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Chapter 1

Introduction

Tomography deals with imaging the interior of an object without destroying it.
It is a useful tool in many applications in science, industry and medicine. In
tomography a penetrating wave is used to measure projection images of an object
along different directions. These projection images are then used to determine the
interior of the object, through a tomographic reconstruction method [KS01; Nat01;
Her09].

A popular type of tomography is computed tomography (CT), where X-rays
are used as the penetrating waves to measure the projection images. Within CT
imaging there many different types of scanners, such as medical CT scanners,
μ-CT scanners (laboratory setup) and synchotron facilities. All these scanners
follow a similar principle. A source generates X-rays which penetrate the measured
object. Inside this object the X-rays are attenuated through interaction with the
object. The amount of attenuation depends on the material properties of the
object and the energy distribution of the X-rays. After interacting with the object
the intensity of the X-ray beams is measured with a detector forming a projection
image, see Figure 1.1a. This process is repeated for several source positions
and detector positions1 and all the resulting projection images combine into the
measured projection data. This measured projection data is then used as the input
for a CT specific reconstruction method that computes the interior of the object
Figure 1.1b.

The problem of computing the interior of the object from the measured projec-
tion data is called the reconstruction problem. The difficulty of the reconstruction
problem depends on the amount of information available and the uncertainty in
the measured projection data, e.g., the number of projection images and the noise

1In some applications the source and detector are fixed and the object rotates. This is equivalent
to rotating the source and detector position.

3
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4 CHAPTER 1. INTRODUCTION

(a) Illustration of a CT scanner.

(b) Projection image. (c) 2D slice of a 3D reconstruction.

Figure 1.1: Examples of a CT scanner, a projection image and a reconstruction.
(a) Illustration of a CT scanner. The source in the CT scanner generates X-rays
penetrating the apple and the detector measures the intensity of the X-ray beam
after interacting with the apple. (b) These measurements form a projection image.
(c) From a collection of projection images a reconstruction can be computed
showing the interior of the apple.

levels in the projection images. Consequently, the effectiveness of a reconstruction
method depends on the amount of information and uncertainty in the measured
projection data and how the reconstruction method handles this (lack of) informa-
tion and uncertainty. For example, direct inversion reconstruction methods are
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5

No uncertainties Noisy projection images Low number of projection images Specific projection images missing

Figure 1.2: Reconstructions using a direct inversion reconstruction method
(Filtered backprojection) with a different amount of information or uncertain-
ties in the measured projection data. From left to right: 360 projection images
with no noise (close to ground truth), 360 projection images with high noise levels
(uncertain data), 36 projection images with no noise (insufficient data), the first
300 projection images from the left case (insufficient data).

derived with the assumption that there is enough information and no noise in the
measured projection data and they may fail to compute accurate reconstructions
when these conditions are not met. This is illustrated in Figure 1.2.

CT imaging is used in a broad spectrum of applications, such as industrial
quality control [GUV11], materials sciences [Die+14; Bul+16] and medical ima-
ging [For+02; GKT17]. However, the CT scans in these applications are typically
processed offline, i.e., the reconstructions are computed after scans are acquired.
If instead the reconstruction can be computed while the scan is acquired, i.e., in
real-time or online, the operator of the CT scan can react to insights gained from
the reconstruction. For example, practical problems related to the acquisition
parameters — e.g., misaligned source or detector, incorrect center of rotation, or
incorrect field of view — could be fixed while scanning. In industrial quality control
manual inspection could be replaced by real-time scanning and automatic removal
from the assembly line. Furthermore, dynamic processes could be scanned and
followed as they occur. Consider for example a dynamic process where external
parameters such as pressure or heat are applied to an object. By following these
processes in real-time the operator can adjust the parameters when specific events
occur, such as the small cracks due to pressure or overheating.

In real-time CT imaging, there are limitations on the scanning time — i.e., the
scans should be acquired real-time — and on the reconstruction process — i.e., com-
puting the reconstructions should be real-time. This means for the scanning process
that the exposure time per projection image should be low (this will lead to high
noise levels) and the number of projection images should be small (this leads to
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6 CHAPTER 1. INTRODUCTION

limited information). Consequently, this means for the reconstruction method that
it should be able to compute an accurate reconstruction from projection data with
limited amount of information and uncertain data in a short amount of time. This
example shows that depending on the restrictions introduced by the application a
different type of reconstruction method will be most effective.

The research presented in this thesis follows a plug-and-play strategy, i.e., we
focus on practical limitations of existing reconstruction methods and develop new
strategies to make these methods more effective or easier to use. This strategy is
suggested in [PSV09], because they observe that many promising reconstruction
methods are not used in practice due to limited consideration on how to effectively
apply these new reconstruction methods in practice.

Chapter 2 and Chapter 3 of this thesis focus on developing mathematical
frameworks to pick the correct parameter for reconstruction methods. It is often
not clear how to choose the correct parameter and in some cases even the effect of
the parameter choice is not clear. This means that in practice the parameter choice
becomes a process of trial-and-error requiring manual tuning of the parameters
and a good understanding of the reconstruction method. We develop a framework
for streamlining the process of picking the correct regularization parameter for
variational methods in Chapter 2. The idea of this framework is to efficiently
compute approximations of reconstructions through pixel-wise interpolation for a
broad range of regularization parameters. These approximations are then used
to (visually) determine the correct regularization parameter. In Chapter 3 we
formulate an optimization problem which can be used to automatically compute
a filter that is adapted to the measured projection data for the FDK algorithm.
We show that these computed filters achieve similar performance as optimally
smoothed standard filters.

In Chapter 4 and Chapter 5 we focus on developing reconstruction methods
for 3D CT imaging applications where both reconstruction time and scanning
time are a constraint, such as the examples discussed before. The challenge
with the combination of these restrictions lies in balancing the reconstruction
time and the reconstruction accuracy. This is because reconstruction methods
that can accurately reconstruct measured projection data containing noise or a
low number of projection data generally do not satisfy the reconstruction time
constraints and vice versa. Therefore, we adapt existing filtered-backprojection
reconstruction methods — which are known for their short reconstruction times —
to improve their reconstruction accuracy for noisy projection data and data with a
low number of projection images, while maintaining their computational efficiency.
Specifically, we expand upon the Neural Network filtered-backprojection (NN-FBP)
algorithm [PB13]. The NN-FBP algorithm is an adaptation of the standard FBP
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1.1. TOMOGRAPHIC RECONSTRUCTION PROBLEM 7

algorithm where a machine learning component is added to greatly improve the
reconstruction accuracy of the algorithm. In Chapter 4 we extend the NN-FBP
algorithm to the FDK algorithm and show that this is possible for any linear FBP-
type method. In Chapter 5 we fit the NN-FBP algorithm to a real-time quasi-3D
reconstruction framework (RECAST3D) [Buu+18] and replace the supervised
learning strategy with a semi-supervised learning strategy proposed in [HPB20].
This leads to the Noise2Filter (N2F) algorithm, a reconstruction method that can
be trained on the fly and can compute arbitrarily oriented 2D slices of a 3D volume
in real-time.

In this thesis we will use simulated and experimental data. We consider three
scanning geometries: parallel beam, fan beam and circular cone-beam. The
experimental fan and cone-beam data was acquired using the custom-built and
highly flexible FleX-ray CT scanner, developed by XRE NV and located at CWI
[Cob+20], and the experimental parallel beam data was taken from the public
TomoBank repository [De +18]. More specifically, the fuel cell data used for the
TomoChallenge, which was acquired at the TOMCAT beamline at the Swiss Light
Source (Paul Scherrer Institut, Switzerland).

In the remainder of this chapter we give a mathematical description — con-
tinuous and discrete — of the tomographic reconstruction problem and introduce
several reconstruction methods used throughout this thesis.

1.1 Tomographic reconstruction problem

This section gives a mathematical introduction to the idealized tomographic re-
construction problem. Specifically, we introduce the continuous formulation and
the scanning geometries in Section 1.1.1, the discrete formulation of the recon-
struction problem in Section 1.1.2, and discuss the Radon transform and the
Ray transform in Section 1.1.3. Note that all following chapters are based on
self-contained articles, each containing a separate introduction. Therefore, we
give a more general introduction here.

1.1.1 Continuous formulation

We model the scanned object as a function f : �n → � in the image function space
X with n ∈ {2, 3} and f (x) representing the attenuation coefficient of the scanned
object at position x ∈ �n. The photon count I(l) for (monochromatic) X-rays
traversing the object along the line l (called X-ray line from this point onwards)
can be expressed in terms of the emitted photon count I0 at the source and the
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8 CHAPTER 1. INTRODUCTION

Source

Detector

Figure 1.3: Schematic representation of a projection image for a 2D parallel beam
CT scanning geometry. The dotted arrows represent the X-ray lines. We define the
projection image g(L j) as the image formed by the values g(li) with li ∈ L j the
measured X-ray lines for a fixed source and detector position.

attenuation coefficient function f using the Beer-Lambert law:

I(l) = I0e−
∫

l f (x)d x , (1.1)

where we assume that f is bounded with compact support.
We can simplify (1.1) by rearranging the terms and taking the logarithm:

− log
�

I(l)
I0

�
=

∫
l

f (x)d x . (1.2)

This is the linearized photon count along the X-ray line l, which we will denote
by g(l). Representing the projection data by this function g ∈ Y enables us to
formulate the linear forward operator K : X → Y , with Y the projection data
function space. More specifically,

g(l) = − log
�

I(l)
I0

�
, (K f )(l) =

∫
l

f (x)d x . (1.3)

Up till now we have only considered one X-ray line l, however, the projection data
is known for a (possibly infinite) set of measured X-ray lines l.
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1.1. TOMOGRAPHIC RECONSTRUCTION PROBLEM 9

Source position curve
X-ray line

2D Parallel beam 3D Circular cone-beam2D Fan beam

Source Source Source

Detector Detector
Detector

Figure 1.4: Different scanning geometries. In the 2D parallel beam and 2D
fan beam scanning geometries, each projection image is a 1D image and the
reconstruction is a 2D slice of the measured object, whereas in the 3D circular
cone-beam geometry each projection image is a 2D image and the reconstruction
is a 3D image of the measured object.

Let us define the set of measured X-ray lines for a fixed source and detector
position as L j . The projection image j is the image formed by the linearized photon
counts g(li) along the X-ray lines li ∈ L j, which we denote (with a small abuse
of notation) by g(L j). In a similar fashion we define L as the set of all measured
X-ray lines for all considered source and detector positions and g(L) then forms
the projection data.

We can now formulate the tomographic reconstruction problem. Given the
forward operator K : X → Y and projection data g ∈ Y find a function f ∈ X that
satisfies:

g(l) = (K f )(l), for all l ∈ L. (1.4)

Note that this is an idealized version of the reconstruction problem as we assume
there are no practical problems, such as measurement noise, photon scattering or
misalignment of the source and the detector.

The set L is determined by the position and properties of the detector — e.g., the
shape, number of detector pixels and the physical size of the detector — and the
position and properties of the X-ray source — e.g., multiple X-ray sources emitting
parallel beams, or a point source emitting X-rays in all directions. These properties
form the scanning geometry. Common examples of scanning geometries are parallel
beam, fan beam for 2D tomographic problems and circular cone-beam for 3D
tomographic problems. Schematic representations of these scanning geometries
are given in Figure 1.4 for a fixed source and detector position.

An essential operator for the tomographic reconstruction problem is the adjoint
K∗ : Y → X , or backprojection operator, of the forward operator K . This operator
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10 CHAPTER 1. INTRODUCTION

is defined through the following condition:

〈K f , g〉Y = 〈 f , K∗g〉X , for all f ∈ X , g ∈ Y. (1.5)

The backprojection operator is used in many theoretical derivations and recon-
struction algorithms [Nat01]. In Section 1.1.3 we derive the explicit forms for the
backprojection operators.

1.1.2 Discrete formulation

In practice only a finite number of X-ray lines can be measured, i.e., the number of
elements of the set L is finite. Therefore, it is natural to consider the projection data
as a finite dimensional vector y ∈ �M with each element relating to the linearized
measured photon count along an X-ray line l, and M the number of X-ray lines in L.
For the discretization of the scanned object we assume that our object is contained
in a rectangular box and discretize this box in a number of elements, called pixels
or voxels, for 2D or 3D objects, respectively. We define a vector x ∈ �N , where the
elements of the vector correspond to the attenuation coefficient on the elements
of the discretized box and let N denote the number of elements in this box.

A natural way of relating yi — the i-th element of y — to the vector x is by
approximating a line integral through the discretized box over the line li by a
weighted sum over the elements of x. More specifically, given the weight vector
wi ∈ �N with elements wi j ∈ �, we have the relation:

yi =
N∑

j=1

wi jx j = wT
i x. (1.6)

The implementation choice of approximating the line integral leads to different
weight vectors wi ∈ �N . Moreover, the approximation can be adapted to attain
desirable numerical properties or achieve better performance [Aar+15].

If we consider the matrix W ∈ �M×N with rows wi , we can relate the vector x to
y and formulate the discrete tomographic reconstruction problem: given measured
projection data y ∈ �M find a reconstruction x ∈ �N such that the following holds
approximately:

Wx= y. (1.7)

This matrix W is often referred to as the projection matrix.
Analogously to the continuous formulation, the adjoint2 of W is the backpro-

jection operator W T , which is essential in many reconstruction methods.

2As W is real-valued, the adjoint is equivalent to the transpose.
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1.1. TOMOGRAPHIC RECONSTRUCTION PROBLEM 11

Radon transform

X-ray Parametrizations
Ray transform

Figure 1.5: Illustrations of the X-ray parametrizations for the Radon transform
and the Ray transform in �2.

Although we did not consider practical problems in these idealized formu-
lations of the reconstruction problems, they are often present in reality. These
practical problems introduce additional uncertainties to the reconstruction prob-
lem. Specifically, the reconstruction problem might not have a solution, it might
have multiple solutions, or the solution varies heavily with respect to changes in
the projection data. Therefore, it is important to develop reconstruction methods
that take these challenges into consideration.

1.1.3 The Radon and Ray transform

In this section we focus on the explicit expressions for the Radon and the Ray
transform and derive the adjoint for both. Note that most of this section goes
beyond the scope of the main chapters of this thesis.

The Radon transform integrates a function f on �n over hyperplanes. More
specifically, given a hyperplane {x ∈ �n|s = x · θ}, with θ ∈ Sn−1, s ∈ � and Sn−1

the unit sphere in �n, the Radon transform is:

(Rf )(θ , s) =

∫
�n

δ(s− x · θ ) f (x)d x (1.8)

Since hyperplanes in �2 are just lines we can conclude that the Radon transform
is in fact identical to the forward operator K from (1.3) for �2. For �3, however,
any hyperplane is a plane, showing us that the Radon transform does not fit the
forward model for the 3D reconstruction problem.
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12 CHAPTER 1. INTRODUCTION

For the Ray transform a more general line parametrization is used, see Fig-
ure 1.5 (right). Given a direction θ ∈ Sn−1 of a line in�n, we define the hyperplane
θ⊥ in �n, which is the hyperplane orthogonal to the vector θ , i.e.,

θ⊥ :=
�

a ∈ �n| a · θ = 0,θ ∈ Sn−1
�

. (1.9)

The parametrization of the line then becomes for an a ∈ θ⊥ and θ ∈ Sn−1:

l(θ , a) := {a+ tθ |t ∈ �} . (1.10)

Note that this parametrization can be used in �n for n ≥ 2. If we subsitute this
parametrization in the right-hand side of (1.4) we get the explicit expression for
the Ray transform:

(P f )(θ , a) =

∫
�

f (a+ tθ )d t. (1.11)

To conclude this section, we derive the expressions for the adjoint operators
related to the Radon and the Ray transform using (1.5). Following [Nat01] we
take X and Y to be a Schwartz space 	 (·) on the domain of f and g, respectively.

For the Radon transform we use the definition of the Dirac δ function to get:

〈Rf , g〉	 (Sn−1×�) =
∫

Sn−1

∫
�

∫
�n

δ(s− x · θ ) f (x)g(θ , s)d xdsdθ , (1.12)

=

∫
�n

∫
Sn−1

f (x)g(θ , x · θ )dθd x = 〈R∗g, f 〉	 (�n), (1.13)

(R∗g)(x) =

∫
Sn−1

g(θ , x · θ )dθ . (1.14)

In a similar fashion we derive the adjoint operator for the Ray transform. Note that
in this case the domain of g differs from the Radon transform, i.e., g ∈ 	 2(Sn−1× θ⊥).
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In this derivation we substitute x = a+ tθ , which implies3 t = x · θ , i.e.,

〈P f , g〉	 (	 (Sn−1×θ⊥)) =
∫

Sn−1

∫
θ⊥

∫
�

f (a+ tθ )g(θ , a)d tdadθ , (1.15)

=

∫
�n

∫
Sn−1

f (x)g(θ , x − (x · θ )θ )dθd x , (1.16)

=

∫
�n

∫
Sn−1

f (x)g(θ , Eθ (x))dθd x = 〈P∗g, f 〉�n , (1.17)

(P∗g)(x) =

∫
Sn−1

g(θ , Eθ (x))dθ , (1.18)

with Eθ (x) = x − (x · θ )θ the orthogonal line projection of x onto θ⊥.
If we compare the adjoint operators for the Radon (n = 2) and Ray transform,

we observe similar behavior. Specifically, the adjoint operator computes the integral
of the measured projection data over all X-ray lines that contain the point x . In
practice this means that the adjoint, or backprojection, smears out the measured
projection data over the reconstruction volume.

Further details about the Radon, Ray transform are given in [Nat01].

1.2 Reconstruction methods

In this thesis many different reconstruction methods are used. In this section we
give an introduction to these methods. We mainly consider the discretized versions
and omit detailed derivations.

Reconstruction methods can roughly be subdivided in three categories: (1)
Direct methods, which are often based on an (approximate) closed form inverse of
the operator K , (2) Iterative methods, which solve the tomographic reconstruction
problem by using an iterative optimization scheme, (3) Machine learning methods,
which use a data-driven approach to remove artifacts from reconstructions or
improve existing reconstruction methods.

1.2.1 Direct methods

Direct reconstruction methods are closed form and are often designed for a partic-
ular scanning geometry, limiting their general use. Examples of direct methods
are GridRec [OSu85], Katsevich [Kat03], the filtered backprojection algorithm
[Nat01], and the Feldkamp-Davis-Kress algorithm [FDK84].

3This equality is found by taking the inner product with θ of x = a+ tθ on both sides and using
a ∈ θ⊥
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Filtered backprojection algorithm

The filtered backprojection (FBP) algorithm is derived for the 2D tomographic
reconstruction problem using properties of the Radon transform. Specifically,
consider Theorem 2.3 from [Nat01]. This theorem states that, given functions
f , V ∈ X and g, v ∈ Y that satisfy g = Rf and V = R∗v — with R and R∗ the Radon
transform and its backprojection operator, respectively — the following holds true:

V ∗ f = R∗(v ∗ g). (1.19)

with ∗ denoting a two-dimensional convolution over �2 on the left-hand side and
a one-dimensional convolution over � along the detector width on the right-hand
side.

By taking v to be the inverse Fourier transform (
−1) of the absolute value of
the frequencies in the Fourier domain, i.e., v = 
−1 {|ξ|}, one can show that V
is the Dirac δ function. This means that for this choice of v the left-hand side of
(1.19) simplifies to f and the right-hand side is the expression used for the Filtered
Backprojection (FBP) algorithm. This function v is called the ramp filter and with
an additional cut-off function it is referred to as the Ram-Lak filter [RL71]. Note
that if g does not contain noise and is available for all possible measured X-ray
lines (1.19) is an exact inversion of the Radon transform.

Similar to (1.19) we can formulate a discrete expression used in the FBP
algorithm in terms of x,y, W and the discretized ramp filter hr:

xFBP =W T (y ∗ hr)1D, (1.20)

with the convolution (· ∗ ·)1D applied in one dimension over the detector width.
The FBP algorithm can be applied to the 2D parallel beam and fan beam

scanning geometry. Moreover, it can be applied to the 3D parallel beam and 3D fan
beam scanning geometries as these can be considered a stack of their respective
2D reconstruction problems.

Feldkamp-Davis-Kress algorithm

The Feldkamp-Davis-Kress (FDK) algorithm [FDK84] is a reconstruction algorithm
for the circular cone-beam scanning geometry. This geometry does not satisfy
the Tuy-Kirrilov condition [Tuy83] meaning that it inherently has insufficient
information for unique inversion. Therefore, instead of directly inverting the
Ray transform for this geometry, the authors propose considering the cone-beam
projection data as a stack of fan beam data and using the FBP algorithm for fan
beam data in combination with a reweighting of the data that aims to compensate
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Figure 1.6: Examples of standard filters and adapted standard filters.

for the mismatch between this assumption and the actual cone-beam geometry.
The expression used in the FDK algorithm in terms of x,y, W and hr is:

xFDK =W T (r(y) ∗ hr)1D. (1.21)

with r(·) the reweighting operator. Note that W T is the backprojection operator
related to the 3D cone-beam geometry and not the backprojection operator related
to the 2D fan beam geometry.

Filter adaptation for FBP-type methods

The ramp filter follows from a theoretical result based on the assumption that there
is no noise in the measured projection data. However, this is often not the case in
practice, therefore, filter adaptations to the ramp filter have been suggested, such
as the Shepp-Logan filter, the Cosine filter, and the Hann filter. These filters put
less emphasis on higher frequencies to reduce the noise in the reconstruction. This
strategy can be taken further by applying smoothing filters to these filters — such
as Gaussian or Binomial filters — or cutting the higher frequencies of by setting
their contributions to zero. Examples of these standard and adapted filters are
given in Figure 1.6 and examples of reconstructions of noisy projection data is
shown in Figure 1.7.

1.2.2 Iterative methods

Iterative methods aim to solve the tomographic reconstruction problem by refining
the solution over a number of iterations. Note that these methods often do not rely
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FBPramp FBPHann FBPcut−off FBPGauss

Figure 1.7: Examples of reconstructions with standard filters and adapted standard
filters applied to projection data with high noise levels. We see that the filters with
less emphasis on the high frequencies contain less noise at the cost of smoother
edges. These reconstructions were computed within a second.

on specific properties of the forward operator except for being a linear operator,
meaning that these methods can be applied to reconstruction problems with any
scanning geometry. There are many different iterative methods, e.g., SIRT [VV90],
(S)ART [Kac37; GBH70; AK84], ICD [Wat94], and variational methods [ROF92;
GHO99; BKP10; Goc16]. We highlight SIRT and variational methods as these will
be used throughout the thesis.

SIRT

The SIRT algorithm [VV90] is a common iterative method for CT reconstruction.
An iteration in the SIRT algorithm is defined as follows:

x← x+ωCW T R(y−Wx). (1.22)

with ω ∈ � an optional relaxation parameter and

C = diag(c), c−1
j =

∑
i

Wi j , (1.23)

R= diag(r), r−1
i =

∑
j

Wi j . (1.24)

Simple prior information, such as non-negativity, can be used to improve the results
of the SIRT algorithm. The update with this non-negativity constraint becomes:

x←max(x+ωCW T R(y−Wx), 0). (1.25)

We will refer to SIRT with a non-negativity constraint as SIRT+.
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SIRT50 SIRT200 SIRT400 SIRT+
200

Figure 1.8: Examples of reconstructions with the SIRT algorithm applied to
projection data with high noise levels. We see that fewer iterations lead to less
noise, but also lower contrast and blurrier edges in comparison to higher iteration
reconstructions. Moreover, we observe that the background for SIRT with non-
negativity is almost noiseless. These reconstructions are more than a hundred
times slower than the earlier shown FBP reconstructions.

In Figure 1.8 we show example reconstructions of the SIRT algorithm. Here
the subscript indicates the number of iterations that were computed.

Note that the SIRT algorithm is closely related to gradient descent applied to
the standard least squares problem related to (1.7). By taking C = R = Id instead
of the above definition the iteration coincides with an gradient descent iteration
applied to the least squares problem.

Variational methods

Variational methods are a class of iterative methods where the reconstruction is
the solution to a minimization problem related to the tomographic reconstruction
problem. A general (discrete) formulation for the minimization problem is

xVM,λ = argmin
x

{�(Wx,y) +λ
(x)} . (1.26)

with � the data fidelity term, 
 the regularizer and λ > 0 the regularization
parameter. The data fidelity measures the distance between the data and the for-
ward projection of the reconstruction Wx. A common choice is simply the squared
difference �(Wx,y) = ‖Wx− y‖2

2. The regularizer promotes certain properties
of the reconstruction x, for example taking 
(x) = ‖ |∇x| ‖2 promotes piece-wise
constant reconstructions, because 
(x) is large for x with a large gradient. The
regularization parameter λ balances the data fidelity and the regularizer, i.e., tak-
ing λ close to zero emphasises the data fidelity and taking λ large emphasises the
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TV, λ = 0.00001 TV, λ = 0.0003 TV, λ = 0.001

Figure 1.9: Examples of reconstructions with TV regularization applied to projec-
tion data with high noise levels. We see that taking λ too low will lead to noisy
reconstructions and taking λ too high will lead to over-regularized reconstructions.
These reconstructions were computed within a minute.

Method Data fidelity Regularizer
Tikhonov regularization ‖Wx− y‖2

2 ‖x‖2
2

Sobolev regularization ‖Wx− y‖2
2 ‖ |∇x| ‖2

2
Total Variation (TV) regularization ‖Wx− y‖2

2 ‖ |∇x| ‖1

Table 1.1: Variational methods with the corresponding terms for the data fidelity
and the regularizer.

regularizer. Examples of the effect of λ on the TV regularization reconstructions
are shown in Figure 1.9 for noisy projection data.

Some common variational methods with the corresponding choices for data
fidelity and regularizer are given in Table 1.1. Depending on the choices for
� and 
 the properties of (1.26) differ and different optimization schemes are
needed. For example, gradient descent can be used for optimizing Tikhonov and
Sobolev regularization, whereas for TV regularization FISTA [BT09] or PDHG
[CP11] schemes are needed. The choice for regularization parameter λ depends
on many different properties of the reconstruction problem and the variational
method.

1.2.3 Machine learning methods

Using machine learning methods is an emerging approach in CT imaging [Wan+18]
and has shown promising results for many applications within the development of
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1.2. RECONSTRUCTION METHODS 19

CT reconstruction methods [KMY17].
One well established strategy is training a network to remove the artifacts from

the output of a standard reconstruction method. This is often called post-processing
[RFB15; KMY17; PS18; Jin+17]. The promise of these methods is aided by the fact
that the post-processing problem can be viewed as a classic image enhancement
problem — e.g., denoising, inpainting, or deblurring — for which many effective
machine learning methods have already been developed [SLD17; PCC18; Zha+17].
We will introduce the general post-processing strategy below, because this strategy
is used in the main chapters of this thesis.

