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ABSTRACT

Automated classification of seed varieties is of paramount importance for seed producers to maintain the
purity of a variety and crop yield. Traditional approaches based on computer vision and simple feature
extraction could not guarantee high accuracy classification. This paper presents a new approach using a
deep convolutional neural network (CNN) as a generic feature extractor. The extracted features were
classified with artificial neural network (ANN), cubic support vector machine (SVM), quadratic SVM,
weighted k-nearest-neighbor (KNN), boosted tree, bagged tree, and linear discriminant analysis (LDA).
Models trained with CNN-extracted features demonstrated better classification accuracy of corn seed
varieties than models based on only simple features. The CNN-ANN classifier showed the best perfor-
mance, classifying 2250 test instances in 26.8 s with classification accuracy 98.1%, precision 98.2%, recall
98.1%, and F1-score 98.1%. This study demonstrates that the CNN-ANN classifier is an efficient tool for the
intelligent classification of different corn seed varieties.

Texture descriptors

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Classification of seed varieties is of paramount importance for
seed producers and farmers to maintain the purity of a variety and
crop yield (Shouche et al., 2001; Taner et al., 2018). Moreover,
premium seed varieties are more expensive due to their potential
to increase production and profits. This issue is crucial for corn
being one of the most commercial crops worldwide (Wakholi et al.,
2018). However, corn seeds of different varieties are very similar,
with significant overlap in both morphology and color features.
These factors have created an apt opportunity for some opportu-
nistic seed mills to illegally market low-quality seed varieties as
high-quality and raise their profit margin (Jia et al., 2015). This
reckless behavior can compromise investors’ interests and disrupt
the seed market (Park et al., 2016). Therefore, the accurate classi-
fication technique is vital to develop the seed market and protect
the interests of farmers and owners of premium quality seed
varieties.
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Traditionally, a seed variety is identified through visual in-
spection (Vithu and Moses, 2016; Ansari et al., 2021). High error
rates, low precision, and time-consuming nature are some of this
approach’s challenges, especially for identical species (Pourreza
et al.,, 2012; Taner et al., 2018). Moreover, regular access to an
agriculture expert is not possible when consultation is required
(Kurtulmus and Unal, 2015; Khan et al., 2019). High-performance
liquid chromatography, gas chromatography-mass spectrometer
(Qiu et al., 2018), seed protein electrophoresis (Rogl and Javornik,
1996), and DNA molecular markers (Hoffman et al., 2003) are
some of the standard analytical methods used to classify plant
varieties. In most cases, despite high accuracy, these methods are
destructive, hazardous to human health, time-consuming,
complicated, and expensive, with little chance of reproduc-
ibility (Ma et al., 2013; Bakhshipour et al., 2018). Therefore, in
today’s world, employing an automated system for non-
destructive and accurate seed classification is critical. In this re-
gard, many studies present techniques for non-destructive seed
classification, such as magnetic resonance imaging, electronic
tongue, acoustic, electronic nose, and computer vision (Xia et al.,
2019). Among these methods, computer vision and image pro-
cessing can classify crops at a low cost with high analytical and
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computational power (Patricio and Rieder, 2018; Ropelewska,
2020). Computer vision-based classification consists of four
blocks: image preprocessing, segmentation, feature extraction,
and classification (Sharif et al., 2018), where feature extraction
has a significant effect on classification accuracy (Igbal et al.,
2018). As a result, several feature extraction and machine
learning techniques have been proposed for seed variety classi-
fication. The extracted features include color features (Li et al.,
2019), texture features (Zhao et al., 2011), shape-based features
(Ma et al, 2013; Li et al, 2016), and their combination
(Kiratiratanapruk and Sinthupinyo, 2011). Different classifiers
based on k-means clustering (Ma et al., 2013), backpropagation
neural network (BPNN) (Li et al, 2016), genetic algorithm-
support vector machine (GA-SVM) (Zhao et al, 2011),
maximum likelihood classifier (Li et al.,, 2019) and so on, have
been probed. Previous research has shown that the computer
vision technique works well for the classification of seeds with
different visual appearances, such as different species, damaged
or defective seeds, or foreign premises.

1.1. Problem statement

The classification of corn seed varieties with similar visual
appearance is still a tremendous challenge. Widespread use of
hybridization has recently led to the development of multiple corn
seed varieties. It raised a problem of their classification, which has
become an increasingly challenging task due to their extreme
similarities, especially for the same mass-tone attune seeds. Pre-
vious research focused on extracting the hand-crafted features
from a specific section (germ side and/or endosperm side) of corn
seeds (Zhao et al., 2011; Ma et al., 2013; Yang et al., 2015; Li et al.,
2019; Xia et al., 2019) to address this problem. Unfortunately, this
classification technique requires a particular seed orientation in a
sorting system, making it difficult for industrial scaling.

1.2. Motivation and contributions

Our research was motivated by the hypothesis that corn seed
classifying could be dramatically improved using higher-level fea-
tures with more discriminative information. In recent years, a
tendency to substitute the classical feature extraction methods
with deep learning methods, especially convolutional neural net-
works (CNNs), has emerged. CNNs are replacing traditional
methods that extracted low-level features from images, by auto-
matically and hierarchically extracting robust high-level features
(Zhang et al., 2019a).

