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GENERAL INTRODUCTION

Skin-penetrating parasites such as those causing malaria and schistosomiasis infect 
hundreds of millions of people annually. Over half of the world’s population is at risk for 
malaria, and in 2017 alone, an estimated 216 million people were infected, eventually 
leading to the death of 435 thousand individuals, 61% of whom were children under 
the age of five1. Schistosomiasis is a less deadly disease yet causes substantial morbidity 
worldwide as patients suffer from chronic illness. Over 240 million people are infected 
worldwide and several million suffer from severe morbidity. It is estimated that around 
200 thousand patients die yearly due to the disease and it is still thought that the burden 
of disease due to schistosomiasis is underestimated as it often goes unrecognized2. 
Given the global burden of these diseases, the need for an effective vaccine is evident1,2. 
Yet to date, no such vaccine exists for any parasitic disease. Naturally acquired protection 
following parasite exposure is a slow process that may take years or decades to 
develop and does not result in sterile immunity3. Currently, the most promising vaccine 
candidates are live-attenuated parasites, either yielding sterile immunity (in the case 
of malaria)4,5 or decreasing parasite burden after subsequent infection (in the case of 
Schistosoma)6-8.

Migration and kinetics
Malaria infection starts when the skin-penetrating form of the parasite, motile 
protozoans called sporozoites, are injected into the dermal stroma via the bite of 
infected mosquitoes while they search for blood9. Although the majority of parasites 
remain in the skin, within a matter of hours approximately 15% make their way through 
the dermis to reach the hosts vasculature which transports them to the liver, where they 
continue development intracellularly in hepatocytes10-12. Schistosoma cercariae, on the 
other hand, are released from freshwater snails and are aquatic multicellular organisms 
that bore their way into skin tissue upon contact. Subsequently, the tail detaches and 
the head of the cercaria continues as a schistosome; slowly making its way out of the 
skin in the span of days before gaining entry to the vascular space by entering venules 
or lymphatic vessels. Eventually, the schistosomes mature in the hepatic portal vein13-15. 
The dermal stage of both malaria and schistosomiasis is clinically silent, although the 
initial skin penetration is accompanied by a mosquito bite or a cercarial rash16, showing 
that at least a mild form of immune activation at the site of parasite entry does exist.

Immunity to malaria and schistosomiasis
Immunity to malaria is complex and parasite-stage specific. When natural acquired 
immunity develops, it is primarily against blood-stage and does not appear to protect 
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against re-infection17. Vaccines against malaria are aimed to mediate protection at 
the pre-erythrocytic stage of disease, as up to this stage the disease is symptom 
free, parasites numbers are still low, parasites are located extracellularly making 
them vulnerable to antibody attack and blood-stage malaria does not yet activate 
immunoregulatory effects. RTS,S is currently the only licensed malaria vaccine and 
yields only approximately 30% protection over the course of the study period18-20. It 
is based on the circumsporozoite protein (CSP) which coats sporozoites and aims to 
increase anti-CSP antibodies in order to prevent migration of parasites from the skin 
to the liver. However, failure in blocking just one sporozoite from migrating into the 
vasculature would already render the vaccine inadequate as RTS,S initiates only modest 
T cell immunity.

The rationale for developing a live-attenuated parasite vaccine which confers sterile 
protection stems from findings by Nussenzweig and colleagues in the 1960’s. They were 
the first to prove complete protection against pre-erythrocytic stages of malaria in mice 
vaccinated with radiation-attenuated sporozoites (RAS) that terminate development in 
the liver21. In the 70’s it was then shown that exposure to over one thousand attenuated-
parasite infected mosquitoes could indeed also protect human volunteers22,23. Currently, 
controlled human malaria infection studies using intravenously injected RAS show 
protective efficacy of up to 100%24,25. The immunological basis of protection by RAS has 
been characterized in murine malaria models. In mice, RAS vaccination results in antibody 
generation, which block migration of sporozoites during subsequent infections, and 
CD8+ T cell activation, which eliminate infected hepatocytes26-28. Although antibodies 
significantly contribute to protection, CD8+ T cells alone are capable of conferring sterile 
protection in mice29,30. In addition, more recently important roles for γδ-T cells as well 
as tissue resident memory (T(RM) ) cells were suggested5,31. Overall, antibodies appear 
to play a role in sporozoite stage (anti-CSP antibodies) and blood-stage infection32, 
and T cells have a dominant role in liver stage immunity, when parasites are localized 
intracellularly.

