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Chapter 1

Introduction

Tomography deals with imaging the interior of an object without destroying it.
It is a useful tool in many applications in science, industry and medicine. In
tomography a penetrating wave is used to measure projection images of an object
along different directions. These projection images are then used to determine the
interior of the object, through a tomographic reconstruction method [KS01; NatO1;
Her09].

A popular type of tomography is computed tomography (CT), where X-rays
are used as the penetrating waves to measure the projection images. Within CT
imaging there many different types of scanners, such as medical CT scanners,
u-CT scanners (laboratory setup) and synchotron facilities. All these scanners
follow a similar principle. A source generates X-rays which penetrate the measured
object. Inside this object the X-rays are attenuated through interaction with the
object. The amount of attenuation depends on the material properties of the
object and the energy distribution of the X-rays. After interacting with the object
the intensity of the X-ray beams is measured with a detector forming a projection
image, see Figure 1.1a. This process is repeated for several source positions
and detector positions' and all the resulting projection images combine into the
measured projection data. This measured projection data is then used as the input
for a CT specific reconstruction method that computes the interior of the object
Figure 1.1b.

The problem of computing the interior of the object from the measured projec-
tion data is called the reconstruction problem. The difficulty of the reconstruction
problem depends on the amount of information available and the uncertainty in
the measured projection data, e.g., the number of projection images and the noise

In some applications the source and detector are fixed and the object rotates. This is equivalent
to rotating the source and detector position.
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(a) Illustration of a CT scanner.

(b) Projection image. (¢) 2D slice of a 3D reconstruction.

Figure 1.1: Examples of a CT scanner, a projection image and a reconstruction.
(a) Mlustration of a CT scanner. The source in the CT scanner generates X-rays
penetrating the apple and the detector measures the intensity of the X-ray beam
after interacting with the apple. (b) These measurements form a projection image.
(c) From a collection of projection images a reconstruction can be computed
showing the interior of the apple.

levels in the projection images. Consequently, the effectiveness of a reconstruction
method depends on the amount of information and uncertainty in the measured
projection data and how the reconstruction method handles this (lack of) informa-
tion and uncertainty. For example, direct inversion reconstruction methods are
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Figure 1.2: Reconstructions using a direct inversion reconstruction method
(Filtered backprojection) with a different amount of information or uncertain-
ties in the measured projection data. From left to right: 360 projection images
with no noise (close to ground truth), 360 projection images with high noise levels
(uncertain data), 36 projection images with no noise (insufficient data), the first
300 projection images from the left case (insufficient data).

derived with the assumption that there is enough information and no noise in the
measured projection data and they may fail to compute accurate reconstructions
when these conditions are not met. This is illustrated in Figure 1.2.

CT imaging is used in a broad spectrum of applications, such as industrial
quality control [GUV11], materials sciences [Die+14; Bul+16] and medical ima-
ging [For+02; GKT17]. However, the CT scans in these applications are typically
processed offline, i.e., the reconstructions are computed after scans are acquired.
If instead the reconstruction can be computed while the scan is acquired, i.e., in
real-time or online, the operator of the CT scan can react to insights gained from
the reconstruction. For example, practical problems related to the acquisition
parameters — e.g., misaligned source or detector, incorrect center of rotation, or
incorrect field of view — could be fixed while scanning. In industrial quality control
manual inspection could be replaced by real-time scanning and automatic removal
from the assembly line. Furthermore, dynamic processes could be scanned and
followed as they occur. Consider for example a dynamic process where external
parameters such as pressure or heat are applied to an object. By following these
processes in real-time the operator can adjust the parameters when specific events
occur, such as the small cracks due to pressure or overheating.

In real-time CT imaging, there are limitations on the scanning time — i.e., the
scans should be acquired real-time — and on the reconstruction process — i.e., com-
puting the reconstructions should be real-time. This means for the scanning process
that the exposure time per projection image should be low (this will lead to high
noise levels) and the number of projection images should be small (this leads to
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limited information). Consequently, this means for the reconstruction method that
it should be able to compute an accurate reconstruction from projection data with
limited amount of information and uncertain data in a short amount of time. This
example shows that depending on the restrictions introduced by the application a
different type of reconstruction method will be most effective.

The research presented in this thesis follows a plug-and-play strategy, i.e., we
focus on practical limitations of existing reconstruction methods and develop new
strategies to make these methods more effective or easier to use. This strategy is
suggested in [PSV09], because they observe that many promising reconstruction
methods are not used in practice due to limited consideration on how to effectively
apply these new reconstruction methods in practice.

