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Vegetation dynamics involves processes operating at widely 
different spatial and temporal scales, from stomatal open-
ing and closing (minutes to days, at the leaf level) to biome 

shifts (decades to centuries, across entire continents). Tremendous 
research efforts have been devoted to understanding and predicting 
how plant processes and functional traits of individuals combine to 
determine the structure, function and dynamics of vegetation on 
larger scales. To integrate process understanding from different 
disciplines, dynamic vegetation models (DVMs) have been devel-
oped that combine elements from plant biogeography, biogeo-
chemistry, plant physiology, forest ecology and micrometeorology.  

The best-known DVMs, dynamic global vegetation models 
(DGVMs), have found a wide field of application, including assess-
ments of land–atmosphere carbon, water and trace gas exchanges; 
water resources; impacts of environmental change on plants and eco-
systems; land management; and feedbacks from vegetation changes 
to regional and global climates1,2. DVMs have also been applied on 
local scales for testing of ecological hypotheses and to answer practi-
cal questions in forest management and agriculture. All DVMs are 
based on the assumption of universally valid processes, which, in 
principle, enable them to make predictions under conditions out-
side the range of observations used for model development.

Organizing principles for vegetation dynamics
Oskar Franklin   1,2 ✉, Sandy P. Harrison   3, Roderick Dewar4,5, Caroline E. Farrior6, Åke Brännström1,7, 
Ulf Dieckmann1,8, Stephan Pietsch1, Daniel Falster   9, Wolfgang Cramer   10, Michel Loreau11, 
Han Wang   12, Annikki Mäkelä13, Karin T. Rebel14, Ehud Meron15,16, Stanislaus J. Schymanski   17, 
Elena Rovenskaya1, Benjamin D. Stocker   18,19, Sönke Zaehle   20, Stefano Manzoni   21,22, 
Marcel van Oijen   23, Ian J. Wright   24, Philippe Ciais   25, Peter M. van Bodegom   26, 
Josep Peñuelas   19,27, Florian Hofhansl   1, Cesar Terrer   28, Nadejda A. Soudzilovskaia   26, 
Guy Midgley   29 and I. Colin Prentice12,24,30

Plants and vegetation play a critical—but largely unpredictable—role in global environmental changes due to the multitude of 
contributing processes at widely different spatial and temporal scales. In this Perspective, we explore approaches to master 
this complexity and improve our ability to predict vegetation dynamics by explicitly taking account of principles that constrain 
plant and ecosystem behaviour: natural selection, self-organization and entropy maximization. These ideas are increasingly 
being used in vegetation models, but we argue that their full potential has yet to be realized. We demonstrate the power of 
natural selection-based optimality principles to predict photosynthetic and carbon allocation responses to multiple environ-
mental drivers, as well as how individual plasticity leads to the predictable self-organization of forest canopies. We show how 
models of natural selection acting on a few key traits can generate realistic plant communities and how entropy maximization 
can identify the most probable outcomes of community dynamics in space- and time-varying environments. Finally, we present 
a roadmap indicating how these principles could be combined in a new generation of models with stronger theoretical founda-
tions and an improved capacity to predict complex vegetation responses to environmental change.
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DVMs have become more complex as a growing community 
of developers have striven to represent an ever-greater number of 
processes. However, additional complexity has rendered models 
dependent on providing values of an ever-increasing number of 
parameters, many of them poorly constrained by observations. This 
tendency has created a ‘complexity trap’, whereby increases in real-
ism are offset by decreases in transparency, robustness and predictive 
power due to accumulation of uncertainty3. Moreover, important 
limitations of current DVMs have become apparent over the past 
decade. Predictions of carbon (C) fluxes and vegetation cover have 
been shown to differ greatly among state-of-the-art DGVMs (global 
DVMs), and these differences have not been reduced over time3–5. 
Possible underlying reasons for these divergences include contrast-
ing or incomplete representations of nitrogen (N) uptake, responses 
to soil moisture and mortality6–8. C allocation to different tissues is a 
key uncertainty in current DVMs9,10 due to a lack of consensus as to 
how plants and vegetation adjust to variations in the availability of 
different resources (such as water, CO2 and N). For example, DVMs 
underestimate the ability of plants to enhance N uptake through 
increased below-ground C allocation and, at the same time, they 
overestimate changes in leaf N (ref.11), resulting in overly strong 
projected nutrient limitations on future C uptake12.