Numerous studies have demonstrated that the use of CNNs as a
generic extractor can significantly improve the accuracy of com-
puter vision tasks compared to traditional feature-engineered
methods (Koztowski et al., 2019). For example, Zhou et al. (2017)
optimized the VGG Net model structure to extract features from
the images of main tomato parts such as fruit, flower, leaf, and
stem, using an 8-layers CNN. Khan et al. (2018) introduced a new
approach for the classification of plants’ diseases based on the
four-step algorithm. In the first step, disease regions are
segmented with the help of the correlation coefficient method.
After that, two pre-trained models (VGG-16, Caffe AlexNet) are
used for the extraction of deep features. The GA is developed to
select the most discriminant features. Finally, the selected features
are classified by multi-class SVM and achieved 98.6% accuracy. In
another study, Quan et al. (2019) adopted a Faster R—CNN model
to automatically extract image features and detect maize seedlings
during different growth stages. In the research of Ozkan et al.
(2019), a CNN architecture VGG-16 was used to extract features,
which have been used as inputs for an SVM classifier to identify 40
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different wheat grain varieties. They claimed 100% accuracy of the
proposed model. Liao et al. (2019) investigated the feasibility of
haploid corn seeds classification, using hyperspectral images. A
VGG-19 network was used to extract the image properties. They
achieved a correct classification rate of 96.32%. Zhu et al. (2019)
extracted the characteristics of seven cotton seed varieties using
self-designed CNN and ResNet models. They utilized partial least
squares discriminant analysis (PLS-DA), logistic regression (LR),
and SVM models to classify the seeds and reported an accuracy of
80%. Khan et al. (2020a) presented a new method that used fine-
tuned VGG-s and AlexNet to extract the deep features and multi-
SVM to detect the fruit diseases with an accuracy greater than 97%.
Khan et al. (2020b) introduced an automated approach for cu-
cumber leaf disease classification. The authors employed two pre-
trained models, i.e., VGG-19 and VGG-M for feature extraction and
multi-class SVM for classification, which achieved a maximum
classification accuracy of 98.08%.

In this study for the first time, CNN was used as a feature
extractor for the classification of nine corn seed varieties regardless
of their orientation on the conveyor. The major contributions of this
research are:

e Both low-level visual (color, morphology, texture) features and
high-level (CNN-extracted) features of corn seeds have been
used for classification.

e The effect of input features (hand-crafted, CNN-extracted, or/
and their combination) on the accuracy of classification has
been studied.

o The efficiency of different machine learning classifiers, such as
an artificial neural network (ANN), cubic SVM, quadratic SVM,
weighted kNN (k-nearest-neighbor), boosted tree, bagged tree,
and linear discriminant analysis (LDA) for corn seed classifica-
tion has been evaluated.

This paper is organized as follows: Section 2 introduces research
methodology, including a detailed description of feature extraction
techniques and classifiers. In Section 3, the results of feature
extraction methods and classification of corn seed varieties are
presented. The classification performance of proposed frameworks
with different inputs and classifiers is evaluated. Finally, Section 4
presents a summary of current research and provides direction
for future work.

2. Materials and methods
2.1. Sample preparation

Nine different varieties of corn, KSC 201, KSC 704, KSC 290, KSC
380, KSC 301, KSC 400, KSC 260, KSC 647, and KSC 410, were used in
this study. These varieties can be divided into three groups: 1) early
maturity types that are suitable for a second planting in temperate
and cold regions (KSC 201, KSC 260, KSC 410, KSC 290, KSC 380, and
KSC 301), mid maturity types that are suitable for planting in warm
regions (KSC 647 and KSC 400), and late maturity type that is
suitable for first planting in temperate regions and second planting
in warm regions (KSC 704). In addition to maturity, the varieties
differ in terms of agronomic characteristics including plant height,
plant density, row spacing, germination percentage, 1000 seed
weight, seed yield, protein percentage. A detailed discussion of
agronomic features is beyond the scope of this paper, however,
more information can be found on the website www.spii.ir/en-US/
DouranPortal/1/page/Home. The corn varieties were provided by
the Department of Maize and Forage Crop Research, Seed and Plant
Improvement Institute, Karaj, Iran. The seeds were manually and
meticulously cleaned from all foreign materials such as dust, dirt,
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pebbles, and chaff, as well as immature and damaged seeds. The
initial moisture content was measured by drying 15 g of grounded
seeds at 130 °C for 1 h in an oven (Jiao et al., 2016). The measure-
ment was repeated three times. The initial moisture content of corn
seeds was about 11% (wb). In the healthy seeds set, 1000 samples
from each variety were randomly selected for imaging and stored in
sealed plastic packages at room temperature (20 + 1 °C). The reason
for considering this number of samples was that deep learning
networks need a large number of samples for appropriate training
(Wen, 2020).

2.2. Image acquisition and preprocessing

To provide the illumination required for imaging, a 40 W fluo-
rescent lamp about 40 cm in diameter was mounted on the table, and
color (RGB) images were captured by a digital camera (Nikon D3200).
The camera lens was placed at a 25 cm distance from samples, and the
focal length of the camera lens was adjusted to 7.8 mm. The white
balance of the camera was calibrated before capturing images. Sam-
ples were placed on a non-reflective blue paper. For color calibration,
a color chart (ColorChecker Classic, X-Rite, USA) was used. To extract
the features, image segmentation and mathematical morphology
were recruited. The detection of foreground and background in an
image is of paramount importance, as the background generally af-
fects the performance of the image features analyzer (Nasirahmadi
and Miraei Ashtiani, 2017; Miraei Ashtiani et al., 2020a). In this re-
gard, the RGB color space was transformed into other color spaces
such as CIE Lab, HSV, and YCbCr (shown in Fig. 1).

