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Introduction 

Type 1 diabetes (T1D) is an autoimmune disease caused by destruction of insulin 

producing β-cells in the pancreas. Standard of care therapy consists of life long 

symptomatic insulin treatment and in rare and severe cases patients undergo islet 

transplantation (1). Until today, autologous hematopoietic stem cell transplantation 

(aHSCT) proved to be the only intervention therapy for T1D reaching complete and 

sometimes even lasting remission (2–7). In spite of many other immunotherapies 

assessed around the globe, none matched the clinical efficacy of aHSCT (8, 9). Indeed, 

aHSCT had insulin-independency as primary end-point, rather than delayed loss of insulin 

production or decreased insulin needs. aHSCT is already widely and successfully used as a 

treatment for hematological malignancies (10, 11). Interestingly, one diabetic patient, 

when treated with aHSCT for multiple myeloma, became insulin independent (12). aHSCT 

was evaluated as a treatment for several autoimmune disorders as well, such as 

rheumatoid arthritis (13), systemic sclerosis (14, 15), multiple sclerosis (16), and juvenile 

idiopathic arthritis (17). By 2012, up to 3,000 aHSCT had been performed for autoimmune 

diseases (18). Yet, in the case of T1D, aHSCT remains controversial (19–21).  

Indeed, the use of aHSCT as a strategy to cure T1D has been received with mixed 

enthusiasm. Concerns were raised about the short follow-up, the possibility that a positive 

effect of aHSCT may be attributable to a honeymoon phase and the absence of a placebo-

treated trial arm for comparison (19, 21). Furthermore, the ethics of including minors in 

the trial was being questioned (19). Although valid at the time, these concerns have all 

since been addressed, as will become evident in the following paragraphs. 

aHSCT in T1D  

The rationale behind using aHSCT in autoimmune diseases is to halt autoimmune 

destruction of the targeted tissue and reestablish tolerance. While the mechanism by 

which this is achieved remains incompletely resolved, the importance of a diverse T-cell 

receptor repertoire (22), thymus reactivation (23), and the number of regulatory T-cells 

(Treg) has been established (24).  

The first evidence to demonstrate that aHSCT can reestablish tolerance in new-onset T1D 

patients comes from Voltarelli et al. (25, 26). Recent-onset (<6 weeks) T1D patients were 

included to undergo aHSCT with mobilized [cyclophosphamide (2.0 g/m2) and 

granulocyte colony-stimulating factor (10 μg/kg/day)] peripheral blood-derived 

hematopoietic stem cells after an intermediate-intensity conditioning regimen consisting 

of cyclophosphamide (200 mg/kg total) and rabbit antithymocyte globulin (4.5 mg/kg 

total). Similar mobilization and conditioning regimes were used in other discussed studies, 

unless mentioned otherwise. In total, 25 patients were included, of which 21 were treated 

according to protocol and became insulin independent, for a median of 43 months (2); a 
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result unmatched by any intervention therapy up until this point. These results were 

substantiated independently around the world, accomplishing insulin independence in all 

studies, with maximum insulin independence ranging from 38 to 56 months and 

increasing with further follow-up (3-7). These studies prove that aHSCT is a promising 

therapy for T1D, while providing crucial and unique metabolic and immunological data of 

T1D patients in remission (27, 28). 

Balancing the risk of aHSCT with the risk of diabetes-associated complications 

Depending on the intensity of the conditioning regime, aHSCT can cause a wide range of 

complications. In the T1D trials (2–7), these ranged from relatively mild symptoms such 

as febrile neutropenia, nausea, and alopecia to more severe complications such as de 

novo autoimmunity and systemic infections, which in one case resulted in an unfortunate 

death (7). Temporal oligospermia was witnessed in some of the studies, but not all. Of 

note, multiple children have been conceived after aHSCT. Apart from these complications, 

there is also a concern of increased risk of malignancies after aHSCT, particularly 

myelodysplasia. With allotransplantation, this risk is well established and can be 

attributed to the heavy conditioning regime, while this regime is much milder in the 

autologous setting for autoimmune diseases. Furthermore, in contrast to aHSCT as a 

treatment for malignancies, stem cells of T1D patients have not sustained any damage 

from previous chemotherapy. Consequently, the incidence of malignancies was reported 

to be lower, although further prospective studies with longer follow-up and proper 

control groups are warranted to assess if these malignancies are aHSCT related (29). 

Containment of adverse events from aHSCT is constantly improving as illustrated by 

decreased morbidity and mortality to <1% (30). Furthermore, in the setting of T1D, it will 

be performed in relatively young and otherwise fit subsets of patients with a low to 

intermediate conditioning regimen (2, 31), associated with reduced risk (29) without 

compromising treatment efficacy. This was attested by a recent trial exploring the 

possibility of a simplified method of aHSCT in an outpatient setting, with a conditioning 

regime consisting of cyclophosphamide (2.0 g/m2 total) and fludarabine (120 mg/m2 

total), still reaching 44% prolonged insulin independence for up to 56 months and beyond, 

without significant adverse effects (4).  

