for efficiently computing a large number
of reconstructions of a given set of measurements y while varying the regulariz-
ation parameter. The idea is to evaluate the reconstruction method on a coarse
regularization parameter grid and interpolate between these reconstructions in
such a way that the resulting interpolation scheme is computationally efficient
and accurately approximates the actual reconstructed image for a broad range of
parameter values.

2.3.1 Interpolation scheme

Approximating the output of general tomographic reconstruction methods by inter-
polation is in general a challenging problem. However, if we fix the measurements
y and consider the behavior of one pixel in the reconstructed image for varying
λ, we observe that for many relevant reconstruction algorithms, including the
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variational methods described in Section 2.2.2, the pixel value changes smoothly
with the value of λ and the curve seems to be suitable for approximation using a
relatively simple model. Therefore we propose to perform pixel-wise interpolation
using cubic spline interpolation. The idea is that if the approximation per pixel is
sufficiently accurate, combining these single-pixel approximations into an approx-
imation of the reconstructed image will be an accurate approximation of the true
reconstructed image for a given value of λ.

First of all let us consider the case with one regularization parameter, Nλ = 1,
and define a coarse grid of Nip interpolation points:

Λ = {λ0,λ1, ...,λNip−1}, with, 0< λ0 < λ1 <, ...,< λNip−1, (2.12)

for this regularization parameter. We evaluate the reconstruction method F(y,λi) =
xλi

F . An important observation is that the range of possible choices for λ can be
very large (e.g. between 0 and 105), while the actual range where the interesting
changes of pixel values take place is usually much narrower. Therefore a linear
spacing between the interpolation points {λ0,λ1, ...,λNip−1} does not cover the
transitions of pixel values well. Instead, we found that choosing a scheme where
the values logλi are equidistantly sampled results in more accurate capturing of
the transitions1. This requires, however, that also the interpolation between the
sampling points respects this logarithmic scale. Specifically: given a set of regular-
ization parameters with corresponding reconstructions from the reconstruction
method F , {(log(λi),x

λi
F )}Nip−1

i=0 , we can compute the cubic spline interpolation
Sp : �→ � for a pixel p,

Sp(λ) = Si
p(λ), with λi−1 ≤ λ ≤ λi , i = 1, ..., Nip−1, (2.13)

such that the following statements are satisfied:

Si
p(λ) = ai + bi log(λ) + ci log(λ)2 + di log(λ)3, with di �= 0, (2.14)

Sp(λ) = (x
λ
F )p, with λ ∈ Λ. (2.15)

These conditions are not sufficient to uniquely compute Sp(λ), so we also need
boundary conditions. Let us consider the regularization parameter interval Λ

broad enough, such that xλ0
F will be under-regularized and x

λNip−1

F will be over-
regularized. This means that taking a lower or higher λ, respectively, will not
result in significant changes to the reconstruction. Therefore, if we assume the
regularization parameter interval broad enough, clamped boundary conditions will

1Further discussion on how to determine the grid Λ is given in Section 2.4.1.
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be satisfied on the left and right boundaries, i.e.,

dSp(λ)

dλ
(λ0) = 0,

dSp(λ)

dλ
(λNip−1) = 0. (2.16)

If all the pixel-wise spline interpolations Sp(λ) are computed, we can consider

the cubic spline interpolation function SF : � → �N2
for the full object and

reconstruction method F :

SF (λ) =

⎡
⎣ S0(λ) · · · SN−1(λ)

...
. . .

...
S(N−1)N (λ) · · · SN2−1(λ)

⎤
⎦ with λ ∈ [λ0,λNip−1]. (2.17)

To summarize, our proposed method for one regularization parameter λ is step-
by-step described in Algorithm 1.

Algorithm 1 Pixel-wise spline interpolation

1: Determine λ0 and λNip−1, s.t. xλ0
F and x

λNip−1

F , are under- and over-regularized,
respectively.

2: Define a coarse grid Λ on [λ0,λNip−1], s.t. log(λi) are equidistantly spaced.

3: for i =
�
0,1, ..., Nip − 1

�
do

4: Compute F(λi ,y) = xλi
F .

5: for p =
�
0, 1, .., N2 − 1

�
do

6: Compute the spline interpolation Sp(λ) for pixel p such that (2.14), (2.15)
and (2.16) are satisfied.