After comparing four different color spaces on a set of images,
the strongest contrast between the seed and the background in the
Lab color space, which contained a luminance channel (L) and two
chrominance channels (a and b), was obtained to be used in next
processing stages. The multi-threshold methods were used to
remove the background, as described by Beyaz et al. (2019). The
morphological filtering process was employed to eliminate any
existing noise. Fig. 2 shows the whole process for image
segmentation.

RGB HSV
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2.3. Hand-crafted features extraction

Eighty-seven features, including 6 color features, 17 morpho-
logical features, 5 Gy level co-occurrence matrix (GLCM) features,
and 59 local binary patterns (LBP) features, were extracted. The
mean and standard deviation of three color channels in the CIELab
color space resulted in six extracted color features. Binary images
were used to obtain the morphological features. The seventeen
measured morphological parameters are listed in Table 1. Also, two
groups of texture features, including GLCM and LBP, were calcu-
lated. The details of these features are described in the following
paragraphs.

2.3.1. Gray level Co-Occurrence matrix

The GLCM is based on the estimation of the second-order sta-
tistics of the spatial arrangement of gray level values. This matrix
represents the association between two neighboring pixels where
the two associated pixels have a certain gray intensity and are
separated by a predefined distance and angle. The features ob-
tained by this method are a symmetric matrix, and the matrix el-
ements are calculated by the following formula (Kurtulmus and
Unal, 2015):

P (i.j)

_ 1
S P (i) )

p (i.j)=

where G is the total number of gray levels; i and j are the pixels to be
examined; p(i,j) represents the co-occurrence probability between
gray levels of i and j, P(i,j) is the number of gray-level co-occurrence
matrices.

Five texture features from the GLCM of each image were
extracted, as shown in Table 2.

2.3.2. Local binary patterns

The LBP descriptors reflect the local texture features of an in-
tensity image by comparing each pixel with its neighborhood
pixels. For each pixel in an image, the central pixel value is

L*a*b*

Fig. 1. Corn seeds in different color spaces.
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Step 1: Original color image

Step 4: Obtaining separated seeds
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Step 2: Applying threshold technique

|

Step 3: Applying morphological operations and calculating
boundary boxes

Fig. 2. Results according to the image preprocessing and segmentation processes.

Table 1

Extracted morphological features of corn seeds (Medina et al., 2010; Zhao-Yan et al., 2005).
Feature Definition
Area The total number of pixels inside the object
Perimeter The number of object boundary pixels

Maximum radius
Minimum radius
Solidity

Extent

Eccentricity
Equivalent diameter

The length of the major axis of the object

The length of the minor axis of the object

The proportion of area to a convex hull

The ratio of pixels in the region to pixels in the bounding box

The ratio of the distance between the foci of the ellipse and its major axis length
The diameter of the circle whose area is equal to the area of the object

Shy 2(/AJm)

Shy P/2VTA

Shs 47A /P2

Shy M/A

Shs A/M3

She 4A/mM?

Sh, 4A/TM m

Shg P2/A

Shg P— PVPZ —4mA/P+ PVP? — 4TA

Sh: shape factor, A: area, P: perimeter, M: major diameter, m: minor diameter.

compared with its eight neighborhood pixels. If the neighborhood
pixel is greater than or equal to the central pixel value, a binary
value of 1 is generated for the neighborhood pixel; otherwise, a
value of zero is considered. By concatenating these binary values
in a clockwise direction, a binary code is obtained. Then, to
calculate the LBP value of the central point, this binary code is
converted to a decimal value (Hu et al, 2020). The whole

procedure of LBP can be defined as follows (Kurtulmus and Unal,
2015; Adeel et al., 2019):

M-1
1, x>0

LBPy = Zs(gn—gk)Z”, S(X):{O x<0 2)

n=0 ’

where M is the number of pixels in the neighborhood, N denotes



S. Javanmardi, S.-H. Miraei Ashtiani, FJ. Verbeek et al.

Table 2
Texture features extracted from GLCM matrix (Pourreza et al., 2012).
Feature Equation
Contrast S i Pp()
Correlation ¢ ¢ (—u)(—p)p(ij)
i Zj:liaiaj
Energy S8 p(i.5)?
Homogeneity ¢ ¢ P(J)
Zl:] 21:11 + “‘ 7]‘

Entropy = >>op(i)log(p(i.j))
ij

Wi, i, 0; and o; are the means and standard deviation of p; and p;.

the radius, g, is the grayscale value of the neighborhood pixel, g is
the grayscale value of the central pixel, and s(x) is the non-linear
quantization function.

2.4. The convolutional neural network features extraction

The structure of a CNN model consists of three main neural
layers: convolution, fully connected, and pooling, each of them has
different tasks in the network architecture. The kernel of the CNN
structure is the convolutional layer that performs the heaviest
computational operations. The convolution layers closer to the
input extract basic features such as edges of different orientations,
while deeper convolution layers extract complex and abstract
features such as specific subsampled object regions (Koztowski
et al., 2019). To capture more complex features of the input image
and increase the nonlinearity of the deep learning structure, con-
volutional layers are often followed by activation layers. To reduce
the number of parameters and computational complexity of the
model, a pooling layer is placed between successive convolutional
layers (Zhang et al., 2019b). As a result, this layer helps to prevent
overfitting and improve generalization (Zhu et al., 2019).