To make a compelling and fair case of aHSCT in T1D, the complications of aHSCT need to 

be juxtaposed with the short- and long-term complications of T1D. It is important to 

realize that acute and possibly life-threatening events related to T1D and insulin 

treatment such as a hypoglycemic coma (32) and diabetic ketoacidosis (DKA) (33) are not 

uncommon. Indeed, T1D remains a deadly disease, where insulin therapy merely provides 

palliative care. In addition to a significantly reduced life expectancy, T1D also imposes 
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Figure 1: Guidance on the selection of type 1 diabetes (T1D) patients for autologous hematopoietic stem cell 

transplantation (aHSCT). aHSCT is unlikely to benefit all T1D patients. Factors that may help selecting the 

preferred candidates include the clinical background [disease duration, age, and diabetic complications, such as 

diabetic ketoacidosis (DKA)], metabolic features [remaining functional beta-cell mass (β), glycemic control, 

HbA1c] and immunopathogenic features [the number and type of islet autoantibodies, the frequency and 

specificity of islet-autoreactive cytotoxic T lymphocytes (CTL), and other effector (Th1) and regulatory (Treg) 

immune cells, and cytokine profiles]. With the opportunity to identify patient subgroups with particularly great 

or smaller chances for clinical benefit, we propose that we engage the patient community to guide shared 

decision-making. 

severe and often lifelong negative impact on the quality of life of T1D patients. The major 

burden of the disease is caused by long-term micro- and macrovascular complications, 

with T1D still being a main cause of end stage renal disease and non-inherited blindness 

(34, 35). Even with optimal education and state-of-the-art treatment options, good 

glycemic control is not achieved in the vast majority of patients (36). This is of particular 

importance, since good glycemic control early in the course of the disease reduces long-

term complications and preserves endogenous insulin production (37). Interestingly, 

patients that experienced a honeymoon phase showed significantly less macrovascular 

complications after 7 years of follow-up (38, 39). This could imply that a similar effect can 

be expected from an aHSCT induced prolonged period of insulin independence. 

Importantly, side effects are inherent to immunotherapy. The adverse events of, for 

instance, DMARD, TNF blockers, sirolimus, cyclosporine, azathioprine, prednisone, 

thymoglobulin, alemtuzumab, or imatinib, all considered in the context of T1D, are 

certainly not negligible.  
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Clinical outcome of aHSCT corresponds with the degree of islet autoreactivity 

before therapy 

Currently, after almost 15 years of experience in the application of aHSCT for the 

treatment of T1D, much knowledge has been gained about the mechanism of action of 

aHSCT and, concomitantly, about which patient population benefits most (2, 3, 5–7, 27, 

28, 40–42).  

Earlier this year, the first aHSCT in T1D trial reported its ad hoc analysis with a mean 

follow-up of 67.5 months (some patients remain insulin-independent beyond 106 

months) and included 25 patients (2). HLA-A2 positive patients were divided into low and 

high cytotoxic T lymphocytes (CTL) autoreactivity groups according to the cumulative 

frequencies of islet-specific CTLs at baseline. Low CTL autoreactivity associated with 

higher c-peptide levels after aHSCT compared with high CTL autoreactivity. Furthermore, 

while 83% of patients in the high CTL group had resumed insulin therapy at 24 months 

after aHSCT, all patients with low frequencies of islet-autoreactive CTLs at baseline 

remained insulin independent. In addition, patients were divided into those with “short-

remission” and “prolonged remission” depending on whether they were insulin-free for 

less or more than 3.5 years after aHSCT, respectively. A trend was seen of persistently 

lower cumulative frequencies of islet-specific CTLs in the prolonged remission group 

compared with the short-remission group. This outcome may point that the conditioning 

regimen with thymoglobulin was insufficient to deplete auto-reactive T-cells. Diabetes 

relapse could then result from clonal expansion of autoreactive CTLs that escaped the 

conditioning procedure. In any case, these immunological parameters associated with 

superior or inferior clinical outcome of aHSCT before therapy point to patient and disease 

heterogeneity and present a good case for personalized and precision medicine in which 

tailoring the conditioning therapy might lead to more effective reversal of islet 

autoimmunity.  