7: Combine the Sp(λ), as described in (2.17), to get the spline interpolation
function SF (λ).

The proposed method can easily be extended to two regularization parameters.
In this case the pixel-wise interpolation becomes a two-dimensional interpolation
problem. This means that the coarse grid of regularization parameters Λ is also a
two-dimensional grid for which Nip,1Nip,2 evaluations of the reconstruction method
are needed, increasing the computational effort significantly.

2.3.2 Optimizing the regularization parameter

Once the reconstruction algorithm F has been evaluated on the coarse grid of
interpolation points, we can sample the approximations of the reconstructions
from the interpolation function SF (λ) and use these to determine the optimal
regularization parameter λ� according to the specific requirements of the algorithm,
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user, and the application. Here we discuss four strategies for using our interpolation
technique to optimize the regularization parameter.

Parameter space exploration When there is no reference image available we
simply determine the “visually optimal” λ� through inspection or exploration of
the approximations given by the interpolation function SF (λ). A good general
framework for strategies such as this is described in [Sed+14], here one can
replace the sampling of the original function with the interpolation function SF (λ).
Additionally, one can embed the interpolation scheme in a visual tool where the
user can adjust the regularization parameter on-the-fly and receive immediate
visual feedback on the approximation of the resulting reconstruction.

Quantitative measure optimization In this strategy the approximations SF (λ)
are compared to a ground truth or a high quality reconstruction with respect
to a certain quantitative measure. We can define the “optimal” regularization
parameter λ� as follows:

λ� = argmin
λ

{QM(SF (λ),xref)} , (2.18)

with QM : �N2 → �, a quantitative measure on the reconstruction space. A simple
example of such a function is the root Mean Squared Error (rMSE). We will discuss
quantitative measures further in Section 2.4.4.

Discrepancy principle This strategy assumes that an estimate ε of the noise
level on the projection data is available. We define our λ� as the largest λ for
which ‖WSF (λ)− y‖2

2 ≤ ε is true.

L-curve criterion We can compute the L-curve by plugging in the spline inter-
polation function SF (λ) in (2.10):

(ρ(λ),η(λ)) = (log(�(SF (λ),y), log(R(SF ))). (2.19)

To compute the curvature κ(λ) we use numerical approximations for the gradient
based on spline interpolation.

2.4 Experiments

2.4.1 Implementation

Code All methods are implemented using Python 3.6.5, Numpy 1.14.3 [WCV11],
SciPy 1.1.0 [JOP+01], ODL [AKÖ17]. The tomography operators are implemented
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on the GPU using the ASTRA-toolbox [Van+16], where for performance reasons
the forward and backprojection are not exactly each other’s adjoint. The code used
for this chapter is available on GitHub [Lagc].

Reconstruction method setup To normalize the range of the regularization
parameters we scale the data fidelity term and the regularization term in (2.3)
to the same range. Without loss of generality we set λ = λ̂ ‖W‖

‖∇‖ . For Sobolev
regularization this gives:

x�λ = argmin
x∈�N2

�
1
2

��Wx− y2
2

��+ λ̂‖W‖
‖∇‖ ‖∇x‖2

2

�
, (2.20)

= argmin
x∈�N2

�
1
2

��Wx− y2
2

��
‖W‖ + λ̂

‖∇x‖2
2

‖∇‖
�

, (2.21)

with ‖·‖ the operator norm. Similar scaling can be done for TV and TGV regulariz-
ation. Further reference to the regularization parameter will be to this normalized
parameter λ̂.

As stated before we use the PDHG algorithm to compute the reconstructions.
For this algorithm we need to set the step-size parameters τ and σ, the relaxation
parameter θ and the number of iterations. To ensure convergence we must have,
τσ ‖LVM‖2 < 1, therefore we take the step-size parameters as follows:

τ=
0.1
‖LVM‖ , σ =

0.99

τ‖LVM‖2 , (2.22)

with LVM the operator related to the PDHG implementation of the variational
method VM, more specifically:

LS = LTV =

�
W
∇

�
, LTGV =

⎡
⎣W 0
∇ −I
0 �

⎤
⎦ . (2.23)

Lastly, we set the relaxation parameter, θ = 1, and the number of iterations,
niter = 500, if not mentioned otherwise.

Parameter grid choice To assess the accuracy of our approximations, we will
compute reconstructions for all the regularization parameters on a fine grid Λ f .
For our interpolation method we use a coarse grid Λ ⊂ Λ f .