Plant diversity is another challenge for modelling. The effects of 
trait diversity have been evaluated in some DVMs using observed 
plant trait variation as an input13,14, and some models have addressed 
the generation and dynamics of trait diversity15,16. However, it 
remains a challenge to predict how diversity is maintained and may 
change over time. Including diversity in DVMs without sufficient 
understanding of its mechanistic basis risks further aggravating the 
complexity trap.

In summary, substantial progress has been made in understand-
ing individual plant processes, and this understanding has been 
used to continually upgrade existing DVMs and to add new pro-
cesses. While this approach improves predictions of current vegeta-
tion, the remaining problem (and the greater challenge) is to predict 
vegetation dynamics reliably in a changing environment. We argue 
here that consideration of three general organizing principles—
natural selection, self-organization and entropy maximization—can 
facilitate the development of more reliable vegetation models. These 
are not new ideas, but they have been explored, so far, primarily, 
in small-scale and theoretical studies. Some are already in use in 
prognostic DVMs, but their full potential for explaining vegeta-
tion dynamics has not yet been realized. Here, we aim to clarify the 
theoretical basis, and the potential and limitations, of these general 
organizing principles for improving our understanding of vegeta-
tion dynamics and our ability to predict vegetation change.

The concept of organizing principles
An organizing principle determines or constrains how components 
of a system, such as different plants in an ecosystem or different 
organs of a plant, behave together. Mathematically, an organiz-
ing principle can be envisaged as an additional equation added to 
a system of equations, allowing one or more previously unknown 
variables in the system to be determined, thereby reducing the 
uncertainty of the solution. We highlight three such principles that 
are valuable for understanding the complexity of organisms and 
ecosystems and, we argue, will help vegetation models to escape the 
complexity trap. The first is natural selection, operating on indi-
viduals (genotypes) to determine the traits of successful species 
and among species to determine community composition. The sec-
ond is self-organization, whereby the interactions of system com-
ponents (including individual plants) lead to a predictable system 
structure. The third is entropy maximization, a statistical selection 
principle which expresses the aggregated outcome of a large num-
ber of underlying stochastic processes subject to a small number of 
system-level constraints.

Natural selection is a key source of predictability in plants
All persisting plant traits and behaviours must have passed the fil-
ter of natural selection. Acting on individuals of a species, natural 
selection eliminates unfit or uncompetitive traits and trait combi-
nations rapidly and effectively. Natural selection is thus the main 
reason why species do not possess arbitrary combinations of func-
tionally significant traits. Acting on differences among species, 
natural selection is a driver of population and community dynam-
ics. It generates strong relationships among traits, and correlations 
between traits and environment, that are not mandated by physical 
laws alone. Therefore—and despite the underlying complex inter-
actions among organisms, communities and ecosystems—natural 
selection is a key source of predictability in biological systems. This 
simple and powerful idea allows models to predict more and require 
less input information (fewer uncertain parameters), which, ulti-
mately, can improve both their predictive power and our scientific 
understanding of the patterns they describe.

Given that traits and community composition are subject to 
natural selection for increasing fitness, the resulting trait combi-
nations may be predictable—they will be those that maximize fit-
ness. Modelling approaches based on this optimality principle are a 
shortcut to predicting evolved traits and how they vary with envi-
ronmental conditions (such as functional biogeography and phe-
notypic plasticity) without simulating the underlying evolutionary 
dynamics or physiological mechanisms through which optimality 
is achieved (note that optimality here refers to the eco-evolutionary 
optimality of plants, not the method of optimization used to estimate 
model parameters). Optimality reduces the amount of mechanistic 
detail needed in models and expands the range of conditions under 
which they can be applied without re-parameterization. It does not 
imply the existence of a specific physiological control mechanism 
(for example, hormones); optimality may be the result of bottom-up 
effects, such as local sink and source dynamics in each organ17, or 
the coordination of different processes18. Optimality hypotheses are 
thus concerned with the outcomes of plant mechanisms rather than 
the mechanisms themselves.