Chapter 2 and Chapter 3 of this thesis focus on developing mathematical
frameworks to pick the correct parameter for reconstruction methods. It is often
not clear how to choose the correct parameter and in some cases even the effect of
the parameter choice is not clear. This means that in practice the parameter choice
becomes a process of trial-and-error requiring manual tuning of the parameters
and a good understanding of the reconstruction method. We develop a framework
for streamlining the process of picking the correct regularization parameter for
variational methods in Chapter 2. The idea of this framework is to efficiently
compute approximations of reconstructions through pixel-wise interpolation for a
broad range of regularization parameters. These approximations are then used
to (visually) determine the correct regularization parameter. In Chapter 3 we
formulate an optimization problem which can be used to automatically compute
a filter that is adapted to the measured projection data for the FDK algorithm.
We show that these computed filters achieve similar performance as optimally
smoothed standard filters.

In Chapter 4 and Chapter 5 we focus on developing reconstruction methods
for 3D CT imaging applications where both reconstruction time and scanning
time are a constraint, such as the examples discussed before. The challenge
with the combination of these restrictions lies in balancing the reconstruction
time and the reconstruction accuracy. This is because reconstruction methods
that can accurately reconstruct measured projection data containing noise or a
low number of projection data generally do not satisfy the reconstruction time
constraints and vice versa. Therefore, we adapt existing filtered-backprojection
reconstruction methods — which are known for their short reconstruction times —
to improve their reconstruction accuracy for noisy projection data and data with a
low number of projection images, while maintaining their computational efficiency.
Specifically, we expand upon the Neural Network filtered-backprojection (NN-FBP)
algorithm [PB13]. The NN-FBP algorithm is an adaptation of the standard FBP
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algorithm where a machine learning component is added to greatly improve the
reconstruction accuracy of the algorithm. In Chapter 4 we extend the NN-FBP
algorithm to the FDK algorithm and show that this is possible for any linear FBP-
type method. In Chapter 5 we fit the NN-FBP algorithm to a real-time quasi-3D
reconstruction framework (RECAST3D) [Buu+18] and replace the supervised
learning strategy with a semi-supervised learning strategy proposed in [HPB20].
This leads to the Noise2Filter (N2F) algorithm, a reconstruction method that can
be trained on the fly and can compute arbitrarily oriented 2D slices of a 3D volume
in real-time.

In this thesis we will use simulated and experimental data. We consider three
scanning geometries: parallel beam, fan beam and circular cone-beam. The
experimental fan and cone-beam data was acquired using the custom-built and
highly flexible FleX-ray CT scanner, developed by XRE NV and located at CWI
[Cob+20], and the experimental parallel beam data was taken from the public
TomoBank repository [De +18]. More specifically, the fuel cell data used for the
TomoChallenge, which was acquired at the TOMCAT beamline at the Swiss Light
Source (Paul Scherrer Institut, Switzerland).

In the remainder of this chapter we give a mathematical description — con-
tinuous and discrete — of the tomographic reconstruction problem and introduce
several reconstruction methods used throughout this thesis.

1.1 Tomographic reconstruction problem

This section gives a mathematical introduction to the idealized tomographic re-
construction problem. Specifically, we introduce the continuous formulation and
the scanning geometries in Section 1.1.1, the discrete formulation of the recon-
struction problem in Section 1.1.2, and discuss the Radon transform and the
Ray transform in Section 1.1.3. Note that all following chapters are based on
self-contained articles, each containing a separate introduction. Therefore, we
give a more general introduction here.

1.1.1 Continuous formulation

We model the scanned object as a function f : R™ — R in the image function space
X with n € {2,3} and f (x) representing the attenuation coefficient of the scanned
object at position x € R". The photon count I(l) for (monochromatic) X-rays
traversing the object along the line [ (called X-ray line from this point onwards)
can be expressed in terms of the emitted photon count I, at the source and the
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Source

Detector

Figure 1.3: Schematic representation of a projection image for a 2D parallel beam
CT scanning geometry. The dotted arrows represent the X-ray lines. We define the
projection image g(L;) as the image formed by the values g(l;) with [; € L; the
measured X-ray lines for a fixed source and detector position.

attenuation coefficient function f using the Beer-Lambert law:
I(1) = Iye i/ )dx (1.1)

where we assume that f is bounded with compact support.
We can simplify (1.1) by rearranging the terms and taking the logarithm:

—log(%))zjlf(x)dx. (1.2)

This is the linearized photon count along the X-ray line [, which we will denote
by g(l). Representing the projection data by this function g € Y enables us to
formulate the linear forward operator K : X — Y, with Y the projection data
function space. More specifically,

g()=—1log(*2), K1) = Jf(X)dx. (1.3)
[

Up till now we have only considered one X-ray line [, however, the projection data
is known for a (possibly infinite) set of measured X-ray lines [.
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Figure 1.4: Different scanning geometries. In the 2D parallel beam and 2D
fan beam scanning geometries, each projection image is a 1D image and the
reconstruction is a 2D slice of the measured object, whereas in the 3D circular
cone-beam geometry each projection image is a 2D image and the reconstruction
is a 3D image of the measured object.

Let us define the set of measured X-ray lines for a fixed source and detector
position as L;. The projection image j is the image formed by the linearized photon
counts g(l;) along the X-ray lines [; € L;, which we denote (with a small abuse
of notation) by g(L;). In a similar fashion we define L as the set of all measured
X-ray lines for all considered source and detector positions and g(L) then forms
the projection data.

We can now formulate the tomographic reconstruction problem. Given the
forward operator K : X — Y and projection data g € Y find a function f € X that
satisfies:

g()=(KfH)D, foralll e L. (1.4)

Note that this is an idealized version of the reconstruction problem as we assume
there are no practical problems, such as measurement noise, photon scattering or
misalignment of the source and the detector.

The set L is determined by the position and properties of the detector —e.g., the
shape, number of detector pixels and the physical size of the detector — and the
position and properties of the X-ray source — e.g., multiple X-ray sources emitting
parallel beams, or a point source emitting X-rays in all directions. These properties
form the scanning geometry. Common examples of scanning geometries are parallel
beam, fan beam for 2D tomographic problems and circular cone-beam for 3D
tomographic problems. Schematic representations of these scanning geometries
are given in Figure 1.4 for a fixed source and detector position.

An essential operator for the tomographic reconstruction problem is the adjoint
K* .Y — X, or backprojection operator, of the forward operator K. This operator
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is defined through the following condition:
(Kf, gy ={f,K"¢)x, forall f eX,g €Y. (1.5)

The backprojection operator is used in many theoretical derivations and recon-
struction algorithms [Nat01]. In Section 1.1.3 we derive the explicit forms for the
backprojection operators.

1.1.2 Discrete formulation

In practice only a finite number of X-ray lines can be measured, i.e., the number of
elements of the set L is finite. Therefore, it is natural to consider the projection data
as a finite dimensional vector y € RM with each element relating to the linearized
measured photon count along an X-ray line [, and M the number of X-ray lines in L.
For the discretization of the scanned object we assume that our object is contained
in a rectangular box and discretize this box in a number of elements, called pixels
or voxels, for 2D or 3D objects, respectively. We define a vector x € RV, where the
elements of the vector correspond to the attenuation coefficient on the elements
of the discretized box and let N denote the number of elements in this box.

A natural way of relating y; — the i-th element of y — to the vector x is by
approximating a line integral through the discretized box over the line [; by a
weighted sum over the elements of x. More specifically, given the weight vector
w; € RN with elements w; ; € R, we have the relation:

y; = ZWUX' = WiTX. (1.6)

The implementation choice of approximating the line integral leads to different
weight vectors w; € RN. Moreover, the approximation can be adapted to attain
desirable numerical properties or achieve better performance [Aar+15].

If we consider the matrix W € RM*N with rows w;, we can relate the vector x to
y and formulate the discrete tomographic reconstruction problem: given measured
projection data y € RM find a reconstruction x € RY such that the following holds
approximately:

Wx=y. (1.7)

This matrix W is often referred to as the projection matrix.
Analogously to the continuous formulation, the adjoint? of W is the backpro-
jection operator W', which is essential in many reconstruction methods.

2As W is real-valued, the adjoint is equivalent to the transpose.
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Figure 1.5: Illustrations of the X-ray parametrizations for the Radon transform
and the Ray transform in R2.

Although we did not consider practical problems in these idealized formu-
lations of the reconstruction problems, they are often present in reality. These
practical problems introduce additional uncertainties to the reconstruction prob-
lem. Specifically, the reconstruction problem might not have a solution, it might
have multiple solutions, or the solution varies heavily with respect to changes in
the projection data. Therefore, it is important to develop reconstruction methods
that take these challenges into consideration.