Another strategy is incorporating machine learning components in existing
reconstruction methods. Examples of these are variational networks [Kob+17;
Ham+18], plug and play priors [VBW13; REM17; RS18] and learned regularizers
[LÖS18; Muk+20]; all introduce a machine learning component to various vari-
ational methods. Additionally, in [SLX+16; AÖ18; WKL19] a network is proposed
that learns an iterative scheme. Lastly, for direct methods the Neural Network
Filtered-backprojection (NN-FBP) [PB13] and Neural Network FDK algorithms
(Chapter 4) were developed.

Post-processing

In general the idea is to find an image-to-image mapping that can remove artifacts
from a reconstruction. This mapping is found by defining a set of possible functions
— i.e., fixing a neural network architecture — and determining the best functions
from this set by determining the best possible mapping on problems for which
we know the answer — i.e., using supervised learning [HTF09] to determine the
network parameters. The network architectures used for post-processing are
often convolutional neural networks (CNNs), which means that the set of possible
functions is a concatenation of convolutions where the weights of the convolution
are learned.

More specifically, given a network architecture CNNΘ with trainable parameters
Θ and a training set containing T training pairs, where a training pair consists
of an input reconstruction with artifacts xi,rec and a target reconstructions xi,target
without artifacts. We can train the network CNNΘ by finding the Θ� that minimizes
the loss function:

T∑
i=1

‖CNNΘ(xi, rec)− xi,target‖2
2. (1.27)

Using the trained network CNNΘ� we can remove artifacts from a reconstruction
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Gradients in training data Incorrectly scaled training data Correctly chosen training data

Figure 1.10: Examples of MSD networks trained on different training data applied
to the same FBP reconstruction with high noise levels. All training data had the
same noise levels. (Left) Training data contained gradients in the measured objects.
(Middle) Training data contained piece-wise constant measured objects, but with
a different scaling. (Right) Training data contained piece-wise constant objects
with the correct scaling. Training a network took roughly 6 hours and computing
a reconstruction took roughly a second.

xrec similar to the input reconstructions in the training set:

xpost-process = CNNΘ�(xrec). (1.28)

One can vary the network architecture, loss function, training procedure, training
data and corresponding hyper parameters and all these choices will lead to post-
processing methods with different properties.

Examples of reconstructions using different types of training data are shown
in Figure 1.10. We see that the networks are sensitive to changes in the training
data.

1.2.4 The process of computing a reconstruction

In this section we will discuss the process of computing a reconstruction and
the influence of reconstruction parameters on the ease of use of a reconstruction
method.

From the introduction of the reconstruction methods we observe that all
reconstruction methods have some kind of set of reconstruction parameters. For
example: for the direct methods a filter has to be chosen, for iterative optimization
schemes the number of iterations and the step-size parameter have to be set,
the choice for regularization parameter is key for variational methods, and for
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Figure 1.11: Schematic representation of the process of computing a reconstruction.
The more time consuming it is to set the reconstruction parameters and compute
the reconstruction, the more cumbersome it is to pick an almost-optimal set of
reconstruction parameters.

machine learning methods the network architecture needs to be determined
and the corresponding weights Θ� have to be learned for the chosen training
data. Moreover, we have seen in the previous sections that the choice of these
reconstruction parameters can strongly influence the accuracy of the reconstruction
method. Following this reasoning we give a schematic representation of the
process of computing a reconstruction in Figure 1.11. From this representation
we can conclude that the harder it is to pick a suitable set of reconstruction
parameters — e.g., due to the number of possible choices or the time it takes
to set the reconstruction parameters and compute a reconstruction — the more
cumbersome the reconstruction process becomes.

If we now compare the reconstruction accuracy for different reconstruction
methods — see Figure 1.12 — we see that TV regularization and FBP + MSD
reconstructions produce the most accurate results. However, recall from Figure 1.9
and Figure 1.10 that these methods are also the most time consuming methods and
that the accuracy of these methods strongly depends on the choice of reconstruction
parameters. Consequently, these methods are harder and more involved to use,
especially for users with limited experience. This reiterates the importance of
developing methods that are easy to use and perform similar to state-of-the-art
methods or methods that improve the ease of use of an existing reconstruction
method.

1.3 Outline of the thesis

This thesis is structured as follows: chapters 2 through 5 are based on self-contained
research articles. Although these chapters have been edited slightly, they can be
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Figure 1.12: Comparison of different reconstruction methods applied to projection
data with high noise levels. The reconstructions shown here are the ‘optimal’
reconstructions shown earlier in the section.

read independently. In Chapter 2 we develop a framework for streamlining the
process of picking the correct regularization parameter for variational methods. In
Chapter 3 we formulate an automatic algorithm for computing a data-dependent
filter for the FDK algorithm. The NN-FBP algorithm is extended to the FDK
algorithm in Chapter 4 and combined with the Noise2Inverse training strategy
in the RECAST3D framework in Chapter 5. A conclusion and outlook is given
in Chapter 6, followed by the bibliography, a layman summary in Dutch and my
Curriculum Vitae.
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Chapter 2

An interpolation approach for
determining regularization
parameters

2.1 Introduction

Tomography is a generic 3D imaging technique for reconstructing the interior of
an object from a series of its projections. Projections can be acquired using a broad
variety of modalities, such as Computed Tomography (CT) [Nat01], Magnetic
Resonance Imaging (MRI) [Fes10] and Electron Microscopy (EM) [Mid+01]. The
resulting image reconstruction problems all have a similar mathematical problem
structure: given a set of tomographic measurements and a description of the physics
process, determine a reconstruction of the measured object. If many projections
are available over a full angular range around the object, and if the projections
have low noise, the reconstruction problem can be solved in a straightforward
way by closed-form inversion techniques. For an overview see [Nat01; KS01]. In
practice, however, the number of tomographic measurements is typically limited
and the measurements can contain substantial noise.

This chapter is based on:

An Efficient Interpolation Approach for Exploring the Parameter Space of Regularized
Tomography Algorithms. MJ Lagerwerf, WJ Palenstijn, F Bleichrodt, KJ Batenburg.
Fundamenta Informaticae (Volume: 172), number 2, pp. 143–167, 2020.

23



565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 28PDF page: 28PDF page: 28PDF page: 28
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In such limited data cases the information from the measurements and the
geometry of the acquisition setup is not sufficient to solve the reconstruction
problem accurately and some form of prior knowledge about the object must
be incorporated in the solution process. One way of incorporating such prior
knowledge in the reconstruction method is the use of regularization, where the
balance between the prior knowledge and solving the original problem is usually
determined by a regularization parameter [ROF92; BKP10; Goc16].

The choice for this regularization parameter depends on many properties of
the problem, such as the measured data and its noise level, or the reconstruction
method and its implementation. Moreover, the desired choice of regularization
parameter may also be application-specific, for instance with the aim of recon-
structing particular image features as sharply as possible at acceptable noise levels,
creating a reconstruction that is well-suited for subsequent segmentation, etc.

Consider for example the Total Variation (TV) reconstruction algorithm imple-
mented with a Primal-Dual Hybrid Gradient (PDHG) algorithm initially proposed
by Chambolle, Pock, Bischof and Cremers, as described in [SJP12]. Given all the
information about the reconstruction algorithm and its implementation, the effect
of a particular choice of the regularization parameter on the reconstructed image
still varies significantly for different instances of the reconstruction problems. If it
is not possible to specifically define and model additional information about the
object, it is common that the algorithm user computes a series of reconstructions for
different choices of the regularization parameter and chooses the preferred setting
by visual inspection. Although there have been strategies proposed to handle such
parameter space exploration in a structural manner, such as described in [Sed+14;
Pre+11], these strategies do not specifically address the key drawbacks we en-
counter here. The key drawbacks of such a trial-and-error method are twofold: (i)
computing many reconstructions for different regularization parameter values is
computationally intensive, as even computing a single reconstruction can already
be computationally demanding; (ii) with only a small number of reconstruction
evaluations, it is difficult to choose a regularization parameter in a consistent
manner as the actual desired value may lie somewhere in between the sampling
points.

For variational methods, of which TV is a well known example, there has
been extensive theoretical work on how to determine the “optimal” regularization
parameter, where each approach has a different concept of optimality. For example,
for the Tikhonov method, explicit analytic expressions are found based on the
singular value decomposition and discrepancy principle, see chapter 3 and 7 of
[Sch+09], and [Vai82]. Moreover, substantial analytical results have been obtained
on how the properties of a reconstruction change depending on the value of the
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regularization parameters [Bur+13; Bur+16; Bri+18]. Although these results are
powerful, they also make strong assumptions on the reconstruction algorithm,
such as continuity of the solution with respect to the regularization parameter,
full convergence of the iterative algorithm, or the availability of certain prior
knowledge about the problem such as the noise level, which are not always valid
in practice. Other more general strategies, such as the discrepancy principle and
the L-curve criterion [Vai82; BM12; Han92; HO93; Han99], have been developed.
These methods also rely on a specific definition of the “optimal” reconstruction
and require many evaluations of the reconstruction algorithm. A key limitation of
all mentioned approaches is that they do not take the application-specific needs
into account. The criterion of optimality is based on a mathematical problem
formulation without involving the particular requirements of the user.

In this chapter we propose an algorithmic approach for computationally effi-
cient exploration of the regularization parameter space. Once a relatively small
number of reconstructions have been computed for a sparse sampling of the reg-
ularization parameters, an approximation of the reconstructed image for other
parameter values can be computed with very high efficiency (linear time in the
number of pixels). In the case of manual selection of the regularization parameter,
our approach makes it possible to present the user with a real-time interface where
parameters can be adjusted on-the-fly and immediate visual feedback is obtained
on the effect of parameter changes on the reconstruction. In the case of automated
selection, the output of our approximation method can be used as input for any
image-based quality metric that one wants to optimize for.

Accurate approximation of the output of general regularization reconstruction
methods is a difficult problem. However, we found that if the output of the recon-
struction algorithm is available for just a small number of regularization parameter
values, a pixel-wise interpolation scheme is highly suitable for such approximations.
The choice of the sampling scheme is of particular importance to the effectiveness
of our approach. Through computational experiments we found that although the
major changes of the reconstructed image with respect to the regularization occur
in a relatively narrow region of the space of regularization parameter values, a
logarithmic sampling and corresponding interpolation scheme results in relatively
smooth behavior of the pixel values with respect to the regularization parameter
choice.

Our experimental results on simulated data for the parallel beam tomography
problem demonstrate that for three common variational reconstruction methods,
our approach results in accurate approximations of the reconstructed image and
that it can be used in combination with existing approaches for choosing optimal
regularization parameters. We also provide results for an experimental X-ray CT
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dataset. The approach is presented in such a manner that it can easily be extended
to different modalities and reconstruction methods.

This chapter is structured as follows. In Section 2.2 we introduce the problem,
related notation and mathematical descriptions of the methods used in this chapter.
In Section 2.3 we discuss our proposed method and how it can be used in existing
methods. Details about the implementation and experiments are discussed in Sec-
tion 2.4. The results are shown in Section 2.5 and in Section 2.6 we summarize
and conclude the chapter.

2.2 Notation and mathematical preliminaries

2.2.1 Problem Definition

We focus here on the two dimensional (2D) parallel beam tomography problem,
which we define below, and three different types of variational methods; see
Section 2.2.2. Our approach can be used for other tomography geometries (both
2D and 3D) and other reconstruction methods in a straightforward manner.

The 2D parallel beam tomography problem entails reconstructing a two-
dimensional unknown object from its parallel beam projection data. We will
consider the discrete version of this problem:

Wx= y, (2.1)

with x ∈ �N2
the unknown object, defined on a N × N pixel grid; y ∈ �NθNd the

parallel beam projection data, Nθ the number of projection angles, Nd the number
of detector pixels, and W : �N2 → �NθNd a discrete version of the Radon transform.
A more in depth description of this problem can be found in [Nat01; KS01].

We define a reconstruction method F : �NθNd ×�Nλ → �N2
with Nλ real-valued

regularization parameters for the problem (2.1) as a type of black-box operator:

F(y,λ) = xλF , (2.2)

with λ ∈ �Nλ a vector containing all the regularization parameters λi with i =
0, ..., Nλ − 1.

This definition fits general variational methods that incorporate regularization
as discussed in Section 2.2.2, but also fits the well-known Filtered Backprojection
(FBP) algorithm [Nat01], where bandwidth of a low-pass filter can be considered
as the regularization parameter, and the Simultaneous Iterative Reconstruction
Technique (SIRT) [VV90] with the number of iterations as a regularization para-
meter. As we consider F as a black-box operator, we will only make use of the
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result of applying F to the projection data for different values of λ, but will not
make use of specific properties of the operator F .

The key contribution of this chapter is to propose a computationally efficient
approach for approximating F(y,λ) for many values of λ. Having this ability, it
provides a way to choose the “optimal” value of the regularization parameter with
respect to any user-defined quality criterion: ‘Determine λ� such that xλ

�

F is the
optimal solution to (2.1).’ We do not specify here what an optimal solution is,
because this varies per problem, application or even user of the reconstruction
method.

2.2.2 Variational methods

In this section we discuss the choices for reconstruction methods F that we consider
in this chapter. The methods we consider are all variational methods and instead
of solving (2.1) directly these methods solve a related minimization problem. The
following problem formulation is specifically for one regularization parameter:

x�λ = argmin
x∈�N2

{�(Wx,y) +λR(x)} , (2.3)

where � is the data fidelity, R is the regularization term or the regularizer and
λ ∈ � the regularization parameter.

The data fidelity term encodes the information of the original problem (2.1). It
determines the distance between the input data and the solution x. In this chapter
we will only consider the least squares norm as data fidelity:

�(Wx,y) = 1
2 ‖Wx− y ‖2

2 . (2.4)

The prior knowledge for our inverse problem is encoded in the regularization term.
The idea is to define a functional that is small when the image x has a certain
preferred property, such as smoothness or sparsity with respect to a certain set of
basis functions.

We consider three types of regularizers in this chapter:

Sobolev and Total Variation regularization These regularizers penalize the
gradient of the reconstruction x in the L2−sense and L1−sense, respectively. In
mathematical terms:

RS(x) = ‖∇x‖2
2 , RTV(x) = ‖∇x‖1 . (2.5)

Note that the resulting minimization problem (2.3) now has a single scalar value
λ ∈ � as the regularization parameter. For a more in depth discussion on these
regularizers see [Goc16; ROF92].
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Total Generalized Variation regularization The idea for Total Generalized Vari-
ation is that one can split the reconstruction into parts with a different order of
regularity. In this chapter we will consider the version which splits it into two parts:
TGV2

λ
. The priority between these parts is balanced by a minimization problem

with a second regularization parameter:

RTGV(x,λ) = argmin
v∈�2×N2

{‖∇x− v‖1 +λ‖�v‖1} , (2.6)

here � : �2×N2 → �4×N2
is the distributional symmetrized derivative.

The minimization problem (2.3) in this case has two regularization parameters
and two objects to minimize for:

x�λ,v�λ = argmin
x∈�N2 ,v∈�2×N2

� 1
2 ‖Wx− y ‖2

2 +λ1 (‖∇x− v‖1 +λ2 ‖�v‖1)
�

, (2.7)

with λ = (λ1,λ2). For a more in-depth discussion on this regularizer see [BKP10].
At this point we have only described the mathematical functions to be minim-

ized for a particular variational method. We use a Primal-Dual Hybrid Gradient
(PDHG) method presented in [CP11]. Note that such an algorithm will typically
be terminated before the solution has fully converged, and will therefore not reach
the exact solution x�

λ
. Taking this all into consideration we define our black-box

reconstruction method as follows:

F(y,λ) = xλPDHGVM
, (2.8)

with the variational method VM ∈ {S, TV, TGV}.
Details about the implementation and parameter choices for the PDHG al-

gorithm are discussed in Section 2.4.

2.2.3 Parameter optimization methods

Two well known methods for choosing the regularization parameter for single
parameter variational methods are the discrepancy principle and the L-curve
criterion, which we will briefly introduce here.

Discrepancy principle For the discrepancy principle one chooses the maximal
regularization parameter λ such that the projection data y satisfies:

‖W F(y,λ)− y ‖2
2 ≤ ε, (2.9)

where the specific norm is the same as the one used in the data fidelity and ε is a
parameter that corresponds to the expected noise level in the projection data. For
more information see [Vai82; BM12].
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L-curve criterion The L-curve criterion chooses the regularization parameter λ�

such that the log-log curve of the data fidelity and the regularizer has a maximum
curvature. We define ρ(λ) and η(λ) as the logarithm of the data fidelity and the
regularizer, respectively. The log-log curve can then be described as follows:

(ρ(λ),η(λ)) = (log(�(Wxλ,y)), log(R(xλ))), (2.10)

Using these expressions we define the λ� for the L-curve criterion as the λ for
which the curvature κ attains its maximum:

λ� = argmaxλ {κ(λ)}= argmaxλ

	
η′′ρ′ −ρ′′η′

((ρ′)2 + (η′)2)3/2



. (2.11)

The idea is that for any other λ the relative increase of the data fidelity is higher
than the relative decrease in the regularization term and vice versa. Therefore,
this λ� provides an “optimal” balance between the two terms. A more in depth
discussion with theoretical analysis is given in [Han92; HO93; Han99].

We point out that both the discrepancy principle and the L-curve criterion
implicitly assume that the reconstruction method only has one regularization
parameter. Moreover, as will also become clear from our simulation results, the
regularization parameter values obtained using both methods can be substantially
different. No application-specific properties of the reconstructed image are taken
into account, and these methods may not yield optimal results if the algorithm
user wants to optimize for a particular type of image quality metric.

2.3 Method description

In this section we propose our method for efficiently computing a large number
of reconstructions of a given set of measurements y while varying the regulariz-
ation parameter. The idea is to evaluate the reconstruction method on a coarse
regularization parameter grid and interpolate between these reconstructions in
such a way that the resulting interpolation scheme is computationally efficient
and accurately approximates the actual reconstructed image for a broad range of
parameter values.

2.3.1 Interpolation scheme

Approximating the output of general tomographic reconstruction methods by inter-
polation is in general a challenging problem. However, if we fix the measurements
y and consider the behavior of one pixel in the reconstructed image for varying
λ, we observe that for many relevant reconstruction algorithms, including the
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variational methods described in Section 2.2.2, the pixel value changes smoothly
with the value of λ and the curve seems to be suitable for approximation using a
relatively simple model. Therefore we propose to perform pixel-wise interpolation
using cubic spline interpolation. The idea is that if the approximation per pixel is
sufficiently accurate, combining these single-pixel approximations into an approx-
imation of the reconstructed image will be an accurate approximation of the true
reconstructed image for a given value of λ.

First of all let us consider the case with one regularization parameter, Nλ = 1,
and define a coarse grid of Nip interpolation points:

Λ = {λ0,λ1, ...,λNip−1}, with, 0< λ0 < λ1 <, ...,< λNip−1, (2.12)

for this regularization parameter. We evaluate the reconstruction method F(y,λi) =
xλi

F . An important observation is that the range of possible choices for λ can be
very large (e.g. between 0 and 105), while the actual range where the interesting
changes of pixel values take place is usually much narrower. Therefore a linear
spacing between the interpolation points {λ0,λ1, ...,λNip−1} does not cover the
transitions of pixel values well. Instead, we found that choosing a scheme where
the values logλi are equidistantly sampled results in more accurate capturing of
the transitions1. This requires, however, that also the interpolation between the
sampling points respects this logarithmic scale. Specifically: given a set of regular-
ization parameters with corresponding reconstructions from the reconstruction
method F , {(log(λi),x

λi
F )}Nip−1

i=0 , we can compute the cubic spline interpolation
Sp : �→ � for a pixel p,

Sp(λ) = Si
p(λ), with λi−1 ≤ λ ≤ λi , i = 1, ..., Nip−1, (2.13)

such that the following statements are satisfied:

Si
p(λ) = ai + bi log(λ) + ci log(λ)2 + di log(λ)3, with di �= 0, (2.14)

Sp(λ) = (x
λ
F )p, with λ ∈ Λ. (2.15)

These conditions are not sufficient to uniquely compute Sp(λ), so we also need
boundary conditions. Let us consider the regularization parameter interval Λ

broad enough, such that xλ0
F will be under-regularized and x

λNip−1

F will be over-
regularized. This means that taking a lower or higher λ, respectively, will not
result in significant changes to the reconstruction. Therefore, if we assume the
regularization parameter interval broad enough, clamped boundary conditions will

1Further discussion on how to determine the grid Λ is given in Section 2.4.1.
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be satisfied on the left and right boundaries, i.e.,

dSp(λ)

dλ
(λ0) = 0,

dSp(λ)

dλ
(λNip−1) = 0. (2.16)

If all the pixel-wise spline interpolations Sp(λ) are computed, we can consider

the cubic spline interpolation function SF : � → �N2
for the full object and

reconstruction method F :

SF (λ) =

⎡
⎣ S0(λ) · · · SN−1(λ)

...
. . .

...
S(N−1)N (λ) · · · SN2−1(λ)

⎤
⎦ with λ ∈ [λ0,λNip−1]. (2.17)

To summarize, our proposed method for one regularization parameter λ is step-
by-step described in Algorithm 1.

Algorithm 1 Pixel-wise spline interpolation

1: Determine λ0 and λNip−1, s.t. xλ0
F and x

λNip−1

F , are under- and over-regularized,
respectively.

2: Define a coarse grid Λ on [λ0,λNip−1], s.t. log(λi) are equidistantly spaced.

3: for i =
�
0,1, ..., Nip − 1

�
do

4: Compute F(λi ,y) = xλi
F .

5: for p =
�
0, 1, .., N2 − 1

�
do

6: Compute the spline interpolation Sp(λ) for pixel p such that (2.14), (2.15)
and (2.16) are satisfied.

7: Combine the Sp(λ), as described in (2.17), to get the spline interpolation
function SF (λ).

The proposed method can easily be extended to two regularization parameters.
In this case the pixel-wise interpolation becomes a two-dimensional interpolation
problem. This means that the coarse grid of regularization parameters Λ is also a
two-dimensional grid for which Nip,1Nip,2 evaluations of the reconstruction method
are needed, increasing the computational effort significantly.

2.3.2 Optimizing the regularization parameter

Once the reconstruction algorithm F has been evaluated on the coarse grid of
interpolation points, we can sample the approximations of the reconstructions
from the interpolation function SF (λ) and use these to determine the optimal
regularization parameter λ� according to the specific requirements of the algorithm,
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user, and the application. Here we discuss four strategies for using our interpolation
technique to optimize the regularization parameter.

Parameter space exploration When there is no reference image available we
simply determine the “visually optimal” λ� through inspection or exploration of
the approximations given by the interpolation function SF (λ). A good general
framework for strategies such as this is described in [Sed+14], here one can
replace the sampling of the original function with the interpolation function SF (λ).
Additionally, one can embed the interpolation scheme in a visual tool where the
user can adjust the regularization parameter on-the-fly and receive immediate
visual feedback on the approximation of the resulting reconstruction.

Quantitative measure optimization In this strategy the approximations SF (λ)
are compared to a ground truth or a high quality reconstruction with respect
to a certain quantitative measure. We can define the “optimal” regularization
parameter λ� as follows:

λ� = argmin
λ

{QM(SF (λ),xref)} , (2.18)

with QM : �N2 → �, a quantitative measure on the reconstruction space. A simple
example of such a function is the root Mean Squared Error (rMSE). We will discuss
quantitative measures further in Section 2.4.4.

Discrepancy principle This strategy assumes that an estimate ε of the noise
level on the projection data is available. We define our λ� as the largest λ for
which ‖WSF (λ)− y‖2

2 ≤ ε is true.

L-curve criterion We can compute the L-curve by plugging in the spline inter-
polation function SF (λ) in (2.10):

(ρ(λ),η(λ)) = (log(�(SF (λ),y), log(R(SF ))). (2.19)

To compute the curvature κ(λ) we use numerical approximations for the gradient
based on spline interpolation.

2.4 Experiments

2.4.1 Implementation

Code All methods are implemented using Python 3.6.5, Numpy 1.14.3 [WCV11],
SciPy 1.1.0 [JOP+01], ODL [AKÖ17]. The tomography operators are implemented
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on the GPU using the ASTRA-toolbox [Van+16], where for performance reasons
the forward and backprojection are not exactly each other’s adjoint. The code used
for this chapter is available on GitHub [Lagc].

Reconstruction method setup To normalize the range of the regularization
parameters we scale the data fidelity term and the regularization term in (2.3)
to the same range. Without loss of generality we set λ = λ̂ ‖W‖

‖∇‖ . For Sobolev
regularization this gives:

x�λ = argmin
x∈�N2

�
1
2

��Wx− y2
2

��+ λ̂‖W‖
‖∇‖ ‖∇x‖2

2

�
, (2.20)

= argmin
x∈�N2

�
1
2

��Wx− y2
2

��
‖W‖ + λ̂

‖∇x‖2
2

‖∇‖
�

, (2.21)

with ‖·‖ the operator norm. Similar scaling can be done for TV and TGV regulariz-
ation. Further reference to the regularization parameter will be to this normalized
parameter λ̂.

As stated before we use the PDHG algorithm to compute the reconstructions.
For this algorithm we need to set the step-size parameters τ and σ, the relaxation
parameter θ and the number of iterations. To ensure convergence we must have,
τσ ‖LVM‖2 < 1, therefore we take the step-size parameters as follows:

τ=
0.1
‖LVM‖ , σ =

0.99

τ‖LVM‖2 , (2.22)

with LVM the operator related to the PDHG implementation of the variational
method VM, more specifically:

LS = LTV =

�
W
∇

�
, LTGV =

⎡
⎣W 0
∇ −I
0 �

⎤
⎦ . (2.23)

Lastly, we set the relaxation parameter, θ = 1, and the number of iterations,
niter = 500, if not mentioned otherwise.

Parameter grid choice To assess the accuracy of our approximations, we will
compute reconstructions for all the regularization parameters on a fine grid Λ f .
For our interpolation method we use a coarse grid Λ ⊂ Λ f .
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For Λ f we take Ns logarithmically sampled points on the interval [λ0,λNip−1]
containing the endpoints, such that we have

log(λi) =
log(λNip−1)− log(λ0)

Ns − 1
i + log(λ0). (2.24)

for λi ∈ Λ f and λNs−1 = λNip−1.
By fixing the number of points Nip we use for the interpolation, we get Λ:

Λ =
�
λ j ∈ Λ f | j = k� Ns

Nip−1�, k = 0, .., Nip − 2
�∪ �

λNs−1

�
, (2.25)

which means that the first Nip − 1 points are chosen such that the exponents are
equidistant, and the last point coincides with the endpoint.