Optimality approaches to modelling often make use of eco-
nomic concepts19, expressing the fitness proxy and the functional 
traits (FTs) optimized in terms of costs and benefits in a common 
currency (usually C). Thus, the optimality criterion is max(fitness 
proxy (FTs) = benefits (FTs) – costs (FTs)) with respect to FTs (Fig. 
1; Supplementary Table 1). The fitness function implicitly integrates 
the effect of all processes and, therefore, does not have to be cali-
brated for different conditions or species. This property makes it 
well suited to address complex plant processes such as C allocation, 
which regulates, for example, how plants respond to increasing 
atmospheric CO2 concentration in the presence of other resource 
limitations. An optimality hypothesis stating that trees maximize 
net biomass increment and reproduction explains the interacting 
effects of elevated CO2 and N availability on tree growth and alloca-
tion, as observed in free air CO2 enrichment (FACE) experiments20,21 
(Fig. 1). Maximization of a related fitness proxy also explains water 
use responses to elevated CO2 in FACE experiments22. The optimal-
ity hypothesis, stating that plants minimize the combined C costs 
of maintaining photosynthetic capacity and supporting water trans-
port, explains a global pattern of variation among biomes in leaf 
CO2 uptake properties, requiring only two parameters that are com-
mon to all C3 plants23,24 (Fig. 2).

Despite the power of eco-evolutionary optimality approaches to 
explain a wide range of observed phenomena (Supplementary Table 
1), only a few have been applied in prognostic DVMs (for exam-
ple, DGVMs): notably, formulations of optimal stomatal conduc-
tance25–29 and leaf-level N allocation30. Optimal C allocation has been 
addressed in a prognostic DVM, not in terms of optimal acclimation 
(as in Fig. 1) but rather as an outcome of competition between differ-
ent plant types, each with a pre-determined C allocation strategy31.
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It is not straightforward to introduce optimal allocation in exist-
ing DGVMs because it requires a rethinking of the model structure 
from a sequential C flux from one compartment to the next to a 
linked regulation of leaves, stem and roots based on the costs and 

benefits of all of the limiting resources. However, in addition to this 
technical challenge, some conceptual issues may have hampered the 
application of optimality in prognostic DVMs.

One argument against the optimality approach is that optimal-
ity in a variable environment may never be reached32. This issue, 
however, calls for analysis of the appropriate temporal and spatial 
scale of the fitness proxies and the environmental variables and veg-
etation responses analysed22. At the leaf scale, the cost efficiency of 
leaf photosynthesis in terms of water and C use has been used as 
a fitness proxy to predict regulation of stomatal conductance33–35. 
At the whole-plant scale, maximization of fitness proxies related to 
plant production has been used to predict CO2 uptake, root distri-
butions36–38, C allocation39 and tree height40. Organ-scale optimality, 
such as vertical leaf N distribution, can be nested within whole-plant 
optimality, such as whole-tree N and C allocation21. By including 
survival in the fitness proxy, optimality models can address forest C 
storage under elevated CO2 and water limitation41 and explain pat-
terns and relationships of growth rate, mortality, wood density and 
drought response in trees42.

Another conceptual issue is a perceived conflict between opti-
mality and the evolutionarily stable strategy (ESS), where ESS refers 
to the combination of trait values that emerges from competition 
among alternative strategies32,43. Based on game theory, it has been 
argued that evolution does not result in optimal solutions because 
the winning strategy in competition with others (the ESS) is not the 
same as the optimal strategy in the absence of competitors. However, 
this apparent conflict disappears if (i) optimality is defined at the 
individual level and (ii) the impact of competition is included in 
the definition of the biotic environment. This is naturally done 
in individual-based models, but can also be done in stand-based 
models, for example, by maximizing height growth as the winning 
strategy under competition for light44 or by explicitly modelling 
competition for light and nutrients39,40, water45 or mycorrhizal N 
supply46. Competition can have large effects on optimal behaviour. 
For example, competition for water reduces the benefits of saving 
water, leading to an optimal stomatal behaviour that differs from 
what would be optimal in the absence of competition47.

