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Abstract
Purpose Weighting in life cycle assessment (LCA) incorporates stakeholder preferences in the decision-making process of
comparative LCAs. Research efforts on this topic are concerned with deriving weights according to different principles, but
few studies have evaluated the relationship between normalization and weights and their effect on single scores. We evaluate the
sensitivity of aggregation methods to weights in different life cycle impact assessment (LCIA) methods to provide insight on the
receptiveness of single score results to value systems.
Methods Sensitivity to weights in two LCIA methods is assessed by exploring weight spaces stochastically and evaluating the
rank of alternatives via the Rank Acceptability Index (RAI). We assess two aggregation methods: a weighted sum based on
externally normalized scores and a method of internal normalization based on outranking across CML-IA and ReCipE midpoint
impact assessment. The RAI represents the likelihood that an alternative occupies a certain rank given all possible weight spaces,
and it can be used to compare the sensitivity of final ranks to weight values in each aggregation method and LCIA. Evaluation is
based on a case study of a comparative LCA of five PV technologies whose inventory is readily available in Ecoinvent.
Results and discussion Influence of weights in single scores depend on the scaling/normalization step more than the value of the
weight itself. In each LCIA, aggregated results from a weighted sumwith external normalization references show a higher weight
insensitivity in RAI than outranking-based aggregation because in the former, results are driven by a few dominant impact
categories due to the normalization procedure. Differences in sensitivity are caused by the notable variety (up two orders of
magnitude) in the scales of normalized values for the weighted sum with external normalization and intrinsic properties of the
methods including compensation and a lack of accounting for mutual differences.
Conclusions Contrary to the belief that the choice of weights is decisive in aggregation of LCIA results, in this case study, it is
shown that the normalization step has the greatest influence in the results. This point holds for EU and World references in
ReCiPe and CML-IA alike. Aggregation consisting of outranking generates rank orderings with a more balanced contribution of
impact categories and sensitivity to weights’ values as opposed to weighted sum approaches that rely on external normalization
references.
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Recommendations Practitioners aiming to include stakeholder values in single scores for LCIA should be aware of how the
weights are treated in the aggregation method as to ensure proper representation of values.

Keywords Aggregation in LCA . LCIA (Life Cycle Impact Assessment) . PV technologies .Weighting in LCA

1 Introduction

1.1 Weighting in LCA

In principle, weighting impact categories clarifies tradeoffs
among competing alternatives by enabling aggregation of in-
commensurable environmental performances into a single
score, thereby facilitating interpretation of results. Beyond
this, the value of weighting lies in allowing for the distinct
preferences of different decision-makers to be reflected or
contrasted in the results, rather than a single point of view
serving as a final verdict (Bengtsson and Steen 2000).
Weighting and normalization are optional procedures of life
cycle impact assessment (LCIA) (ISO 2006) that can aid in
decision support for comparative life cycle assessments
(LCAs) by aggregating characterized results to a single score
and facilitate identification of a more favorable alternative.
Due to this application, weighting can aid in the interpretation
of comparative LCA results without technically being classi-
fied as an interpretation step. This study compares current
aggregation of LCIA results with an alternative method of
aggregation from Multi-Criteria Decision Analysis (MCDA)
on the basis of weight sensitivity. This optional procedure of
LCIA, aided by analytical aggregation operators, is indepen-
dent from the inventory analysis and characterization stages.
This study lies between LCA and MCDA, and to clarify ter-
minology, a glossary is included in Table 1.

While weighting and aggregation in LCA has been a con-
troversial topic due to its subjective nature, it is still recog-
nized as an important and useful step in the communication of

LCA results (Zanghelini et al. 2018). The issue of subjectivity
in LCA modeling has been discussed in the literature where it
is generally accepted that there are subjective choices in every
stage of an LCA even before weighting takes place (e.g.,
Hertwich et al. 2000). Nevertheless, there is a distinction in
LCA phases that are generally considered to be science- and
value-based. This distinction is apparent in the ISO guidelines,
by making weighting an optional step and preventing aggre-
gated scores to be disclosed to the public in comparative as-
sertions (ISO 2006). These guidelines aim to avoid imposing
values from an organization or company that may not neces-
sarily match those of the public and that may be biased to-
wards favoring a certain option. In these situations, character-
ized and/or normalized profiles are disclosed instead.