1.1.3 The Radon and Ray transform

In this section we focus on the explicit expressions for the Radon and the Ray
transform and derive the adjoint for both. Note that most of this section goes
beyond the scope of the main chapters of this thesis.

The Radon transform integrates a function f on R" over hyperplanes. More
specifically, given a hyperplane {x € R"|s = x - 8}, with 6 € S"!,s € R and §"!
the unit sphere in R", the Radon transform is:

(Rf)(9,5)=J 6(s—x-0)f(x)dx (1.8)

Rn

Since hyperplanes in R? are just lines we can conclude that the Radon transform
is in fact identical to the forward operator K from (1.3) for R?. For R3, however,
any hyperplane is a plane, showing us that the Radon transform does not fit the
forward model for the 3D reconstruction problem.
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For the Ray transform a more general line parametrization is used, see Fig-
ure 1.5 (right). Given a direction 8 € S"! of aline in R", we define the hyperplane
61 in R", which is the hyperplane orthogonal to the vector 6, i.e.,

0+ :={aeR"a-6=0,0e8"}. (1.9)
The parametrization of the line then becomes for an a € 61 and 6 € S"!:
[(6,a) :={a+tO|t eR}. (1.10)

Note that this parametrization can be used in R" for n > 2. If we subsitute this
parametrization in the right-hand side of (1.4) we get the explicit expression for
the Ray transform:

(Pf)(9,a)=f fla+tO)dt. (1.11)

R

To conclude this section, we derive the expressions for the adjoint operators
related to the Radon and the Ray transform using (1.5). Following [NatO1] we
take X and Y to be a Schwartz space /(-) on the domain of f and g, respectively.

For the Radon transform we use the definition of the Dirac é function to get:

r
F.8)s 510 = | f f 5(s—x-0)f (x)g(6,5)dxdsdd,  (1.12)
Sn—-1 JR n
r
= f(x)g(@,x . e)dedx = <R*g:f)3’(R")9 (113)
Rn JS§n—1
r
(R*g)(x) =J g(0,x-6)do. (1.14)
Sn—1

In a similar fashion we derive the adjoint operator for the Ray transform. Note that
in this case the domain of g differs from the Radon transform, i.e., g € F2(S" ! x 61).
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In this derivation we substitute x = a + t@, which implies® t = x - 0, i.e.,
(Pf,8) g (s(sn1x01)) = J J f fla+t0)g(0,a)dtdado, (1.15)
s1JoL Jr
:f f(x)g(@,x—(x-0)0)dOdx, (1.16)
Rn Jgn—1
= f f(x)g(0,Eg(x))dO0dx = (P*g, f)gn, (1.17)
Rn Jgn—1

(P*g)(x) = f 8(0,Eg(x))do, (1.18)
Sn—l
with Eg(x) = x — (x - 6)6 the orthogonal line projection of x onto 6.

If we compare the adjoint operators for the Radon (n = 2) and Ray transform,
we observe similar behavior. Specifically, the adjoint operator computes the integral
of the measured projection data over all X-ray lines that contain the point x. In
practice this means that the adjoint, or backprojection, smears out the measured
projection data over the reconstruction volume.

Further details about the Radon, Ray transform are given in [Nat01].

1.2 Reconstruction methods

In this thesis many different reconstruction methods are used. In this section we
give an introduction to these methods. We mainly consider the discretized versions
and omit detailed derivations.

Reconstruction methods can roughly be subdivided in three categories: (1)
Direct methods, which are often based on an (approximate) closed form inverse of
the operator K, (2) Iterative methods, which solve the tomographic reconstruction
problem by using an iterative optimization scheme, (3) Machine learning methods,
which use a data-driven approach to remove artifacts from reconstructions or
improve existing reconstruction methods.

1.2.1 Direct methods

Direct reconstruction methods are closed form and are often designed for a partic-
ular scanning geometry, limiting their general use. Examples of direct methods
are GridRec [OSu85], Katsevich [Kat03], the filtered backprojection algorithm
[Nat01], and the Feldkamp-Davis-Kress algorithm [FDK84].