An important, but so far little-studied, question is to what extent 
trait variation along environmental gradients is due to phenotypic 
plasticity (acclimation within individuals) or genotypic differen-
tiation. Traits differ in this respect48–50, and the difference is criti-
cal for the time scale of changes, as trait acclimation is faster than 
mean-trait changes due to shifts in community composition or 
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genetic (or epigenetic) evolution. Although often lumped together 
in observational studies, plasticity is not equivalent to intraspecific 
variation because the latter may also include non-plastic (genetic) 
variation. While plastic traits acclimate to the current environment, 
genetic variation has been shaped by the whole evolutionary his-
tory, which is significantly more challenging to represent and makes 
it precarious to predict non-plastic traits from the plant’s current 
local environment. However, some inter-relationships among 
traits (rather than trait versus environment) may be more predict-
able across variable environments, as indicated by trait econom-
ics spectra51–53. These relationships can be used to test optimality 
hypotheses, which can explain the mechanisms underlying trait 
relationships54,55 and can be used to predict how trait relationships 
vary across environments, in time as well as in space.

Fitness-based optimality is well-defined only at the individual 
level and usually predicts a single optimal strategy (a set of traits 
defining a plant type) for a given environment. Although real com-
munities usually consist of many coexisting types, the single optimal 
strategy may be a good first-order approximation of the dominant 
plant type in a given environment. For example, a model that pos-
tulates that plants optimize the proportions of leaf, stem and root 
growth to compete with neighbours for N and C (resulting in an 
ESS) successfully reproduces observed global distributions of pri-
mary production and the allocation of N and C to leaves, stems and 
roots56. This finding suggests that maximization of individual com-
petitiveness for resources is a useful optimality principle to explain 
the dominant vegetation type and traits in a given environment. 
It may also be possible to use an optimality approach to address 
diversity by generating a range of alternative optimal strategies57. 
An advantage of the optimality approach compared to empirical 
community-mean traits approaches, for example58, is that the fit-
ness function implicitly accounts for covariation among traits59,60.

In summary, eco-evolutionary optimality is a powerful concept 
to predict plant traits as a function of environmental conditions, 
especially for plastic processes, such as C and N allocation, which 
represent a weak point in predictive DVMs61. There is considerable 
potential to use optimality hypotheses to understand how and why 
different plant traits co-vary and to apply them to improve predic-
tions of how trait values and species distributions respond to envi-
ronmental change.

Natural selection generates functional diversity
Plant-level optimality concepts help in predicting a single (or 
dominant) strategy or plant type in a given environment, but they 
do not predict biodiversity within a site (α-diversity). For vegeta-
tion dynamics, functional diversity—variation in functional traits 
among the plants in a community—is the most relevant aspect of 
biodiversity62. Natural selection drives the evolution of traits and 
community dynamics by operating on functional diversity. The 
inability of many current DVMs to account realistically for func-
tional diversity has been shown to cause underestimation of local 
acclimation and adaptation63, artificial threshold behaviour64,65 and 
underestimation of the resilience of vegetation to environmental 
change14. Functional trait diversity has been included as an input 
in a tropical forest model to improve its predictions of ecosystem 
processes13,14, but this approach does not address the generation 
and maintenance of diversity. Diversity-generating approaches were 
pioneered in a simulation of the large-scale biogeography of marine 
phytoplankton66 and have been applied to theoretical analysis of 
vegetation dynamics67,68 and even the prognostic modelling of tropi-
cal ecosystems (aDGVM2 (refs.15,16)). How best to represent func-
tional diversity in DVMs nonetheless remains an open question.

Functional diversity can be understood as the outcome of two 
interacting effects: environmental filtering by the abiotic environ-
ment determines where a plant can potentially survive (the fun-
damental niche), while biotic interactions determine which plants 

can persist together (the realized niche). Environmental filtering 
is relatively straightforward to model69, but coexistence is much 
more difficult. One approach is to more-or-less explicitly model 
the process of natural selection to derive trait combinations (geno-
types or species) corresponding to ESSs—that is, an ESS commu-
nity that cannot be invaded by other strategies68,70. By embedding 
the process of natural selection within models, functional diversity 
becomes an emergent property of ecosystems, thereby avoiding the 
need to pre-specify trait combinations or the number of types or 
species within a model. This approach may provide a framework for 
addressing evolutionary adaptation to a changing climate71,72.