In some applications, weighting and aggregation is needed
to help resolve tradeoffs among competing alternatives and
provide decision support (Laurin et al. 2016). Specially, envi-
ronmental insight is becoming more important in decision
support, and a single indicator (such as climate change) does
not fully address all the environmental concerns. There are
several approaches to weighting in the literature (Ahlroth
et al. 2011; Huppes et al. 2012; Pizzol et al. 2015; Castellani
et al. 2016a) that can be categorized as panel, valuation, or
target based. Most advances in these approaches deal with the
calculation of weight values to improve accuracy in assess-
ments or to provide a “better” principle for deriving weights.
For instance, Itsubo et al. (2015) expand weights based on
public surveys for LIME2 in Japan to other G20 countries to
gain broader applicability and understanding of options
according to different regions of the world. Alternatively, in

Table 1 Glossary

Term Definition

Weighting Weighting consists of defining the relative priorities of the different impact categories (criteria/indicators in MCDA literature) to identify
those of major concern for the interest group. It does not refer to the actual action of aggregating to generate a single score/ranking.

Weight Numerical factor resulting from the weighting. It can be a coefficient of importance representing the relative importance of indicators, or a
trade-off representing the exchange rate between indicators (Keeney 2002). Importance coefficient weights are referred to as weighting
factors in ISO 14044 and defined as “numerical factor based on value choices.”

Aggregation
method

Method for aggregation of different criteria/indicators (impact categories in LCA) to solve a ranking, sorting, or choice decision-making
challenge. Scaling and weighting are two common components of an MCDA and also components of the two aggregation approaches
studied here. The aggregation methods used in this study include an additive weighted sum and an outranking algorithm called
PROMETHEE.

Scaling Transformation of the values of the criteria/indicators (impact categories in LCA) to make them comparable and hence in a form suitable
for the aggregation for the target method. Scaling of values in LCA is known as normalization and it typically consists of division by a
normalization reference. In our case study, normalization for the weighted sum is performed with external references while with
PROMETHEE it is implemented internally with pairwise comparisons (outranking).
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search of a more holistic coverage of public opinion, Ji and
Hong (2016) apply internet search volumes (such as Google
Trends) to determine weight values. Other recent examples
include the determination of weights given EU2020 targets
(Castellani et al. 2016a), planetary operating spaces
(Tuomisto et al. 2012), and MCDA panel elicitation tech-
niques (Myllyviita et al. 2014). These developments however
pertain to importance coefficients, which are incompatible
with the typical aggregation approach of a weighted sum that
requires trade-off weights (Keeney 2002; Dias et al. 2016).
Application of importance coefficient type of weights with
weighted sums as typically done in LCA can be problematic
as it does not account for the effect of the range in the per-
ceived importance of an aspect, known as the “range sensitiv-
ity principle” (Fischer 1995). In fact, this mismatch of the
scaling and the weight type is known as the “typical weighting
error” (Edwards and Barron 1994).

The discussion of which weight principle is the most ap-
propriate for LCA is not the purpose of this study; rather, we
call attention to the relationship that exists between scaling
(typically consisting of external normalization in LCA) and
the weight. Some recent studies touch upon this issue.
Myllyviita et al. (2014) explores different MCDA weighting
elicitation techniques and finds that external normalization is
more influential than weights, andWulf et al. (2017) evaluates
three aggregationmethods and various weight values but finds
that the normalization method has the largest influence on
results. Kalbar et al. (2017) and Sohn et al. (2017) also identify
the issue of weight insensitivity in the current weighted sum
but do not consider the issue of linearity and compensation
when applying TOPSIS, a fully compensatory aggregation
method, to generate a complete ranking (Seager and Prado
2017). Compensation is a property of the aggregation method,
and it is a key aspect evaluated in this study (Table 2). The
Kalbar et al. (2017) goes as far as applying a non-
compensatory method, namely, the Hasse Diagram
Technique, to generate a partial rank ordering and identify
alternatives to eliminate prior to the complete ranking with
TOPSIS. In the end, the ranking of alternatives in Kalbar
et al. (2017) is based on a fully compensatory method. The
present study differs from previous evaluations of aggregation
methods in that it generates a complete rank ordering with a
non-compensatory method; it includes uncertainty in charac-
terized results and weights and communicates results via a
probabilistic ranking.