565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 38PDF page: 38PDF page: 38PDF page: 38

34 CHAPTER 2. DETERMINING REGULARIZATION PARAMETERS

For Λ f we take Ns logarithmically sampled points on the interval [λ0,λNip−1]
containing the endpoints, such that we have

log(λi) =
log(λNip−1)− log(λ0)

Ns − 1
i + log(λ0). (2.24)

for λi ∈ Λ f and λNs−1 = λNip−1.
By fixing the number of points Nip we use for the interpolation, we get Λ:

Λ =
�
λ j ∈ Λ f | j = k� Ns

Nip−1�, k = 0, .., Nip − 2
�∪ �

λNs−1

�
, (2.25)

which means that the first Nip − 1 points are chosen such that the exponents are
equidistant, and the last point coincides with the endpoint.

2.4.2 Computer simulated data

We consider two computer simulated phantoms, shown in Figure 2.1, to test
the performance of our method. These phantoms are defined independent of
a pixel grid. The reconstructions are defined on a 1024 × 1024 uniform pixel
grid. The projection data is defined as 2048 detector elements per projection
angle. To avoid the so-called inverse crime the projection data is generated using
2048×2048 phantoms. The resulting projection data with 4096 detector elements
per projection angle is rebinned to 2048 detector elements by taking the average
of two neighboring elements.

x

y
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0.095

0.100

0.105

(a) FORBILD head phantom
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y
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0.2

0.4

0.6

0.8

1.0

(b) Gradient objects phantom

Figure 2.1: Computer simulated phantoms. The FORBILD head phantom is
presented in [LB]. Note that the range of the figure is not the actual range of
the phantom; this is to visualize the low contrast objects. The gradient objects
phantom is a standard phantom in the ODL package [AKÖ17].
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We will consider zero mean additive Gaussian noise with the variance equal to
a percentage of the maximum value of the projection data, i.e.,

y= yGT +δ, δ ∼� (0, Vδ), (2.26)

with Vδ = nl ·maxi {yi} the variance of the noise and nl ≥ 0 the noise level.

2.4.3 Experimental data

The experimental data is acquired from a low-dose scan of a pomegranate. The
original scan is a 3D circular cone-beam CT scan of which we took the central
detector row for all projection angles, to get a 2D circular fan-beam reconstruction
problem. A detector row is 145.34 mm long and contains 1536 detector elements
per projection angle and the dataset contains 500 equiangular spaced projection
angles. The scans were done using the custom-built and highly flexible FleX-ray
CT scanner, developed by XRE NV and located at CWI. Additionally, we use a
high-dose scan of the same pomegranate with 2000 equiangular spaced projection
angles, from which we compute a gold standard reconstruction2, xGS , that can be
used as a reference reconstruction xref. Further details about the original scans
can be found here [CLB18].

2.4.4 Quantitative measures

To test the accuracy of the approximations of our method compared to the original
reconstructions or the ground truth we use two quantitative measures: relative
Mean Squared Error (rMSE) and the structural similarity index (SSIM).

The rMSE is defined as follows

rMSE(x,xref) =
‖x− xref‖2

2

‖xref‖2
2

, (2.27)

which measures the distance between the object x and the reference object xref in
the L2-sense.

The SSIM measures the luminance, contrast and structure between the samples
x and xref. We use the implementation from ODL [AKÖ17]. We set the constants as
suggested in [Wan+04], except for L, which we set equal to the dynamic range of
the pixel values.3 The mean and variance are computed with a Gaussian filter with

2The reconstruction method used to compute the gold standard reconstruction is a SIRT recon-
struction with 300 iterations and a non-negativity constraint.

3The dynamic range is the difference between the maximum pixel value and the minimum pixel
value of the reference reconstruction xref.
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width of 11 pixels. We chose these settings because in this case SSIM reflected
our own observations of the relative quality of the reconstructions. The SSIM
ranges between -1 and 1, where 1 indicates that the image and reference image
are identical.

2.5 Results and discussion

The results are structured as follows: we investigate the quality of the approxima-
tions in Section 2.5.1, in Section 2.5.2 we investigate the use of our approach for
selecting an “optimal” regularization parameter in various scenarios for simulated
data and in Section 2.5.3 for experimental data.