2.4.2 Computer simulated data

We consider two computer simulated phantoms, shown in Figure 2.1, to test
the performance of our method. These phantoms are defined independent of
a pixel grid. The reconstructions are defined on a 1024 × 1024 uniform pixel
grid. The projection data is defined as 2048 detector elements per projection
angle. To avoid the so-called inverse crime the projection data is generated using
2048×2048 phantoms. The resulting projection data with 4096 detector elements
per projection angle is rebinned to 2048 detector elements by taking the average
of two neighboring elements.

x

y

0.090

0.095

0.100

0.105

(a) FORBILD head phantom

x

y

0.0

0.2

0.4

0.6

0.8

1.0

(b) Gradient objects phantom

Figure 2.1: Computer simulated phantoms. The FORBILD head phantom is
presented in [LB]. Note that the range of the figure is not the actual range of
the phantom; this is to visualize the low contrast objects. The gradient objects
phantom is a standard phantom in the ODL package [AKÖ17].
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We will consider zero mean additive Gaussian noise with the variance equal to
a percentage of the maximum value of the projection data, i.e.,

y= yGT +δ, δ ∼� (0, Vδ), (2.26)

with Vδ = nl ·maxi {yi} the variance of the noise and nl ≥ 0 the noise level.

2.4.3 Experimental data

The experimental data is acquired from a low-dose scan of a pomegranate. The
original scan is a 3D circular cone-beam CT scan of which we took the central
detector row for all projection angles, to get a 2D circular fan-beam reconstruction
problem. A detector row is 145.34 mm long and contains 1536 detector elements
per projection angle and the dataset contains 500 equiangular spaced projection
angles. The scans were done using the custom-built and highly flexible FleX-ray
CT scanner, developed by XRE NV and located at CWI. Additionally, we use a
high-dose scan of the same pomegranate with 2000 equiangular spaced projection
angles, from which we compute a gold standard reconstruction2, xGS , that can be
used as a reference reconstruction xref. Further details about the original scans
can be found here [CLB18].

2.4.4 Quantitative measures

To test the accuracy of the approximations of our method compared to the original
reconstructions or the ground truth we use two quantitative measures: relative
Mean Squared Error (rMSE) and the structural similarity index (SSIM).

The rMSE is defined as follows

rMSE(x,xref) =
‖x− xref‖2

2

‖xref‖2
2

, (2.27)

which measures the distance between the object x and the reference object xref in
the L2-sense.

The SSIM measures the luminance, contrast and structure between the samples
x and xref. We use the implementation from ODL [AKÖ17]. We set the constants as
suggested in [Wan+04], except for L, which we set equal to the dynamic range of
the pixel values.3 The mean and variance are computed with a Gaussian filter with

2The reconstruction method used to compute the gold standard reconstruction is a SIRT recon-
struction with 300 iterations and a non-negativity constraint.

3The dynamic range is the difference between the maximum pixel value and the minimum pixel
value of the reference reconstruction xref.
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width of 11 pixels. We chose these settings because in this case SSIM reflected
our own observations of the relative quality of the reconstructions. The SSIM
ranges between -1 and 1, where 1 indicates that the image and reference image
are identical.

2.5 Results and discussion

The results are structured as follows: we investigate the quality of the approxima-
tions in Section 2.5.1, in Section 2.5.2 we investigate the use of our approach for
selecting an “optimal” regularization parameter in various scenarios for simulated
data and in Section 2.5.3 for experimental data.

2.5.1 Method validation

As stated in Section 2.4.2 we consider two computer simulated phantoms (Fig-
ure 2.1). For these phantoms we will consider two reconstruction problems: a
sparse view reconstruction problem, with 64 equidistant projection angles and no
noise (nl = 0); and a noisy reconstruction problem, with 740 projection angles and
a noise level nl = 0.1.

Single regularization parameter methods

In this section we will validate the proposed method for the Sobolev and TV
regularization reconstruction methods. For the experiments with these methods
we took Ns = 301 sample points on the interval [10−3, 1], unless mentioned
otherwise.

We will mainly look at a sparse view problem with Figure 2.1a as phantom
reconstructed with TV regularization, however, the shown results are similar
for the other cases described. In Figure 2.2 we show the rMSE and SSIM of
the approximations STV(λ) with respect to the reconstructions xλTV for a varying
number of interpolation points Nip. We observe that the rMSE and SSIM lie close
to 0 and 1, respectively, which indicates that the approximations are close to the
reconstructions. Moreover, we see that worst approximations lie in the middle
between two interpolation points and that taking more interpolation points results
in better approximations. In Figure 2.3 the approximations for several pixels p
are shown. We observe that for Nip = 6 the approximations are of relatively low
accuracy. Moreover, we see that the assumption on the boundary conditions (2.16)
are not always valid on the right hand side of the interval, which also influences
the accuracy of the approximation.
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Figure 2.2: The rMSE (Left) and SSIM (Right) of the interpolated approximations
with respect to the reconstructions as a function of the regularization parameter
λ for varying number of interpolation points Nip. Here we consider the sparse
view reconstruction problem as defined in Section 2.5.1 for the phantom shown
in Figure 2.1a and the reconstructions are computed with the TV method.
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Figure 2.3: Pixel values of the phantom, the reconstruction and the interpolated
approximations with varying number of interpolation points Nip as a function of
the regularization parameter for several pixels in the image. Here p indicates
the pixel position in the vector and (xp, yp) indicates the pixel position in the
image. Here we consider the sparse view reconstruction problem as defined in
Section 2.5.1 for the phantom shown in Figure 2.1a and the reconstructions are
computed with the TV method.
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Figure 2.4: (Left) The worst case pixel-wise interpolated approximation with
Nip = 6 interpolation points of the TV reconstruction with regularization parameter
λ = 10−0.26 (Middle) and their difference (Right). Here we consider the sparse
view reconstruction problem as defined in Section 2.5.1 for the phantom shown
in Figure 2.1a and the reconstructions are computed with the TV method.

In Figure 2.4 we show the worst approximation for the full reconstruction
with respect to the rMSE, the corresponding reconstruction and their difference.
We observe that the approximation is worst around the high contrast parts of the
object. However, the general behavior and properties of the reconstruction are
accurately represented.

In Figure 2.5 the average and the worst approximation of the rMSE and SSIM
with respect to the reconstructions are shown for all the cases we stated at the
beginning of this section. To avoid a positive bias the interpolation points are
not taken into consideration for the statistics. Again we observe that the more
interpolation points are used, the better the approximations are, and that the worst
approximations are still close to the original.

Two regularization parameter method

For two regularization parameters computing reference reconstructions at high
resolution to validate our methods is prohibitively expensive. Therefore, we only
consider the noisy reconstruction problem as defined in Section 2.5.1 for the
phantom shown in Figure 2.1b and take a smaller reconstruction problem in
terms of pixels and angles: 256× 256, with 360 equidistant projection angles. For
the regularization parameter grid we take λ1 ∈ [10−4, 102] and λ2 ∈ [10−2, 102]
and Ns,1 = 181 and Ns,2 = 121.

The quantitative measures of the approximations with respect to the recon-
structions are shown in the left and middle column of Figure 2.6 and in the right
column the quantitative measures of the reconstruction with respect to the ground
truth. We observe lower accuracy of the approximation between the grid points of
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Figure 2.5: The average and standard deviation (Top row) and worst cases (Bottom
row) for the rMSE (Left column) and SSIM (Right column) of the pixel-wise inter-
polated approximations with respect to the reconstructions for varying number of
interpolation points Nip, reconstruction problems and methods. To avoid cluttering
of the figure the standard deviation bars are only plotted in one direction.

λ1, as we also saw for one regularization parameter. However, the approximations
do not vary in accuracy in λ2-direction. In Figure 2.7 we show the worst approx-
imation, and the difference with respect to the SSIM, λ1 = 10−0.267, λ2 = 10−0.3.
In the top row we show Nip,1 = 5, Nip,2 = 5 and in the bottom row Nip,1 = 10,
Nip,2 = 5. We see that taking more points in the λ1-direction results in more
accurate reconstructions.

In Table 2.1 the average and standard deviation of the rMSE and SSIM with
respect to the reconstructions are shown. Again we observe that a finer grid in
the λ1 direction results in more accurate approximations. Moreover, we observe
that taking a finer grid for λ2 has a limited influence on the accuracy of the
approximations.

2.5.2 Parameter optimization with simulated data

Single parameter regularization methods

In this section we use the approximations SF (λ) to determine the “optimal” regular-
ization parameter λ�, as determined by a number of objective measures or criteria.
We compare our methods to evaluating the method using only the reconstructions
available at the interpolation points Λ and at the fully sampled grid Λ f .
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Figure 2.6: (Right and middle column) Quantitative measures of the interpolated
approximations with respect to the reconstructions for varying λ1 and λ2. The
approximations are done with Nip,1 = 5, Nip,2 = 5 and Nip,1 = 10, Nip,2 = 5
interpolation points in respectively the left and middle column. The right column
shows the quantitative measures of the reconstructions with respect to the ground
truth.
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Figure 2.7: (Left column) Worst case pixel-wise interpolated approximation with
Nip,1 = 5, Nip,1 = 5 (Top) and Nip,1 = 10, Nip,1 = 5 (Bottom) interpolation points of
the TGV reconstruction with regularization parameters λ1 = 10−0.267, λ2 = 10−0.3

(Middle column) and their difference (Right column).
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rMSE
Nip,1 = 5 Nip,1 = 10 Nip,1 = 15

Nip,2 = 5 (8.99± 0.95) · 10−4 (1.05± 0.04) · 10−4 (4.53± 0.08) · 10−5

Nip,2 = 10 (8.87± 0.96) · 10−4 (8.91± 0.4) · 10−5 (2.58± 0.03) · 10−5

Nip,2 = 15 (8.88± 0.96) · 10−4 (8.85± 0.4) · 10−5 (2.46± 0.03) · 10−5

SSIM
Nip,2 = 5 .907± 0.12 .988± 0.06 .996± 0.01
Nip,2 = 10 .908± 0.12 .989± 0.06 .997± 0.01
Nip,2 = 15 .908± 0.12 .989± 0.06 .997± 0.01

Table 2.1: The average and standard deviation rMSE and SSIM of the interpolated
approximations with respect to the TGV reconstructions for a varying number of
interpolation points Nip, 1, Nip, 2.

Parameter space exploration Figure 2.8 shows the process of exploring the
parameter space for the noisy reconstruction problem as defined in Section 2.5.1
for the phantom shown in Figure 2.1a with the TV regularization reconstruc-
tion method, using 6 reconstructions (Nip = 6). Here we determine the “visually
optimal” parameter λ� = 10−1.58 based on our visual inspection of the approxima-
tions. The top row are the 6 available reconstructions (red border), from which we
see that the visually optimal parameter should lie in the interval [10−1.78, 10−1.17].
Knowing this, we take a number of interpolated approximations in this interval and
compare them (the first 5 images on the bottom row, orange border). We observe
that the approximation with λ= 10−1.58 has a good trade-off between sharpness
and artifacts in the background. The actual reconstruction is shown in the bottom
right (green border). Note that without the interpolations the only information
available would be the top row, meaning that one would have to choose between
λ = 10−1.78 and λ = 10−1.17 or do additional computations.

Quantitative measure optimization In the case that there is a ground truth
or high quality reconstruction available we determine the “optimal” regulariz-
ation parameter with respect to a quantitative measure, by optimizing the QM
curves (recall (2.18)). In Figure 2.9 we show the resulting curves for the noisy
reconstruction problem as defined in Section 2.5.1 for the phantom shown in
Figure 2.1a reconstructed with TV regularization. For comparison the curve com-
puted with the actual reconstructions and direct spline interpolations through
the points QM(xΛT V ,xGT ) are shown. We see that both interpolation methods give
good approximations, although the pixel-wise interpolations are less accurate at
the boundaries. This is most likely due to the assumption of clamped boundary
conditions not being accurate enough.
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Figure 2.8: Visualization of the parameter space exploration. The top row with
the red border are the reconstructions on the coarse grid Λ that are used for the
interpolations. The approximations in the window of interest are shown in the
bottom row with the orange border and the reconstruction with the “visually
optimal” regularization parameter λ� = 10−1.58 is shown in the bottom right with
the green border. Here we consider the noisy reconstruction problem as defined in
Section 2.5.1 for the phantom shown in Figure 2.1a and the reconstructions are
computed with the TV method.
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Figure 2.9: The rMSE (Left) and SSIM (Right) curves for the reconstructions and
the pixel-wise interpolated (PWI) approximations with respect to the ground truth
and the QM curves directly interpolated (DI) from the QM values on the coarse
grid Λ for varying number of interpolation points Nip. Here we consider the noisy
reconstruction problem as defined in Section 2.5.1 for the phantom shown in
Figure 2.1a and the reconstructions are computed with the TV method.

In Table 2.2 we show the estimated regularization parameters for the 8 differ-
ent cases we considered also in the previous section. We observe that estimations
of both the pixel-wise interpolation and the direct interpolation methods are close
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to the “optimal” parameters. For the cases where the estimated parameter is less
accurate, we inspected the curves and observed that the curve was at a plateau
around the optimal value, making it more sensitive to errors. Lastly, we observe
that the “optimal” regularization parameter varies depending on which quantitative
measure is used.

Sobolev regularization TV regularization
Case: Noisy FORBILD Gradient objects FORBILD Gradient objects
Method rMSE SSIM† rMSE SSIM† rMSE SSIM rMSE SSIM

log10(λ
�) -2.02 -0.06 -0.9 0.05 -2.24 -1.19 -0.63 -0.36

log10(λ
�
PWI), Nip = 6 -2.03 -0.39 -0.88 -0.02 -2.25 -1.25 -0.6 -0.59

log10(λ
�
PWI), Nip = 11 -2.02 -0.15 -0.9 0.04 -2.23 -1.21 -0.63 -0.15

log10(λ
�
PWI), Nip = 16 -2.02 -0.05 -0.9 0.05 -2.24 -1.19 -0.62 -0.35

log10(λ
�
PWI), Nip = 21 -2.02 -0.06 -0.9 0.05 -2.24 -1.19 -0.63 -0.35

log10(λ
�
DI), Nip = 6 -2.02 -0.05 -0.89 0.07 -2.27 -1.33 -0.84 -0.84

log10(λ
�
DI), Nip = 11 -2.02 -0.06 -0.9 0.05 -2.24 -1.16 -0.61 -0.39

log10(λ
�
DI), Nip = 16 -2.02 -0.06 -0.9 0.05 -2.24 -1.19 -0.63 -0.35

log10(λ
�
DI), Nip = 21 -2.02 -0.06 -0.9 0.05 -2.24 -1.19 -0.63 -0.35

Table 2.2: Estimated and “optimal” regularization parameters based on quantitative
measure optimization for two reconstruction methods, two phantoms and the
rMSE and SSIM. We only show the noisy reconstruction problem, the sparse view
problems have similar results. The estimations of the regularization parameters are
done based on the pixel-wise interpolations (PWI) and the direct interpolation (DI)
of the QM curves. For the cases denoted with a † the range of the regularization
parameter is changed to [10−2, 101] to ensure that the “optimal” parameter is
within the considered range.

Discrepancy principle & L-curve criterion To ensure capturing the desired
behavior we take a larger interval for the regularization parameter, [10−4, 102],
and scale the sampling points accordingly, Ns = 601. In Figure 2.10 we show show
results for reconstructions, pixel-wise interpolations and direct interpolations. The
top row shows the values of the data-fidelity as a function of the regularization
parameter λ. The results shown are for the noisy reconstruction problem as defined
in Section 2.5.1 for the phantom shown in Figure 2.1b. Here we observe that
the significant changes of the functions are in a relative small window of λ. This
results in bad approximations if there is no reconstruction available in this window.
Moreover, we see that the noise level ε intersects the data-fidelity curve at a plateau,
which might result in inaccurate estimates for the regularization parameter (see
the second to last column of Table 2.3).

In the bottom row of Figure 2.10 we show the L-curve and its curvature. Here
we observe that inaccuracies in the initial approximations result in inaccuracies
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in the L-curve, and even more in its curvature. In the extreme case we observe a
change of sign of a peak for the pixel-wise interpolations with Nip = 6. However,
even with these inaccuracies, the approximations follow the general behavior of
the reference curve and through visual inspection of the approximations and curves
one can stil determine the optimal parameter.

The “optimal” parameters for discrepancy principle and the L-curve criterion for
the 8 cases considered are shown in Table 2.3. We observe more volatility in the
“optimal” parameters compared to the results in Table 2.2, which coincides with the
observations in Figure 2.10. Additionally, for two cases the direct interpolations
resulted in negative values for the TV term resulting in an undefined L-curve.
Lastly, we again see that the optimal value of the regularization parameter varies
depending on the used method.
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Figure 2.10: (Top) The data-fidelity (Left) and TV functional (Right) as a function
of the regularization parameter λ. (Bottom) The L-curve (Left) and its curvature
(Right). These curves are computed with the reconstructions, the pixel-wise
interpolated (PWI) approximations and through direct interpolation (DI). Here
we consider the noisy reconstruction problem as defined in Section 2.5.1 for the
phantom shown in Figure 2.1b and the reconstructions are computed with the TV
method.
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Sobolev regularization TV regularization
Case: Noisy FORBILD Gradient objects FORBILD Gradient objects
Method DP LC DP LC DP LC DP LC

log10(λ
�) -2.33 0.13 -0.58 0.83 -2.95 -0.64 0.09 0.46

log10(λ
�
PWI), Nip = 6 -2.34 0.07 -0.58 0.82 -3.01 -0.56 -0.18 1.12†

log10(λ
�
PWI), Nip = 11 -2.33 0.13 -0.58 .82† -2.96 -0.61 0.09 0.72

log10(λ
�
PWI), Nip = 16 -2.33 0.13 -0.58 0.83 -2.95 -0.63 0.09 0.58

log10(λ
�
PWI), Nip = 21 -2.33 0.13 -0.58 0.84 -2.95 -0.63 0.09 0.51

log10(λ
�
DI), Nip = 6 -2.39 - -0.62 - -2.89 -0.55 0.63 0.6

log10(λ
�
DI), Nip = 11 -2.33 0.14 -0.58 0.83 -2.97 -0.62 0.05 0.45

log10(λ
�
DI), Nip = 16 -2.33 0.13 -0.58 0.83 -2.95 -0.64 0.09 0.46

log10(λ
�
DI), Nip = 21 -2.33 0.13 -0.58 0.83 -2.95 -0.63 0.09 0.46

Table 2.3: Estimated and “optimal” regularization parameters based on discrepancy
principle (DP) and L-curve criterion (LC) for two reconstruction methods and two
phantoms. We only show the noisy reconstruction problem, because these methods
are not feasible for the sparse view problem. The estimations of the regularization
parameters are done based on the pixel-wise interpolations (PWI) and the direct
interpolation (DI) of the QM curves. For the cases denoted with a † the maximum
curvature is at another value of λ, however, through closer inspection of the curve
(in a similar manner as for Figure 2.10) this parameter is chosen.

Two regularization parameter method

Taking into consideration the observations from Section 2.5.1 we use the same set-
tings for the reconstruction problem and we take Nip,1 = 10, Nip,2 = 5 interpolation
points for our interpolation scheme.

Quantitative measure optimization In Figure 2.11 we show the quantitative
measures of the approximations (left column) and the reconstructions (right
column) with respect to the ground truth. The “optimal” regularization parameters
and their respective quantitative measures determined from these figures are given
in the caption. We observe that the found “optima” all lie in a plateau region which
has relatively small differences in the quantitative measures. This indicates that
the proposed method arrives at similar results as the original method.

Parameter space exploration Upon visual inspection of the reconstructions
we concluded that the “visually optimal” set of parameters lies in log10(λ1) ∈
[−0.5, 0.2] and log10(λ2) ∈ [0.07, 1.1] (red border in Figure 2.12). Inspection of
the approximations (orange border) in this interval resulted the optimal parameter
set (λ1,λ2) = (10−0.33, 100.07). We observe minimal differences between the
approximation and the actual reconstruction (green border) for this “visually
optimal” set of parameters.
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Figure 2.11: Quantitative measure figures for the TGV reconstruction method with
respect to the ground truth. The red dot indicates the extremum of the figure.
(Top left) rMSE of the approximations with λ� = (10−0.57, 10−0.033) and min(rMSE)
= 9.1 · 10−4.
(Top right) rMSE of the reconstructions with λ� = (10−0.73, 10−0.30) and min(rMSE)
= 8.8 · 10−4.
(Bottom left) SSIM of the approximations with λ� = (10−0.5, 100.067) and
max(SSIM) = 0.9755.
(Bottom right) SSIM of the reconstructions with λ� = (10−0.67, 10−0.30) and
max(SSIM) = 0.9779.

2.5.3 Parameter optimization with experimental data

In this section we show results for our method on experimental fan beam CT data.
For this case we took the TV regularization reconstruction method implemented
with the PDHG algorithm, using Niter = 2500 iterations, τ= 0.1

‖LTV‖ , regularization

parameter range [10−4, 1], Ns = 401 sample points and Nip = 11 interpolation
points.

The parameter space exploration for the experimental data and the TV re-
construction method is shown in Figure 2.13. Again only a selection of the
approximations and initial reconstructions is shown for a clearer visualization.
In Figure 2.14 we show in the top row the TV reconstruction with the “visually
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Figure 2.12: Partial visualization of the parameter space exploration for the TGV
reconstruction method. The first and second column (red border), show several
close to “visually optimal” reconstructions on the coarse grid Λ. The third and
fourth column (orange border) partially show the further exploration through the
approximations with in the top right the “visually optimal” approximation and
the image on the right (green border) shows the reconstruction with this “visually
optimal” regularization parameter.

optimal” regularization parameter, a FBP reconstruction and the gold standard
reconstruction. We can conclude from the FBP reconstruction4 that the noise
in the data is quite severe and that it would be surprising if any reconstruction
method can retrieve the small features at the boundary of the pomegranate and
inside the seeds (observed in the gold standard reconstruction). Taking this into
consideration the choice of regularization parameter results in an adequate TV
reconstruction. We observe in the difference between the gold standard recon-
struction and the TV reconstruction (Bottom right in Figure 2.14) the loss of the
smaller details and a general loss of contrast, which is a known property of the TV
method. Lastly, we consider the quantitative measures shown in Table 2.4. These
results confirm the earlier conclusions; the pixel-wise approximation is very good
and the chosen regularization parameter results in an adequate TV reconstruction.

2.6 Conclusion

In this chapter we have proposed an algorithmic approach for computationally
efficient exploration of the regularization parameter space, based on a pixel-wise

4The FBP reconstruction is done with a Ram-Lak filter, with no windowing to reduce the noise in
the input data [Nat01].
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Figure 2.13: Partial visualization of the parameter space exploration. The top row
(red border) shows several reconstructions on the coarse grid Λ. The images on the
bottom row (orange border) show the further exploration of the parameter space
through the use of approximations and on the bottom right (green border) the
reconstruction with the “visually optimal” regularization parameter is shown.
The difference between the approximation of the reconstruction is shown in
Figure 2.14.
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Figure 2.14: (Top left) FBP method reconstruction, (Top middle) TV method
reconstruction, (Top right) Gold standard reconstructions. (Bottom left) Pixel-wise
approximation to the TV reconstruction, (Bottom middle) Difference between TV
approximation and reconstruction, (Bottom right) Difference between the TV and
gold standard reconstruction.
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Metric x= ST V (λ�), xref = xλ
�

T V x= xλ
�

T V , xref = xGS x= xFBP, xref = xGS

rMSE(x,xref) 1.6328 ·10−6 2.2750 ·10−3 8.5259·10−2

SSIM(x,xref) 0.9988 0.6986 0.0186

Table 2.4: Quantitative measures for the experimental data results. Here xFBP
indicates the FBP reconstruction [Nat01] with a Ram-Lak filter.

interpolation scheme. Given a relatively small number of reconstructions on a
sparsely sampled parameter grid, our method can be used to quickly compute an
approximation to a reconstruction for any regularization parameter within the
sampled range.

We have shown for three common variational reconstruction methods, Sobolev,
TV and TGV regularization, that our method produces accurate approximations
for simulated and experimental data. Moreover, we have shown that the approx-
imations can be used in existing parameter optimization methods.

To conclude, our method enables developing computationally efficient tools
that provide real-time visualization of the regularization parameter space, and
automated parameter selection based on existing optimization criteria.
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Chapter 3

Automated FDK-Filter selection
for cone-beam Computed
Tomography

3.1 Introduction

Research environments in academia nowadays have cone-beam (micro-)CT systems
that are used for imaging the 3D interior structure of highly diverse objects. These
systems may be shared by many users, each studying their own type of objects and
their own questions they would like to answer based on the interior structure. As
an example, one can think of a natural history department where various fossils,
meteor fragments, plant remains, insects, and a variety of other objects are all
scanned using the same system. Similarly, industrial research labs use micro-CT to
analyze their products ranging from detergents to dairy products and packaging
materials, all using the same CT system. For each new scan, the settings of the
scan (number of angles, dose, energy level, etc.) are chosen by the user, often
based on how much time is available or the dose sensitivity of the sample.

The Feldkamp-Davis-Kress algorithm (FDK) is the most common reconstruction
method used in laboratory circular cone-beam CT systems. It is well known that

This chapter is based on:

Automated FDK-Filter Selection for Cone-Beam CT in Research Environments. MJ
Lagerwerf, WJ Palenstijn, H Kohr, KJ Batenburg. IEEE Transactions on Computational
Imaging (Volume: 6), pp. 739–748, 2020.
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Figure 3.1: Schematic view of the proposed approach. Given a measured projection
dataset with a certain geometrical setup, we estimate a regularization parameter
and compute an FDK-filter that yields accurate results for common automated
tasks (such as segmentation by global thresholding, porosity quantification).

optimizing the filter, also referred to as filter kernel, in the FDK algorithm to the
characteristics of the scan (number of angles, dose, cone angle, etc.) can improve
the accuracy of the FDK algorithm [Hsi+09; Rus17] (see Ch. 3.4.2 and 35.4.3.3,
respectively). For high-throughput CT systems designed for a specific application
(e.g. medical CT-scanners, dental CBCT scanners) the scanner comes with a set of
proprietary pre-optimized filter [Com; Pla] that are chosen through a predefined
protocol or by the user. In contrast, the broad variety in scans made in research
scanners (many different objects with many different scan settings) require the user
to manually select the parameters of the filter on a case-by-case basis, requiring
specific expertise and time-consuming intervention from the user, or otherwise
resulting in sub-optimal image quality.

Several studies have been made on how to compute such filters in an automated
way, based on the geometrical parameters of the scanning process. In [GMD06;
Nie+12] the authors exploit the tomosynthesis geometry to compute an acquisition-
dependent filter. Alternatively, one can use the fact that the backprojection and
filtering step are interchangeable in the FBP algorithm — for the parallel beam
geometry — to optimize filters to approximate an iterative reconstruction method
[BP12; Zen12; PB13], or to fit towards a specific scanner [Kun+07].

For the parallel beam geometry, a more general strategy for determining filters
is proposed in [PB14], where a filter is computed that minimizes the residual error
of the FBP reconstruction in the least squares sense. So far, this general concept
has not been introduced in cone-beam tomography as the algorithm for computing
the filter does not scale well to the 3D case of cone-beam tomography, where the
full 3D volume must be taken into account.