Fully connected layers are always placed at the end of the
network that processes features imported from previous layers. The
task of this layer is to convert the feature map into one-dimensional
feature vectors (Pearline et al., 2019). The DCNN architecture
established for the research presented in this article is shown in
Fig. 3.

The transfer learning method was employed to extract features
using the VGG-16 model pre-trained on the ImageNet data set. The
pre-trained model weights were used as initial weights in deep
learning architecture to extract features from the input image.
VGG-16 is one of two VGG architectures introduced by Simonyan
and Zisserman (2014), which consists of 13 convolutional layers,
5 pooling layers, and 3 fully connected layers. In each convolution
layer, a 3 x 3 multiple filters with a stride of 1 pixel is used. Many
nonlinear functions can be used in pooling layers such as max-
pooling, average pooling, and L2-norm pooling. In this study,
max-pooling was adopted due to its simplicity and ability to
maintain representative features (Huang et al., 2019). All max-
pooling layers were set to a 2 x 2 window size and a stride of 2.
There are several activation functions commonly used in CNNs,
such as the Rectified Linear Unit (ReLU), sigmoid, and hyperbolic
tangent function. In each convolution layer, ReLU was used as an
activation function. Since the ReLU can mitigate the gradient
disappearance problem and provide more optimal error trans-
mission compared to the sigmoid function (Chen et al., 2019).

This function performs the following mathematical operations
on each input data:
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where x shows the feature values of the neurons.

The network input layer size was a 224 x 224 x 3 matrix, where
3 represents three RGB image channels. The convolutional filter
numbers of Conv1, Conv2, ..., Conv5 were 64, 128, 256, 512, and
512, respectively. After each module, the feature map size was
reduced by half so that the feature map size was 224 x 224 in the
first layer and 7 x 7 in the last layer (Fig. 3). The successive
reduction in size and increased number of feature maps in the
upper layers provided a wide variety of more specific and complex
features. At the end of the network, there were three fully con-
nected layers, where the first two layers consisted of 4096 neurons,
and the third was a 1000 fully-connected softmax layer. This
resulted in a total of 4096 CNN features from each image. The main
parameters of the proposed CNN model are shown in Table 3.

To investigate the feasibility of discrimination improvement,
CNN-extracted features were also combined with hand-crafted
features and fed to the classifiers.

2.5. Training and testing procedure

To develop classification models, the data sets were randomly
categorized into training (75%), and testing (25%) subsets. Within
the training set, 10-fold cross-validation was applied to optimize
parameters and estimate the prediction performance of the model.

2.6. Machine learning classifiers

In the classification phase of corn varieties, the extracted fea-
tures were used to train the classifiers. To find the most suitable
classification algorithm, the performance of seven classifiers, as
described in the following sections, has been compared.

2.6.1. Support vector machine

The SVM is a maximum margin classifier. Instead of modeling
the probability distribution of training vectors, SVM attempts to
separate them by directly searching appropriate boundaries be-
tween different classes. A good separation or lower generalization
error of SVM is obtained by a decision line with the maximum
distance from the nearest training points of each class
(Nasirahmadi and Miraei Ashtiani, 2017). Using the mapping
(kernel) function, this method can address complex classification
problems, which are not linear in the primary dimension but could
be linearized in high dimensional spaces (Jia et al., 2015). The
general form of the SVM decision function is as follows (Huang
et al,, 2018; Adem et al., 2019):

f0 =3 yiaK e %) + b (@)
i=1

where x; € R is the training vector, y; € {-1,1}" is the label of each
training case, «; is the Lagrange multiplier, n is the number of
training data, K is the kernel function, and b is the bias term.

The f(x) classification function represents the distance between
input data and the decision-making hyper-plane. As a rule, the
sample farther from the hyper-plane is more likely to be classified
correctly (Huang et al., 2018). Among the different types of kernel
functions (linear, quadratic, cubic, sigmoid and Gaussian radial
basis (RBF)), two polynomial kernels, i.e., cubic and quadratic, were
used, as defined by Eq. (5):
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[Block 4]
28x28x512

[Block 5]

14x14x512 4096 4096 1000

M Convolution layer + RelLU
Max pooling layer

Fully connected layer

Fig. 3. The overall structure of the VGG-16 for feature extraction. The figure also shows the visualization of the features of different blocks.

Table 3

Specific parameters of the CNN architecture.
Factor Value
Image input size 224 x 224 x 3
Depth 16
Optimizer RMSprop
Loss function cross-entropy
Max epochs 100
Batch size 32
Learning rate 0.01
Parameters 138 M

T d
K(x;, X) = [(x x;) +1] (5)

d = 2 for quadratic kernel & d = 3 for cubic kernel

The parameters used in both SVM classifiers were set as follows:
box constraint level: 1, kernel scale mode: automatic, and
standardize data: true.

2.6.2. Weighted k-nearest-neighbor

The KNN classifier is a nonparametric instance-based learning
algorithm. The main idea behind this algorithm is to find the closest
training samples in a feature space. However, overlapping of
different classes greatly diminishes classification performance.
Another limitation of this method is that it places the same weight
on the class labels of each k-nearest neighbor to the observation
being classified (Li et al., 2020).