2.5.1 Method validation

As stated in Section 2.4.2 we consider two computer simulated phantoms (Fig-
ure 2.1). For these phantoms we will consider two reconstruction problems: a
sparse view reconstruction problem, with 64 equidistant projection angles and no
noise (nl = 0); and a noisy reconstruction problem, with 740 projection angles and
a noise level nl = 0.1.

Single regularization parameter methods

In this section we will validate the proposed method for the Sobolev and TV
regularization reconstruction methods. For the experiments with these methods
we took Ns = 301 sample points on the interval [10−3, 1], unless mentioned
otherwise.

We will mainly look at a sparse view problem with Figure 2.1a as phantom
reconstructed with TV regularization, however, the shown results are similar
for the other cases described. In Figure 2.2 we show the rMSE and SSIM of
the approximations STV(λ) with respect to the reconstructions xλTV for a varying
number of interpolation points Nip. We observe that the rMSE and SSIM lie close
to 0 and 1, respectively, which indicates that the approximations are close to the
reconstructions. Moreover, we see that worst approximations lie in the middle
between two interpolation points and that taking more interpolation points results
in better approximations. In Figure 2.3 the approximations for several pixels p
are shown. We observe that for Nip = 6 the approximations are of relatively low
accuracy. Moreover, we see that the assumption on the boundary conditions (2.16)
are not always valid on the right hand side of the interval, which also influences
the accuracy of the approximation.
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Figure 2.2: The rMSE (Left) and SSIM (Right) of the interpolated approximations
with respect to the reconstructions as a function of the regularization parameter
λ for varying number of interpolation points Nip. Here we consider the sparse
view reconstruction problem as defined in Section 2.5.1 for the phantom shown
in Figure 2.1a and the reconstructions are computed with the TV method.
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Figure 2.3: Pixel values of the phantom, the reconstruction and the interpolated
approximations with varying number of interpolation points Nip as a function of
the regularization parameter for several pixels in the image. Here p indicates
the pixel position in the vector and (xp, yp) indicates the pixel position in the
image. Here we consider the sparse view reconstruction problem as defined in
Section 2.5.1 for the phantom shown in Figure 2.1a and the reconstructions are
computed with the TV method.
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Figure 2.4: (Left) The worst case pixel-wise interpolated approximation with
Nip = 6 interpolation points of the TV reconstruction with regularization parameter
λ = 10−0.26 (Middle) and their difference (Right). Here we consider the sparse
view reconstruction problem as defined in Section 2.5.1 for the phantom shown
in Figure 2.1a and the reconstructions are computed with the TV method.

In Figure 2.4 we show the worst approximation for the full reconstruction
with respect to the rMSE, the corresponding reconstruction and their difference.
We observe that the approximation is worst around the high contrast parts of the
object. However, the general behavior and properties of the reconstruction are
accurately represented.

In Figure 2.5 the average and the worst approximation of the rMSE and SSIM
with respect to the reconstructions are shown for all the cases we stated at the
beginning of this section. To avoid a positive bias the interpolation points are
not taken into consideration for the statistics. Again we observe that the more
interpolation points are used, the better the approximations are, and that the worst
approximations are still close to the original.

Two regularization parameter method

For two regularization parameters computing reference reconstructions at high
resolution to validate our methods is prohibitively expensive. Therefore, we only
consider the noisy reconstruction problem as defined in Section 2.5.1 for the
phantom shown in Figure 2.1b and take a smaller reconstruction problem in
terms of pixels and angles: 256× 256, with 360 equidistant projection angles. For
the regularization parameter grid we take λ1 ∈ [10−4, 102] and λ2 ∈ [10−2, 102]
and Ns,1 = 181 and Ns,2 = 121.

The quantitative measures of the approximations with respect to the recon-
structions are shown in the left and middle column of Figure 2.6 and in the right
column the quantitative measures of the reconstruction with respect to the ground
truth. We observe lower accuracy of the approximation between the grid points of
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Figure 2.5: The average and standard deviation (Top row) and worst cases (Bottom
row) for the rMSE (Left column) and SSIM (Right column) of the pixel-wise inter-
polated approximations with respect to the reconstructions for varying number of
interpolation points Nip, reconstruction problems and methods. To avoid cluttering
of the figure the standard deviation bars are only plotted in one direction.