Besides this, weighting developments do not explicitly ad-
dress the relationship between weights and scaling and how
the values relate to the quantified environmental performances
(characterized results). This connection, described previously
as a relational claim by Hertwich et al. (2000), is critical to
LCIA as it dictates how the facts relate to our concerns, in-
cluding relevancy and mathematical consistency. Here, the
characterized results can be described as the “facts”

(modeled as much as possible evidence-based) and the
weights as the values (what we care about). Connecting the
two is the aggregation method, the relational claim.
Alternative aggregation approaches to the weighted sum ap-
pear in Prado-Lopez et al. (2014), which illustrates a case of
outranking, a methodology developed in the field of MCDA,
which can be used to aggregate impact category results with
quantified uncertainty. To explore the sensitivity to weight
values as a function of the scaling step, we apply stochastic
weight values to two aggregation methods: (1) weighted sum
with external normalization by a reference (as currently im-
plemented in LCIA corresponding to a World and EU refer-
ence) and (2) outranking as in Stochastic multi-attribute anal-
ysis (SMAA in Prado and Heijungs 2018). Single scores
resulting from each aggregation method can be used to rank
alternatives, and the frequency of such ranks is evaluated via
the Rank Acceptability Index (RAI), which quantifies the like-
lihood of each alternative to occupy a certain rank (Tervonen
and Lahdelma 2007). Variation in ranks indicates sensitivity to
weight values. Here, the scaling step becomes the independent
variable and the ranking is the dependent variable. Table 2
provides a summary of the characteristics of the two aggrega-
tion methods used to derive the single scores, according to the
underlying aggregation approach, linearity, scaling of criteria,
and meaning of the weights, all key distinctive features of
MCDA methods (Cinelli et al. 2014).

This paper is organized as follows. Section 2 presents the
methodological approach, which includes introduction to the
comparative LCA case study with uncertainty analysis (2.1),
description of the weighted sum using external normalization
references (2.2), description of the outranking method (2.3),
description of the stochastic exploration of weights to be im-
plemented in both aggregation methods (2.4), and a descrip-
tion of the RAI used to evaluate the results (2.5). Section 3
shows the results of the RAIs for the two aggregation methods
in ReCiPe and CML-IAwhich corresponds to three probabi-
listic rankings per impact assessment (EU and World refer-
ences and outranking). Results include the contribution of
individual impact categories to the overall scores. Section 4
discusses the meaning and implication of results and provides
closing remarks as well as recommendations for the analysts
interested in developing single scores in LCA.

2 Methods

2.1 Comparative LCA illustration and systematic
evaluation

This study utilizes life cycle inventory of five different PV
technologies for the production of 1 MJ of electricity as com-
piled by Jungbluth et al. (2012) and implemented in Ecoinvent
3 with Simapro PhD version. Impact assessment is conducted

2396 Int J Life Cycle Assess (2020) 25:2393–2406



via two common LCIA methods: ReCiPe (H) midpoint
(Goedkoop et al. 2009) and CML-IA 2001 baseline (Guinée
et al. 2002). Alternatives pertain to a 3-kWp slanted-roof in-
stallation and they include single-crystalline silicon cells (sin-
gle-Si), multi crystalline silicon cells (multi-Si), thin film cad-
mium telluride (CdTe), amorphous cells (a-Si), and ribbon
silicon (ribbon-Si). Comparative results include inventory un-
certainty based on the pedigree matrix and 1000 Monte Carlo
runs performed in Simapro PhD version (Muller et al. 2014).
Given the purpose is to compare the results of the aggregation
methods, stability of the stochastic results which would call
for a higher number of Monte Carlo runs, is not of concern.
Characterized results for ReCiPe and CML-IA are shownwith
a box plot in Fig. 1. For illustration purposes, we include ten
impact categories from CML-IA, namely, abiotic depletion
(elements) (AB), abiotic depletion (fossil fuels) (FD), acidifi-
cation (AD), eutrophication (EUT), fresh water aquatic

ecotoxicity (FAET), global warming (CC), human toxicity
(HT), marine aquatic ecotoxicity (MAET),1 ozone layer de-
pletion (OD), and photochemical oxidation (POC). Terrestrial
exotoxicity was excluded because the uncertainty analysis in
Simapro generated negative mean values—consequence of an
error in the uncertainty propagation of the software as lognor-
mal distributions do not have negative means. From ReCiPe,
we include all 17 impact categories, namely, agricultural land
occupation (ALO), climate change (CC), fossil depletion
(FD), freshwater ecotoxicity (FET), freshwater eutrophication
(FE), human toxicity (HT), ionizing radiation (IR), marine
ecotoxicity (MET), marine eutrophication (ME), metal deple-
tion (MD), natural land transformation (NLT), ozone deple-
tion (OD), particulate matter formation (PMF), photochemical
oxidant formation (POF), terrestrial acidification (TA), terres-
trial ecotoxicity (TET), and urban land occupation (ULO).
Water depletion (WD) from ReCiPe while it is shown in Fig.
1 is excluded from further aggregation because it does not
have a normalization reference and cannot be included in the
weighted sum aggregation method. To keep the impact cate-
gories consistent between aggregation methods, we exclude
WD from both aggregation methods. It must be stressed that