In this chapter we present a computationally efficient and automated method
to compute an FDK-filter for a given measured projection dataset that is optimal
with respect to an objectively defined quality criterion based on the �2-norm of the
difference between the measured projection data and the computed projections
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of the reconstructed volume (Figure 3.1). Since this criterion is often referred to
as the minimum residual, we will refer to our filters as Minimum Residual (MR)
filters. We show that for a variety of objects, scan settings (number of angles and
noise levels), and tasks (porosity quantification, threshold-based segmentation),
the MR filters computed by our approach yield accurate results in terms of several
different metrics (e.g. MAE, SSIM, MTF, which we will define later). In contrast,
using the same manually tuned filter in all scenarios only yields accurate results
for some of the cases, regardless of the particular choice of filter.

This chapter is structured as follows. In Section 3.2 we introduce our method
and describe how it allows for fully-automatic and efficient computation of the
MR filter. In Section 3.3 we describe how a set of experiments was carried out to
investigate the behavior of our method under various scanning conditions, using
both simulated and real experimental data. The results of these experiments are
presented in Section 3.4. Conclusions are drawn in Section 3.5.

3.2 Method

3.2.1 Filter optimization problem

The 3D tomographic reconstruction problem can be modeled by a system of linear
equations

Wx= y, (3.1)

where x ∈ �n is a vector containing the voxel gray values, y ∈ �m is a vector
containing the measured projection data, and W ∈ �m×n is a discretized version
of the forward model, i.e. the Radon transform for parallel beam tomography and
the cone-beam transform for cone-beam tomography. In this chapter we focus
exclusively on the circular cone-beam geometry, where the object rotates with
respect to a point source and a planar detector, acquiring 2D cone-beam projections.
For the sake of simplicity we assume that the volume consists of n = N×N×N
voxels and the detector consists of 2N×N pixels. We denote the number of angles
with Na, so we have m= Na × 2N × N .

The FDK algorithm [FDK84] is an extension of the well-known Filtered Back-
projection algorithm that approximately solves (3.1) for the circular cone-beam
geometry. For each projection angle, it applies a reweighting step, that corrects for
some of the geometrical properties of the cone-beam transform, a filtering step,
that filters the projections line-by-line by convolving the data with a filter, and
a backprojection step that transfers the filtered projection into the image volume
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domain. Using the notation of (3.1), the FDK algorithm is given by

FDK(y,h) =W T (h ∗ r (y))1D, (3.2)

with W T the transpose of W , known as the backprojection operator, h ∈ �2N a
one-dimensional filter, r the reweighting operator, and ((h ∗ r (y))1D) the discrete
convolution between the data and the filter. While the standard Ram-Lak filter
corresponds to the analytical derivation of the reconstruction problem, a variety
of filters are used in practice for reaching a trade-off between artifacts, noise,
sharpness of the reconstruction, and other application-specific image properties.
The key contribution of this chapter is to propose a computationally efficient
numerical algorithm for computing a filter for a specific combination of scanned
object, geometrical parameters of the cone-beam acquisition, number of angles,
and noise level. The aim is to devise an approach that provides decent quality
results across a broad range of scenarios, such that the same automated approach
can be used to compute FDK reconstructions, yielding high quality results in all
cases.

A problem in automatically optimizing the FDK filter is that without access
to a high quality reference image of the scanned object, defining reliable quality
metrics is not straightforward. To solve this problem, we introduce a criterion that
is not based directly on the reconstructed image, but instead on the consistency
of the FDK-image with respect to the measured projection data y, measured by
simulating the projections of the FDK reconstruction and comparing these to the
measured projections. Specifically, we select the filter as the minimizer of this cost
function:

h� = argmin
h

‖W (FDK(y,h))− y‖2
2 +λ‖h‖2

2 (3.3)

The first term corresponds to the residual of the FDK-reconstruction for a given
filter h, computed by applying the cone-beam transform to the FDK-reconstruction
and comparing to the measured data y. This term will be low if the filter results in
an FDK-reconstruction that is consistent with the measured projections. Using a
detector of size 2N×N ensures that the convolution of the projected object with
the filter is fully supported on the detector discretization domain and the influence
of all filter coefficients on the reconstructed image is taken properly into account.
The second term is a Tikhonov-type regularization term that penalizes filters
with coefficients that have large absolute value. The regularization parameter
λ determines the relative weight of this term. Note that this objective function
only incorporates data specific information and general regularization, it does
not include task or problem specific assumptions. In computing these filters we
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are minimizing the residual, therefore we will refer to these computed filters as
Minimum Residual (MR) filters.

We also evaluated more sophisticated regularizers, such as a Tikhonov-type
term with the reconstructed image or the gradient of the reconstructed image,
but we have not included them in this chapter as they lead to similar filters with
similar performance as the proposed method.

We point out that the FDK algorithm is a bilinear operator with respect to the
projection data y and the filter h. This implies that for fixed projection data y,
the output FDK(y,h) of the FDK algorithm can be considered as a matrix-vector
product Fyh. Consequently, the minimization problem in (3.3) is a linear least-
squares problem for which the solution corresponds to the solution of the normal
equations1:

(F T
y W T W Fy +λI2N )h= F T

y W T y, (3.4)

with I2N ∈ �2N×2N the identity matrix. In the next subsection we will discuss how
(3.4) can be solved accurately and efficiently.

3.2.2 Computational aspects

Note that the matrix inverse problem in (3.4) is small enough to solve directly once
an explicit representation is available of the matrix M = F T

y W T W Fy. This matrix
is square and its size equals the number of entries in the FDK-filter h. However,
computing the matrix M explicitly is not straightforward as it involves much larger
matrices W and Fy and their transposes, which are too large to be represented
explicitly. Instead, we compute the columns Mj of the matrix M individually, by
evaluating the following expression 2N times:

Mj = Me j = (F
T
y W T W Fy)e j , (3.5)

with e j ∈ �2N a unit vector with all entries equal to zero except for the j th element.
The computation for each element Mj involves a forward and backprojection,

which can still impose a high computational load if the filter has many coefficients.
Therefore, to reduce the number of filter coefficients, the filter is represented with
respect to a small set of basis functions as h = Ehe on an exponentially binned
grid similar to [PB14]. As a result, we have Ne ≈ log(N), with Ne the number of
elements of he. Details about this approximation are discussed in Appendix 3.6.1.

The algorithm to compute a MR filter is summarized in Algorithm 2. Lastly,
we observe that the computational effort of computing a MR filter is roughly 2Ne
forward and backward projections and lies mainly in the computation of the matrix
M .

1Consider the first order optimality conditions of (3.3) and rearrange the terms to get (3.4).
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Algorithm 2 Computing a MR filter

1: for j = {0,1, 2, .., Ne − 1} do
2: Mj =

�
ET F T

y W T W FyE
�

e j

3: Compute: h�e =
�
M +λINe

�−1
ET F T

y W T y

3.2.3 Regularization parameter

The final component of our automated approach for computing the FDK-filter is to
determine a suitable value for the regularization parameter λ. Finding an optimal
value for this parameter is in general not possible as it requires knowledge of
the ground truth as well as detailed modelling of the application-specific quality
criteria. We therefore aim for a computationally efficient heuristic that yields
decent results across a broad range of imaging scenarios.

Our strategy involves three consecutive components:

• Computing a low-noise reference reconstruction at strongly reduced
spatial resolution. We compute a low-resolution reconstruction, where the
volume as well as the projection data are down-sized by a factor of 4 in
each dimension (so, 4×4×4 for the volume and 4×4 for each projection). In
this small reconstruction problem the signal-to-noise ratio is much higher
and the number of angles is much larger relative to the size of the volume
compared to the full problem. To compute the reference reconstruction,
200 iterations of the iterative SIRT algorithm are used, with a nonnegativity
constraint applied in each iteration.

• Optimizing the regularization parameter for the low-resolution prob-
lem using the noise characteristics of the full problem. We subsample
the high resolution data by taking every 4th pixel in the detector width and
height and compute the matrix MLR with this subsampled low resolution
data and compute reconstructions xλLR for several values of λ. Note that by
subsampling we do not reduce the noise levels, making the noise character-
istics of the low resolution problem similar to the original high resolution
problem. We choose the regularization parameter for which the difference
with the reference reconstruction is minimal in the �1-norm. This heuristic
choice of norm works well for our experiments. Other norms could also be
used.

Regularization parameters can vary strongly per problem. Therefore, we
scale the parameter to account for the influence of the operators W , Fy and
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E:

λ = λ̃
��WLRFy,LRELR

��= λ̃�‖MLR‖. (3.6)

Moreover, we consider a two step process for optimizing the parameter. First,
we optimize over a broad and coarse grid, more specifically a logarithmically
scaled grid spanning from 10−6 to 10 with 8 grid points. Second, we optimize
over a fine grid around the optimal parameter from the first grid.

• Scaling the regularization parameter to the full-resolution case. The
regularization parameter λ computed for the low-resolution problem cannot
be used directly in the high-resolution problem. To account for the scaling
differences between the problems, we apply the following conversion formula
(cf. (3.6)):

λHR = λLR

��W FyE
����WLRFyLR

ELR

�� = λLR

�‖M‖�‖MLR‖
. (3.7)

Once the regularization parameter λ and corresponding filter h have been com-
puted, this filter can be used in the FDK algorithm to compute a reconstruction of
the high-resolution data.

3.3 Experiments

We performed a series of experiments to assess the properties of our proposed
MR filters. The goal of our experiments is twofold; (1) Compare the accuracy
of the FDK results for MR filters to manually selected filters for the experiments,
(2) Investigate the capability of MR filters to automatically adapt to a variety of
objects, scan settings and tasks.

To achieve this we consider the following four scenarios:

• Reconstruction problems with common data deficiencies. We vary the
noise levels, number of projection angles in the different input data and cone
angle and compare the results from the computed filters to the manually
tuned filters.

• Task specific reconstruction problems. We compute reconstructions of a
foam phantom similar to the one used in [PBS18] and use these to do
segmentations and compute the pore size distribution of this phantom.
For the segmentations we use Otsu’s global thresholding method [Ots79].
Details about the computation of the pore size distribution are given in
Appendix 3.6.4.
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• Filter comparison and analysis. We compare the computed filters and
their respective Modulation Transfer Functions (MTF) to the manually se-
lected filters. Details about the implementation of the MTF are given in
Appendix 3.6.5.

• Examples with experimental data. We show results for two experimental
datasets using the computed filters and compare the reconstructions to manu-
ally selected filters and the gold standard reconstruction (see Section 3.3.1).

The results are compared to several manually selected filters and analytic FDK
filters. As manually selected filters we consider the family of filters which combine
a low-pass filter with an analytic filter, e.g., the Shepp-Logan filter and a Gaussian
filter. The set of selected filters are chosen such that they are close to the optimal
quality metrics for each of the conducted experiments. We point out that a manually
selected filter from this set might actually yield sub-optimal results for experiments
other than it was selected for, which is exactly why an automated and deterministic
approach for computing filters can be beneficial.

Details on how the filters are combined, the definitions of the low-pass filters
and how these filters are selected are given in Appendix 3.6.2.

3.3.1 Data

Simulated data

In Figure 3.2 we show the FORBILD head phantom [LB], which is used in the
simulated data experiments. Note that with the chosen scanning conditions we
focus on the high contrast details and we do not expect to resolve the low contrast
objects in this head phantom.

For our simulated data experiments we take N = 1024, which means that a
reconstruction and the data are respectively defined on a 10243 equidistant voxel
grid and a 2048× 1024 equidistant detector grid per projection angle. To limit
the influence of the inverse crime, we generate2 a phantom with N = 1536, and
forward project this phantom to a data space with detector size 3072×1536. Then
interpolate the data per projection angle to a 2048× 1024 detector grid and use
this as input data. We set the source radius to 10 times the physical size of the
phantom, resulting in a cone angle of 5.7 degrees. Poisson noise is applied before
linearizing the data, i.e.,

y= − log
�

Inoise
I0

�
, Inoise ∼ Pois(I), (3.8)

2We also generated phantoms with higher resolutions, but did not observe noticeable differences.
Hence we chose for a sampling factor of 1.5, to limit computational and memory constraints.
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with I the noise-free photon count and I0 the emitted photon count. Higher I0
implies a higher dose and therefore less noise in the data.

x
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z
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0.105

0.110

0.115

0.120

Figure 3.2: Two-dimensional slices z = 0 (Left) and y = 0 (Right) of the FOR-
BILD head phantom [LB]. Note that the gray value scaling is different from the
reconstructions further in the chapter. This is done to highlight the low contrast
objects in the center, top, and bottom of the phantom. The phantom is continuously
defined and sampled on a chosen grid.

Experimental data

We acquired an experimental dataset of a pomegranate using the custom-built and
highly flexible FleX-ray CT scanner, developed by XRE NV and located at CWI. This
scanner has a flat panel detector with 1943× 1535 pixels and a physical size of
145.34× 114.82 mm. The datasets contain 500 equidistantly spaced projections
over a full circle. The distance from the center of rotation to the detector was set
to 109 mm and the source radius to 590 mm. The scans were performed with a
tube voltage of 70 kV. The high-dose scan was collected with a tube power of 45
W and an exposure time of 500 ms. The low-dose scan was collected with a tube
power of 20 W and an exposure time of 100 ms. These datasets are available at
Zenodo [CLB18].

In Figure 3.3 the gold standard reconstruction of the experimental data is
shown, obtained by computing a SIRT reconstruction with 300 iterations of the
high-dose dataset with 500 equidistant projection angles, where we set the voxels
in the background below a certain threshold equal to zero.
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Figure 3.3: The z = 0 (Left) and y = z (Right) slice of the gold standard recon-
struction of the pomegranate dataset. The projection data is acquired using the
FleX-ray scanner located at the CWI.

3.3.2 Quantitative measures

To quantify the accuracy of the reconstructions we consider two measures, the
mean absolute error (MAE) and the structural similarity index (SSIM). The MAE
and the SSIM compare the reconstructed image xr to the phantom image xp. The
MAE is defined as

MAE(xr ,xp) =

��xr − xp

��
1��xp

��
1

, (3.9)

The SSIM [Wan+04] is implemented based on the scikit-image 0.13.1 [Wal+14]
package, where all the constants are set to default and the filter is uniform with a
width of 19 pixels.

For experimental data there is no ground truth image available. Therefore, we
will use the high quality gold standard reconstruction as reference image xp.

Lastly, we are only interested in how the methods perform on the object itself
and not on the background. Therefore, we only consider the reconstructed object
and roughly 0.2N pixels away from the object. Here the position of the object is
determined in the ground truth or gold standard reconstruction.

3.3.3 Implementation

All the methods are implemented using Python 3.6.2, Numpy 1.12.1 [WCV11],
ODL [AKÖ17] and PyFFTW 0.10.4 [FJ05], and the forward- and backprojection
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are implemented on the GPU using the ASTRA-toolbox [Van+16], which provides
a collection of high-performance building blocks for tomography algorithm devel-
opment. Here, for performance reasons, the forward projection is not the exact
adjoint of the backward projection and vice versa. Our implementation of this
method is available on Github [Laga].

3.4 Results and discussion

3.4.1 Common data deficiencies

Sparse view and noisy data

Figure 3.4a and Figure 3.4b show the MAE and SSIM for reconstructions with
a varying number of projection angles and varying noise levels, respectively. We
observe that the MR filters are close to the optimal manually selected filter (see
Appendix 3.6.2 for details about manually tuned filters) for all considered cases
with respect to the quantitative measures. Moreover, we observe that the manually
selected filters are only optimal for a certain range of cases. This is illustrated in
Figure 3.5 where reconstructions of noisy data are shown with several filters.

Varying cone angles

So far we have considered a relatively small cone angle of 5.7 degrees. In this
section we show the effect of varying the cone angle. Figure 3.6 shows the MAE
and SSIM for a range of cone angles.

We observe that all the reconstruction methods react similarly to the change
in cone angle with unchanged relative performance. Figure 3.7 illustrates the
effect of a large cone angle with strong artifacts at the top and bottom of the
reconstruction. The effect of these artifacts are also reflected in the quantitative
measures.

3.4.2 Task based problems

In this section we test the performance of MR filters for specific tasks, namely
segmentation and porosity computation. Figure 3.8 shows the percentage of
misqualified voxels for an Otsu global thresholding segmentation [Ots79] for
several filters and varying noise levels.

We observe that the less smoothing filters lead to a lower percentage of
misqualified voxels. Looking at Figure 3.9 we observe that the MR filter still leads
to a less noisy reconstruction, but the smaller pores are lost in the segmentation.
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(a) Varying number of projections angles.
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(b) Varying emitted photon counts I0.

Figure 3.4: Comparing quantitative measures of FDK reconstructions with varying
filters. The data is generated from the FORBILD head phantom.

Looking at Figure 3.9 we observe that reconstructions with the MR filter contain
less noise than the reconstructions with SL + BinN=5 filter, which is in line with
the experiments in Section 3.4.1. Additionally, we see that, although the SL +
BinN=2 has a lower percentage of misqualified voxels in this case, it still contains
noise in the object and false positives in the background.

From these segmentations we can also count the pores inside the phantom. A
pore is defined as an open space in the segmented volume and in Figure 3.10 we
show the pore size distributions for several noise levels. First of all, we note that
the segmentations with the SL + BinN=2 filter for I0 = 256 contain too much noise
to compute a sensible pore distribution. Second, we observe that the MR filter
underestimates the number of pores, whereas the filters with binomial smoothing
tend to overestimate the number of pores.

Considering these observations we can conclude that, although MR filters do
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(a) FDK reconstruction with Shepp-Logan fil-
ter.
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(b) FDK reconstruction with a SL + Gaussσ=5
filter.
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(c) FDK reconstruction with a SL + Gaussσ=8
filter.
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(d) FDK reconstruction with MR filter.

Figure 3.5: Reconstructions from the FORBILD phantom; the dataset has 360
equidistant projection angles and emitted photon count I0 = 256.
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Figure 3.6: Reconstruction quality measures computed from the FORBILD
phantoms with 360 equidistant projection angles, emitted photon count I0 = 1024,
and varying cone angles.

not lead to the best segmentations or pore size distributions, they still perform
robustly in all the considered cases.
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Figure 3.7: Reconstructions using Shepp-Logan filter (Left) and MR filter (Right)
computed on the FORBILD phantom with 360 equidistant projection angles, cone
angle of 62.6 degrees and an emitted photon count I0 = 1024.
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Figure 3.8: Segmentation errors for various filters. The projection data is simulated
with varying emitted photon counts I0 from a foam phantom.
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Figure 3.9: Reconstructions (top half, green border) and segmentations (bottom
half, red border) of projection data from a foam phantom with emitted photon
count I0 = 2048 and 360 projection angles.
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Figure 3.10: Pore size distributions for three different filters and the ground truth
distribution. The size of a pore is defined as the radius of the pore, which is
expressed in a number of voxels. Furthermore, the pores are grouped into bins
with similar radii (5 voxel intervals). The projection data is simulated with varying
emitted photon counts from the foam phantom.
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3.4.3 Filter analysis

In this section we analyse the MR filters. In Figure 3.11 we show the Fourier
representation of several types of filters, namely: analytic, manually tuned, and
MR filters. We show MR filters from four different cases. Comparing the filters we
observe that the shape of the MR filters is different from the manually selected
filters, i.e., they have a relatively lower amplitude and a longer tail. From the MTFs,
which are shown in Figure 3.12, we also observe a slight difference between the
three types of filters. The MTFs of the analytic and manually selected filters all
have a similar gradual drop in frequencies, whereas the MTFs of the MR filters
have a steeper drop and a longer tail compared to the SL + Gauss filters, which
were the filters that led to the most comparable results for the (NOI, 1) and (NOI,
2) scenarios.
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Figure 3.11: Fourier representations of various filters. Here the MR filters denoted
with (SV, 1) and (SV, 2), are computed on the FORBILD head phantom with 96
equidistant and 192 projection angles, respectively. The MR filters denoted with
(NOI, 1) and (NOI, 2) are computed on the FORBILD phantom with 360 equidistant
projection angles and emitted photon count I0 = 256 and I0 = 16384, respectively.

Lastly, we consider the image bias introduced by the MR filters. The MR filters
use the FDK algorithm to reconstruct the data. Therefore, their reconstructions will
suffer similar limitations as the reconstructions with standard filters. In Figure 3.13
we show the cross section along the x-axis of averaged reconstructions computed
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Figure 3.12: Modulation Transfer Functions of several filters in the positive ωx
direction. The MR filters are computed on datasets with 360 equidistant projection
angles of the FORBILD phantom and emitted photon counts I0 = 256 (NOI, 1)
and I0 = 16384 (NOI, 2).

over 500 random noise instantiations and their standard deviations of 3 phantoms:
a cylinder with constant density, a cylinder with a ramp in its density and the
FORBILD phantom. We clearly see the bias-variance trade-off between the more
smoothing filters and the Ram-Lak filter. Additionally, we see that the MR filters
adapt to the data and even try to fit the edges, at the cost of overshooting around
these edges.

3.4.4 Experimental data

In Table 3.1 the quantitative measures for the experimental data with respect to
the gold standard reconstruction (recall Section 3.4.4 and Figure 3.3). First we
observe that the MR filters have a lower MAE than the other filters. In Figure 3.14
we see that the intensity of the MR filter reconstruction is closer to the gold
standard reconstruction, which explains the difference in MAE. This difference is
less prominent in the SSIM, because the SSIM is designed to be less influenced by
scaling differences. Lastly, we observe that the reconstruction with the MR filter for
the low-dose dataset still contains noise, which explains the relatively low SSIM.
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Figure 3.13: Average reconstructions and standard deviation of the x-axis for
a (Left) constant cylinder phantom (Middle) ramp cylinder phantom (Right)
FORBILD phantom. The average and standard deviation are computed over 500
reconstructions with 2563 voxels of input data with different initialisations of
emitted photon count I0 = 256 and 360 projection angles.

This indicates that the estimation for the regularization parameter is relatively low,
which is most likely due to noise in the low resolution high quality reconstruction
used to determine this parameter.
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(a) FDK reconstruction with Shepp-Logan filter.

(b) FDK reconstruction with SL - Gaussσ=8 filter.

(c) FDK reconstruction with MR filter.

Figure 3.14: Reconstructions of the low-dose Pomegranate dataset with 500
equidistant projection angles.
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Table 3.1: Reconstruction quality measures from the high- and low-dose
Pomegranate1 dataset with 64 and 500 equidistant projection angles (Left &
Right), respectively.

High dose, 64 projection angles
Method MAE SSIM
Shepp-Logan 0.2290 0.1789
SL + BinN=2 0.2839 0.1948
SL + BinN=5 0.2620 0.2350
SL + Gaussσ=5 0.2112 0.5365
SL + Gaussσ=8 0.2037 0.6304
MR filter 0.0711 0.6500

Low dose, 500 projection angles
Method MAE SSIM
Shepp-Logan 0.2426 0.1799
SL + BinN=2 0.2794 0.2147
SL + BinN=5 0.2513 0.2745
SL + Gaussσ=5 0.2144 0.6983
SL + Gaussσ=8 0.2152 0.7294
MR filter 0.0636 0.5934

3.5 Conclusions and outlook

We have proposed a computationally efficient and automated method to compute
a FDK-filter for a given imaging scenario (scanned object, number of angles, dose)
that is optimal with respect to an objectively defined quality criterion. For cone-
beam CT scanners used in research environments, where many different objects are
scanned and parameters are often varied, our method can be used to automatically
determine a filter that yields accurate results across a range of scanning conditions
and tasks to be performed.

The experimental results demonstrate that for a variety of objects, scan settings
(number of angles and noise levels), and tasks (porosity quantification, threshold-
based segmentation), the MR filters computed by our approach are not task or
problem specific and yield accurate results in terms of several different metrics
that are comparable to manually selected filters.

Although the computational cost of computing an MR-filter is substantially
lower than running an iterative reconstruction algorithm, it is much higher than
the computational cost of FDK with a fixed filter. When carrying out batches of
scans for similar objects, one can reuse an MR-filter computed for a particular
object to further bring down the computational cost.

3.6 Appendices

3.6.1 Filter approximation

We want to design an expansion operator E to reduce the dimension needed
to describe a filter. Figure 3.15 shows five examples of analytic FDK filters as
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presented in [Nat01; Buz08]. From the figure we see that the filters are symmetric
and have most information on a fine grid around the origin.
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Hann

Figure 3.15: Standard filters in the spatial (left) and Fourier (right) domain.

To emulate this behavior, we introduce a re-sampling scheme as used in [BK06;
PB13; PB14]. We do this by defining the discretised filter space �u to be a uniform
grid with 2Nu points on the interval [−Du, Du] and grid points uj. Now we re-
sample these points into bins βi with length:

di =

⎧⎪⎨
⎪⎩
Δu
2 , for i = 0,

Δu, for 0< i < b,

2b−iΔu, for i ≥ b,

(3.10)

with Δu =
Du
Nu

, the length of a single detector pixel. Here the indices i denote
the place of the bin with respect to the central bin, i.e., β0 = [0, d0] and β1 =
(d0, d0 + d1], etc. This binning strategy results in a grid with uniform spacing
around the origin and, depending on the binning parameter b, an exponentially
coarsening grid for the outer regions. Instead of piece-wise constant basis functions
as were used in [BK06; PB13; PB14], we will use piece-wise linear basis functions.
This is because we observed that filters computed with these basis functions behave
regularly in Fourier space. We define these functions as such:

φlin
i,u =

� si−uj

di−1
, for

  uj

  ∈ βi−1,
uj−si

di
, for

  uj

  ∈ βi ,
(3.11)

where si is the boundary value of the i th bin, such that βi = (si , si+1].
Spatial representations of filters created with piece-wise constant and linear

basis functions are shown in Figure 3.16. we use the binning parameter b = 2,
which strongly limits the computational effort of computing a filter. In experiments
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β0 β1 β2 β3 β4

Piece-wise constant

Piece-wise linear

Figure 3.16: Examples of exponentially binned filters with piece-wise constant
and linear basis functions. Binning parameter b = 2.

we observed that selecting a binning parameter greater than 2 does not improve
the quality of the reconstructions substantially.

3.6.2 Filters selected for comparison

Manually selected filters for the FDK algorithm are often analytic filters combined
with low-pass filters. These filters are typically manually adapted to the scan
conditions. We selected several of such filters as reference methods for our results.
We consider two types of low-pass filters.

Binomional filters are defined as:

BinN = ([1 1]⊗ [1 1]⊗ · · · ⊗ [1 1])︸ ︷︷ ︸
N times

/2N+1, with N ∈ �>0, (3.12)

and N the order of the binomial filter.
Gaussian filters are defined as:

Gaussσ, j =
1

σ
�

2π
e
( j−Nu/2)2

2σ2 , with σ > 0, (3.13)

with Gaussσ, j the j th element of Gaussσ ∈ �Nu and σ the standard deviation of
the Gaussian in pixels.

We combine the filters by convolving the low-pass and analytic filters in the
spatial domain and cutting them off. These filters are specified by first referencing
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the analytic filter, then the low-pass filter and lastly the value of the parameter
related to this low-pass filter.