λ1, as we also saw for one regularization parameter. However, the approximations
do not vary in accuracy in λ2-direction. In Figure 2.7 we show the worst approx-
imation, and the difference with respect to the SSIM, λ1 = 10−0.267, λ2 = 10−0.3.
In the top row we show Nip,1 = 5, Nip,2 = 5 and in the bottom row Nip,1 = 10,
Nip,2 = 5. We see that taking more points in the λ1-direction results in more
accurate reconstructions.

In Table 2.1 the average and standard deviation of the rMSE and SSIM with
respect to the reconstructions are shown. Again we observe that a finer grid in
the λ1 direction results in more accurate approximations. Moreover, we observe
that taking a finer grid for λ2 has a limited influence on the accuracy of the
approximations.

2.5.2 Parameter optimization with simulated data

Single parameter regularization methods

In this section we use the approximations SF (λ) to determine the “optimal” regular-
ization parameter λ�, as determined by a number of objective measures or criteria.
We compare our methods to evaluating the method using only the reconstructions
available at the interpolation points Λ and at the fully sampled grid Λ f .
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Figure 2.6: (Right and middle column) Quantitative measures of the interpolated
approximations with respect to the reconstructions for varying λ1 and λ2. The
approximations are done with Nip,1 = 5, Nip,2 = 5 and Nip,1 = 10, Nip,2 = 5
interpolation points in respectively the left and middle column. The right column
shows the quantitative measures of the reconstructions with respect to the ground
truth.
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Figure 2.7: (Left column) Worst case pixel-wise interpolated approximation with
Nip,1 = 5, Nip,1 = 5 (Top) and Nip,1 = 10, Nip,1 = 5 (Bottom) interpolation points of
the TGV reconstruction with regularization parameters λ1 = 10−0.267, λ2 = 10−0.3

(Middle column) and their difference (Right column).
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rMSE
Nip,1 = 5 Nip,1 = 10 Nip,1 = 15

Nip,2 = 5 (8.99± 0.95) · 10−4 (1.05± 0.04) · 10−4 (4.53± 0.08) · 10−5

Nip,2 = 10 (8.87± 0.96) · 10−4 (8.91± 0.4) · 10−5 (2.58± 0.03) · 10−5

Nip,2 = 15 (8.88± 0.96) · 10−4 (8.85± 0.4) · 10−5 (2.46± 0.03) · 10−5

SSIM
Nip,2 = 5 .907± 0.12 .988± 0.06 .996± 0.01
Nip,2 = 10 .908± 0.12 .989± 0.06 .997± 0.01
Nip,2 = 15 .908± 0.12 .989± 0.06 .997± 0.01

Table 2.1: The average and standard deviation rMSE and SSIM of the interpolated
approximations with respect to the TGV reconstructions for a varying number of
interpolation points Nip, 1, Nip, 2.

Parameter space exploration Figure 2.8 shows the process of exploring the
parameter space for the noisy reconstruction problem as defined in Section 2.5.1
for the phantom shown in Figure 2.1a with the TV regularization reconstruc-
tion method, using 6 reconstructions (Nip = 6). Here we determine the “visually
optimal” parameter λ� = 10−1.58 based on our visual inspection of the approxima-
tions. The top row are the 6 available reconstructions (red border), from which we
see that the visually optimal parameter should lie in the interval [10−1.78, 10−1.17].
Knowing this, we take a number of interpolated approximations in this interval and
compare them (the first 5 images on the bottom row, orange border). We observe
that the approximation with λ= 10−1.58 has a good trade-off between sharpness
and artifacts in the background. The actual reconstruction is shown in the bottom
right (green border). Note that without the interpolations the only information
available would be the top row, meaning that one would have to choose between
λ = 10−1.78 and λ = 10−1.17 or do additional computations.