The community ESS concept provides a way to generate and 
test hypotheses on coexistence (mechanisms that prevent one spe-
cies from out-competing another) that can be applied in predic-
tive models. In such a model, successional processes involving 
size-structured competition for light and disturbance can maintain 
functional diversity in a plant community68. By allowing species to 
differentiate along two functional trade-offs, functional diversity is 
recovered despite the absence of any imposed environmental het-
erogeneity (Fig. 3). However, without disturbance and the process of 
growing from seed, diversity in this model disappears. It follows that 
successional processes and individual dynamics need to be included 
in order to maintain diversity in vegetation models. Recent DVMs 
with explicit demography31,73,74 could thus be further developed into 
DVMs able to generate and maintain realistic functional diversity 
(diversity-enabled models).

However, while the diversity-enabled models are advancing the 
science of vegetation dynamics, developing them into prognostic 
tools poses additional challenges compared to traditional DVMs, 
such as the testing and calibration of diversity-maintaining mech-
anisms. In particular, the predictive ability of diversity-enabled 
models is potentially limited by the set of traits and coexistence 
mechanisms that are accounted for. In addition to trade-offs 
between costs and benefits of traits linked to resource (light) com-
petition discussed above68, there are many potential mechanisms 
of coexistence, involving resources, natural enemies, spatial het-
erogeneity and temporal variability75,76, making species coexistence 
a high-dimensional problem77. Complementarity—the idea that 
more species can use the total resources more completely—has 
been shown to reduce competition and promote coexistence in the-
oretical and empirical studies75,78–80, and deserves more attention in 
DVMs. Explaining the basis and roles of biodiversity has long been 
a central interest among theoretical and empirical ecologists81. It is 
now also becoming critical for DVMs.

Self-organization simplifies forest structure
While plant processes and behaviours originate at the level of indi-
viduals that are subject to natural selection and environmental con-
straints, the collective actions of individuals also drive patterns and 
processes that can provide organizing principles at the ecosystem 
level. For example, the collective spatial behaviour of plants gives 
rise to patterns in vegetation structure that provide both scientific 
insights and possible ways to reduce model complexity.

In forests, the plasticity of stem angles, leading to the col-
lective organization of crown layers, is an excellent example of 
self-organization at the ecosystem level. The most computationally 
intensive aspect of many forest models is the calculation of plant 
light availability based on all individuals’ locations, heights and 
shapes82,83. Despite their detail, however, individual-based mod-
els often do not produce realistic-looking forest stands. There are 
too many gaps, and the emergent ‘jigsaw puzzle’ canopy pattern 
is missing. The perfect plasticity approximation (PPA) was devel-
oped to correct the problems of both computational intensity and 
unrealistic canopy patterns. The PPA is based on the observation 
that individuals can move their crowns horizontally towards sun-
light (phototropism), which leads to a simple pattern (Fig. 4a–c): 
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canopy trees fill the horizontal space and there is approximately one 
height above which individual crowns are sunlit and below which 
individuals are in the shade of those canopy trees84. There will be a 
single height of canopy closure, and information on the locations of 
stems is no longer needed to calculate access to light. A rule defined 
at the level of individual trees (the search for sunlight) thus leads to 
a simple, emergent pattern that greatly simplifies the modelling of 
forest stand dynamics85.

The PPA has made possible the analytical ESS analysis of  
allocation strategies and predictions of their variation across envi-
ronmental gradients in temperate forests41,45,86. Although many 
tropical forests exhibit a different size structure, the same rule of 
phototropism, though with different growth rates for canopy trees 
and frequency of stand-level disturbance, predicts the emergent 
structure of tropical stands87.