3This equality is found by taking the inner product with 6 of x = a + t0 on both sides and using
acft
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Filtered backprojection algorithm

The filtered backprojection (FBP) algorithm is derived for the 2D tomographic
reconstruction problem using properties of the Radon transform. Specifically,
consider Theorem 2.3 from [Nat01]. This theorem states that, given functions
f,VeXand g,v €Y that satisfy g = Rf and V = R*v — with R and R* the Radon
transform and its backprojection operator, respectively — the following holds true:

Vxf =R*(vxg). (1.19)

with % denoting a two-dimensional convolution over R? on the left-hand side and
a one-dimensional convolution over R along the detector width on the right-hand
side.

By taking v to be the inverse Fourier transform (£ 1) of the absolute value of
the frequencies in the Fourier domain, i.e., v = Z ' {||}, one can show that V
is the Dirac 6 function. This means that for this choice of v the left-hand side of
(1.19) simplifies to f and the right-hand side is the expression used for the Filtered
Backprojection (FBP) algorithm. This function v is called the ramp filter and with
an additional cut-off function it is referred to as the Ram-Lak filter [RL71]. Note
that if g does not contain noise and is available for all possible measured X-ray
lines (1.19) is an exact inversion of the Radon transform.

Similar to (1.19) we can formulate a discrete expression used in the FBP
algorithm in terms of x,y, W and the discretized ramp filter h,:

xppp = W' (yxh)1p, (1.20)

with the convolution (- % -);p applied in one dimension over the detector width.

The FBP algorithm can be applied to the 2D parallel beam and fan beam
scanning geometry. Moreover, it can be applied to the 3D parallel beam and 3D fan
beam scanning geometries as these can be considered a stack of their respective
2D reconstruction problems.

Feldkamp-Davis-Kress algorithm

The Feldkamp-Davis-Kress (FDK) algorithm [FDK84] is a reconstruction algorithm
for the circular cone-beam scanning geometry. This geometry does not satisfy
the Tuy-Kirrilov condition [Tuy83] meaning that it inherently has insufficient
information for unique inversion. Therefore, instead of directly inverting the
Ray transform for this geometry, the authors propose considering the cone-beam
projection data as a stack of fan beam data and using the FBP algorithm for fan
beam data in combination with a reweighting of the data that aims to compensate
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Figure 1.6: Examples of standard filters and adapted standard filters.

for the mismatch between this assumption and the actual cone-beam geometry.
The expression used in the FDK algorithm in terms of x,y, W and h, is:

Xppx = W (r(y) * hy)1p. (1.21)

with r(-) the reweighting operator. Note that W7 is the backprojection operator
related to the 3D cone-beam geometry and not the backprojection operator related
to the 2D fan beam geometry.

Filter adaptation for FBP-type methods

The ramp filter follows from a theoretical result based on the assumption that there
is no noise in the measured projection data. However, this is often not the case in
practice, therefore, filter adaptations to the ramp filter have been suggested, such
as the Shepp-Logan filter, the Cosine filter, and the Hann filter. These filters put
less emphasis on higher frequencies to reduce the noise in the reconstruction. This
strategy can be taken further by applying smoothing filters to these filters — such
as Gaussian or Binomial filters — or cutting the higher frequencies of by setting
their contributions to zero. Examples of these standard and adapted filters are
given in Figure 1.6 and examples of reconstructions of noisy projection data is
shown in Figure 1.7.

1.2.2 Iterative methods

Iterative methods aim to solve the tomographic reconstruction problem by refining
the solution over a number of iterations. Note that these methods often do not rely
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FPz‘am _ FBP FBP(‘u[—u FBP,

Figure 1.7: Examples of reconstructions with standard filters and adapted standard
filters applied to projection data with high noise levels. We see that the filters with
less emphasis on the high frequencies contain less noise at the cost of smoother
edges. These reconstructions were computed within a second.

on specific properties of the forward operator except for being a linear operator,
meaning that these methods can be applied to reconstruction problems with any
scanning geometry. There are many different iterative methods, e.g., SIRT [VV90],
(S)ART [Kac37; GBH70; AK84], ICD [Wat94], and variational methods [ROF92;
GHO99; BKP10; Gocl16]. We highlight SIRT and variational methods as these will
be used throughout the thesis.