Quantitative measure optimization In the case that there is a ground truth
or high quality reconstruction available we determine the “optimal” regulariz-
ation parameter with respect to a quantitative measure, by optimizing the QM
curves (recall (2.18)). In Figure 2.9 we show the resulting curves for the noisy
reconstruction problem as defined in Section 2.5.1 for the phantom shown in
Figure 2.1a reconstructed with TV regularization. For comparison the curve com-
puted with the actual reconstructions and direct spline interpolations through
the points QM(xΛT V ,xGT ) are shown. We see that both interpolation methods give
good approximations, although the pixel-wise interpolations are less accurate at
the boundaries. This is most likely due to the assumption of clamped boundary
conditions not being accurate enough.
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Figure 2.8: Visualization of the parameter space exploration. The top row with
the red border are the reconstructions on the coarse grid Λ that are used for the
interpolations. The approximations in the window of interest are shown in the
bottom row with the orange border and the reconstruction with the “visually
optimal” regularization parameter λ� = 10−1.58 is shown in the bottom right with
the green border. Here we consider the noisy reconstruction problem as defined in
Section 2.5.1 for the phantom shown in Figure 2.1a and the reconstructions are
computed with the TV method.
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Figure 2.9: The rMSE (Left) and SSIM (Right) curves for the reconstructions and
the pixel-wise interpolated (PWI) approximations with respect to the ground truth
and the QM curves directly interpolated (DI) from the QM values on the coarse
grid Λ for varying number of interpolation points Nip. Here we consider the noisy
reconstruction problem as defined in Section 2.5.1 for the phantom shown in
Figure 2.1a and the reconstructions are computed with the TV method.

In Table 2.2 we show the estimated regularization parameters for the 8 differ-
ent cases we considered also in the previous section. We observe that estimations
of both the pixel-wise interpolation and the direct interpolation methods are close
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to the “optimal” parameters. For the cases where the estimated parameter is less
accurate, we inspected the curves and observed that the curve was at a plateau
around the optimal value, making it more sensitive to errors. Lastly, we observe
that the “optimal” regularization parameter varies depending on which quantitative
measure is used.

Sobolev regularization TV regularization
Case: Noisy FORBILD Gradient objects FORBILD Gradient objects
Method rMSE SSIM† rMSE SSIM† rMSE SSIM rMSE SSIM

log10(λ
�) -2.02 -0.06 -0.9 0.05 -2.24 -1.19 -0.63 -0.36

log10(λ
�
PWI), Nip = 6 -2.03 -0.39 -0.88 -0.02 -2.25 -1.25 -0.6 -0.59

log10(λ
�
PWI), Nip = 11 -2.02 -0.15 -0.9 0.04 -2.23 -1.21 -0.63 -0.15

log10(λ
�
PWI), Nip = 16 -2.02 -0.05 -0.9 0.05 -2.24 -1.19 -0.62 -0.35

log10(λ
�
PWI), Nip = 21 -2.02 -0.06 -0.9 0.05 -2.24 -1.19 -0.63 -0.35

log10(λ
�
DI), Nip = 6 -2.02 -0.05 -0.89 0.07 -2.27 -1.33 -0.84 -0.84

log10(λ
�
DI), Nip = 11 -2.02 -0.06 -0.9 0.05 -2.24 -1.16 -0.61 -0.39

log10(λ
�
DI), Nip = 16 -2.02 -0.06 -0.9 0.05 -2.24 -1.19 -0.63 -0.35

log10(λ
�
DI), Nip = 21 -2.02 -0.06 -0.9 0.05 -2.24 -1.19 -0.63 -0.35

Table 2.2: Estimated and “optimal” regularization parameters based on quantitative
measure optimization for two reconstruction methods, two phantoms and the
rMSE and SSIM. We only show the noisy reconstruction problem, the sparse view
problems have similar results. The estimations of the regularization parameters are
done based on the pixel-wise interpolations (PWI) and the direct interpolation (DI)
of the QM curves. For the cases denoted with a † the range of the regularization
parameter is changed to [10−2, 101] to ensure that the “optimal” parameter is
within the considered range.

Discrepancy principle & L-curve criterion To ensure capturing the desired
behavior we take a larger interval for the regularization parameter, [10−4, 102],
and scale the sampling points accordingly, Ns = 601. In Figure 2.10 we show show
results for reconstructions, pixel-wise interpolations and direct interpolations. The
top row shows the values of the data-fidelity as a function of the regularization
parameter λ. The results shown are for the noisy reconstruction problem as defined
in Section 2.5.1 for the phantom shown in Figure 2.1b. Here we observe that
the significant changes of the functions are in a relative small window of λ. This
results in bad approximations if there is no reconstruction available in this window.
Moreover, we see that the noise level ε intersects the data-fidelity curve at a plateau,
which might result in inaccurate estimates for the regularization parameter (see
the second to last column of Table 2.3).