Self-organization generates predictable patterns at the 
landscape scale
Spatial self-organization in a landscape is driven by feedbacks 
between vegetation and the environment. For example, when trees 
establish in grasslands, they shade and suppress light-demanding 
grasses, competitively favouring other trees and eventually stabi-
lizing patches of forests88. Dryland landscapes provide a striking 
example of vegetation self-organization into regular spatial patterns 
(Fig. 4d) caused by positive feedbacks between local vegetation 
growth and water transport towards the growth location, by later-
ally extended roots, overland water flow or soil–water diffusion89. 
Water transport helps vegetation growth, and that growth, in turn, 
enhances the water transport. The emergence of these patterns can 
be represented in continuous or high-resolution spatially explicit 
models, which reveal that the underlying positive feedback loop is 
a common organizing principle for spatial patterns across different 
locations and systems. Spatial self-reorganization in response to 
reduced rainfall slows desertification and results in successive state 
transitions to patterns of lower productivity (Fig. 4b) rather than in 
abrupt, direct collapse to bare soil90,91. Vegetation patterning can also 
promote species coexistence and help mitigate biodiversity loss91,92. 
However, this process is missing in general prognostic DVMs, per-
haps due to the difficulty of representing spatial feedbacks in these 
spatially discrete (cell- or gap-based) models. However, the regu-
larity of the patterns across rainfall gradients suggests that it may 

be possible to find universal approximations of their impacts, such 
as scaling relationships between fraction of vegetation cover and 
NPP or biomass93. Such a relationship could readily be incorporated 
in large-scale DGVMs or land-surface models to account for the 
larger- scale impacts of fine-scale spatial feedbacks without model-
ling these explicitly.

Using entropy maximization to make order from chaos
Ecosystems are complex systems with multiple interacting organ-
isms and processes, yet there are obvious patterns in their macro-
scopic features, such as the emergence of biomes and their global 
relationships to macroclimatic patterns. This duality echoes the 
situation in physics where, for example, reproducible relationships 
among the pressure, temperature and volume of a large assembly of 
molecules emerge from the chaos of the underlying molecular col-
lisions. The principle of maximum entropy (MaxEnt)94 has proved 
successful in predicting those relationships from a statistical per-
spective, as the most likely outcome of the underlying microscopic 
variables treated as random noise within the imposed experimental 
constraints (for example, fixed volume and temperature). MaxEnt 
can be applied at many scales, but the most interesting from the 
point of view of vegetation dynamics is the ecosystem scale, where 
the aggregated behaviour of large numbers of interacting indi-
viduals may be treated stochastically within the limits imposed by 
community-level environmental constraints (such as the constraint 
that community resource use must equal resource availability). 
Stochasticity means that many ecosystem states can correspond to 
the same resource use (constraint). MaxEnt predicts the probability 
of each state based on the number of ways it can be realized. Thus, 
in contrast to both deterministic process-based models and empiri-
cal species distribution models, MaxEnt applied in this way does not 
ignore stochastic factors but rather accounts for their effects.

The description of community resource use (for example, water 
or N) within resource availability constraints requires some under-
lying biology to be modelled deterministically. MaxEnt enables us 
to test the assumed division between stochastic drivers (treated as 
random noise) and deterministic drivers, or mechanisms (treated as 
constraints). Agreement between MaxEnt predictions and observa-
tions indicates that the correct distinction has been identified; dis-
agreement signals missing constraints or mechanisms. Extension to 
more than one resource constraint is straightforward.
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An illustrative example is the use of MaxEnt to predict statisti-
cal patterns of tree–grass distribution over large areas of tropical 
savannas across a gradient in water availability95. The key constraint 
was assumed to be the mean annual community-scale water balance 
(evapotranspiration = water availability). A simple hierarchy of 
water use was assumed (trees > grasses > bare ground). The broad 
agreement between predictions and satellite-derived data (Fig. 5) 
suggests that a valid deterministic driver had been identified. Other 
processes, which include disturbances by fire and herbivory, con-
tribute to the statistical spread of the data in Fig. 5 at any given water 
availability and can be treated as random noise that has no system-
atic effect on the mean trends.

An important caveat is that, just as the laws of probability only 
predict the most likely frequency distribution of heads and tails in 
a long run of coin tosses and not the outcome of an individual toss, 
MaxEnt only predicts the most likely frequency distribution of tree–
grass cover fractions across many sites and not the tree–grass cover 
fractions at a given site (an individual data point in Fig. 5). The lat-
ter would require explicit representation of, and site-specific infor-
mation about, other processes, such as fire history and herbivory.