To overcome these drawbacks, Hechenbichler and Schliep
(2004) proposed a weighted kNN classifier. The weighted kNN is
based on the idea that greater weights are assigned to neighbors
closer to the new observation compared to those further away from
the new observation (Li et al., 2020). Assigning weights to neigh-
bors according to their distance improves classification perfor-
mance compared to standard kNN. Given that training samples
closer to the objects are more identical, they are more likely to be
classified in the same class. In the weighted kNN method, the dis-
tances are first standardized, and then the kernel function is used to
transfer distances to the weights. Details of this method can be
found in Hechenbichler and Schliep (2004). There are several types
of distance metrics and weights that can be chosen. In this study,
the number of nearest neighbors was set to 10, and the squared
inverse of the distance and Euclidean distance were used as the
weight and the distance metric, respectively.

2.6.3. Artificial neural network

ANNSs can intelligently extract relationships of input and output
data sets, even when their associations are unknown. Among
various types of neural network models, the backpropagation
neural network (BPNN) is widely used as a supervised classifier due
to its ease of implementation and convergence as well as proper
function approximation. A BPNN model usually consists of 3 layers
where input and output neurons represent predictive and depen-
dent variables, respectively, while hidden-layer neurons are tasked
with information processing and transfer to the related neurons in
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the network (Miraei Ashtiani et al., 2020b). This model uses the
gradient steepest descent method to adjust neuron weights and
minimize output error (Kuo et al., 2020). For example, Chimeno-
Trinchet et al. (2020) used a scaled conjugate gradient back-
propagation algorithm to train the network. The optimal number of
hidden layers was 6. According to the type of input data set, the
optimal number of hidden layer neurons varied from 10 to 45. The
number of epochs was set as 1000, and the learning rate was 0.1.
Mean squared error and hyperbolic tangent (tanh) were set as a
cost function and activation function, respectively. A stochastic
gradient descent algorithm was utilized to accelerate the network
training process.

2.6.4. Boosted and bagged trees

The boosted tree technique is based on the integration of a
collection of weak learners such as decision trees (Moon et al.,
2018). Unlike linear models, this method is capable of modeling
nonlinear interactions between features and target values. In the
boosted tree model, each sub-tree is sequentially constructed from
the prediction residuals of the previous one. In the first step, the
data is divided into two data sets at each split node, the best data
segmentation is determined and deviations of experimental values
from their respective means are calculated at each step of the
boosting process. Given the previous sequence of trees, the next
tree is fitted with new residues to find another partition that will
further reduce the model error (Gupta et al., 2017).

In ensemble-based learning methods, the number and depth of
trees are important parameters. Increasing the depth of trees im-
proves the model performance, but it can also lead to the over-
fitting problem. In the same vein, increasing the number of trees
improves the accuracy of the model but prolongs the processing
time (Saeed et al., 2019). Therefore, to achieve the desired result, a
trade-off between the number of trees and the maximum depth is
necessary. In this paper, the boosted tree classifier was trained
using 30 trees and a maximum tree depth of 20. The adaptive
boosting (AdaBoost) ensemble algorithm was employed to enhance
improvement and improve tree accuracy. The learning rate was set
to 0.1 with a subspace dimension 1, and the decision tree was
chosen as the learner type.

Another ensemble method used in this study was the bagged
tree. This model combines several decision tree classifiers to
improve prediction compared to a single decision tree classifier.
Generally, it trains a set of simple classifications by replicating the
training data and, following the combination of their outputs, de-
fines the final class by voting (Vivar et al., 2019). The bagged tree
was using the learner type of decision tree and bag ensemble
technique. Similar to the boosted tree configuration, the learning
rate, the subspace dimension, the number of trees, and the
maximum tree depth were set to 0.1, 1, 30, and 20, respectively.

2.6.5. Linear discriminant analysis

LDA, as a supervised and parametric method that utilizes a
Gaussian mixture model for data generation, is another classifica-
tion method employed in this study. LDA reduces data size by
applying linear boundaries between groups, maximizes the dis-
tance between classes and, at the same time, minimizes variance
within each class (Fogarty et al., 2020). In other words, this method
uses the normal distribution-based pooled covariance matrix to
map features for further segmentation of different classes (Wakholi
et al,, 2018).

2.7. Performance evaluation

In this study, accuracy is considered as the most important in-
dicator to evaluate the performance of classification models,
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because the data sets were balanced (Cano et al., 2016; Yilmaz et al.,
2020). However, in addition to the accuracy, precision, recall, and
Fl-score were also introduced. They are computed as follows
(Beyaz et al., 2019):

ny, +n

Accuracy = p + Mn (6)
np +Np + Mmp “+ Nmn

. n

Precision=—2 (7)
Tp + Mmp
n

Recall=—2 (8)

Mp + Nmn

Precision x Recall
F1 —score=2 x Precision + Recall ®)

where n, and n, show the number of positive (classified) and
negative (rejected) samples, and ny;, and ny,, show the number of
positive and negative samples were misclassified, respectively.

2.8. Software

MATLAB R2016a (The MathWorks Inc., Natick, MA, USA) was
used to perform the most image analysis tasks and build the clas-
sification models. Furthermore, we used Python 3.6 to build the
CNN model. All analyses were executed on an Asus computer
equipped with an Intel® Core i7 processor, 8 GB of DDR4 RAM, and
NVidia GeForce GTX 1050 Ti with 4 GB GPU with Windows 10 and
Linux Ubuntu 16.04.