In the case of schistosomiasis, mouse studies have characterized immune responses 
to the various parasite stages. In the first 5 weeks of infection Th1 responses develop 
which are primarily associated with IFN-γ production. Subsequently starting at 6 weeks 
post infection, Th2 responses are initiated when parasites mature and start to generate 
eggs. Lastly, later stages of disease are characterized by immunomodulatory responses 
such as activation of alternatively-activated (M2) macrophages and regulatory T cells 
(Tregs), as well as IL-10 production as a regulatory feedback to proinflammatory 
immune activation33-35. Nonetheless, exposure to wild-type cercariae does not result in 
protective immunity. This has been suggested to result from the early increase in dermal 
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immunoregulatory mechanisms in the first few days post infection36. However, in the 
early 1960’s mice were immunized using irradiated cercariae resulting in a reduction 
of worm burden post challenge37. Although immune responses to these diseases are 
slowly unraveled, none of the vaccination approaches have thus far resulted in long-
term sterile protection to either parasitic disease.

Why the skin matters
The common ground for all skin-penetrating parasites is the route they must navigate 
from their site of entry through a densely packed immune organ: the skin38. The skin 
is the largest organ in the human body, and it is a specialized barrier to the outside 
world, both by forming a physiological barrier as well as functioning as an important 
immunological organ. Its most important function is to maintain the immunological 
balance between tolerance to commensal microbes and inflammation in response to 
pathogens. Within the skin reside a wide variety of immune cells such as dermal T cells, 
Natural Killer cells, innate lymphoid cells and mast cells. Importantly, the human dermis 
contains antigen presenting cells (APCs), dendric cells (DCs) and macrophages (MΦ), 
that sample the surroundings and present antigens to the adaptive immune system39-42. 
These cells coordinate the following adaptive immune responses by polarizing 
lymphocytes towards regulation or inflammation depending on the type of antigen 
encountered42. In addition, the dermis is rich in blood and lymphatic vessels which 
allow quick access to blood-derived immune cells such as neutrophils, monocytes, 
monocyte-derived macrophages and additional lymphocytes. Antigens are transferred 
continuously from the skin to the skin-draining lymph nodes either actively by migrating 
APCs, or passively through lymphatic vessels. It is here, in the skin draining lymph node, 
that an adaptive response is launched. For skin-penetrating parasites, the skin is the first 
site of interaction with the host’s immune response.

In the case of malaria, the importance of the skin stage in vaccine development against 
parasitic infections is demonstrated by the importance of the route of administration 
of live-attenuated parasite vaccines on the protectivity of the response. In vaccination 
protocols against a variety of diseases dose reduction can be achieved by administering 
the vaccine not subcutaneously or intramuscularly, but directly into the skin43-45. In 
contrast, early clinical studies show that inoculation with malaria sporozoites results in a 
strong protective immune response when delivered by the bite of an infected mosquito 
or after intravenous administration of purified parasites4. However, the intradermal 
route of administration, often preferred due to practicalities, results in inferior protective 
immunity in both rodent and human models of malaria46,47. In addition to this, the skin 
may well be an important effector site for antibody responses against pre-erythrocytic 
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stages of malaria. Blocking dermal parasite migration retains sporozoites in the skin, 
preventing them from reaching the liver and initiating infection48,49. For schistosomiasis 
it was shown that irradiated cercariae could induce an APC-mediated IFN-γ response 
in the skin draining lymph node (sdLN) of mice. Additionally, non-attenuated larvae 
were demonstrated to induce the production of IL-10 in mouse skin6. These findings 
suggest that the skin stage of disease may be critical to the initiation of tolerance for 
both malaria and Schistosoma.