Additional evidence in favor of an immunogenic heterogeneity that relates to the 

outcome of aHSCT came from a study of 13 patients that was conducted in China with a 

mean follow-up of 42 months (5). Expressing more than one preexisting autoantibody 

negatively correlated with the preservation of beta-cell function as quantified by c-

peptide levels. Yet, a larger study including 123 patients with a mean follow-up of 16 

months found no difference in baseline presence of any of the autoantibodies between 

responding and non-responding patients (27). Serum levels of interleukin-10, interleukin-

4, transforming growth factor-β, and fasting c-peptide after aHSCT correlated with the 

number of infused CD34+ cells, whereas tumor-necrosis factor-α (TNF-α) and insulin 

doses showed an inverse relation. Furthermore, prolonged insulin-free survival was 
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negatively correlated with baseline TNF-α levels, which may provide another suitable 

negative predictor of prolonged remission (3).  

In summary, current clinical evidence points to heterogeneity between patients and in 

disease, as well as provides immune correlates of disease remission or relapse that may 

offer opportunity for patient selection, precision medicine, and guidance for tailored 

immunotherapy following aHSCT. 

The success of aHSCT in relation to preexisting functional beta cell mass 

Besides a baseline immune signature, post hoc analyses have revealed the importance of 

preexisting beta-cell mass for the outcome of aHSCT (27). One small study (5) found that 

the baseline c-peptide level was a positive predictor of post-aHSCT c-peptide levels, which 

was corroborated by other, larger studies (3). The largest study including 123 patients 

stratified subjects into a responder group and a non-responder group according to the 

presence of a post-aHSCT clinical response assessed by a β-score (27). The β-score is 

mainly used in the islet transplantation setting and consists of four components: fasting 

plasma glucose, HbA1c, c-peptide, daily insulin use or usage of oral hypoglycemic agents. 

The β-score was already significantly higher at baseline in responders compared with non-

responders. Moreover, baseline fasting c-peptide levels proved to be an effective positive 

predictor of prolonged remission and the age of onset of diabetes a negative predictor. 

Obviously, baseline c-peptide levels are an indication of functional β-cell mass (27), 

although increasing evidence points to a disconnect between beta-cell mass and function 

in the case of diabetes (43, 44). β-Cell regeneration may occur until adolescence, after 

which regenerative capacity appears to stagnate (45). Indeed, early intervention within 6 

weeks after diagnosis of T1D led to remission in the vast majority of cases, whereas later 

intervention achieved remission in less than half of the cases (42), suggesting that timely 

therapy matters.  

The influence of DKA before aHSCT on clinical outcome could be substantial (6). Indeed, 

DKA at diagnosis has been associated with lower c-peptide levels, higher insulin needs and 

HbA1c levels, suggesting lower remaining β-cell function (46). Yet, another trial including 

24 patients with 52 months as a mean follow-up found no relation between duration of 

insulin independence and the time from diagnosis to AHSCT, baseline c-peptide levels, nor 

number of CD34+ cells (7).  

To summarize, patients with sufficient beta-cell function at baseline, no DKA at diagnosis, 

and treated early after diagnosis appear to benefit most. These characteristics all point 

toward the pivotal role of remaining functional beta-cell mass for success of aHSCT in T1D 

(27). To verify whether the age of onset matters (3), inclusion of minors in trials of aHSCT 

in T1D would be required. The potential capacity to regenerate their beta cells would 
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further support considering young patients to offer this intervention therapy. Teenagers 

are a particularly challenging population to treat as diabetes-related distress, which is 

present in one-third of adolescents with T1D, is linked to poor glycemic control (47–49). 

Consequently, 84% of teens do not reach target HbA1c levels (36), which jeopardizes their 

future health with regards to increased long-term complications, but also their career 

perspectives (50). 

Selecting eligible patients for aHSCT in T1D  

Understanding which patient groups respond better to aHSCT and why, enables us to 

transform aHSCT from a general therapy to personalized medicine, thus envisioning a 

future of aHSCT in T1D. Yet, we contend that the choice for aHSCT as therapeutic option 

is not confined to the care providers. The voice of the patient is equally relevant, both in 

terms of refusing the risk for treatment related adverse events or accepting these in favor 

of temporal disease remission, preservation of beta-cell function, and reduced risk of 

diabetic complications. In case of minors, parents face the difficult task of weighing the 

best therapy for the patient in consultation with the care provider, which makes careful 

information provision even more important. We envision a future in which care providers, 

in dialog with the patient and caregivers, use a framework of evidence-based risk 

assessment to assess whether aHSCT is a viable option (see Figure 1).  

Conclusion 

While aHSCT will not be the magic bullet universally curing T1D, there is a promising future 

for its implementation in a distinct group of patients (20). Indeed, none of the alternative 

intervention strategies match, or even get close to, the clinical outcome achieved in a 

considerable number of patients treated with aHSCT. We propose that this patient group 

should be identified, diligently informed and offered the possible benefits of an extended 

period of insulin-free and burden-free survival, while medical science continues their 

pursuit of developing alternative intervention strategies for those less eligible, or 

declining, aHSCT. T1D enters the era of personalized medicine. 
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