3. Results and discussion

After extracting features from the images of the samples, ANN,
quadratic, and cubic SVMs, boosted and bagged trees, LDA, and
weighted kNN classifiers were trained. The results presented in
Table 4 show the average accuracy of classification of the algo-
rithms on the test data.

According to Table 4, ANN had the best performance with color
features, providing overall accuracy of 78.9%; conversely, while LDA
had the worst performance with 33.9% accuracy. With LBP features
the highest overall classification accuracy of 85.7% was also ach-
ieved by ANN, while the lowest classification accuracy of 49.5% was
achieved by LDA. Based on hand-crafted features, ANN and cubic
SVM showed almost similar classification performance, with SVM
classified slightly better on the set of GLCM and morphological
features. LDA had consistently the worst performance, which sug-
gests that the linear discriminant analysis is not suitable for the
classification of the corn varieties. Our findings correspond to the
results of Nie et al. (2019) and Wakholi et al. (2018), who reported
that in the classification of seeds, non-linear models like SVM had a
superior performance than linear models. Although LDA was not
suitable for the classification of corn seeds, this method was suc-
cessful to classify other agricultural products. In a study by Pourreza
et al. (2012) wheat varieties were classified using LDA with an
average accuracy of 98.15%. The poor results in the classification of
corn varieties can be explained by significant similarity in color and
texture features among varieties under study. The comparison of all
tested classifiers showed that among hand-crafted features,
morphological and LBP features had the least and most discrimi-
natory powers, respectively, in the classification of corn varieties.
The average accuracy of classification based on morphological
features was lower than 45% because of the high similarity between
morphological features of corn varieties. In contrast to our results,
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Table 4

Journal of Stored Products Research 92 (2021) 101800

Classification accuracy (%) of trained classifiers on the testing data using various features.

Feature Discriminant Model
ANN Cubic SVM Quadratic SVM Weighted kNN Boosted Tree Bagged Tree Linear Discriminant

Color 78.9 78.2 70.2 66.6 41.6 53.8 339
Morphological 454 45.5 43.8 44.3 399 44.2 30.1
LBP 85.7 84.7 84.1 75.7 64.4 76.3 49.5
GLCM 74.0 81.9 76.9 734 58.1 67.6 33.6
Color + Morphological + LBP + GLCM 72.0 72.0 73.7 53.6 50.9 69.4 45.5
CNN 98.1 93.8 93.2 91.7 81.7 89.1 91.3
CNN + Color 97.2 93.4 93.2 938 874 93.6 91.7
CNN + Morphological 88.6 82.8 82.1 62.6 28.6 243 203
CNN + LBP 93.8 95.6 94.4 91.3 81.9 92.0 92.8
CNN + GLCM 94.0 92.6 92.2 87.1 80.1 89.5 92.0
CNN + Color + Morphological + LBP + GLCM 90.2 84.5 85.0 63.5 27.7 23.7 47.2

The bolded values show the best performance of each classifier.

Zhao-Yan et al. (2005) observed that rice seed varieties could be
classified based on morphological features with a satisfactory ac-
curacy of 84.83%. This can be because of the more regular
morphological form of rice seeds compared with corn seeds (Yang
et al.,, 2015). By comparing the results presented in Table 4, we can
see that fusion of all low-level features did not improve the accu-
racy of classification. However, introducing CNN significantly
improved the accuracy of classification. For example, the highest
classification accuracy 98.1% was achieved by ANN using the fea-
tures extracted by CNN, whereas the lowest classification accuracy
was 81.7% by the boosted tree. This study also showed the effect of
combining CNN-extracted features with hand-crafted features.
Generally, adding CNN-extracted to hand-crafted features resulted
in better performance of models compared to using only hand-
crafted features. For example, the fusion of color and CNN fea-
tures increased the average accuracy 1.7 times in comparison with
the models that used only color features as inputs. A similar effect
was observed in the cases CNN + LBP and CNN + GLCM, where the
average accuracy increased as compared to LBP and GLCM alone.
The fusion of CNN and morphological features was beneficial for
the performance of cubic and quadratic SVMs, weighted kNN, and
ANN. The boosted tree had the worst performance on both CNN and
CNN + hand-crafted features when compared to other models. It
follows that the boosted tree is not a good fit on the data having rich
information and higher features dimension owing to its under-
fitting nature (Ali et al., 2017). As inferred from Table 4, the
fusion CNN-extracted features with hand-crafted features did not
lead to a significant improvement of accuracy as compared with
CNN. This fusion did not improve but rather reduced the classifi-
cation performance of ANN. A similar result has been obtained by
Tan et al. (2020) who found that the ANN classifier with CNN fea-
tures was the best method for the classification of plant species.
However, it should be noted that the performance of a classifier is
affected by the learning algorithm used and the features used for
classification (Bakhshipour et al., 2018).

When comparing a range of feature extraction methods to
classify corn seeds, Yang et al. (2015) used hyperspectral imaging
for the classification of four corn varieties. In their study, hyper-
spectral data was collected from germ and endosperm sides and
recognition accuracy of 98.2% and 96.3%, respectively, was achieved
by the SVM model. Dong et al. (2018) used near-infrared spec-
troscopy to classify 3 types of corn. The highest classification ac-
curacy of 80% in the study was achieved by the SVM model. Despite
the high accuracy of the results, expensive devices such as multi-
spectral imaging, hyperspectral imaging, and near-infrared spec-
troscopy were used mostly in related studies. In the proposed
method, however, a low-cost digital camera was used. Thus, from
an economic standpoint, a very cost-effective system was

developed. Besides, in most of these studies, the models were built
based on the data related to the particular orientation of the sample
corn seed that cannot be applied for industrial sorting systems
(Wakholi et al., 2018). However, the proposed method is indepen-
dent of the seed orientation, so classification could be performed in
industrial settings with high accuracy.