In the bottom row of Figure 2.10 we show the L-curve and its curvature. Here
we observe that inaccuracies in the initial approximations result in inaccuracies
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in the L-curve, and even more in its curvature. In the extreme case we observe a
change of sign of a peak for the pixel-wise interpolations with Nip = 6. However,
even with these inaccuracies, the approximations follow the general behavior of
the reference curve and through visual inspection of the approximations and curves
one can stil determine the optimal parameter.

The “optimal” parameters for discrepancy principle and the L-curve criterion for
the 8 cases considered are shown in Table 2.3. We observe more volatility in the
“optimal” parameters compared to the results in Table 2.2, which coincides with the
observations in Figure 2.10. Additionally, for two cases the direct interpolations
resulted in negative values for the TV term resulting in an undefined L-curve.
Lastly, we again see that the optimal value of the regularization parameter varies
depending on the used method.
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Figure 2.10: (Top) The data-fidelity (Left) and TV functional (Right) as a function
of the regularization parameter λ. (Bottom) The L-curve (Left) and its curvature
(Right). These curves are computed with the reconstructions, the pixel-wise
interpolated (PWI) approximations and through direct interpolation (DI). Here
we consider the noisy reconstruction problem as defined in Section 2.5.1 for the
phantom shown in Figure 2.1b and the reconstructions are computed with the TV
method.
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Sobolev regularization TV regularization
Case: Noisy FORBILD Gradient objects FORBILD Gradient objects
Method DP LC DP LC DP LC DP LC

log10(λ
�) -2.33 0.13 -0.58 0.83 -2.95 -0.64 0.09 0.46

log10(λ
�
PWI), Nip = 6 -2.34 0.07 -0.58 0.82 -3.01 -0.56 -0.18 1.12†

log10(λ
�
PWI), Nip = 11 -2.33 0.13 -0.58 .82† -2.96 -0.61 0.09 0.72

log10(λ
�
PWI), Nip = 16 -2.33 0.13 -0.58 0.83 -2.95 -0.63 0.09 0.58

log10(λ
�
PWI), Nip = 21 -2.33 0.13 -0.58 0.84 -2.95 -0.63 0.09 0.51

log10(λ
�
DI), Nip = 6 -2.39 - -0.62 - -2.89 -0.55 0.63 0.6

log10(λ
�
DI), Nip = 11 -2.33 0.14 -0.58 0.83 -2.97 -0.62 0.05 0.45

log10(λ
�
DI), Nip = 16 -2.33 0.13 -0.58 0.83 -2.95 -0.64 0.09 0.46

log10(λ
�
DI), Nip = 21 -2.33 0.13 -0.58 0.83 -2.95 -0.63 0.09 0.46

Table 2.3: Estimated and “optimal” regularization parameters based on discrepancy
principle (DP) and L-curve criterion (LC) for two reconstruction methods and two
phantoms. We only show the noisy reconstruction problem, because these methods
are not feasible for the sparse view problem. The estimations of the regularization
parameters are done based on the pixel-wise interpolations (PWI) and the direct
interpolation (DI) of the QM curves. For the cases denoted with a † the maximum
curvature is at another value of λ, however, through closer inspection of the curve
(in a similar manner as for Figure 2.10) this parameter is chosen.

Two regularization parameter method

Taking into consideration the observations from Section 2.5.1 we use the same set-
tings for the reconstruction problem and we take Nip,1 = 10, Nip,2 = 5 interpolation
points for our interpolation scheme.

Quantitative measure optimization In Figure 2.11 we show the quantitative
measures of the approximations (left column) and the reconstructions (right
column) with respect to the ground truth. The “optimal” regularization parameters
and their respective quantitative measures determined from these figures are given
in the caption. We observe that the found “optima” all lie in a plateau region which
has relatively small differences in the quantitative measures. This indicates that
the proposed method arrives at similar results as the original method.

Parameter space exploration Upon visual inspection of the reconstructions
we concluded that the “visually optimal” set of parameters lies in log10(λ1) ∈
[−0.5, 0.2] and log10(λ2) ∈ [0.07, 1.1] (red border in Figure 2.12). Inspection of
the approximations (orange border) in this interval resulted the optimal parameter
set (λ1,λ2) = (10−0.33, 100.07). We observe minimal differences between the
approximation and the actual reconstruction (green border) for this “visually
optimal” set of parameters.
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Figure 2.11: Quantitative measure figures for the TGV reconstruction method with
respect to the ground truth. The red dot indicates the extremum of the figure.
(Top left) rMSE of the approximations with λ� = (10−0.57, 10−0.033) and min(rMSE)
= 9.1 · 10−4.
(Top right) rMSE of the reconstructions with λ� = (10−0.73, 10−0.30) and min(rMSE)
= 8.8 · 10−4.
(Bottom left) SSIM of the approximations with λ� = (10−0.5, 100.067) and
max(SSIM) = 0.9755.
(Bottom right) SSIM of the reconstructions with λ� = (10−0.67, 10−0.30) and
max(SSIM) = 0.9779.