For comparing the results of our proposed MR filter with a set of low pass filters
combined with analytic filters (as defined above), we carried out a search over the
parameter space of these filters (specifically N ∈ {1, ..., 8} and σ ∈ {1, ..., 10}) and
selected four filter settings such that for each of the experiments reported in the
chapter, at least one of the selected filters has quality metrics close to the optimum
across the parameter space (with respect to MAE, SSIM, and task specific metrics).
The selected filters are the SL + Gaussσ=5,8 filters and the SL + BinN=2,5 filters.

3.6.3 Methods used in experiments

3.6.4 Pore size distribution

We derive the pore size distribution from the cumulative pore size distribution of a
segmentation. The cumulative pore distribution is computed through inverting
the segmentation, which leads to pores being particles, and step-wise erosion of
these resulting particles. By controlling the number of voxels that we erode, we
know how many pores there are with a certain radius (this radius is expressed in
the number of voxels).

3.6.5 Modulation transfer function

The modulation transfer function (MTF) of a reconstruction method is defined as the
magnitude of the Fourier transform of its point spread function (PSF). However, due
to aliasing, computing the MTF directly from the PSF is unstable. Therefore, instead
of measuring the PSF directly, we measure the edge spread function (ESF) and
compute its derivative, which coincides with the PSF. Following the ASTM standard
[AST13], we consider a homogeneous cylinder, with its axis on the z-axis, as the
measured object. Since the FDK algorithm and the object are radially symmetric,
every ray from the center of the cylinder to the edge of the reconstruction domain
is a realization of the ESF. Defining φ to be the angle that this ray makes with the
x-axis we can compute the average ESF over all φ, which we denote by �φ (we
limit ourselves to the z=0 plane). Next we compute the gradient of this average
ESF and use it to compute the MTF acting in the z=0 plane.

In mathematical terms, the MTF in the z=0 plane, or w.l.o.g. the x-direction,
due to the radial symmetry, related to a filter h in the FDK algorithm is defined as
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follows:

MTFh(ωx) = |
1D {PSFh} (ωx , 0, 0)| , (3.14)

=
  
1D

� d
d x ESFh

�
(ωx , 0, 0)

  , (3.15)

≈   
1D

� d
d x

�
�φ [F(y� ,h)z=0]

��
(ωx , 0, 0)

  (3.16)

where y� is the cone-beam projection data of the aforementioned cylinder.
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Chapter 4

Neural Network
Feldkamp-Davis-Kress algorithm

4.1 Introduction

Circular cone-beam (CCB) Computed Tomography (CT) has become an integral
part of non-destructive imaging in a broad spectrum of applications, such as indus-
trial quality control [GUV11], materials sciences [Die+14; Bul+16] and medical
imaging [For+02; GKT17]. Limitations on the scanning process caused by the need
to scan a large number of objects in a short amount of time lead to measurements
with a low number of projection angles or high noise levels. Additionally, CT
reconstruction has become a big data problem due to the development of readily
available high-resolution CT-scanners [TESb; TESa; Can]. This stresses the need
for computationally efficient reconstruction methods that are applicable to a broad
spectrum of high-resolution problems and produce accurate results from data with
a high noise levels, low number of projection angles or large cone angles.

In practice, if computational efficiency is a constraint and especially for high-
resolution problems, direct methods (e.g., the filtered backprojection (FBP) al-
gorithm [Nat01], the Feldkamp-Davis-Kress (FDK) algorithm [FDK84] and the
Katsevich algorithm [Kat03]) are still the common choice of reconstruction method

This chapter is based on:

A computationally efficient reconstruction algorithm for circular cone-beam computed
tomography using shallow neural networks. MJ Lagerwerf, DM Pelt, WJ Palenstijn, KJ
Batenburg. Journal of Imaging (Submitted for publication).
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[PSV09]. While iterative methods have been shown to be more accurate for noisy
and limited data problems [ROF92; BKP10; SP08; Jia+10; Niu+14; EF03], they
have a significantly higher computational cost. Consequently there have been
efforts to improve the accuracy of direct methods by computing data-specific or
scanner-specific filters [Zen12; Nie+12; BP12; PB14; Lag+20]. Although these
strategies do improve the reconstruction accuracy, they also add significant com-
putational effort or are specific to one modality, e.g., tomosynthesis [Kun+07].

An emerging approach for improving direct methods is to use machine learn-
ing to remove artifacts from the reconstructions. The idea is to use high-quality
reconstructions to train a neural network that removes artifacts from low-quality
reconstructions using a supervised learning approach. This post-processing ap-
proach has shown promising results for computed tomography using deep neural
networks (DNNs) [Jin+17; PBS18; Kid+18]. Deep neural network structures
contain a large number of layers, leading to millions of trainable parameters and
therefore require a large amount of training data [PS18]. This is problematic in CT
imaging, since there is often a limited amount of training data available, e.g., due
to scanning time, dose, and business-related concerns. Moreover, for the available
data there are often no reference datasets or annotations available [Wan+18]. The
large amount of training data and large number of parameters also lead to long
training times. While for standard 2D networks the training time ranges between
a couple of hours and a couple of days (see Section 4.5.1), for 3D networks the
training time becomes prohibitively long [Çiç+16] (i.e., weeks). Therefore, to
apply post-processing to 3D problems the reconstruction volume can be considered
as a stack of 2D problems [RFB15; PBS18] for which one 2D network is trained
and then applied in a slice-by-slice fashion to the 3D volume. Although this strategy
reduces the training time and the training data constraints, applying a 2D network
to all slices can still be computationally intensive due to the number of slices in
the 3D volume. A more in-depth discussion on current developments related to
machine learning methods in CT imaging is given in Section 4.2.

In this chapter we propose the Neural Network FDK (NN-FDK) reconstruction
algorithm. It is a direct reconstruction method that is designed to produce accurate
results from noisy data, data with a low number of projection angles, or a large
cone angle, but still maintains a similar computational efficiency and scalability as
the standard FDK algorithm. Moreover, the algorithm has a fast training procedure,
and requires a limited amount of training data.

The NN-FDK algorithm is an adaptation of the standard FDK algorithm using a
shallow multilayer perceptron network [Bis06] with one fully connected hidden
layer, a low number of trainable parameters and low memory constraints. We
will show it is possible to interpret the weights of the first layer of the perceptron
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network as a set of learned filters for the FDK algorithm. We can then use the FDK
algorithm to evaluate the network efficiently for all voxels simultaneously to arrive
at an accurate reconstruction for the CCB CT problem.

The NN-FDK algorithm is an extension of the method proposed in [PB13] for the
Filtered Backprojection (FBP) algorithm [Nat01]. The derivation of the approach
outlined in [PB13] relies on the shift-invariance property of the FBP algorithm.
We will show that, although the FDK algorithm does not have this shift-invariance
property, we can derive a similar method for the FDK algorithm. Moreover, the
proposed strategy can be extended to any linear filtered backprojection type
reconstruction method.

Using both simulated and experimental data, we compare the proposed method
with the standard FDK algorithm, SIRT [VV90] with a nonnegativity constraint
(SIRT+), which is a commonly used iterative algorithm for CT problems, and two
2D deep neural networks (U-net [RFB15] and MSD [PBS18]) trained to remove
reconstruction artifacts from slices of standard FDK reconstruction. We show that
the NN-FDK algorithm is faster to evaluate than all but the standard FDK algorithm
and orders of magnitude faster to train than the considered DNNs, with only a
slight reduction in reconstruction accuracy compared to the DNNs.

The chapter is structured as follows. In Section 4.3 we give definitions and
introduce our method. In Section 4.4 we introduce the data and the parameters
used for the experiments. The experiments and their results are shown and
discussed in Section 4.5. The chapter is summarized and concluded in Section 4.6.

4.2 Related work

Using machine learning methods is an emerging approach in CT imaging [Wan+18].
Deep learning methods have shown promising results for many applications within
the development of CT reconstruction methods [KMY17]. For the sake of exposi-
tion, we split these machine learning approaches into two categories: (i) Improving
standard reconstruction methods by replacing components of the reconstruction
method with networks specifically trained for the application; and (ii) improv-
ing the image quality of reconstructions computed with existing reconstruction
methods by training neural networks to perform post-processing in order to remove
artifacts or reduce noise.

Examples of the first strategy (improving standard reconstruction methods)
applied to iterative methods are the learned primal-dual reconstruction algorithm
[AÖ17; AÖ18], variational networks [Kob+17; Ham+18], plug and play priors
[VBW13; REM17; RS18], and learned regularizers [LÖS18; Muk+20]. These
methods achieve promising results in reconstruction accuracy and generalizability.
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However, their high computational cost limits the applicability if high throughput
is required. Examples for this strategy applied to direct methods are the NN-FBP
method [PB13], and also the NN-FDK method introduced in this chapter. These
methods are designed to improve the image quality of direct methods for data
with limitations (e.g., data with noise or a low number of projection angles) while
maintaining their computational efficiency.

Examples of the second strategy (learned post-processing) have demonstrated
substantial improvements in reconstruction quality for CT imaging [RFB15; KMY17;
PS18; Jin+17]. This is aided by the fact that the post-processing problem can be
viewed as a classic imaging problem — e.g., denoising, segmentation, inpainting,
classification — for which many effective machine learning methods have already
been developed [SLD17; PCC18; Zha+17]. Although the general trend is towards
deeper networks to make such networks more expressive [YHC18], this can lead
to problems with scalability for large 3D image datasets.

The rise in popularity of machine learning in CT is driven by the increased
computational possibilities and although these advances are sufficient to handle
most 2D problems, scaling towards 3D problems can be problematic, due to
memory constraints. This is illustrated in Figure 4.5 in Section 4.5.1, where we
plotted the memory constraints for applying a 2D and 3D U-net and MSD network
in terms of gigabytes (GiB) of memory as a function of the size of the image. This
shows that in theory one could apply a 2D MSD network to images of 7500×7500
pixels (with a 24GiB GPU), but in 3D this limit lies around 400×400×400 voxels.
Considering that CT problems range between 256× 256× 256 (small image size)
up to 4096 × 4096 × 4096 images, this gives an indication that scalability can
become an issue, especially for 3D problems.

When applying machine learning techniques for improving the reconstruction
quality in CT, a balance must be struck between image quality, running time, and
memory requirements. Here we propose a method that achieves relatively high
accuracy, while also being computationally efficient and scalable.

4.3 Method

The NN-FDK algorithm is a reconstruction algorithm with a machine learning
component, meaning that a number of parameters of the reconstruction algorithm
are optimized through supervised learning [AB09]. Similar to the network presented
in [PB13], the NN-FDK network is a two layer neural network with a hidden layer
and an output layer. We design the network such that it reconstructs one single
voxel, but handles all voxels in a similar manner. This means that we only have to
train one network for a full reconstruction. We consider the NN-FDK algorithm to
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have three parts: The NN-FDK network, the NN-FDK reconstruction algorithm and
the training process.

We introduce the reconstruction problem, FDK algorithm, a filter approximation
method and the definition of a perceptron in Section 4.3.1. In Section 4.3.2 we
give the NN-FDK reconstruction algorithm and derive from this algorithm the NN-
FDK network. The input of the network that is needed in the training process is a pre-
processed version of the input of the reconstruction algorithm. In Section 4.3.3,
we discuss how to compute this pre-processing step for all voxels simultaneously
and we introduce the optimization problem and related notation for the training
process. Lastly, we summarize and discuss the characteristics of the method in
Section 4.3.4.

4.3.1 Preliminaries

Reconstruction problem

In this chapter we focus exclusively on the circular cone-beam (CCB) geometry,
where the object rotates with respect to a point source and a planar detector,
acquiring 2D cone-beam projections. The reconstruction problem for the CCB
geometry can be modeled by a system of linear equations

Wx= y, (4.1)

where x ∈ �n is the vector describing the reconstruction (i.e., every element
coincides with a voxel value), y ∈ �m is the vector describing the measured
projection data, and W ∈ �m×n is a discretized version of the cone-beam transform
or forward projection. For the sake of simplicity we assume that the volume consists
of n = N×N×N voxels and the detector consists of N×N pixels. We denote the
number of angles with Na, so we have m= Na × N × N .

FDK algorithm & filter approximation

The FDK algorithm, as presented in [FDK84], is a filtered backprojection-type
algorithm that solves the CCB reconstruction problem (4.1) approximately. First,
for each projection angle, it applies a reweighting step, r : �Na×N×N → �Na×N×N ,
that adapts the cone-beam data such that it approximately behaves as fan-beam
data. Second, it applies a filtering step, that convolves the data with a one-
dimensional filter h in a line-by-line fashion, (−∗−)1D : �2N×�Na×N×N → �Na×N×N .
Last, it applies a backprojection step. This step transforms the filtered projection
data to the image domain. Using the notation of (4.1), the FDK algorithm is given
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by

FDK(y,h) =W T (h ∗ r (y))1D, (4.2)

with W T the transpose of W . The operator W T is also known as the backprojection
operator.

In [PB13; PB14; Lag+20] exponential binning is used to approximate filters,
leading to Ne ≈ log N coefficients to describe a filter. This approximation can be
seen as a matrix E ∈ �2N×Ne applied to a coefficient vector he ∈ �Ne :

h≈ Ehe. (4.3)

The implementation details of this filter approximation can be found in [Lag+20].

Perceptron

In a similar manner as in [Bis06] we define a perceptron or node P : �l → � as a
non-linear activation function σ : �→ � applied to a weighted sum of the input
η ∈ �l with the weights ξ ∈ �l and a bias b ∈ �:

Pξ,b(η) = σ(η · ξ− b) (4.4)

In this chapter we will only consider the sigmoid function as activation function,
i.e., σ(t) = 1/(1+ e−t).

A multilayer perceptron is a network structure containing two types of layers
with perceptrons, where each perceptron operates on the outputs of the previous
layer. These layers are, in order, any number of hidden layers, and the output layer.
Note that the number of hidden layers and number of hidden nodes Nh in these
layers can be chosen freely.

4.3.2 Reconstruction algorithm & Network design

We formulate the NN-FDK reconstruction algorithm in a similar fashion as the
NN-FBP method in [PB13]. See Algorithm 3 for a schematic representation.
The NN-FDK reconstruction algorithm consists of Nh individual FDK algorithms
executed on the input data y, each using its own (exponentially binned) filter
hk

e ∈ �Ne . It combines these Nh volumes into a single reconstruction, using
point-wise application of the activation function σ and an output perceptron
with parameters bo, bk ∈ �, and ξ ∈ �Nh .

We use θ = (ξ, bo,hk
e , bk) as short-hand for the full set of parameters of the

NN-FDK reconstruction algorithm. The full algorithm is then given by the following
equation.
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NN-FDKθ (y) = σ
� Nh∑

k=1

ξkσ
�
FDK(y, Ehk

e )− bk

�− bo

�
(4.5)

The FDK algorithm is a bilinear map in the input projection data and the used
filter. Therefore, for fixed input projection data y and an expanded exponentially
binned filter Ehe, the FDK algorithm can be written as a linear map Fy applied to
Ehe. The product FyE can be considered as a matrix of size N3 × Ne, and the v-th
voxel of the output of the FDK algorithm is given by the inner product of he with
(FyE)v:, the v-th row of the matrix FyE. Using the definition of a perceptron (4.4)
we can show the following:

(NN-FDKθ (y))v = σ
� Nh∑

k=1

ξkσ
�
(FyEhk

e )v − bk

�− bo

�
, (4.6)

= σ
� Nh∑

k=1

ξkσ
�
(FyE)v:h

k
e − bk

�− bo

�
, (4.7)

= Pξ,bo

�%
Phk

e ,bk
((FyE)v:)

&
k

�
. (4.8)

Therefore, we define the two-layer perceptron network Nθ : �Ne → �:

Nθ (q) = Pξ,b0

�%
Phk

e ,bk
(q)

&
k

�
. (4.9)

This is our NN-FDK network, and as we derived above, it has the following
relationship with the NN-FDK reconstruction algorithm:

Nθ ((FyE)v:) = (NN-FDKθ (y))v . (4.10)

This relationship shows that we can evaluate the NN-FDK reconstruction algorithm
efficiently on full input projection data at once, but also train the NN-FDK network
efficiently with each individual voxel (xHQ)v in a high quality reconstruction yielding
a training pair with input (FyE)v: and target (xHQ)v. A schematic representation
of the network is given in Figure 4.1.

Note that we arrive at the same network structure as found in [PB13] for FBP,
using only the properties that the FDK algorithm is a bilinear map in the data and
the filter, and that all operations can be applied point-wise. Using this reasoning
we can derive a similar network structure for any FBP-type method satisfying these
conditions.

Even though we use the same network structure as [PB13], the way we compute
inputs to the network is different. In [PB13], the input to the NN-FBP network is
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explicitly calculated by shifting and adding projection data for each reconstruction
pixel. The FDK algorithm has additional weighting factors and lacks the shift-
invariance property, which makes the approach presented in [PB13] not directly
applicable. In the next section, we detail an alternative method to compute the
input. The same approach could be applied to the NN-FBP method, similarly
simplifying the network input computations.

Algorithm 3 Neural Network FDK reconstruction algorithm

1: Given a set of parameters, θ :=
�
ξ, bo,hk

e , bk

�
.

2: Compute Hk for all nodes k of the hidden layer:
3: for k = {1,2, .., Nh} do
4: Hk(y) = σ

�
FDK(y, Ehk

e )− bk

�
5: Compute the output of the output layer:

NN-FDKθ (y) = σ
�∑Nh

k=1 ξkHk(y)− bo

�

...q

Ph1
e ,b1

Ph2
e ,b2

P
h

Nh
e ,bNh

·ξ1

...

·ξ2

·ξNh

−bo σ Nθ

Hidden layer Output layer

Figure 4.1: Schematic representation of the NN-FDK network, Nθ : �Ne → �, with
Nh hidden nodes. Note that if we take q = (FyE)v: we get q · hk

e = (FDK(y, Ehk
e ))v

in the perceptrons of the hidden layer and the output of the network is equal to
the v-th voxel of the NN-FDK reconstruction algorithm.

4.3.3 Training process

Training and validation data

We will train our network using supervised learning, where we assume that we
have NTD and NVD datasets available for training and validation, respectively.
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These datasets consist of low quality tomographic input data and a high quality
reconstruction from which we randomly draw a total of NT training pairs and NV
validation pairs. Note that we ensure that every drawn pair is unique and that an
equal number of pairs is taken from each dataset. Moreover, to avoid selecting
too many training pairs from the background we only take training pairs from a
region of interest (ROI) around the scanned object. This ROI is defined from the
high quality reconstruction as the voxels in the reconstructed object plus a buffer
of roughly 0.2N voxels around it.

Recall from the previous section that given low quality tomographic data y
and a high quality reconstruction xHQ the matrix FyE contains each input vector
Z =

�
FyE

�
v: ∈ �Ne corresponding to the target voxel O = (xHQ)v. However, due

to memory constraints FyE cannot be computed directly as a matrix product.
Therefore, we observe that each column of FyE is an FDK reconstruction with a
specific filter:

(FyE): j = FyEe j = FDK(y, Ee j), (4.11)

with e j ∈ �Ne the unit vector with all entries equal to zero except for the j-th
element.

Learning problem

The parameters of the NN-FDK network are learned by finding the set of parameters
θ� that minimize the loss function � on the training set. We minimize the �2-
distance between the network output and the target voxel for all training pairs in
T :

θ� = argmin
θ

� (θ , T ) = argmin
θ

1
2

NT∑
j=1

�
Oj −Nθ (Zj)

�2
. (4.12)

To minimize the loss function we use a quasi-Newton optimization scheme, the
Levenberg-Marquardt algorithm (LMA) as proposed in [Lev44; Mar63]. This is a
combination of gradient descent and the Gauss-Newton algorithm, improving the
stability of Gauss-Newton while retaining its fast convergence and it is specifically
designed to minimize a non-linear least squares problem such as (4.12). Note
that the small number of parameters of the proposed network allows us to use
such a method. Lastly, to avoid overfitting we check whether every update of the
parameters also reduces the loss function on the validation set. We discuss the
specifics of this algorithm in Appendix 4.7.2.
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Method comparison: Goals

Reconstruction Training
Method Time Accuracy Data Time

NN-FDK ++ ? ++ +++
DNN ± +++ ± - - -
FDK +++ - -
SIRT+ - - +

Table 4.1: Comparison of reconstruction methods with respect to the goals for-
mulated in Section 4.1. We consider a DNN to be 2D deep convolutional neural
network (U-net & MSD-net) applied in slice-by-slice fashion to a standard FDK
reconstruction. Reconstruction accuracy is defined as the accuracy of a method
when reconstructing low quality data, e.g., data with high noise or a low number
of projection angles.

4.3.4 Method characteristics & comparison

To conclude the method section we compare the characteristics of the NN-FDK
algorithm to those of several other methods. These methods are two 2D post-
processing DNNs (U-net [RFB15] and MSD-net [PS18]) applied in a slice-by-
slice fashion, the SIRT+ algorithm [VV90] and the FDK algorithm. We focus
our discussion on the goals formulated in Section 4.1 and show a summary of
this comparison in Table 4.1. The reconstruction accuracy will be discussed in
Section 4.5.

Computational efficiency

We approximate the reconstruction time by counting how many times it has
to evaluate its most expensive computations. For simplicity we assume that a
backprojection takes approximately the same time as a forward projection, TBP.

• FDK: The FDK algorithm consist of one reweighting, filtering and backpro-
jection step, i.e., :

TFDK ≈ TBP. (4.13)

• NN-FDK: The NN-FDK algorithm performs one FDK reconstruction per hid-
den node Nh. Therefore the reconstruction time becomes:

TNN-FDK ≈ NhTBP. (4.14)
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• SIRT+: The SIRT+ method evaluates a forward and backprojection for each
iteration. For Niter iterations, the reconstruction time becomes:

TSIRT+ ≈ 2NiterTBP. (4.15)

• DNN: To evaluate a DNN an FDK reconstruction is performed and a 2D
network is applied per slice of the FDK reconstruction.

TDNN ≈ TBP + N TDNN, (4.16)

with TDNN the time it takes to apply a 2D DNN.

On a modern GPU and with N = 1024 and Na = 360, we found in our experiments
that TBP ≈ 10 s and TDNN ≈ 0.5 s.

Comparing the reconstruction times, we see that NN-FDK is similar to FDK
when the number of nodes Nh is small, which is the case since we will take Nh=4
(see Section 4.4.3). For DNNs the computational load of applying a 2D network
leads to relatively high reconstruction times compared to the FDK algorithm. Lastly,
we note that the number of iterations Niter often lies between the 20 and 200,
making SIRT+ several times slower than the (NN-)FDK algorithm.

Number of trainable parameters

The number of trainable parameters is closely related to the amount of training
data required to train a network [PS18]. From the definition of the NN-FDK
network (4.5) we can compute the number of trainable parameters |θ |:

|θ |= (Ne + 2)Nh + 1, (4.17)

with N � Nh, Ne > 0. Taking Nh = 4 and N = 1024 gives |θ | = 61, which is
several orders of magnitude lower than the typical numbers of parameters in a
DNN (several tens of thousands to millions).

Training time

In the training step a solution to the minimization problem (4.12) is computed.
For the NN-FDK algorithm this problem has NT samples and |θ | unknowns. In
a similar fashion we can formulate a least squares problem for training a DNN.
Even assuming that we only take the same number of training samples to train the
DNNs, this least squares problem is already orders of magnitude larger than that
for NN-FDK due to the difference in the number of trainable parameters. Moreover,
the LMA (the algorithm used to train NN-FDK) approaches quadratic convergence,
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which means it will need fewer iterations to converge than a first order scheme
such as ADAM [KB14], which is often used for training DNNs. Considering these
two observations we expect the training time of the NN-FDK algorithm to be lower
than the training time of the DNNs.

4.4 Experimental setup

We carried out a range of experiments to assess the performance of the NN-FDK
algorithm with respect to the goals formulated in Section 4.1 compared to several
alternative methods. In this section we introduce the setup of these experiments.
We describe the simulated data in Section 4.4.1 and the experimental data in
Section 4.4.2. In Section 4.4.3 we discuss the specific network structure for
the NN-FDK algorithm and the training parameters used. Finally, we give the
quantitative measures we use to compare the reconstruction in Section 4.4.4.

4.4.1 Simulated data

We consider two types of phantom families for the simulated data experiments: the
Fourshape phantom family and the Random Defrise phantom family. Examples are
shown in Figure 4.2 and Figure 4.3, respectively. The Fourshape phantom family
contains three random occurrences of each of four types of objects: an ellipse, a
rectangle, a Gaussian blob and a Siemens star. For evaluation and visualization of
the reconstructions we fixed one realization that clearly shows at least one of all the
four objects and we will refer to this phantom as the Fourshape test phantom. The
Random Defrise phantom family is a slight adaptation of the phantom introduced
in [KND98], which is a common phantom for assessing the influence of imaging
artifacts due to the cone angle. Here we vary the intensities, orientations and sizes
of the disks making sure they do not overlap. Again, we define a test phantom for
evaluation and visualization, which is in this case the standard Defrise phantom
without alternating intensities (right in Figure 4.3). To simulate realistic settings,
we scale the phantoms to fit inside a 10 cm cube, and use an attenuation coefficient
of μ = 0.22 cm−1, approximating that of various common plastics at 40 keV [HS95].
These phantoms are defined through geometric parameters, and can therefore be
generated for any desired N . For our experiments we will take N = 1024. Details
about how we generate the data are given in Appendix 4.7.1.

To compute a high quality reconstruction xHQ that can be used as target for
training (recall Section 4.3.3) we consider a simulated dataset with Na = 1500
projection angles, low noise (I0 = 220 emitted photon count) and cone angle of
0.6 degrees and reconstruct this problem with the standard FDK algorithm using a



565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 93PDF page: 93PDF page: 93PDF page: 93

4.4. EXPERIMENTAL SETUP 89

x

y

y
z

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 4.2: Slices, (Left) z = 0, (Right) x = 0, of the Fourshape test phantom. This
phantom is designed such that at least one of all objects can clearly be observed in
the slices.
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Figure 4.3: The x = 0 slice for a Random Defrise phantom (Left) and the standard
Defrise phantom without alternating intensities from [KND98] (Right).

Hann filter [Nat01].

4.4.2 Experimental data

For experimental data we consider a set of CT scans that were recorded using the
custom-built and highly flexible FleX-ray CT scanner, developed by XRE NV and
located at CWI [Cob+20]. This scanner has a flat panel detector with 972× 768
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pixels and a physical size of 145.34×114.82 mm. This set of 42 scans was set up to
create high noise reconstruction problems and low noise reconstruction problems
with a low number of projection angles.