Because the CNN-ANN configuration had the best performance
and accuracy, we presented cross-entropy performance and error
histogram only for this case (Figs. 4 and 5). Cross-entropy is
commonly used to describe the average error between calculated
output and target output in the logarithmic scale. As visible in
Fig. 4, the best validation performance is obtained at a minimum
cross-entropy error of 0.0028687 in 165 iterations. The validation
accuracy of the validation set decreased continuously after the
165th epoch, but the training accuracy increased. This was an
indication of overfitting and a reason to stop the training process at
epoch 165. The outcome cross-entropy was almost zero indicating
the superb performance of ANN.

Fig. 5 depicts the error histogram with 20 bins for the training,
validation, and testing sets.

The plot indicates how the trained model fits the data set
through maximum possible errors that can occur. It is worth noting
that the errors are very close to zero. This proves that the proposed
system performs the classification successfully with acceptable
error.

. Best Validation Performance is 0.0028687 at epoch 165
10°
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Fig. 4. Cross-entropy versus the epochs plot for training, validation, and testing phases
of the ANN-based on CNN features.
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10% Error Histogram with 20 Bins The confusion matrices for all the seven diagnostic models
— based on the features for which they showed the best performance
I Training .
0.75 - [ Validation are presented in Figs. 6 and 7.
I Test The rows in the confusion matrix correspond to the predicted
=—=2om Ermox class (Output Class) and the columns correspond to the true class
aslh (Target Class). The cells in the main diagonal of figures include the

number of correctly classified samples, while other cells include the
misclassified data. As shown in Fig. 6 (a), the diagnostic model of
ANN using CNN features had the best performance for most classes,
0.25 | . .
except classes 3 and 6. In class 3, nine samples were classified
wrongly as other classes and in class 6, there were 11 samples
misclassified as other classes. Nevertheless, satisfying accuracies of

Instances

S Y333583L58:58588508588 96.4% and 95.6% were achieved for classes 3 and 6, respectively,
FINLIIIIE g § SIIIIFTIRITS where other classes had an accuracy between 97% and 100%. The
TETTT ST S experimental results clearly demonstrate that the CNN-ANN clas-

Erri)rs = Targets - Outputs . . . K .
9 b sifier achieved superior performance in all metrics compared to

other studied frameworks, where the average accuracy, precision,

Fig. 5. Error histogram for training, validation, and test sets for the ANN-based on CNN
fegture& € & recall, and Fl-score were 98.1%, 98.2%, 98.1%, and 98.1%,
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Fig. 6. The confusion matrices of the different classifiers on the testing data set based on the features that had the best performance as described in Table 4: (a) CNN; (b) CNN + LBP;
(c) CNN + LBP; and (d) CNN + color. Classes are: 1 = KSC 201, 2 = KSC 704, 3 = KSC 290, 4 = KSC 380, 5 = KSC 301, 6 = KSC 400, 7 = KSC 260, 8 = KSC 647, and 9 = KSC 410.
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Bagged Tree
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Fig. 7. The confusion matrices of the different classifiers on the testing data set based on the features that had the best performance as described in Table 4: (a) CNN + color; (b)
CNN + color; and (c) CNN + LBP. Here 1, 2, 3, 4, 5, 6, 7, 8, and 9 are depicting KSC 201, KSC 704, KSC 290, KSC 380, KSC 301, KSC 400, KSC 260, KSC 647, and KSC 410.

respectively. An obvious conclusion could be drawn from Fig. 6(b)
that in the cubic SVM model based on the fusion of CNN and LBP
features it was 99 misclassifications, while for the ANN model
trained with CNN features only 42 corn seeds were misclassified.
Among nine classes, the lowest (87.6%) and the highest (98.8%)
diagnosis rates belonged to classes 1 and 9, respectively. The
average accuracy, precision, recall, and F1-score of cubic SVM with
CNN + LBP features were 95.6%, 95.7%, 95.6%, and 95.7%, respec-
tively. The confusion matrix in Fig. 6(c) shows the experimental
results of the quadratic SVM classifier using the combination of
CNN and LBP features. By applying this configuration, 126 out of
2250 corn samples were misclassified. A similar result was ob-
tained by cubic SVM classifier using the same combination of
CNN + LBP features, where the lowest and highest classification
accuracies were observed for classes 1 and 9, respectively. Addi-
tionally, in both systems, 25 samples from class 1 were classified as
class 3 which had the highest volume of misclassified samples
among different classes. The average accuracy, precision, recall, and

10

F1-score of this configuration were 94.4%, 94.6%, 94.4%, and 94.5%,
respectively. The experimental results of the weighted kNN based
CNN + color classifier is shown in Fig. 6(d). For this system, the
minimum and maximum classification accuracies were observed in
classes 6 and 9 (86.0% and 99.2%, respectively). Also, the most
obvious misclassifications occurred in 6-vs-7 and 5-vs-3. The
average amount of the performance measures of the weighted kNN
based CNN + color classifier including accuracy, precision, recall,
and Fl-score were obtained 93.8%, 94.0%, 93.8%, and 93.9%,
respectively.