SIRT

The SIRT algorithm [VV90] is a common iterative method for CT reconstruction.
An iteration in the SIRT algorithm is defined as follows:

X — X+ wCWTR(y—Wx). (1.22)
with w € R an optional relaxation parameter and

C = diag(c), cj_1 = Z Wi, (1.23)

1
R = diag(r), =W (1.24)
J
Simple prior information, such as non-negativity, can be used to improve the results
of the SIRT algorithm. The update with this non-negativity constraint becomes:
X <« max(x + oCWTR(y — Wx), 0). (1.25)

We will refer to SIRT with a non-negativity constraint as SIRT*.
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Figure 1.8: Examples of reconstructions with the SIRT algorithm applied to
projection data with high noise levels. We see that fewer iterations lead to less
noise, but also lower contrast and blurrier edges in comparison to higher iteration
reconstructions. Moreover, we observe that the background for SIRT with non-
negativity is almost noiseless. These reconstructions are more than a hundred
times slower than the earlier shown FBP reconstructions.

In Figure 1.8 we show example reconstructions of the SIRT algorithm. Here
the subscript indicates the number of iterations that were computed.

Note that the SIRT algorithm is closely related to gradient descent applied to
the standard least squares problem related to (1.7). By taking C =R = Id instead
of the above definition the iteration coincides with an gradient descent iteration
applied to the least squares problem.

Variational methods

Variational methods are a class of iterative methods where the reconstruction is
the solution to a minimization problem related to the tomographic reconstruction
problem. A general (discrete) formulation for the minimization problem is

Xym, 2 = argmin{2(Wx,y) + A2 (x)} . (1.26)

with 2 the data fidelity term, % the regularizer and A > O the regularization
parameter. The data fidelity measures the distance between the data and the for-
ward projection of the reconstruction Wx. A common choice is simply the squared
difference 2(Wx,y) = ||Wx—y||§. The regularizer promotes certain properties
of the reconstruction x, for example taking Z(x) = || |[Vx| ||, promotes piece-wise
constant reconstructions, because % (x) is large for x with a large gradient. The
regularization parameter A balances the data fidelity and the regularizer, i.e., tak-
ing A close to zero emphasises the data fidelity and taking A large emphasises the
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TV, A =0.00001 TV, A = 0.0003 TV, A =0.001

Figure 1.9: Examples of reconstructions with TV regularization applied to projec-
tion data with high noise levels. We see that taking A too low will lead to noisy
reconstructions and taking A too high will lead to over-regularized reconstructions.
These reconstructions were computed within a minute.

Method Data fidelity | Regularizer
Tikhonov regularization [Wx —y| |§ ||x||§
Sobolev regularization [[Wx —y||§ |||V ||§
Total Variation (TV) regularization ||Wx—y||§ I11Vx] |l

Table 1.1: Variational methods with the corresponding terms for the data fidelity
and the regularizer.

regularizer. Examples of the effect of A on the TV regularization reconstructions
are shown in Figure 1.9 for noisy projection data.

Some common variational methods with the corresponding choices for data
fidelity and regularizer are given in Table 1.1. Depending on the choices for
2 and Z the properties of (1.26) differ and different optimization schemes are
needed. For example, gradient descent can be used for optimizing Tikhonov and
Sobolev regularization, whereas for TV regularization FISTA [BT09] or PDHG
[CP11] schemes are needed. The choice for regularization parameter A depends
on many different properties of the reconstruction problem and the variational
method.

1.2.3 Machine learning methods

Using machine learning methods is an emerging approach in CT imaging [Wan+18]
and has shown promising results for many applications within the development of
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CT reconstruction methods [KMY17].

One well established strategy is training a network to remove the artifacts from
the output of a standard reconstruction method. This is often called post-processing
[RFB15; KMY17; PS18; Jin+17]. The promise of these methods is aided by the fact
that the post-processing problem can be viewed as a classic image enhancement
problem — e.g., denoising, inpainting, or deblurring — for which many effective
machine learning methods have already been developed [SLD17; PCC18; Zha+17].
We will introduce the general post-processing strategy below, because this strategy
is used in the main chapters of this thesis.

Another strategy is incorporating machine learning components in existing
reconstruction methods. Examples of these are variational networks [Kob+17;
Ham+18], plug and play priors [VBW13; REM17; RS18] and learned regularizers
[LOS18; Muk+20]; all introduce a machine learning component to various vari-
ational methods. Additionally, in [SLX+16; AO18; WKL19] a network is proposed
that learns an iterative scheme. Lastly, for direct methods the Neural Network
Filtered-backprojection (NN-FBP) [PB13] and Neural Network FDK algorithms
(Chapter 4) were developed.