2.5.3 Parameter optimization with experimental data

In this section we show results for our method on experimental fan beam CT data.
For this case we took the TV regularization reconstruction method implemented
with the PDHG algorithm, using Niter = 2500 iterations, τ= 0.1

‖LTV‖ , regularization

parameter range [10−4, 1], Ns = 401 sample points and Nip = 11 interpolation
points.

The parameter space exploration for the experimental data and the TV re-
construction method is shown in Figure 2.13. Again only a selection of the
approximations and initial reconstructions is shown for a clearer visualization.
In Figure 2.14 we show in the top row the TV reconstruction with the “visually
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Figure 2.12: Partial visualization of the parameter space exploration for the TGV
reconstruction method. The first and second column (red border), show several
close to “visually optimal” reconstructions on the coarse grid Λ. The third and
fourth column (orange border) partially show the further exploration through the
approximations with in the top right the “visually optimal” approximation and
the image on the right (green border) shows the reconstruction with this “visually
optimal” regularization parameter.

optimal” regularization parameter, a FBP reconstruction and the gold standard
reconstruction. We can conclude from the FBP reconstruction4 that the noise
in the data is quite severe and that it would be surprising if any reconstruction
method can retrieve the small features at the boundary of the pomegranate and
inside the seeds (observed in the gold standard reconstruction). Taking this into
consideration the choice of regularization parameter results in an adequate TV
reconstruction. We observe in the difference between the gold standard recon-
struction and the TV reconstruction (Bottom right in Figure 2.14) the loss of the
smaller details and a general loss of contrast, which is a known property of the TV
method. Lastly, we consider the quantitative measures shown in Table 2.4. These
results confirm the earlier conclusions; the pixel-wise approximation is very good
and the chosen regularization parameter results in an adequate TV reconstruction.

2.6 Conclusion

In this chapter we have proposed an algorithmic approach for computationally
efficient exploration of the regularization parameter space, based on a pixel-wise

4The FBP reconstruction is done with a Ram-Lak filter, with no windowing to reduce the noise in
the input data [Nat01].
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Figure 2.13: Partial visualization of the parameter space exploration. The top row
(red border) shows several reconstructions on the coarse grid Λ. The images on the
bottom row (orange border) show the further exploration of the parameter space
through the use of approximations and on the bottom right (green border) the
reconstruction with the “visually optimal” regularization parameter is shown.
The difference between the approximation of the reconstruction is shown in
Figure 2.14.
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Figure 2.14: (Top left) FBP method reconstruction, (Top middle) TV method
reconstruction, (Top right) Gold standard reconstructions. (Bottom left) Pixel-wise
approximation to the TV reconstruction, (Bottom middle) Difference between TV
approximation and reconstruction, (Bottom right) Difference between the TV and
gold standard reconstruction.
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Metric x= ST V (λ�), xref = xλ
�

T V x= xλ
�

T V , xref = xGS x= xFBP, xref = xGS

rMSE(x,xref) 1.6328 ·10−6 2.2750 ·10−3 8.5259·10−2

SSIM(x,xref) 0.9988 0.6986 0.0186

Table 2.4: Quantitative measures for the experimental data results. Here xFBP
indicates the FBP reconstruction [Nat01] with a Ram-Lak filter.

interpolation scheme. Given a relatively small number of reconstructions on a
sparsely sampled parameter grid, our method can be used to quickly compute an
approximation to a reconstruction for any regularization parameter within the
sampled range.

We have shown for three common variational reconstruction methods, Sobolev,
TV and TGV regularization, that our method produces accurate approximations
for simulated and experimental data. Moreover, we have shown that the approx-
imations can be used in existing parameter optimization methods.

To conclude, our method enables developing computationally efficient tools
that provide real-time visualization of the regularization parameter space, and
automated parameter selection based on existing optimization criteria.
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