We acquired high-dose (low noise) and low-dose (high noise) scans of 21
walnuts. The datasets contain 500 equidistantly spaced projections over a full
circle. The distance from the center of rotation to the detector was set to 376
mm and the distance from the source to the center of rotation was set to 463 mm.
The scans were performed with a tube voltage of 70 kV. The high-dose scan was
collected with a tube power of 45 W and an exposure time of 500 ms per projection.
The low-dose scan was collected with a tube power of 20 W and an exposure time
of 100 ms per projection. To create a low noise reconstruction problem with a
low number of projection angles we considered the high-dose scan but only took
every 16-th projection angle. As high quality reference reconstructions we used
SIRT+ reconstructions with 300 iterations (SIRT+300) of the high-dose scans with all
available projection angles (Na = 500). We will refer to these reconstructions as
the gold standard reconstruction and we show such a reconstruction in Figure 4.4.
These datasets are available at Zenodo [LCB20].

Figure 4.4: The z = 0 (Left) and y = 0 (Right) slice of the gold standard
reconstruction of the high-dose dataset of the 21st walnut with full number of
projection angles. The projection data is acquired using the FleX-ray scanner
located at the CWI [LCB20].
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4.4.3 Parameter settings NN-FDK

Network structure

In our initial experiments we found that taking more FDK-perceptrons improved the
accuracy of the networks, at the cost of increasing the training and reconstruction
time. We found that Nh= 4 FDK-perceptrons led to a good balance between
accuracy and reconstruction time, which is similar to the findings in [PB13].

Training data

We found that, similar to the findings in [PB13], taking NT = 106 voxels for training
and NV = 106 for validation is sufficient for training an NN-FDK network.

The network structures and training procedure used for the U-nets and MSD
networks are discussed in Appendix 4.7.1.

4.4.4 Quantitative measures

To quantify the accuracy of the reconstructions we consider two measures, the
test set error (TSE) and the structural similarity index (SSIM). These measures
compare the reconstructed image xr to a high quality reconstruction xHQ on the
ROI (as discussed in Section 4.3.3).

The TSE is the average loss1 of the test set, where the test set is all the voxels
defined in the ROI of xHQ:

TSE(xr ,xHQ) =
1

NROI
� ( ROI(xHQ),θ ), (4.18)

= 1
2NROI

�� ROI(xHQ − xr)
��2

2 . (4.19)

with  ROI : �N3 → �N3
the masking function for the ROI and NROI the number of

voxels in the ROI.

The SSIM [Wan+04] is implemented based on the scikit-image 0.13.1 [Wal+14]
package, where all the constants are set to default and the filter is uniform with a
width of 19 pixels.

1Recall (4.12) in Section 4.3.3
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Figure 4.5: The required memory to store all intermediate images for applying a
2D and 3D U-net and MSD network as a function of the input image size.

4.5 Results and discussion

4.5.1 Scalability

Memory scaling

The required memory to store all intermediate images for a forward pass of a
2D or a 3D U-net and MSD network as a function of the input image size is
shown in Figure 4.5. Considering that CT imaging problems typically range from
256× 256× 256 up to 4096× 4096× 4096 we conclude from these figures that
full 3D networks do not fit into GPU memory for higher resolutions and that even
for 2D U-nets not all resolutions fit on the GPU. As a forward pass of the NN-FDK
algorithm requires only one additional reconstruction volume2 compared to the
FDK algorithm, the memory requirements of the NN-FDK algorithm are roughly 2
times the memory required by the FDK algorithm.

Training time

In Figure 4.6 we compare the training processes by plotting the progress of the
network training (measured by the TSE) as a function of the number of voxels that
the network has seen during training. We see that the NN-FDK has seen 1.1 · 108

2Technically a forward pass of the NN-FDK algorithm can be done for every voxel separately,
however, for the sake of comparison we assume a forward pass is for a full reconstruction volume.



565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 97PDF page: 97PDF page: 97PDF page: 97

4.5. RESULTS AND DISCUSSION 93

0.00 0.25 0.50 0.75 1.00
#voxels seen in training ×109

10−7

10−6

10−5

10−4

10−3

T
S
E

10
ep
oc
hs

N
N
-F
D
K

10
0
ep
oc
hs

N
N
-F
D
K

1
fu
ll
3D

da
ta
se
t

Linear scaling

NN-FDK

MSD

U-net

107 109 1011

#voxels seen in training

10−7

10−6

10−5

10−4

10−3

T
S
E

1
ep
oc
h
N
N
-F
D
K

10
ep
oc
hs

N
N
-F
D
K

10
0
ep
oc
hs

N
N
-F
D
K

1
fu
ll
3D

da
ta
se
t

1
ep
oc
h
D
N
N

5
ep
oc
hs

D
N
N

Logarithmic scaling

Figure 4.6: The TSE as a function of the number of voxels the training process has
seen. We report the lowest TSE up till that point. The networks are trained on
randomly generated Fourshape phantoms with size N = 1024, Na = 32 projection
angles and no noise. (Left) Linear scaling in the number of voxels ranging from
1 epoch for the NN-FDK (106 voxels), to 1 full 3D dataset (109 voxels). (Right)
Logarithmic scaling in the number of voxels. Ranging from 1 epoch for the NN-FDK
network (106 voxels) to 5 epochs for a DNN (5 · 1010 voxels).

voxels when it converges to TSE= 1.4 · 10−5, whereas, MSD and U-net have seen
5.1 · 108 voxels and 3.2 · 109 voxels, respectively, at the point they first achieve a
similar TSE. Important to note is that both U-net and MSD are not yet converged
when they match the TSE of NN-FDK, and in general the DNNs achieve lower TSEs
than NN-FDK.

In Table 4.2 we show various timings and properties with respect to the training
process. These timings are recorded using one Nvidia GeForce GTX 1080Ti with
11GiB memory. We define a converged training process as 100 epochs without
improvement on the validation set error and the number of epochs to converge as
the epoch with the lowest validation set error during a converged training process.
From these results we see that the size of the training problem influences the time
per epoch as an NN-FDK epoch is sub-second and the time per epoch for DNNs is
in the range of hours.

In practice, we observed that after 2 days of training for the DNNs, any
additional training only achieved marginal improvements. Therefore, in the
following experiments we train all DNNs for 2 days with one Nvidia GeForce
GTX 1080Ti GPU, unless mentioned otherwise.



565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 98PDF page: 98PDF page: 98PDF page: 98

94 CHAPTER 4. NN-FDK ALGORITHM

Training process

NN-FDK4 MSD U-net
Voxels seen in one epoch 1 · 106 1.1 · 1010 1.1 · 1010

Time per epoch 0.1336 (s) 0.95 (h) 2.36 (h)
Time to converge 28 (s) ± 10 (d) ± 14 (d)
Epochs to converge 110 128 42
Epochs in 2 days - 45 18

Table 4.2: Timings and properties of the considered training processes. We define
a converged training process as 100 epochs without improvement on the validation
set error. The epochs to converge is therefore the epochs computed of such a
process minus 100. The training was performed using one Nvidia GeForce GTX
1080Ti GPU (11 GiB).

Reconstruction time

We measured the average reconstruction times and corresponding standard de-
viation over 120 reconstructions with resolution N3 = 10243 and Na = 360
projection angles. These reconstructions are computed using one Nvidia GeForce
GTX 1080Ti with 11 GiB memory. The results are shown in Table 4.3. We define
the reconstruction time as the time it takes to compute the full 3D volume. This
means for U-net and MSD, an FDK reconstruction needs to be computed and
the network needs to be applied N = 1024 times to a 2D slice. Although every
application can be done within a second (U-net ≈ 0.3s, MSD ≈ 0.7s) this leads to
long reconstruction times.

Reconstruction times

FDK SIRT+200 NN-FDK4 U-net MSD
28 ± 8 3225 ± 916 76 ± 8 382 ± 69 809 ± 86

Table 4.3: Average and standard deviation of the reconstruction times (in seconds)
computed over 120 reconstruction problems with N = 1024 and Na = 360
projection angles. These reconstructions are computed using one Nvidia GeForce
GTX 1080Ti GPU (11 GiB).

4.5.2 Reconstruction accuracy for simulated data

For evaluating the reconstruction accuracy using simulated data, we consider 16
cases: 6 different noise levels, 5 different numbers of projection angles and 5
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different cone angles. For each case an NN-FDK, MSD and U-net network was
trained. For the training process of NN-FDK we used NT = 106 training voxels
and NV = 106 validation voxels from NTD = 10 and NVD = 5 datasets, respectively.
For U-net and MSD we took the same datasets for training and validation (10
for training and 5 for validation), and used all voxels in these datasets for the
training process. The NN-FDK networks were trained till convergence and the
DNNs were trained for 48 hours. Note that in a few cases we had to retrain the
DNNs because of inconsistent results (i.e., cases with more information achieving
a lower reconstruction accuracy), possibly because they got stuck in local minima
of the loss function.

In Figure 4.7 we show the average and standard deviation of the TSE and the
SSIM for the considered cases. We observe that U-net and MSD achieve the most
accurate results and that NN-FDK and SIRT+ closely follow. The FDK algorithm is
lowest in all categories. Between NN-FDK and SIRT+ we see that NN-FDK performs
best for the noisy reconstruction problems and SIRT+ achieves better results for
the reconstruction problems without noise. We visualize the noise for the lowest
and highest I0 in Figure 4.8 by showing a line profile through the center of the
z = 0 slice. Here we see that for the noisiest problems the amplitude of the noise
can be as high as the maximum value of the phantom. In Figure 4.9 we show 2D
slices of reconstructions of the test phantoms for the three types of reconstruction
problems. In all cases we still observe reconstruction artifacts, but comparing these
to the baseline FDK reconstructions, the majority is removed or suppressed.

4.5.3 Reconstruction accuracy for experimental data

In this section we use the datasets discussed in Section 4.4.2 to assess the recon-
struction accuracy on experimental data. In a similar fashion as for the simulated
data, we trained a network for the low-dose reconstruction problem and a network
for the high-dose reconstruction problem with Na = 32 projection angles with the
notable exception that U-net and MSD were trained till convergence. The results
are presented in Table 4.4.

Comparing the results to the simulated data experiments we see that SIRT+

performs worse on the experimental data, even with the additional regularization
of early stopping. This is most likely due to the high-dose datasets still containing
noise, whereas this is completely absent in the simulated data experiments. These
differences are illustrated in Figure 4.10 where 2D slices of the reconstructions for
the high-dose reconstruction problem with Na = 32 projection angles are shown.
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(b) The average and standard deviation of the TSE and SSIM as a function of
the emitted photon count I0 computed over 20 randomly generated phantoms
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5 10 15 20 25 30

Cone-angle (degrees)

10−4

10−3

T
S
E

Test Set Error

10 20 30

Cone-angle (degrees)

0.4

0.6

0.8

1.0

S
S
IM

Structural Similarity

FDKHN

NN-FDK4

MSD

U-net

SIRT+
200

(c) The average and standard deviation of the average TSE and SSIM as a
function of the cone angle computed over 20 randomly generated phantoms
of the Defrise family.

Figure 4.7: The average and standard deviation of the TSE and SSIM. These
results are discussed in Section 4.5.2. For each number of projection angles, noise
level, cone angle and training scenario one specific network is trained and used to
evaluate the 20 reconstruction problems.
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Figure 4.8: Line profile through the center of the z = 0 slice of the Fourshape
test phantom. We show the ground truth profile, the profile of the FDK recon-
struction with lowest emitted photon count I0 = 256, and the profile of the FDK
reconstruction with the highest emitted photon count I0 = 8196.

Experimental data
High-dose, low number

of projection angles Low-dose
Method TSE SSIM TSE SSIM
FDKHN 5.54±3.43e-03 0.224±0.076 1.40±0.05e-03 0.334±0.104
SIRT+200/20 9.94±0.15e-04 0.603±0.087 1.92±0.08e-03 0.584±0.083
NN-FDK4 8.03±1.39e-04 0.946±0.010 1.14±0.23e-04 0.965±0.012
U-net 4.10±1.06e-04 0.964±0.009 1.02±0.45e-04 0.980±0.006
MSD 4.23±0.97e-04 0.964±0.009 7.82±2.86e-05 0.980±0.007

Table 4.4: Average and standard deviation of the quantitative measures computed
over 6 walnut datasets. The high-dose low projection angle reconstruction problem
has Na = 32 projection angles, the low-dose reconstruction problem has Na = 500
projection angles. The best results per experiment are highlighted.

4.5.4 Segmentation experiment for experimental data

To assess the performance of the different reconstruction approaches in a segment-
ation task, we focus here on the segmentation of the shell and kernel of walnuts,
based on our experimental CT data. The review [Ber+20] provides an overview of
segmentation problems in walnut imaging, and their relevance. For segmenting
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Figure 4.9: Two-dimensional slices of the reconstructions for the considered recon-
struction methods. (Top) Slice x = 0 of the Fourshape test phantom reconstruction
problem with Na = 360 projection angles and I0 = 1024 emitted photon count.
(Middle) Slice z = 0 of the Fourshape test phantom reconstruction problem with
Na = 32 projection angles. (Bottom) Slice x = 0 of the Defrise reconstruction
problem with Na = 360 projection angles and a cone angle of 11.5 degrees.

the 3D volume after the reconstruction, we used a deterministic segmentation al-
gorithm that combines thresholding, the watershed algorithm and prior knowledge
of the scanned objects. Details of this method are discussed in Appendix 4.7.1.

For determining the accuracy of the segmentation of an object — i.e., shell,
empty space and kernel of the walnut — we consider three metrics: volume error,
mislabeled voxels and the Dice coefficient [Dic45]. We define a segmentation S as
a reconstruction volume with value 1 if the voxel is in the object (shell, kernel or
empty space) and 0 if outside the object. Furthermore we define the norm of a

segmentation as the sum: |S| =∑N3

i (S)i . Using this notation we can compute the
measures in the following manner:

Verr =
|Srec|−|SGS||SGS| , MLerr =

|Srec−SGS||SGS| , DC= 2|Srec∩SGS||Srec|+|SGS| , (4.20)

with GS denoting the gold standard reconstruction.
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(a) FDKHN (b) SIRT+200 reconstruction.
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(c) NN-FDK4 reconstruction.
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(d) MSD reconstruction.

Figure 4.10: Slices z = 0 and x = 0 of several reconstruction methods of the
high-dose dataset of the 21st walnut with 32 projection angles.

In Table 4.5 we show the results for computing these metrics on the 6 walnuts
not considered in the training process. We observe that MSD performs best in
segmenting the shell and U-net performs best at segmenting the empty space and
kernel and NN-FDK is close to both DNNs and in some cases even better than MSD
for segmenting the empty space and kernel. Comparing NN-FDK to standard FDK
we observe a significant improvement.

4.5.5 Data requirements

To test the influence of the amount of training data on the reconstruction quality
we performed an experiment with three different training scenarios:

• Scenario 1. One dataset available. Here we take the training and validation
data from the same dataset.

• Scenario 2. Two datasets available. Here we take the training and validation
data from the separate datasets.

• Scenario 3. Fifteen datasets available. Again the training and validation
data are picked from separate datasets, but now the training and validation
pairs come from several datasets, specifically 10 training datasets (NTD = 10)
and 5 validation datasets (NVD = 5). This is the scenario used in the previous
experiments.
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Segmentation errors

Method Shell Empty space Kernel
Volume errors

FDKHN 0.127 ± 0.078 0.146 ± 0.091 0.128 ± 0.092
SIRT+200 0.082 ± 0.047 0.104 ± 0.078 0.050 ± 0.074
NN-FDK4 0.068 ± 0.035 0.045 ± 0.035 0.029 ± 0.032
U-net 0.055 ± 0.019 0.029 ± 0.017 0.012 ± 0.016
MSD 0.028 ± 0.010 0.059 ± 0.075 0.035 ± 0.050

Mislabeled voxels
FDKHN 0.168 ± 0.087 0.190 ± 0.98 0.144 ± 0.081
SIRT+200 0.133 ± 0.026 0.182 ± 0.118 0.101 ± 0.048
NN-FDK4 0.103 ± 0.026 0.087 ± 0.023 0.072 ± 0.018
U-net 0.092 ± 0.028 0.073 ± 0.024 0.059 ± 0.019
MSD 0.086 ± 0.038 0.116 ± 0.094 0.061 ± 0.039

Dice coefficient
FDKHN 0.922 ± 0.036 0.895 ± 0.061 0.934 ± 0.033
SIRT+200 0.934 ± 0.016 0.908 ± 0.061 0.947 ± 0.028
NN-FDK4 0.951 ± 0.012 0.955 ± 0.013 0.964 ± 0.008
U-net 0.955 ± 0.013 0.963 ± 0.012 0.971 ± 0.010
MSD 0.957 ± 0.018 0.939 ± 0.055 0.971 ± 0.018

Table 4.5: The average and standard deviation of the three metrics computed over
the 6 low-dose walnut datasets with Na = 500 projection angles. The metrics are
computed using (4.20). The best results are highlighted.

We fix the number of voxels used for training and validation at NT = 106 and
NV = 106 for all scenarios. For comparison we trained a U-net and a MSD network
with the same training scenarios, with the exception that all voxels from the
datasets are used. For training scenario 1 the slices are divided into a training and
a validation set. More specifically, every fourth slice is used for validation.

We performed this experiment for two simulated data problems, a high noise
level (emitted photon count I0 = 256) and a large cone angle (29.3 degrees), and
the two experimental data problems. For the sake of brevity we show only the
results for the high noise simulated data reconstruction problem (Table 4.6) and
the high noise experimental data reconstruction problem (Table 4.7). The results
for the other reconstruction problems are given in Appendix 4.7.3. Comparing
quantitative measures between the different scenarios we see that the reconstruc-
tion accuracy improves as more data is used for the simulated data experiment,
but remains about the same for the experimental data experiment. This can be
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explained by the variation in the objects used in the reconstruction problems.
Recall that the Fourshape phantom family has a large variety in its phantoms,
i.e., three instances of four randomly generated objects, and the variety within the
walnut datasets is small, i.e., similar shapes, sizes and structures. This indicates
that if objects are similar, one training dataset may already be sufficient to train
networks that achieve a high reconstruction accuracy.

Note that although the training scenarios for NN-FDK and the DNNs use the
same number of datasets, the number of voxels considered for training the NN-FDK
network is constant over all three scenarios and is several orders of magnitude
lower than the number of voxels considered for training the DNNs. This opens up
future possibilities for reducing the training data requirements to only need a high
quality reconstruction of a certain region of interest.

Simulated data, high noise

TSE
Method 1 dataset 2 datasets 15 datasets

NN-FDK4 4.97±4.68e-05 4.19±3.60e-05 2.51±1.14e-05
U-net 1.06±1.36e-05 2.45±2.87e-05 8.06±3.63e-06
MSD 1.12±0.41e-05 1.12±0.40e-05 7.94±3.16e-06

SSIM
NN-FDK4 0.831±0.065 0.844±0.065 0.884±0.030
U-net 0.884±0.075 0.932±0.050 0.979±0.009
MSD 0.961±0.013 0.962±0.013 0.974±0.008

Table 4.6: Average and standard deviation of the quantitative measures computed
over 20 Fourshape phantoms for varying training scenarios. The reconstruction
problems have an emitted photon count of I0 = 256 and Na = 360 projection
angles. The best results are highlighted.

4.6 Summary and conclusion

We have proposed the Neural Network FDK (NN-FDK) algorithm, a reconstruc-
tion algorithm for the circular cone-beam (CCB) Computed Tomography (CT)
geometry with a machine learning component. The machine learning compon-
ent of the algorithm is designed to learn a set of FDK filters and to combine the
FDK reconstructions done with these filters. This leads to a computationally ef-
ficient reconstruction algorithm, since one only needs to compute and combine
the FDK reconstructions for this learned set of filters. Due to parametrization of
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Experimental data, low-dose

TSE
Method 1 dataset 2 datasets 15 datasets

NN-FDK4 1.16±0.25e-04 1.23±0.25e-04 1.14±0.23e-04
U-net 1.27±0.38e-04 1.23±0.35e-04 1.02±0.45e-04
MSD 1.28±0.41e-04 1.16±0.35e-04 7.82±2.86e-05

SSIM
NN-FDK4 0.973±0.009 0.968±0.011 0.965±0.012
U-net 0.979±0.008 0.978±0.008 0.980±0.006
MSD 0.979±0.008 0.979±0.008 0.980±0.007

Table 4.7: Average and standard deviation of the quantitative measures computed
over 6 walnuts for varying training scenarios. The datasets are low-dose and have
Na = 500 projection angles. The best results are highlighted.

the learned filters, the NN-FDK network has a low number of trainable parameters
(<100) and can be trained efficiently with the Levenberg-Marquardt algorithm
with approximate quadratic convergence rate.

We compared the NN-FDK algorithm to SIRT with a nonnegativity constraint
(SIRT+), the standard FDK algorithm and two deep neural networks (DNNs),
namely a 2D U-net and a 2D MSD network applied in a slice-by-slice fashion
to a 3D volume. We have shown that the NN-FDK algorithm has the lowest
reconstruction time after the standard FDK algorithm. We have also shown that
the NN-FDK algorithm achieves a reconstruction accuracy that is similar to that of
SIRT+ for simulated data and a higher accuracy than that of SIRT+ for experimental
data. The DNNs achieved the highest reconstruction accuracy, but training those
networks took between 2 days (1 training and validation dataset) and 2 weeks (15
training and validation datasets), whereas all the NN-FDK networks were trained
within 1 minute.

To conclude, the NN-FDK algorithm is a computationally efficient reconstruc-
tion algorithm that can reconstruct CCB CT reconstruction problems with high
noise, low projection angles or large cone angles accurately. The training process is
efficient and requires a low amount of training data, making it suitable for applica-
tion to a broad spectrum of large scale (up to 4096× 4096× 4096) reconstruction
problems. Specifically, the NN-FDK algorithm can be used improve image quality
in high throughput CT scanning settings, where FDK is currently used to keep pace
with the acquisition speed using readily available computational resources.
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4.7 Appendices

4.7.1 Implementation

Data generation

For our simulated data experiments we take N = 1024, which means that recon-
structions and reference images are defined on a 10243 equidistant voxel grid,
and the projection data on a 10242 equidistant detector grid per projection angle.
However, to avoid using the same operator for reconstructions as for the data
generation we generate the input data at a higher resolution. More specifically, we
generate a phantom at N = 1536, forward project this phantom to the data space
with size Na × 15362 and apply a bilinear interpolation per projection angle to
arrive at a 10242 detector grid, resulting in input data with the desired resolution
Na × 10242. We set the source radius to 10 times the physical size of the phantom,
resulting in a cone angle of 5.7 degrees. To generate noise we compute a noise free
photon count I from clean projection data yc and use that to generate a Poisson
distributed photon count from which we compute y:

I = I0e−yc , Inoise ∼ Pois(I), y= − log
(

Inoise

I0

)
, (4.21)

with I0 the emitted photon count. Higher I0 implies a higher dose and therefore
less noise in the data.

Deep neural networks

Application strategy We train 2D DNNs to remove artifacts from 2D slices
of an FDK reconstruction. We train one network that handles all slices in the
reconstructions.

Training DNNs We train the DNNs with ADAM [KB14] and stop training after
48 hours of training on a Nvidia GeForce GTX 1080Ti GPU, the network with
the lowest validation set error during this training process will be used for the
reconstructions.

U-net and MSD network structures For U-net we will take four up and down
layers as presented in [RFB15]. For the MSD networks we take 100 layers with
one input and one output layer and the dilations as suggested in [PS18].
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Code-base

We implemented the NN-FDK framework using Python 3.6.5 and Numpy 1.14.5
[WCV11]. For the parameter learning we used the Levenberg-Marquardt algorithm
implementation from [PB13]. The reconstruction algorithm is implemented using
ODL [AKÖ17], the ASTRA-toolbox [Van+16], PyFFTW [FJ05] and the exponen-
tial binning framework for filters from [Lag+20]. For performance reasons the
simulated phantoms are generated through C++ using Cython [Beh+11].

For the evaluation of U-nets we took the PyTorch [Pas+19] implementation
used in [Hen+19]. The MSD-nets are implemented using the package published
with [PBS18].

All the code related to this chapter can be found on Github [Lagb].

Segmentation algorithm

This algorithm consists of several steps:

1. Apply a Gaussian filter to the reconstruction.

2. Compute a histogram of the filtered reconstruction and determine the peaks
relating to the background, kernel and shell.

3. Determine the shell and kernel segmentations using a threshold based on
the found peaks.

4. Apply the watershed algorithm on the shell segmentation. This gives the
total volume inside the walnut.

5. Remove the kernel from the total volume inside the walnut to attain the
empty space segmentation.

Further details about this implementation can be found on our Github [Lagb].

4.7.2 Levenberg-Marquardt algorithm

Given the learning problem (4.12), the update rule for the Levenberg-Marquardt
algorithm (LMA) ([Lev44; Mar63]) is given by:

θ i+1 = θ i + ti , (4.22)

with ti the update vector. This is computed by solving the following equation for ti

�
J T

i Ji +λi I
�
ti = −∂�

∂ θ
(θ i , T ) = −J T

i

NT∑
j=1

�
Oj −Nθ (Zj)

�
(4.23)
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where λi > 0 is the step parameter and Ji the m× n Jacobian matrix of Nθ i (Z)
with respect to θ i , with Z the vector containing all inputs from the training set T .
We can solve (4.23) using a Cholesky decomposition.3

To ensure convergence, only updates that improve the training error are
accepted, i.e., if the following is true:

� (θ i , T )>� (θ i + ti , T ), (4.24)

If this is not the case we change the step parameter λi to aλi with a > 1 and
compute a new update vector ti . When an update is accepted we change the step
parameter to λi+1 = λi/a.

We use two stopping criteria for the LMA. Firstly, we stop if we cannot find a
suitable θ i+1, using several indicators for this:

• The norm of the gradient ∂�∂ θ (θ i) is too small

• The step size λi is too big

• After Nup rejected updates.

The second stopping criterion checks whether the parameters θ i improve the
validation set error. More specifically, we terminate the LMA when the validation
set error has not improved for Nval iterations.

In Algorithm 4 the LMA is summarized. The random initialisation is done
with the Nguyen-Widrow initialization method [NW90]. For our experiments we
take Nup = 100, λ0 = 105, a = 10 and Nval = 100.

Algorithm 4 Levenberg-Marquardt algorithm

1: Compute random initialization θ0 using [NW90]
2: repeat
3: Compute ti until we accept an update θ i+1.
4: until Nup updates were rejected or
� (θ i , V ) did not improve Nval times or�� ∂�
∂ θ (θ

i+1)
�� is too small or λi+1 is too big.

5: Set θ� equal to the θ i with the lowest validation error.

3J T
i Ji is positive semi-definite and λi > 0, therefore the left hand side of (4.23) is positive definite.
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4.7.3 Results data requirement experiment

Simulated data, large cone angle

TSE
Method 1 dataset 2 datasets 15 datasets

NN-FDK4 6.47±1.19e-04 4.70±1.16e-04 4.82±1.13e-04
U-net 1.04±0.27e-04 1.02±0.17e-04 8.23±0.85e-05
MSD 2.44±1.43e-04 1.53±0.17e-04 6.52±0.43e-05

SSIM
NN-FDK4 0.825±0.018 0.904±0.011 0.910±0.007
U-net 0.974±0.015 0.971±0.021 0.973±0.010
MSD 0.954±0.006 0.937±0.004 0.966±0.002

Table 4.8: Average and standard deviation of the quantitative measures computed
over 20 different Defrise phantoms for varying training scenarios. The reconstruc-
tion problems have a cone angle of 29.2 degrees and Na = 360 projection angles.
The best results are highlighted.