Could pathogens hijack existing immune pathways to avoid clearance?
Some pathogens, such as viruses and bacteria but also parasites, are capable of 
exploiting APC mechanisms for regulation in order to evade degradation by the 
immune system50-55. To convey a signal to the adaptive immune system, APCs present 
antigens in a context of co-stimulation and cytokine signals42. The human body contains 
a variety of mechanisms to down-modulate immune responses, in order to prevent 
continuous inflammation and subsequent tissue destruction. This can be achieved for 
example by secretion of regulatory cytokines such as interleukin 10 (IL-10)56 or by co-
stimulatory signaling though immune checkpoint molecules such as the PD-1/PD-L1 
pathway57,58. Although immune modulation by parasites has widely been described 
during the blood stadia of these diseases59-61, early immunoregulatory responses to skin 
stage parasites have not been investigated in the human host to date. Some murine 
models have begun to look into the skin-stage of skin-penetrating parasitic disease, 
nonetheless human responses have remained wholly uncharacterized. As murine skin 
differs drastically from human skin, both anatomically as well as functionally, looking 
into the human counterpart of the skin stage could prove critical in order to investigate 
some of the pitfalls in vaccine-induced immunity. In this thesis we aimed to test human 
responses to both malaria and Schistosoma, by characterizing responses of human 
monocyte-derived APCs as well as primary dermal APCs freshly isolated from human 
skin. In addition, we use a human skin explant model in order to expose skin to parasites 
in its natural three-dimensional state.

Parasite motility, prerequisite for immune responses
A critical feature in both parasite infectivity and subsequent responses is their motility. 
For malaria, parasites deficient in motility proteins do not establish an infection. In 
the case of Schistosoma parasite motility equally plays an important role; irradiated 
cercariae have been shown to persist in the skin much longer than their non-irradiated 
counterparts, increasing their time in the dermis from a few days up to a week62,63. In 
addition, over-irradiation of cercariae led to a much decreased number of parasites in 
the hepatic veins and a reduction of protective immunity37. Although the significance 
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of parasite movement has been widely accepted, motility analysis of live-attenuated 
sporozoite vaccines is routinely performed in vitro64, and in-host motility of Schistosoma 
parasites has not been characterized at all. However, in vitro modelling passes over the 
consequential effect of the tissue environment on motility65,66. Therefore visualization 
and quantification of parasite motility in the three-dimensional setting may prove a 
crucial factor in the detailed comprehension of parasite-skin interactions. We dedicated 
the second part of this thesis to the development and implementation of (molecular) 
imaging techniques in the characterization of dermal parasite movement.

Understanding the details of dermal immune regulation by skin-penetrating parasites 
could significantly aid in the development and optimization of live-attenuated parasite 
vaccines. Bypassing or counteracting the regulatory effects of these parasites on dermal 
immune cells may optimize their protective effect. This thesis aims to unravel the pivotal 
role of the skin stage of skin-penetrating parasites in the potential polarization towards 
immune tolerance, both by investigating the kinetics of parasite migration, as well as 
the immune responses after exposure.

THESIS OUTLINE

The first part of this thesis describes the host immune-regulatory mechanisms that are 
exploited by two different skin-penetrating parasites immediately after their entry into 
the skin. In chapter 2 we investigated APC responses to whole Plasmodium falciparum 
(Pf) sporozoite stimulation and show that malaria sporozoites induce regulatory MΦs that 
can suppress subsequent adaptive T cell responses. Chapter 3 investigates the effect of 
the route of administration of whole sporozoites on their ability to skew towards dermal 
immune regulation. In chapter 4 we show that a different skin-penetrating parasite, 
Schistosoma mansoni, is similarly capable of inducing regulatory immune responses in 
human skin and that its ability to do so is decreased upon radiation attenuation, the 
most commonly used mode of attenuation in parasite vaccines.

The second part of this thesis focusses on the motility behavior of malaria parasites in 
the human dermis. In chapter 5, we show that radiation attenuation impairs sporozoite 
movement in the human skin and reverts sporozoite motility back to “default”, non-
directional movement. Chapter 6 describes a novel method for targeted molecular 
imaging of genetically wild-type Pf sporozoites, allowing for imaging and subsequent 
motility analysis of non-GMO Pf sporozoites in human skin tissue.

Finally, in chapter 7 the results are summarized and discussed in the broader context 
of the current literature and regarding potential new lines of research necessary for 
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refinement and development of novel vaccines. We draw parallels between the two 
species of skin-penetrating parasites investigated and discuss the effect of radiation 
attenuation of parasites.
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