For confusion matrix of boosted tree-based CNN + color model
(Fig. 7a), class 4 with the lowest accuracy (29.2%) and class 9 with
the highest accuracy (99.2%) were classified, whereas all of the
other classes were classified with accuracies between approxi-
mately 89 to 97%.

This classifier had serious problems in discriminating between
classes 4 and 9 and also between 4 and 2. The average accuracy,
precision, recall, and Fl-score of the boosted tree-based
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Table 5
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The classification time (s) of different classifiers, based on different features, on the testing data.

Feature Discriminant Model
ANN Cubic SVM Quadratic SVM Weighted kNN Boosted Tree Bagged Tree Linear Discriminant

Color 8.4 259 121 6.1 8.2 120 9.8
Morphological 12.0 272 224 10.6 10.2 16.1 113
LBP 14.9 329 24.9 133 121 17.5 13.9
GLCM 8.2 249 8.8 8.7 9.3 153 10.3
Color + Morphological + LBP + GLCM 193 37.0 28.5 213 20.7 224 17.5
CNN 26.8 39.5 384 282 25.6 24.5 20.2
CNN + Color 24.5 41.8 31.2 14.2 16.0 21.6 22.1
CNN + Morphological 28.6 38.0 32.0 16.2 17.4 20.7 19.5
CNN + LBP 324 45.6 343 17.6 18.0 20.9 18.6
CNN + GLCM 21.9 38.0 29.6 18.7 15.1 213 23.0
CNN + Color + Morphological + LBP + GLCM 47.5 52.2 123.2 72.0 95.4 109.9 89.8

The bolded values show the least classification time achieved by each classifier.

CNN + color model on the test data set were 87.4%, 89.1%, 87.4%,
and 88.2%, respectively. The confusion matrix of the bagged tree
model based on the fusion of CNN and color features is shown in
Fig. 7(b). We can see that class 2 had the worst classification error
among all classes since a significant amount of the corns (33
samples) were confused with classes 7 and 9. Class 9 had better
diagnostic accuracy in comparison with other classes. The mean
values of all performance measures for the bagged tree-based
CNN + color model were equal to 93.6%. In Fig. 7(c) the perfor-
mance of the LDA-based CNN -+ LBP classifier is demonstrated. An
important interpretation of this plot is that the diagnosis accuracy
of classes 5 and 2 was lower than 85% while it was higher than 93%
for other classes. The highest number of misclassifications occurred
between classes 5 and 3 (60 samples), followed by 2 and 7 (24
samples). The average values of accuracy, precision, recall, and F1-
score of LDA-based CNN -+ LBP classifier were 92.8%, 93.6%, 92.8%,
and 93.2%, respectively.

The classification time of different models used is shown in
Table 5. Classification time indicates the time required to classify
2250 seeds in the test set, using a trained algorithm. As could be
seen from Table 5, the classification time required for all classifiers
was reasonable since a single seed could be classified in less than
0.05 s. When individual hand-crafted features were used to classify
the classes, a weighted kNN classifier based on color features
required the shortest classification time among all algorithms. In
contrast, a cubic SVM classifier based on LBP features required the
longest classification time. In the same Table, it becomes clear that
computational time increased for classifiers used fusion of hand-
crafted features compared to classifiers used individual hand-
crafted features. Classification time for all classifiers using only
CNN features and fusion of CNN-extracted with hand-crafted fea-
tures was relatively longer than for classifiers based only on hand-
crafted features. The longest classification time was observed for
cases based on the fusion of all features. Cubic SVM was more time-
consuming than other classifiers.

Although the diagnosis time for the CNN-ANN classifier was
longer than some of the other models, the required time for clas-
sification of a single corn image (0.01 s) was acceptable. It should be
noted that the classification time of algorithms is dependent on
hardware resources. Therefore, using the next generation of GPUs
can assure a shorter classification time for the proposed method in
this study.

4. Conclusions

Based on the present research, the following conclusions can be
drawn:

1

1. Classifying corn seed varieties in the batch is a challenging
process because of high inter-class similarity. To resolve this
problem, a novel technique based on deep learning of computer
images, using the combination of hand-crafted and non-
handcrafted (CNN-extracted) features was proposed. The
application of CNN-extracted features in combination with
hand-crafted features improved the accuracy of nine corn seed
varieties classification as compared to hand-crafted features
alone. For example, the biggest improvement was observed with
the Linear Discriminant algorithm, where the accuracy of the
model increased from 33.6 to 92%, while the ANN algorithm
improved the accuracy of classification from 85.7 to 93.8%.

2. In our experiments, hand-crafted features included 59 local bi-
nary pattern texture features, 17 morphological features, 6 color
features, and 5 Gy level co-occurrence matrix features. Non-
handcrafted features have been extracted by feeding images to
a VGG-16 pre-trained CNN model. Both hand-crafted and non-
handcrafted features were used to train different classifiers
including ANN, cubic SVM, quadratic SVM, weighted kNN,
boosted tree, bagged tree, and LDA. The best accuracy of 98% was
achieved by concatenating CNN-extracted features with ANN.

3. Although the fusion of CNN-extracted features added time to
the classification process, the proposed CNN-ANN algorithm had
an acceptable classification time of 26.8 s.

4. Our results demonstrated that CNN-ANN is a promising archi-
tecture for accurate classification of corn varieties with the po-
tential for further improvement. As the next step, we are going
to explore the effect of dimensionality reduction on classifica-
tion time and accuracy.
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