Experimental data, high-dose, 32 projection angles

TSE
Method 1 dataset 2 datasets 15 datasets

NN-FDK4 8.14±1.45e-04 8.68±1.43e-04 8.03±1.39e-04
U-net 7.56±1.52e-04 6.85±1.56e-04 4.10±1.06e-04
MSD 7.82±0.41e-04 6.51±0.35e-04 4.23±0.97e-04

SSIM
NN-FDK4 0.950±0.010 0.948±0.010 0.946±0.011
U-net 0.955±0.011 0.930±0.023 0.964±0.009
MSD 0.955±0.010 0.947±0.014 0.964±0.009

Table 4.9: Average and standard deviation of the quantitative measures computed
over the 6 datasets for varying training scenarios. These are the high-dose datasets
from [LCB20] with Na = 32 projection angles. The best results are highlighted.
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Chapter 5

Noise2Filter: self-supervised
learning and real-time
reconstruction algorithm

5.1 Introduction

Computed tomography is a non-destructive imaging technique with applications
in biology [San+14], energy research [Xu+20], materials science [Gar+18], and
many other fields [De +18]. In a tomographic scan, a rotating object is positioned
between a source emitting penetrating radiation and a detector that captures the
projections of the object. Tomographic reconstruction algorithms compute a 3D
image of the interior of the object from its projections. Besides extensive use
in medical and laboratory settings, tomography is routinely used at synchrotron
facilities, where advances in the last decade have enabled time-resolved imaging of
the interior structure of a rapidly changing object [San+14; Xu+20; Gar+18]. So
far, reconstruction algorithms are typically operated offline, enabling visualization
of the object only after a scan has completed.

Recent advances in tomographic reconstruction enable real-time interrogation
of the reconstructed volume during the scanning process using a quasi-3D recon-

This chapter is based on:

Noise2Filter: fast, self-supervised learning and real-time reconstruction for 3D Com-
puted Tomography. MJ Lagerwerf, AA Hendriksen, JW Buurlage, KJ Batenburg. Machine
Learning: Science and Technology, Early access, 2020.
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(a) FBP reconstruction (b) Noise2Filter reconstruction

Figure 5.1: Real-time reconstructions using FBP and Noise2Filter of a high-
noise acquisition using the RECAST3D software package. The highlighted slice is
currently being moved.

struction protocol [Buu+18; Buu+19]. In this framework, arbitrarily oriented
slices are selected for reconstruction and can be interactively rotated and trans-
lated, after which they are reconstructed and visualized virtually instantaneously.
This creates the illusion of having access to the full reconstructed 3D volume, but
at a fraction of the computational cost. The quasi-3D reconstruction protocol has
been implemented in the RECAST3D software package. The information gained
from this quasi-3D visualization can be used to directly steer the tomographic ex-
periment, for instance, by adjusting an external parameter — such as temperature
— in response to changes in the interior of the object. In addition, the object can
be re-positioned, or other acquisition parameters can be adjusted to facilitate the
best possible reconstruction [Van+20].

Real-time 3D reconstruction is computationally demanding and data sizes
are substantial — data acquisition rates of 7.7GB per second are not uncom-
mon [Buu+19]. To attain real-time visualization, the quasi-3D reconstruction
protocol is essentially limited to filtered backprojection type methods, since it
exploits the locality of backprojection to obtain fast reconstructions. Filtered
backprojection (FBP) methods are sensitive to measurement noise, leading to
errors in the reconstructed slices [Buz08]. Therefore, application of these methods
in the quasi-3D reconstruction protocol is not well-suited to high-noise acquisi-
tions [PBS18; Xu+20], as illustrated in Figure 5.1.a.

In this chapter, we combine a learning-based filtered reconstruction method
with a self-supervised training strategy to obtain Noise2Filter, a denoising FBP-type
reconstruction algorithm that can be applied in a quasi-3D reconstruction protocol.
This algorithm is designed to be both fast to train and fast to evaluate. Moreover,
no additional training data is required other than the measured projection data.
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For dynamic scans, our method enables a possible use case where a static
scan is performed — with the exact same acquisition rates as the dynamic scan —
permitting the Noise2Filter method to be trained immediately. After training for
tens of seconds, real-time visualization of the dynamic experiment can ensue, as
illustrated in Figure 5.1.b. In addition, we note that Noise2Filter can be used as a
stand-alone reconstruction method.

The first component of our method is the Neural Network filtered backpro-
jection (NN-FBP) method [PB13]. This method learns a set of filters, along with
additional weights, and then forms the reconstructed image as a non-linear func-
tion of the individual FBP reconstructions, resulting in higher image quality than
standard FBP. However, its application requires the availability of ground truth or
high-quality reconstructed images.

This limitation can be overcome using the second component of our method,
Noise2Inverse [HPB20], which is a recent machine learning method designed
to train denoising convolutional neural networks (CNNs) in inverse problems in
imaging. To train a denoising CNN, the method splits the measured projection
data to obtain multiple statistically independent reconstructed slices, which are
presented to the network during training, without requiring additional high-quality
data.

Our main contribution is that we show how to combine the NN-FBP method
with the Noise2Inverse training strategy. In addition, we demonstrate that NN-FBP
training can be substantially accelerated as compared to previous methods [PB13].
We evaluate our method on both simulated and experimental datasets, comparing
to both conventional filter-based methods and supervised NN-FBP. Finally, we
demonstrate that the method can be used in a quasi-3D reconstruction protocol,
and exhibit its potential use for dynamic control of tomographic experiments.

The chapter is structured as follows. In the next section, we introduce the
tomographic reconstruction problem and the filtered backprojection algorithm. In
addition, we introduce quasi-3D reconstruction, NN-FBP, and Noise2Inverse. These
methods are combined in Section 5.3, where we describe the Noise2Filter method.
In Sections 5.4 and 5.5, we describe experiments to analyze the reconstruction
accuracy of Noise2Filter on real and simulated CT datasets. Moreover, we study the
hyper-parameters of the proposed method. We discuss these results in Section 5.6.
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5.2 Preliminaries

5.2.1 Reconstruction problem

In parallel-beam tomography, an unknown object rotates with respect to a planar
detector and a parallel source beam. Projections are acquired at a finite number
Na of rotation angles, yielding 2D images defined on an N × N pixel grid. The
reconstruction problem can be modeled by a system of linear equations

Wx= y, (5.1)

where the vector x ∈ �n denotes the unknown object, y ∈ �m describes the
measured projection data, and W = (wi j) is an m× n matrix where wi j denotes
the contribution of object voxel j to detector pixel i. For the sake of simplicity
we assume that the volume consists of n= N × N × N voxels, and the projection
dataset contains m= Na × N × N pixels.

5.2.2 Filtered backprojection methods

We consider the filtered backprojection (FBP) method for parallel beam tomo-
graphy [Nat01]. The FBP algorithm is a two step algorithm. First, the data y ∈ �m

is convolved over the width of the detector with a one-dimensional filter h ∈ �Nf .
Next, the backprojection W T : �m → �n is applied to compute a reconstruction
xFBP ∈ �n. Expressing the FBP algorithm in terms of h, y and W yields

FBP(y,h) =W T (y ∗ h) = xFBP. (5.2)

Observation 1 (FBP is two-step). The FBP algorithm consists of a filtering step
and a backprojection step, and both can be computed separately. That is, the filtering
can be performed in advance, and the backprojection can occur on demand. This
technique will be used throughout the chapter.

We observe that the FBP algorithm can be described by a linear operator when
fixing either y or h. This will be exploited in the discussion of learned filter methods
in Section 5.2.4.

5.2.3 Quasi-3D reconstruction

A property shared by filtered-backprojection type algorithms is that they are
local, in the sense that each voxel of the reconstructed volume can be computed
directly from the filtered data by backprojecting onto only that voxel [Buu+18].
Therefore, if one is interested in a subset of the reconstructed volume, much of
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the computational cost of a full 3D reconstruction can be avoided. Specifically, if
the reconstructed subset is a rectangular box or a slice, efficient backprojection
algorithms such as those implemented in the ASTRA toolbox [Van+16] can be used.
This reduces the computational cost of the backprojection step by an order of N .

Observation 2 (Locality). The backprojection operator is local. Computing the
backprojection for a single voxel or a subset of voxels is therefore substantially faster
than computing the backprojection for all voxels.

This methodology has been implemented in the RECAST3D software pack-
age [Buu+18], which exposes a limited number of arbitrarily oriented 2D slices.
These slices are interactive and can be manipulated by the technician of the tomo-
graphic experiment. This technique for real-time visualization has been successfully
applied in practice to acquisitions in micro-CT systems [Cob+20], synchrotron
tomography [Buu+19], and electron tomography [Van+20].

5.2.4 NN-FBP reconstruction algorithm

The NN-FBP algorithm learns a set of suitable filters and a set of weights, and then
forms a non-linear model that combines the individual FBP reconstructions. The
algorithm may be considered as a multi-layer perceptron [HTF09] that operates
pointwise on a collection of suitable reconstructions. A schematic representation of
the NN-FBP algorithm is given in Figure 5.2, a mathematical description is given
below.

To obtain these reconstructions, we first make some general observations: a
filter h can be seen as a vector in �Nf , and the FBP method is linear in the filter
when fixing the measured projection data y. Therefore, an FBP reconstruction
can be expressed as a linear combination in the basis of the filter. Let e1, . . . ,eNf

be any basis for the space of filters �Nf , such as the standard basis. Define the
reconstruction of y filtered by a basis element ei as

xei
:=W T (y ∗ ei) . (5.3)

Then we can write the FBP reconstruction as a linear combination of these recon-
structions

xFBP(y,h) =
Nf∑

i=1

hixei
=

Nf∑
i=1

W T (y ∗ hiei) =W T (y ∗ h) , (5.4)

where hi denotes the coordinate of the ith basis element ei .
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Figure 5.2: An illustration of the NN-FBP method as applied to a noisy 2D Shepp-
Logan sinogram. Before training, the data is reconstructed with filters e1, . . . ,eNe

,
defined on an exponential grid. These reconstructions xe1

, . . . ,xeNe
are used as input

for training a multilayer perceptron, as described in Equation (5.5). The training
target is a high-quality reconstruction. For reconstruction, learned filters h1, . . . ,hNh

are extracted from the network (as indicated by the red arrow). Reconstructions
are computed using the learned filters, and a non-linear combination is computed,
as described in Equation (5.6).

Given a set of Nh filters h1, . . . ,hNh , we can define a multi-layer perceptron
(MLP) with one hidden layer as a function of the reconstructions xe1

, . . . ,xeNf

MLPθ (xe1
, . . . ,xeNf

) = σ

* Nh∑
k=1

akσ

* Nf∑
i=1

hk
i xei

− bk

+
− b0

+
, (5.5)

where σ is a non-linear activation function, such as the sigmoid. The multi-layer
perceptron has free parameters θ = (a,b,h1, . . . ,hNh). Plugging Equation (5.4)
into Equation (5.5), we obtain the NN-FBP reconstruction algorithm

NN-FBPθ (y) = σ

* Nh∑
k=1

akσ
�
FBP(y,hk)− bk

�− b0

+
, (5.6)
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which is amenable to fast, parallel computation because it is a non-linear combina-
tion of FBP reconstructions.

Observation 3 (pointwise). Note that the multi-layer perceptron operates point-
wise on the voxels of the reconstructed volumes. Therefore, a single voxel can be
computed without having to reconstruct other voxels. This observation connects to
the observation of locality on Page 111, and will return several times in this chapter.

Supervised training [HTF09] is used to determine the free parameters of the
MLP defined in Equation (5.5). The goal is to approximate a suitable target
reconstruction xTarget by minimizing

���MLPθ (xe1
, . . . ,xeNf

)− xTarget

���2

2
, (5.7)

i.e., the mean square error with respect to the target reconstruction.
The size of the training problem in Equation (5.7) is related to the number of

reconstructed volumes xe1
, . . . ,xeNf

and the size of these reconstructions, which
suggests two techniques that may be used to accelerate training. First, to reduce
the number of reconstructions, the filter is expressed on an exponentially binned
grid, which grows logarithmically in the width of the filter. Since the filter width
is proportional to the number of pixels in each detector row, we have Ne =
O(log Nf) = O(log N). This technique yields suitable filter approximations, as
observed in [PB13; Lag+20]. Second, training may be accelerated by sampling
a subset of voxels on which to minimize Equation (5.7), rather than the full
volume. Subsampling is possible because NN-FBP operates pointwise, as noted in
Observation 3.

To summarize, we can split the NN-FBP algorithm into three parts, namely:
(1) data preparation, where the input training data xe1

, . . . ,xeNe
is computed, (2)

network training, where the weights θ� for the network are determined using
a supervised learning approach, and (3) the reconstruction algorithm, which is
summarized in Algorithm 5.

We use the same network architecture as proposed in [PB13]. The hyperpara-
meters used in this chapter are discussed in Section 5.4.2.

5.2.5 Noise2Inverse training

Noise2inverse is a technique to train a convolutional neural network (CNN) to de-
noise reconstructed images in a self-supervised manner [HPB20]. This means that
no additional training data is required beyond the acquired noisy measurements.
The key idea is change the training strategy by splitting the projection dataset
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Algorithm 5 NN-FBP reconstruction algorithm

1: Given projections y and a set of parameters θ� :=
�
a,b,h1, . . . ,hNh

�
.

2: Compute the FBP reconstruction using the learned filters:
3: for k = {1,2, .., Nh} do
4: xhk = FBP(y,hk)
5: Compute a non-linear combination of these reconstructions:

NN-FBPθ�(y) = σ
�∑Nh

k=1 akσ (xhk − bk)− b0

�

into subsets, computing sub-reconstructions with these subsets and train a neural
network mapping one sub-reconstruction to another.

First, the projection data is split into Ns sub-datasets such that projection
images from successive angles are placed in different sub-datasets y1,y2, . . . ,yNs

.
The network is trained to predict the reconstruction from one subset using the
reconstruction of the other subsets. Training therefore aims to find the parameter
θ� that minimizes

Ns∑
j=1

��CNNθ (FBP(y j))− FBP(yl �= j)
��2

2 , (5.8)

where FBP(y j) denotes the reconstruction from one subset of the data, and FBP(yl �= j)
denotes the FBP reconstruction of the remaining subsets. We observe that the FBP
reconstruction of a projection dataset is the mean of the FBP reconstruction of
each projection image individually, which enables us to obtain

FBP(yl �= j) =
1

Ns − 1

∑
l �= j

FBP(yl). (5.9)

Now the original training data can be denoised by applying the trained network
to each subreconstruction individually and averaging to obtain

xN2I =
1
Ns

Ns∑
i=1

CNNθ�(FBP(yi)). (5.10)

In the previous discussion, we have assumed that the target images are recon-
structed from more subsets than the input images. As in [HPB20], we call this
the 1:X strategy. A reverse X:1 training strategy is also possible. Here, the target
is a single subreconstruction and the input is reconstructed from the remaining
sub-datasets.

Note that convolutional neural networks take into account the surrounding
structure of a voxel, typically a 2D slice, and thus do not operate pointwise.
Therefore, these networks are an example where Observation 3 does not apply.



565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf565491-L-sub01-bw-Lagerwerf
Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021Processed on: 25-8-2021 PDF page: 119PDF page: 119PDF page: 119PDF page: 119

5.3. NOISE2FILTER METHOD 115
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Figure 5.3: An illustration of the training of the Noise2Filter method. Data is
acquired using a 3D parallel beam geometry. For each detector row, the sinogram
is split into three sub-datasets such that acquisitions from successive projection
angles belong to different sub-datasets. Each sub-dataset is used as input for NN-
FBP training; the remaining sub-datasets are used in the target FBP reconstruction.
This illustration depicts the 1:X strategy. In the X:1 strategy, the input is computed
from the majority of the data, and the target from the minority, rather than vice
versa.

5.3 Noise2Filter method

Our proposed method combines the three ideas introduced in the previous sec-
tion. The NN-FBP method is trained on a single projection dataset using the
Noise2Inverse training strategy. This enables fast reconstruction of arbitrarily
oriented slices using the NN-FBP reconstruction algorithm in a quasi-3D recon-
struction protocol.

Training The training procedure for the Noise2Filter method is similar to the
NN-FBP procedure described in [PB13], with two notable exceptions. First, instead
of minimizing the supervised training objective in Equation (5.7), Noise2Filter
minimizes a self-supervised training objective similar to Equation (5.8). Second,
training voxels are sampled from a subset of the reconstructed volume, rather than
the full volume.

As in Noise2Inverse, the projection data y is split into Ns subdatasets with FBP
reconstructions xFBP, j , j = 1, . . . , Ns. For each subdataset y j , we denote with x j,ei

a
reconstruction filtered with basis element ei .

Training aims to minimize the difference between the MLP output of a subset
of projection data and the FBP reconstruction of the remaining data. For the 1:X
training strategy, the MLP operates on a single subset of the data and the target
is reconstructed from the remaining subsets. For the X:1 training strategy, on the
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other hand, the target is reconstructed from a single subdataset, and the MLP
operates on the remaining subsets. The self-supervised training objective thus
becomes:

Ns∑
j=1

���MLPθ (x j,e1
, . . . ,x j,eNe

)− xFBP,l �= j

���2

2
, (X:1 strategy) (5.11)

Ns∑
j=1

���MLPθ (xl �= j,e1
, . . . ,xl �= j,eNe

)− xFBP, j

���2

2
, (1:X strategy) (5.12)

with

xFBP,l �= j =
1

Ns − 1

∑
l �= j

xFBP,l , xl �= j,ei
=

1
Ns − 1

∑
l �= j

xl,ei
. (5.13)

A schematic summary of the 1:X training strategy is given in Figure 5.3.
The second difference is related to the voxels that are considered for the

training. Like NN-FBP, we minimize the training objective on a random sample
of NT voxels. We have NT " N3, and increasing the sample size in response to
increasing object size has been observed to yield diminishing returns. Unlike NN-
FBP, training voxels are sampled only from the reconstructions of the axial, frontal,
and longitudinal ortho-slices, rather than the full volume. This choice substantially
reduces the computational effort of the data preparation step, as shown below.

Data preparation We discuss the 1:X strategy; similar statements hold true
for the X:1 strategy.

The data preparation step is the most computationally expensive part of the
method. In this step, an input reconstruction xl �= j,ei

is computed for each subdataset
y j and each basis element ei . In addition, a target reconstruction xFBP, j is computed
for each subdataset, resulting in a total of Ns(Ne + 1) reconstructions. These
reconstructions are computed on the ortho-slices instead of the full volume. Due
to locality — see Observation 2 — the computational cost of the data preparation
is therefore reduced by an order of N .

Note that the computational cost of the FBP algorithm scales linearly in the
number of projection angles, therefore the computational cost of this step is equal
to 3(Ne + 1) FBP reconstructions of a 2D slice. Splitting the projection data thus
has no adverse effect on the performance.

Reconstruction The reconstruction algorithm is almost identical to the NN-FBP
reconstruction algorithm described in Algorithm 5. Whereas the aim of NN-FBP
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is to reconstruct the full volume, we aim only to reconstruct slices on demand.
Therefore, reconstruction can be substantially accelerated.

We make use of Observation 1 that the FBP algorithm can be split in a filter-
ing and backprojection step. First, the acquired projection data is filtered with
the learned filters and cached. Then, a single slice can be reconstructed using
Algorithm 5, which can occur in real-time due to the locality of the backpro-
jection (Observation 2) and the pointwise nature of the multi-layer perceptron
(Observation 3). Therefore, the reconstruction can be integrated in the quasi-3D
reconstruction protocol, computing reconstructions of arbitrarily oriented slices in
real time.

We note that the reconstruction step deviates slightly from the Noise2Inverse
reconstruction described in Equation (5.10). Rather than averaging separate
reconstructions of each subset of the projection data, Noise2Filter computes a
reconstruction using the learned filters directly from all data. In the context
of self-supervised learning, this technique has been observed to yield improved
results [BR19].

Noise2Filter summary
The Noise2Filter method consists of three steps. A summary of these steps,

and specifically the computations performed, is given below:

1. Data preparation Compute the input and target training pairs from the
measured projection data y. Specifically, split the measured projection data
into Ns equal sub-datasets and compute the following for the ortho-slices:

FBP(yi ,h) for i = 1, . . . , Ns (5.14)

FBP(yi ,e j) for i = 1, . . . , Ns, j = 1, . . . , Ne. (5.15)

The computational effort of this step is equal to 3(Ne+1) FBP reconstructions
of a 2D slice.

2. Training Obtain a random sample of NT voxels on the ortho-slices for inclu-
sion in the training set. Compute the optimal parameters θ� that minimizes
the training objective with respect to the sampled voxels. Note that the
training time depends on the size of the training set, which may be fixed
independent of the object size.

3. Reconstruction Using the computed parameters θ�, compute an NN-FBP
reconstruction for the desired 2D slices. Recall from Equation (5.6) that
the computational cost of an NN-FBP reconstruction is equivalent to Nh FBP
reconstructions.
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The network architecture used for the Noise2Filter method is the same as the
architecture used for the NN-FBP method and the considered hyperparameters are
discussed in Section 5.4.2.

5.4 Experimental setup

In this section we discuss the setup of the experiments. Specifically, we describe
the data used in the experiments, the implementation of NN-FBP and Noise2Filter,
and the measures used to quantify these comparisons.

5.4.1 Simulated data

A phantom was generated by removing 100,000 randomly-placed non-overlapping
balls from a foam cylinder. The foam_ct_phantom package [PBS18] was used to
generate analytic projection images with 2× supersampling, were each pixel’s
value is averaged over four equally-spaced rays through the pixel. The result
contains 1024 equally-spaced projection images with 512× 768 pixels.

In each experiment, the simulated projection images were corrupted with
Poisson noise of various levels of intensity, by altering the incident photon count
I0 per pixel. Specifically, we compute the mean measured photon Imean count for
an incident photon count I0 from the analytic projection images yanalytic:

Imean = I0e−yanalytic . (5.16)

Given the mean measured photon count, we draw from a Poisson distribution the
measured photon count I with respect to I0 and compute the corresponding noisy
projection data y:

I ∼ Pois(Imean) y= − log
(

I
I0

)
. (5.17)

The average absorption of the sample was 10%. Reconstructions without
Poisson noise and with Poisson noise (I0 = 1000) are shown in Figure 5.5.

5.4.2 NN-FBP and Noise2Filter

Noise2Filter and NN-FBP benefit from a shared implementation. Therefore, most
almost all implementation details are the same. As in the original NN-FBP imple-
mentation [PB13], the number of learned filters is set to Nh = 4, the non-linear
activation function is the sigmoid, the exponential binning parameter is set to 2, but
the filters are piece-wise linear — rather than piece-wise constant — as proposed
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in [Lag+20]. Moreover, changes have been made to the shared implementation in
order to accelerate data preparation, training, and reconstruction.

In the data preparation step, reconstructions are computed of the ortho-slices
rather than the full volume. These reconstructions are performed using the
RECAST3D software package [Buu+18].

Some changes have been made to the training procedure. As in the original
implementation, the training objective is minimized using the Levenberg-Marquadt
algorithm (LMA), which requires that the data samples are split into a training set
and a validation set. Compared to the original implementation, however, the num-
ber of training samples is reduced from 106 to 5 ·104, and training is stopped after
the validation set error has not improved for 10 epochs (originally 100 epochs were
used). The effect of this reduction is discussed in Section 5.5.2. In addition, the
original CPU implementation of the training process is accelerated by performing
computations on the graphics processing unit (GPU) using PyTorch [Pas+17]. Final
reconstructions are computed using the RECAST3D software package [Buu+18].

NN-FBP The free parameters for the NN-FBP method are trained and tested on
separate tomographic datasets. The training dataset consists of paired noisy and
noiseless reconstructions. Supervised training minimizes the training objective in
Equation (5.7).

Noise2Filter The Noise2Filter parameters are optimized using self-supervised
training on the noisy test dataset, rather than on a separate training dataset. No
noiseless reconstructions are necessary for training. Depending on the training
strategy (X:1 or 1:X), training minimizes either Equation (5.11) or (5.12).

5.4.3 Quantitative measures

Reconstruction accuracy is quantified using the the Peak Signal-to-Noise Ratio
(PSNR) and the Structural Similarity (SSIM) index [Wan+04]metrics. Both metrics
were computed with respect to the noiseless reconstructed images and using a
data range that was determined by the minimum and maximum intensity of the
noiseless reconstructed images. If not otherwise mentioned, the reported metrics
are the average of the metric as computed on the three ortho-slices.

5.5 Experiments & Results

We performed several experiments to evaluate the Noise2Filter method. We provide
a short summary below.

Reconstruction accuracy We compare Noise2Filter to supervised NN-FBP
training and several standard FBP improvement strategies in terms of reconstruc-
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tion accuracy.

Hyperparameter analysis Implementation choices in the design of the Noise2Filter
method are analyzed, including the number of training samples, training strategy
(X:1 or 1:X), and number of splits.

Timing An analysis of data preparation, training, and reconstruction speed is
given.

Experimental data The method is applied to experimental data, including a
showcase that illustrates the potential for use in dynamic control.

5.5.1 Reconstruction accuracy comparison

In this section, we assess the reconstruction accuracy of the Noise2Filter method.
We compare to other filter-based reconstruction techniques in terms of reconstruc-
tion accuracy. Specifically, we compare to a baseline FBP reconstruction (with a
Ram-Lak filter) and FBP with standard noise reduction techniques — Gaussian
filtering (FBPG) and frequency scaling (FBPsc). These two methods are discussed
in more detail in Appendix 5.7.1. In addition, we compare to the NN-FBP, which
is trained on a separate training dataset with ground truth images.

The comparison is performed on the simulated foam dataset with varying
levels of Poisson noise. The incident photon count I0 was varied between 1000
and 32,000 in powers of two.

For each of the methods, parameter selection was performed as follows. For
Noise2Filter, training was performed on the noisy test set. For NN-FBP, training
was performed on a separate training dataset. For both methods, training was
repeated 20 times to obtain statistics for the PSNR and SSIM. For Gaussian filtering
and frequency scaling, the parameters maximizing the SSIM on the test set were
determined using a linear grid search.

The Noise2Filter method with the 1:X training strategy and 3 splits is used.
We find that this yields consistent results at various noise levels.