Post-processing

In general the idea is to find an image-to-image mapping that can remove artifacts
from a reconstruction. This mapping is found by defining a set of possible functions
— le., fixing a neural network architecture — and determining the best functions
from this set by determining the best possible mapping on problems for which
we know the answer — i.e., using supervised learning [HTF09] to determine the
network parameters. The network architectures used for post-processing are
often convolutional neural networks (CNNs), which means that the set of possible
functions is a concatenation of convolutions where the weights of the convolution
are learned.

More specifically, given a network architecture CNNg with trainable parameters
O and a training set containing T training pairs, where a training pair consists
of an input reconstruction with artifacts x; ., and a target reconstructions X; tqrger
without artifacts. We can train the network CNNg by finding the ©* that minimizes
the loss function:

T
Z ”CNN@(Xi, rec)_xi,target”%- (1-27)
i=1

Using the trained network CNNg. we can remove artifacts from a reconstruction
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Correctly chosen training data

Incorrectly scaled training data

Gradients in training data

Figure 1.10: Examples of MSD networks trained on different training data applied
to the same FBP reconstruction with high noise levels. All training data had the
same noise levels. (Left) Training data contained gradients in the measured objects.
(Middle) Training data contained piece-wise constant measured objects, but with
a different scaling. (Right) Training data contained piece-wise constant objects
with the correct scaling. Training a network took roughly 6 hours and computing
a reconstruction took roughly a second.

Xrec Similar to the input reconstructions in the training set:
Xpost-process — CNNeg- (Xrec)- (1.28)

One can vary the network architecture, loss function, training procedure, training
data and corresponding hyper parameters and all these choices will lead to post-
processing methods with different properties.

Examples of reconstructions using different types of training data are shown
in Figure 1.10. We see that the networks are sensitive to changes in the training
data.

1.2.4 The process of computing a reconstruction

In this section we will discuss the process of computing a reconstruction and
the influence of reconstruction parameters on the ease of use of a reconstruction
method.

From the introduction of the reconstruction methods we observe that all
reconstruction methods have some kind of set of reconstruction parameters. For
example: for the direct methods a filter has to be chosen, for iterative optimization
schemes the number of iterations and the step-size parameter have to be set,
the choice for regularization parameter is key for variational methods, and for
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Figure 1.11: Schematic representation of the process of computing a reconstruction.
The more time consuming it is to set the reconstruction parameters and compute
the reconstruction, the more cumbersome it is to pick an almost-optimal set of
reconstruction parameters.

machine learning methods the network architecture needs to be determined
and the corresponding weights ©* have to be learned for the chosen training
data. Moreover, we have seen in the previous sections that the choice of these
reconstruction parameters can strongly influence the accuracy of the reconstruction
method. Following this reasoning we give a schematic representation of the
process of computing a reconstruction in Figure 1.11. From this representation
we can conclude that the harder it is to pick a suitable set of reconstruction
parameters — e.g., due to the number of possible choices or the time it takes
to set the reconstruction parameters and compute a reconstruction — the more
cumbersome the reconstruction process becomes.

If we now compare the reconstruction accuracy for different reconstruction
methods — see Figure 1.12 — we see that TV regularization and FBP + MSD
reconstructions produce the most accurate results. However, recall from Figure 1.9
and Figure 1.10 that these methods are also the most time consuming methods and
that the accuracy of these methods strongly depends on the choice of reconstruction
parameters. Consequently, these methods are harder and more involved to use,
especially for users with limited experience. This reiterates the importance of
developing methods that are easy to use and perform similar to state-of-the-art
methods or methods that improve the ease of use of an existing reconstruction
method.

1.3 Outline of the thesis

This thesis is structured as follows: chapters 2 through 5 are based on self-contained
research articles. Although these chapters have been edited slightly, they can be
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Figure 1.12: Comparison of different reconstruction methods applied to projection
data with high noise levels. The reconstructions shown here are the ‘optimal’
reconstructions shown earlier in the section.

read independently. In Chapter 2 we develop a framework for streamlining the
process of picking the correct regularization parameter for variational methods. In
Chapter 3 we formulate an automatic algorithm for computing a data-dependent
filter for the FDK algorithm. The NN-FBP algorithm is extended to the FDK
algorithm in Chapter 4 and combined with the Noise2Inverse training strategy
in the RECAST3D framework in Chapter 5. A conclusion and outlook is given
in Chapter 6, followed by the bibliography, a layman summary in Dutch and my
Curriculum Vitae.