In this example, the link between MaxEnt and the underly-
ing biology occurs through the assumed water use rates ei of each 
cover type, where ‘i’ represents the cover type (trees, grass or bare 
ground), which determine the community water use that appears 
in the water balance constraint. MaxEnt then predicts that the 
cover type with the highest or lowest value of ei dominates at high 
or low water availability, respectively (Fig. 5). A natural generaliza-
tion of this approach would be to replace assigned values of ei by 
an eco-physiological model, e(FTs), for the dependence of plant 
resource use on FTs and environmental conditions, such as climate. 
Then, at high or low resource availability, MaxEnt would predict a 
relative abundance distribution in trait space that follows the peaks 
or troughs of e(FTs), respectively, thus establishing a link between 
diversity in FTs at the community level (the distribution) and opti-
mal FTs (the expected values).

MaxEnt-based approaches could potentially be developed to 
incorporate stochastic effects on coexistence in DVMs and to 
identify the key deterministic drivers that generate and maintain 
diversity—an important challenge for understanding long-term 
vegetation dynamics.

A roadmap for the use of organizing principles in 
vegetation modelling
The three organizing principles discussed above could be com-
bined in a hierarchical framework for vegetation modelling, from 
FTs, to species (or functional types) to stand structure and commu-
nity composition (Fig. 6). Figure 6 represents a general framework 
within which current knowledge and future progress at different 
levels (plant, community and environment) can be integrated with 
help of the organizing principles. In the following sub-sections, we 
suggest in general terms how this could be done, maintaining essen-
tial realism—while avoiding the complexity trap of accumulating 
uncertainty and lack of model transparency—in a new generation 
of DVMs.

Defining plants by functional traits. Plant species (or functional 
types) in DVMs are defined in terms of FTs for which there is sub-
stantial variation among plants, measured values are available for 
many plants, and one or more functions are known. Our perspec-
tive implies more precise criteria for how to select and use FTs. 
First, the finding that only two underlying dimensions of variation 
explain 75% of the global variation in key FTs51 suggests that fewer 
FTs could be used compared to most current DVMs. Second, a shift 
is required from using trait measurements (for example, mean val-
ues for each functional type) directly in models towards their use to 
test and calibrate the underlying principles and constraints, such as 
optimality principles, that control trait variation32.

An efficient representation of species should be based on a 
few functionally important FTs that are as non-plastic (heritable) 
as possible (Fig. 6). Plastic traits that vary systematically with 
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Fig. 4 | Spatial self-organization in ecosystems. a–c, Individual-level phototropism leads to emergent regularity in forest crown height and size. Tree 
crowns in a forest seen from above. a, A forest dynamics model without phototropism84. b, The same forest dynamics model with individual phototropism 
(individuals allowed a maximum of 5° lean in their trunks). Brightness indicates the height of the canopy. Note with phototropism, canopy height and 
crown size are more regular. c, Image of a near-natural forest in the Hainich National Park, Germany. Panels a and b are adapted from ref. 84, and c is 
reproduced from ref. 103. d, Spatial self-organization in dry lands. Typical sequence of vegetation patterns along a rainfall gradient. Modelled (upper panels) 
and observed (lower panels) are reproduced from ref. 91. veg., vegetation. 
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environmental conditions, such as leaf/stem/root ratios, relative 
growth rates, height and photosynthetic capacity, should not be 
pre-determined but instead should be predicted based on optimal-
ity principles. Observed trait variation and function can be anal-
ysed in new ways that separate plasticity from other sources of trait 
variation96. For example, SLA is commonly used to define species 
in terms of a mean value, although it varies strongly with environ-
mental conditions, even within individuals97. To resolve this prob-
lem, SLA could be separated into a non-plastic maximal SLA and a 
plastic component to be determined by optimization. Optimization 
might not be possible or computationally feasible for all plastic  
FTs, but, instead, optimality can be approximated by continuous 

adjustments in an optimal direction, as has been done for LAI98 and 
stomatal conductance36.