The quantitative measures for the ortho-slices are shown in Figure 5.4. For all
noise levels, the Noise2Filter metrics are higher than FBP with frequency scaling
or Gaussian filtering. The NN-FBP method attains the best metrics, although the
difference with Noise2Filter decreases as the noise level decreases. The difference
in reconstruction accuracy is illustrated in Figure 5.5, where the ground truth
phantom, reconstructions, and residuals for all considered methods are shown
for the incident photon count I0 = 1000. Notice that NN-FBP and Noise2Filter
remove the noise in the voids, unlike the FBP methods.
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Figure 5.4: Reconstruction accuracy comparison of Noise2Filter (N2F-1X), NN-FBP,
and FBP with Gaussian filtering, frequency scaling, and default filter. For varying
noise levels, the average (line) and standard deviation (shaded region) over 20
trials of the PSNR and SSIM are reported.

5.5.2 Hyper parameter analysis

We consider three hyper parameters for the N2F method: the number of samples
considered for training, the training strategy X:1 or 1:X and the number of splits
Ns for the measured projection data.

First, we analyzed the reconstruction accuracy as a function of NT, the number
of training samples used in the training process. Here, the number of validation
samples is fixed to 10% of the number of training samples. Noise was applied to
the projection dataset equivalent to I0 = 1000. The results for this experiment
are shown in Figure 5.6. We observe that increasing the number of voxels yields
virtually no increase in PSNR or SSIM beyond NT = 5 · 104 voxels.

Second, we compare the training strategies and the number of splits on the
simulated foam dataset for two noise levels, I0 = 1000 and I0 = 8000. For various
values of the number of splits, 20 networks were trained and used to reconstruct
the projection data. The average and standard deviation of the PSNR and SSIM
are shown in Figure 5.7. For both noise levels we observe that the 1:X strategy
with 3 splits obtains the best SSIM and close to the best PSNR.

5.5.3 Timing comparison

We give timings for the data preparation, training, and reconstruction step of the
Noise2Filter method. The computations were performed on a server with 375 GB
of RAM and made use of a single Nvidia GeForce RTX 2080 Ti GPU (Nvidia, Santa
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Figure 5.5: Reconstructions and residuals of the FBP algorithm, FBP with frequency
scaling (FBPsc , sc = 0.4), FBP with Gaussian filtering (FBPG , σ = 1.5), Noise2Filter
(N2F), and NN-FBP on a simulated foam phantom with photon count I0 = 1000.
Results are shown on an axial, frontal, and 45◦ slanted slice. The insets are zoomed
by a factor of four.
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Figure 5.6: Training time and reconstruction accuracy for varying amounts of
training voxels NT. The mean (line) and standard deviation (shaded region) over
50 trials are reported. For both NN-FBP and Noise2Filter, increasing NT yields
diminishing returns in terms of PSNR and SSIM beyond NT = 5 · 104, as indicated
by the dashed line.

Data size Duration (seconds)
# voxels # pixels # angles Ne DP FBP N2F

1283 128× 192 256 10 0.34 0.003 0.009
2563 256× 384 512 11 1.34 0.006 0.024
5123 512× 768 1024 12 6.08 0.030 0.114

10243 1024× 1536 2048 13 44.00 — —

Table 5.1: Benchmark results for the data preparation (DP) and reconstruction
steps. FBP and Noise2Filter (N2F) reconstructions are performed on a single slice
from filtered projection data. Due to memory constraints, some reconstructions
were not performed, as indicated by a —.

Clara, CA, USA).
We computed the mean and standard deviation of the training time and number

of epochs over 50 trials, resulting in a training time of 5.45± 4.21s and a number
of epochs of 58.21± 34.73.

In Table 5.1 we report the reconstruction times of one 2D slice using the
RECAST3D framework for standard FBP and the Noise2Filter method. We see
that Noise2Filter is roughly 4 times slower than standard FBP, which is expected
considering that we use Nh = 4 learned filters.
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Figure 5.7: A comparison of Noise2Filter reconstruction accuracy for varying
number of splits Ns and training strategies X:1 and 1:X. Mean (line) and standard
deviation (shaded region) over 20 trials of the PSNR and SSIM are plotted for
noise levels I0 = 1000, and I0 = 8000.

5.5.4 TomoBank dynamic dataset

We consider two experiments with an experimental dynamic tomographic dataset,
consisting of 60 scans at consecutive time steps. First, we train Noise2Filter on
the data from the first time step and use the trained reconstruction method to
compute reconstructions for later time steps. This experiment aims to reveal the
ability of Noise2Filter to generalize over dynamics in time. Second, we consider
determining the correct center of rotation using Noise2Filter.

The experimental data is taken from the public TomoBank repository [De
+18] and was acquired at the TOMCAT beamline at the Swiss Light Source (Paul
Scherrer Institut, Switzerland). In this experiment, sub-second X-ray tomographic
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microscopy was used to investigate liquid water dynamics in a fuel cell during
operation. The experiment took less than 6 seconds, during which 60 scans were
acquired. A scan consists of 301 projections taken by a detector with 1100× 1440
detector pixels. Without loss of generality we have set the pixel size to 1, which
means the linear attenuation coefficient — i.e., the intensity of the reconstructions —
is expressed in attenuation per pixel. Note that there is no reference reconstruction
available for these experiments. Therefore, the analysis of these experiments is
purely qualitative.

First, we train a Noise2Filter network at the first time step T = 0 and use this
network to evaluate all further time steps. Figure 5.8 shows the results for this
strategy for T = 0, 19, 39, 59 and the FBP reconstructions at these time steps. There
is no visible deterioration of the reconstruction accuracy over time, indicating that
the trained network generalizes over the whole experiment.
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Figure 5.8: Reconstruction of the fuel cell at various time steps using FBP and
Noise2Filter (N2F). The Noise2Filter method was trained on the first time step and
also used to reconstruct later time steps. The insets are zoomed by a factor two.

Second, we consider determining the correct center of rotation. In the presence
of noise, determining the correct center of rotation for a dataset can be difficult
and is often performed after acquiring the measured projection data. Using the
tools developed in [Van+20], the center of rotation can be adapted interactively
in real-time. In Figure 5.9 we show Noise2Filter and FBP reconstructions with
shifted centers of rotation at the first time step. We note that no retraining was
performed for Noise2Filter: the network parameters were determined once using
a shift of 0 pixels. In the FBP reconstructions, the center of rotation artifacts (half
moons) are difficult to discern. In the Noise2Filter reconstruction, however, these
artifacts are both clearly visible, and visibly disappear at a shift of 19 pixels, which
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coincides with the reported center of rotation in [De +18].

F
B
P

Shifted 0 pixels Shifted 9 pixels Shifted 19 pixels Shifted 29 pixels

N
2F

−0.0002

0.0000

0.0002

0.0004

0.0000

0.0001

0.0002

0.0003

0.0004

Figure 5.9: Reconstructions of a fuel cell at various centers of rotation using FBP
and Noise2Filter (N2F). In the inset, a center of rotation artifact is highlighted,
which disappears at a shift of 19 pixels. The distance between the detector pixels,
or pixel pitch, for this dataset is 2.75 μm. The insets are zoomed by a factor four.

5.6 Conclusion and outlook

We have introduced Noise2Filter, a machine learning method for denoising filter-
based reconstruction that does not require any additional training data beyond the
acquired measurements. We show that this self-supervised method improves
reconstruction accuracy compared to standard filter-based methods, and has
limited loss of accuracy compared to its supervised counterpart (NN-FBP). The
method exhibits sub-minute training times and reconstruction times in the order
of hundred milliseconds, which demonstrates the potential for use in quasi-3D
reconstruction for real-time visualization of tomographic experiments. In addition,
we demonstrate that visual calibration of the center of rotation is possible, which
illustrates the potential of our method for use in the dynamic control of tomographic
experiments where noise is a challenge.

This method enables operators of dynamic experiments to directly adjust for
external parameters — such as temperature — in response to changes in the
measured object, even with high acquisition noise. Moreover, it can be used
in high-throughput real-time quality control applications, where a fast scanning
protocol leads to data with high acquisition noise.
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5.7 Appendices

5.7.1 Standard FBP improvement strategies

In addition to standard FBP and NN-FBP, the Noise2Filter method is compared to
two commonly used strategies to improve the reconstruction accuracy of the FBP
algorithm for noisy data [Rus17].

Gaussian filtering

In this strategy the standard filter h in the FBP algorithm is convolved with a
Gaussian filter Gσ ∈ �Nf to smooth the noise in the reconstructions, with σ the
standard deviation of the Gaussian. The elements j of the filter Gσ are defined as
follows:

(Gσ) j =
1

σ
�

2π
e−
( j−Nf /2)2

2σ2 , (5.18)

resulting in the smoothed reconstruction FBPG(y,h,σ) =W T (y ∗ (h ∗ Gσ)).

Frequency scaling

This strategy removes the higher frequencies from the FBP reconstruction. This
is done by setting the frequencies above a threshold fsc in Fourier domain of the
filter h equal to zero and using this filter in the standard FBP algorithm, obtaining
FBPsc(y,hsc) =W T (y ∗ hsc).

For these strategies we optimized the choice of variable by computing recon-
structions with a range of variables and taking the reconstruction with the highest
SSIM.
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Chapter 6

Conclusion

One of the main goals of the research presented in this thesis is to bridge the
gap between theoretical research and practical use of CT reconstruction methods.
Throughout this research the focus is on using mathematical insights from various
fields to tackle practical problems encountered when using CT reconstruction
methods: making state-of-the-art reconstruction methods more accessible to users
without the need to fully understand the underlying mathematical theory, and
improving already accessible reconstruction methods such that these methods are
more widely applicable.

In Chapter 2 we presented a framework in which one can efficiently explore
different parameter choices for a reconstruction method. The framework was
developed for a class of reconstruction methods: variational methods. These
reconstruction methods are very effective in computing accurate reconstructions
if the correct regularization parameter is chosen. Picking the optimal regulariz-
ation parameter is not a straightforward process and often requires experience
and understanding of the reconstruction method. The proposed method requires
only a rough guess of the range of the regularization parameter from which ap-
proximate reconstructions can be computed using pixel-wise interpolation. The
approximations can be computed efficiently and the choice of optimal regular-
ization parameter is reduced to picking the optimal reconstruction from these
approximations.

Filtered-backprojection methods are the among the easiest-to-use reconstruc-
tion methods due to their easy to choose parameters and the efficiency with which
a reconstruction can be computed. However, the challenge for these methods
is that they require measured projection data with a large number of projection
images and low noise levels to produce accurate results. Chapters 3, 4 and 5 aim
to improve FBP-type methods using various strategies, while maintaining the ease

129
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of use.

The reconstruction accuracy of FBP-type methods, such as the FDK algorithm,
can be improved by adapting the filter used in the algorithm. The process of
determining the optimal filter is often a trial-and-error process. Therefore, we
formulate in Chapter 3 an optimization problem from which we can automatically
compute the optimal filter for the measured projection data or similar projection
data.

Due to the efficiency of FBP-type methods they are an excellent candidate for
real-time tomography, i.e., reconstructing the measured projection data as it is
acquired. However, data acquired in a real-time scanning protocol often has a
low number of projection images and high noise levels. In Chapter 4 we have
shown that the Neural Network Filtered-backprojection (NN-FBP) algorithm — an
algorithm shown to be fast and accurate for parallel beam — can be extended to
general FBP-type methods and specifically to the FDK algorithm.

The challenge with the NN-FBP and NN-FDK algorithm is that they contain
a machine learning component trained using supervised learning. This limits
the applicability of these methods to cases where high quality reference data is
available. In Chapter 5 we have shown that this problem can be circumvented by
using the Noise2Inverse training to train the NN-FBP network, which only uses
noisy measured projection data to train the network. Moreover, we have shown
that this training process is very fast — i.e., sub-minute — and that the NN-FBP
algorithm can be applied in the RECAST3D real time quasi 3D reconstruction
framework. The resulting method is dubbed the Noise2Filter (N2F) method and
can be used to reconstruct arbitrarily oriented 2D slices of a 3D reconstruction
volume in real-time. And although the N2F method combines several state-of-
the-art concepts, the number of reconstruction parameters that have to be set is
limited. Moreover, the choice of the reconstruction parameters is straightforward.

The effects of the regularization in NN-FBP and NN-FDK can mainly be observed
in the x , y-plane, whereas the effects in the z-direction are less pronounced.
Therefore, I believe that adapting these methods to 2D filters could lead to even
better results. This could be achieved by using the proposed multilayer perceptron
framework and moving to full 2D filters or slab filters, i.e., a stack of several 1D
filters. Alternatively, the multilayer perceptron framework could be replaced by a
CNN framework. Ideally when developing such methods, the locality, pointwise,
and two-step properties — as described in Chapter 5 — are maintained such that
the method could be applied in the RECAST3D framework.

To automate a reconstruction method one should know what the reconstruction
parameters are that lead to an optimal reconstruction. However, as we have
seen in this thesis, there are many different metrics and conditions for what an
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“optimal” reconstruction is. Even with a ground truth or high quality reference
reconstruction it is not agreed upon which metric indicates the best reconstructions.
Therefore, instead of computing a reconstruction and then using that reconstruction
to answer an application specific question, one could combine the two steps in one
method and directly answer the question. This could be achieved by combining a
classifier network architecture with reconstruction method and considering the
reconstruction parameters as trainable parameters. This way the classifier network
automatically determines which reconstructions are best to use to answer the
posed question.

We have considered several machine learning methods throughout this thesis
and there are many more being applied and developed. Although the training
procedure for these methods rely roughly on the same mechanism, almost every
network architecture has a different best practice to train the networks. Under-
standing why these differences work best and standardizing training procedures
will greatly improve the ease of use of a machine learning method.

To conclude, with the rise in popularity of machine learning methods, the
commercial availability of CT scanners, and the development of high-resolution
detectors the field of CT imaging is still generating many interesting research
questions from both an application and a theoretical point of view.
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Samenvatting in het Nederlands

This chapter contains a layman summary of the research presented in this thesis, and
is written in Dutch.

Voor een groot aantal toepassingen is het interessant om de binnenkant van een
object in beeld te brengen, zonder het object te vernietigen. Voorbeelden van
toepassingen zijn legio, en liggen op zeer diverse vlakken: het productieproces
van computerchips controleren, het inspecteren van een brug op barsten in de
ondersteunende balken, of het onderzoeken van de organen van een patiënt.

Tomografische reconstructie is de wiskundige rekenmethode die vaak gebruikt
wordt voor dit soort toepassingen. In tomografie wordt een golf die door ma-
terialen heen kan bewegen gebruikt om metingen van het object te maken (zie
figuur 1). Deze metingen worden gedaan uit verschillende posities en worden
gecombineerd tot één grote dataset. Deze dataset wordt vervolgens gebruikt om
berekeningen te doen die een beeld opleveren van het binnenste van het gemeten
object. Deze beelden worden ook wel reconstructies genoemd. Een voorbeeld van
een reconstructie is gegeven in figuur 1c. Voorbeelden van golven die gebruikt
worden in de tomografie om reconstructies mee te maken zijn: geluidsgolven;
gebruikt voor ultrasound en fotoakoestische metingen; X-rays gebruikt voor CT
scanners, magnetische velden; gebruikt voor MRI scanners, en elektronen; gebruikt
voor elektronemicroscopen.

In dit proefschrift focussen we voornamelijk op computed tomography, ofwel
CT. Deze vorm van tomografie wordt veel in medische toepassingen gebruikt, maar
ook in het ontwikkelen van nieuwe materialen, en zelfs in het onderzoeken en
digitaliseren van museumobjecten. In het algemeen worden eerst de CT-metingen
gedaan, om daarna pas reconstructie te berekenen. Maar als deze reconstructie
berekend zou kunnen worden terwijl de CT-metingen gedaan worden zijn er
ineens een heleboel nieuwe interessante toepassingen mogelijk. Dit betekent
dat het mogelijk is om het object direct te observeren tijdens de scan en op deze
observaties te reageren. Neem bijvoorbeeld het stresstesten van een bouwmateriaal.
Hier wordt druk op een materiaal geleverd tot het breekt. Doordat de scheuren
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(a) Illustratie van een CT scan.

(b) Voorbeeld van een CT-meting (c) Voorbeeld van een reconstructie.

Figuur 1: Tijdens een CT scan worden X-ray golven door een object gestuurd, in
dit geval een appel. Achter het object staat een detector die meet hoeveel golven
door het object zijn gekomen. Als er minder golven zijn gemeten, dan was ‘meer
object’ aanwezig en wordt de meting donkerder. Een voorbeeld van zo’n meting
zien we in figuur (b). Vervolgens draaien we het object en doen we nog een
meting. Als het object een vol rondje heeft gedraaid dan is er voldoende informatie
om een reconstructie te maken. Figuur (c) laat een 2D doorsnede zien van een
3D-reconstructie. Deze reconstructie laat een doorsnede zien van een appel zonder
dat de appel is doorgesneden.
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Snelle reconstructie

(a) Rekentijd: 0,09 seconden.

Langzame reconstructie

(b) Rekentijd: 47,5 seconden.

Figuur 2: Twee verschillende reconstructiemethodes toegepast op computer gesi-
muleerde CT-metingen met veel ruis.

nu gezien worden op het moment dat ze ontstaan kun je ophouden met druk
geven voordat het materiaal volledig is gebroken en kun je onderzoeken wat
het effect is van andere veranderingen op deze scheuren, zoals bijvoorbeeld
temperatuurverschillen. Een ander voorbeeld is het scannen van een patiënt.
Als de dokter direct een reconstructie heeft van de ingewanden kan er ingezoomd
worden als er niet voldoende detail is. Bovendien kan de dokter direct conclusies
trekken uit de observaties en hoeft de patiënt niet onnodig lang te wachten op de
uitslag van het onderzoek.

Om live reconstructies te kunnen berekenen tijdens de CT scan moeten twee
processen real-time gedaan worden: de scan en de berekeningen. De standaard
manier van CT scannen is te langzaam om live beelden te kunnen berekenen.
Daarom moet het scanprocess versneld worden. Dit kan op twee manieren:
1) door minder metingen te doen of 2) door sneller een meting te doen. Ten
eerste, minder metingen betekent minder informatie voor de berekeningen, en
ten tweede, sneller meten betekent meer ruis in de metingen en dus minder
precieze metingen. Dit levert een probleem op, want reconstructiemethodes die
snel genoeg zijn om real-time uit te rekenen leveren slechte beelden op als de
CT-metingen ruis of weinig informatie bevatten. En reconstructiemethodes die
wel om kunnen gaan met dit soort CT-metingen kosten veel tijd om toe te passen.
Een voorbeeld hiervan is gegeven in figuur 2. Hier laten we reconstructies zien
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van computer gesimuleerde CT-metingen met veel ruis. Voor 2D-CT-reconstructies
kunnen we snellere computers gebruiken en real-time reconstructies maken, maar
voor 3D-CT-reconstructies is dit niet meer mogelijk. Dit betekent dat voor live
3D-CT-reconstructies een nieuwe reconstructiemethode moet worden bedacht die
snelle berekeningen kan doen en alsnog accurate reconstructies kan maken van
CT-metingen die veel ruis bevatten en weinig informatie. Dit hebben we onderzocht
in hoofdstuk 4 en 5.

Het toepassen van reconstructiemethodes is niet altijd even makkelijk. In
hoofdstuk 2 en 3 hebben we nieuwe methodes ontwikkeld om bestaande recon-
structiemethodes beter toepasbaar te maken.

Het automatisch correct toepassen van reconstructiemethodes

Een reconstructiemethode is vergelijkbaar met een kookrecept. Er zijn simpele
recepten, waar zonder veel moeite iets lekkers uitkomt. Maar er zijn ook heel
moeilijke recepten waar echt iets geweldigs uitkomt. De uitdaging met deze
moeilijke recepten is dat als er iets misgaat de resultaten ook makkelijk minder
goed kunnen worden. Zo ook met reconstructiemethodes.

Reconstructiemethodes hebben een set aan parameters1, en de keuze van deze
parameters beïnvloedt de kwaliteit van de reconstructie, zoals we kunnen zien in
figuur 3. In dit figuur zien we drie verschillende reconstructies met de langzame
reconstructiemethode van precies dezelfde CT metingen. Hier is het enige verschil
tussen de drie reconstructies de parameterkeuze λ. Hoe je deze reconstructiepara-
meters moet kiezen is niet altijd even duidelijk voordat je een reconstructie ziet met
de gekozen parameter. Daarom komt het uitrekenen van een reconstructie in de
praktijk vaak neer op een proces van ’trial-and-error’, zoals beschreven in figuur 4.
Daarom hebben we in hoofdstuk 2 en 3 wiskundige methodes ontwikkeld om
de keuze voor parameters te optimaliseren. In hoofdstuk 2 ontwikkelen we een
methode voor langzame reconstructiemethodes, zoals de methode die we eerder
gezien hebben in figuur 2. Het toepassen van deze reconstructiemethodes duurt
lang en elke keer dat je een suboptimale reconstructieparameter kiest moet je
de reconstructiemethode nog een keer toepassen. Om de ontwikkelde methode
toe te kunnen passen moet je een paar keer een reconstructie uitrekenen. Maar
als dit gedaan is kun je vervolgens voor (bijna) alle parameterkeuzes direct een
voorbeeldreconstructie genereren en is de parameterkeuze zo simpel als gewoon
de beste reconstructie kiezen uit een verzameling van reconstructies.

1Parameters zijn waardes die van tevoren gekozen moeten worden om een methode te laten
werken. Voorbeelden hiervan in de echte wereld zijn: de versnelling en zadelhoogte van een fiets,
of de stand en temperatuur van een oven.
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Langzame methode λ = 0.00001 Langzame methode, λ = 0.0003 Langzame methode, λ = 0.001

Figuur 3: Voorbeelden van reconstructies met de langzame reconstructiemethode
van figuur 2. Het enige verschil tussen deze drie reconstructies is de parame-
terkeuze λ. Dit laat zien dat de parameterkeuze erg belangrijk is en ook voor
problemen kan zorgen als deze niet goed genoeg is.

CT-metingen
Kies nieuwe
parameters

Pas reconstruc-
tiemethode toe

Tussentijdse
reconstructie

Kan de recon-
structie nog
beter worden?

Uiteindelijke
reconstructie

NeeJa

Figuur 4: Schematische weergave van het toepassen van een reconstructie me-
thode. Als de mogelijke keuzes voor de set van reconstructieparameters klein is
en het effect van de parameterkeuze duidelijk is, dan is de reconstructie methode
makkelijk te gebruiken.

In hoofdstuk 3 formuleren we een wiskundig model om automatisch de beste
parameterkeuze te vinden voor de eerder besproken snelle reconstructiemethodes.
Vergeleken met de langzame reconstructiemethodes kan je veel meer parameter-
keuzes testen. Maar als je dat met de hand moet doen, dan kun je deze methode
niet meer gebruiken in een geautomatiseerde omgeving. De parameters die we
hier optimaliseren zijn vergelijkbaar met de parameters die in de machine learning-
methode van hoofdstuk 4 worden geleerd, maar in dit geval leren we alleen de
parameters voor één snelle reconstructie methode en hebben we helemaal geen
voorbeeld CT-metingen nodig. Daarmee is deze methode toepasbaar voor een
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breed scala van CT-metingen.

Snelle en accurate reconstructiemethodes

In hoofdstuk 4 ontwikkelen we een accurate en snelle reconstructiemethode voor
snelle CT scans, dus voor CT scans die CT-metingen met weinig informatie en
veel ruis opleveren. Het idee achter deze methode is dat we een snelle recon-
structiemethode ontwikkelen door een bestaande snelle methode te combineren
met een machine learning-methode. De machine learning-methode is in dit geval
een wiskundig model dat vier snelle reconstructiemethodes combineert. In dit
model is een deel van de parameters nog niet gekozen. Deze parameters wor-
den vervolgens gekozen (of geleerd) door CT-metingen en bijbehorende accurate
reconstructies te geven en de computer te laten bedenken welke parameters bij
deze combinatie het beste passen. Als deze parameters geleerd zijn kunnen we
het model toepassen op nieuwe CT-metingen die lijken op de metingen die we
gebruikt hebben tijdens het leerproces. Ondanks dat we meer berekeningen aan
het doen zijn, is deze methode nog steeds snel, omdat alle componenten een snel
te evaluaren reconstructiemethode zijn. Doordat we de methode toepassen op
CT-metingen die vergelijkbaar zijn met de voorbeelden die we hebben gebruikt
tijdens het leerproces zijn de reconstructies niet alleen snel, maar ook accuraat.

Een uitdaging voor het gebruiken van deze machine learning-methode is het feit
dat er CT-metingen beschikbaar moeten zijn voor het leerproces die vergelijkbaar
zijn met de CT-metingen waar we het op toe willen passen en waar een accurate
reconstructie voor is. Dit is moeilijk omdat voor sommige toepassingen het heel
moeilijk is om een accurate reconstructie te krijgen, gezien we niet anders hebben
dan snelle CT metingen met onvoldoende informatie.

Daarom combineren we in hoofdstuk 5 de reconstructiemethode uit hoofd-
stuk 4 met trainingsstrategie waarbij geen voorbeelden nodig zijn. Deze trai-
ningsstrategie is gebaseerd op de observatie dat de ruis in één CT meting niet
beïnvloed wordt door de ruis in een andere CT meting. Dit is vergelijkbaar met
het feit dat twee dobbelsteenworpen elkaar niet beïnvloeden. Deze observatie
kunnen we gebruiken om trainingsvoorbeelden te creëren vanuit de CT-metingen
waar we de methode op willen toepassen. Dit betekent dat deze methode het
meest effectief is voor CT-metingen met veel ruis. Bovendien laten we zien dat
deze methode ook gebruikt kan worden om quasi-3D real-time reconstructies te
maken. Met quasi-3D bedoelen we dat het geen volledige 3D-reconstructie is,
maar 3 willekeurig te kiezen doorsneden van een 3D-reconstructie. We laten een
voorbeeld van quasi-3D-reconstructies zien in figuur 5. Hier is links de originele
methode voor deze strategie en rechts de methode ontwikkeld in hoofdstuk 5.
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(a) Standaard snelle reconstructie (b) Nieuwe snelle reconstructie

Figuur 5: Real-time reconstructies gemaakt met de quasi-3D reconstructiestrategie.
Het gescande object is een cilinder met bubbels erin. Hier rekenen we drie
doorsneden van de 3D-reconstructie uit in plaats van de volledige 3D-reconstructie.
Doordat er op elk moment kan worden besloten om een andere doorsnede weer
te geven is het volledige 3D-volume real-time beschikbaar.

Conclusie en vervolg

Het onderzoek beschreven in deze thesis laat zien dat je CT reconstructiemethodes
bruikbaarder kunt maken, en geschikt kunt maken voor een bredere doelgroep,
door slim gebruik te maken van wiskundige modellen. Bovendien hebben we
laten zien dat je bestaande reconstructiemethodes zodanig kan verbeteren dat
je ze kan gebruiken om real-time CT reconstructies te maken. De volgende stap
in het onderzoek zal zijn dat er gewerkt gaat worden om deze methodes toe te
passen in de eerder beschreven voorbeelden. Dit zal, zoals het altijd gaat met
nieuwe methodes toepassen in de praktijk, nieuwe uitdagingen, problemen en
onderzoeksvragen opleveren.
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