Once a set of non-plastic FTs have been identified, observed 
inter-relationships between them (trait spectra) could be used in 
two ways: (i) to constrain potential species in terms of possible  
(or more or less probable) trait combinations to generate potential 
species to select from when generating a community using a DVM 
with community dynamics or (ii), to evaluate community-ESS 
approaches that model the co-evolution of species and their FTs, 
such as the forest model by Falster et al.68

Modelling vegetation structure and competition. Self-organized 
spatial structures have strong effects on vegetation dynamics by 
both generating and reducing heterogeneity. The latter effect is 
used in the PPA to simplify models of light competition in forest 
canopies. The PPA appears well-suited to low-diversity canopies, 
whereas the PPA’s binary light availability might be expected to lead 
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to artificial exclusion of species with low shade tolerance in more 
diverse communities. However, such problems can be resolved by 
a sufficiently high spatial resolution in the critical canopy height87. 
Although further quantification of its limitations is still needed, 
adoption of the PPA in models of forest dynamics has also opened 
the door to computationally efficient representations of competi-
tion for light and succession in large-scale prognostic DVMs31,74.

While competition for below-ground resources can be readily 
modelled by assuming common pools of soil resources for all plants 
in a stand86, the validity of this ‘perfect mixing’ assumption is not 
well known. The actual spatial extent of competition for nutrients 
and water is not well understood despite potentially large impli-
cations for key processes such as root growth99, water use47 and 
whole-plant growth39.

In summary, modelling schemes that assemble individuals into 
communities become far more tractable (analytically and compu-
tationally) when processes promoting self-organization are taken 
into account. To support this development further, quantitative 
evaluations of the accuracy of the PPA and other approximations of 
above- and below-ground vegetation structure and competition are 
strongly needed.

Dealing with the complexity of communities. DVMs that gener-
ate communities by modelling the natural selection process67,68 are 
referred to here as diversity-enabled models. Although their prog-
nostic application has been limited so far15,16, diversity-enabled 
models offer an improved potential to predict long-term ecosystem 
dynamics under climate change, including biome shifts and the role 
of biodiversity in promoting ecosystem resilience. Complementing 
the species diversity in these models with individual plasticity could 
lead to novel insights in how plasticity and community dynamics 
interact and influence the rate of adaptation of vegetation to climate 
change, which is critical for projections of future vegetation pro-
cesses and carbon balance7,100. The need to model both individual 
plasticity and community dynamics is highlighted by the observa-
tion that they sometimes drive site-mean values of FTs in opposite 
directions along environmental gradients101.

A critical question for the further development of diversity- 
enabled models is whether the relevant coexistence mechanisms are 
included. An important, but often neglected, factor in this context 
is demographic and environmental stochasticity, which makes com-
munity composition unpredictable for any particular point in space 
and time. MaxEnt has been used to account for randomness in  
predicting community composition—that is, the abundance of  
each species—using mean trait values as site-level constraints102. 
A similar approach could be applied with a diversity-enabled 
DVM that represents the hypothesized coexistence mechanisms, 
with resource availabilities providing additional constraints. For 
any given set of resource availabilities there is stochastic variation 
in environmental variables and plant demography (for example, 
recruitment and mortality). Under realistic boundary conditions, 
therefore, a DVM can generate many communities with different 
species compositions. The mechanisms incorporated in the DVM, 
and the resource availabilities specified, influence the probability 
(or frequency) that a given community is generated. Based on the 
accumulated distribution of possible community compositions, 
MaxEnt can be used to find the most likely community composi-
tion (Fig. 6).

In conclusion, the principles and modelling approaches put 
forward here all address the same key challenge in the science of 
vegetation dynamics—how to make sense of complexity. During 
the initial development of DVMs in the 1980s, very few ecologists 
looked for general patterns in nature. Since then, many promising, 
but sometimes diverging, approaches have emerged. With the per-
spectives on organizing principles presented here, we aim to con-
tribute to a coherent theoretical basis for explaining and predicting 

interactions among plants and their environment. This proposed 
framework also implies a key role for empirical research in testing 
model hypotheses and exploring vegetation patterns to generate 
new hypotheses. Based on the organizing principles, progress in 
the study of plant processes and traits can be put into a consistent 
theoretical framework to improve model robustness and transpar-
ency and avoid the complexity trap. This framework is required for 
a better understanding of vegetation dynamics and carbon cycling 
in a changing world.
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