Fig. 1 Characterized results with
uncertainty of PValternatives
according to CML-IA (top) and
ReCiPe (bottom). The x-axis cor-
responds to the impact categories
and the y-axis represents the rela-
tive characterized performances
scaled to the largest median in
each impact category. The axis is
linear from 0 to 2 and logarithmic
for values above 2. The bottom
(q1) and top (q3) edges of the box
represent the 25th and 75th per-
centiles, respectively. The whis-
kers extend to the most extreme
data points not considered out-
liers. Outliers are points greater
than q3 + 1.5 × (q3 − q1) or less
than q1–1.5 × (q3 − q1).
Underlying data can be found in
the SI

1 Due to constraints related to modeling metals on longer time horizons in
multi-media models, MAET is often excluded from baseline categories
(Heijungs et al. 2004)
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the goal of this study is to evaluate how two aggregation
methods (described in Table 2) are affected by weights. The
PV example is only for illustrative purposes with the aim of
experimenting with representative comparative LCA results.
Evaluation of the effect of weights is performed separately
within each impact assessment method, so variations in cov-
erage of impacts between CML-IA and ReCiPe do not affect
findings.

2.2 Weighted sum with external normalization

A weighted sum with external normalization represents the
most common form of aggregation in LCA. This method con-
sists of scaling via external normalization and application of
importance weights (Eq. 1). It is important to highlight how-
ever that external normalization has different purposes in LCA
besides scaling. The LCA Handbook describes the other uses
of external normalization as error checking and hotspot or
relevance analysis (Guinée et al. 2002). This paper focuses
on application of normalization references for scaling
purposes:

∑
CIi
NRi

� wi ¼ Single score ð1Þ

where
CIi is the category indicator result; NRi is the normalization

reference (in the units of the CIi per year), which can represent
a global or a regional community; and wi is the weight as it
pertains to impact category i. The single score is referred to as
“points,” but it has units of “year.” Since this study includes
uncertainty in the characterized results (as shown in Fig. 1)
and weights, each value of CI and w is based on deterministic
sampling within the boundaries of the impact category with a
lognormal distribution and weights with a beta distribution.
The parameters of the corresponding lognormal distributions
for CI are included in the SI along with the weight values for
each run. Normalization references are deterministic, but a
probabilistic treatment is possible.

Reports on how external normalization references can lead
to biases in aggregated results already exist in the literature
(Heijungs et al. 2007; White and Carty 2010; Myllyviita et al.
2014; Castellani et al. 2016b) and solutions fall for the most
part in the “repair” category (Kim et al. 2013) where recent
recommendations call for the use of global as opposed to
regional references to overcome biases (Verones et al. 2017).
Others argue that the issues of external normalization go be-
yond data repair efforts or choice of geographical reference
because the problem lies in the linear aggregation approach
and the neglect of mutual differences in the assessment (Prado
et al. 2017; Cucurachi et al. 2017; Ravikumar et al. 2018). A
recurrent finding is that the use of external normalization can

have a dominant effect in the interpretation of results (White
and Carty 2010;Myllyviita et al. 2014; Castellani et al. 2016b;
Wulf et al. 2017). In this study, we explore how external nor-
malization as a scaling step affects the representation of
weights in the results.

It must be noted that the weighted sum as shown in Eq. 1
can also be structured with a variety of normalization by divi-
sion schemes where instead of referring to a particular com-
munity, it can represent one of the alternatives of the set in
which case it is deemed internal normalization (Norris 2001).
For instance, on each impact category, the best alternative can
attain a normalization score of 1 and the worst alternative, a
normalized score of 0 or vice versa (Nzila et al. 2012; Du et al.
2019). Other strategies for normalization include a “status
quo” using as a reference the average scenario (Domingues
et al. 2015) or the most common scenario (Dias et al. 2016).
Furthermore, rank, percentile rank, categorical, distance to
target, and logistic approaches are further options for normal-
ization (Nardo et al. 2008; Cao et al. 2016). This “normaliza-
tion by division,” however, remains fully linear and compen-
satory in nature. This study focuses on a weighted sum using
external normalization references provided by already
established LCIA methods.

2.3 Outranking

Outranking algorithms originate from the MCDA literature,
and they aggregate multiple criteria based on pairwise com-
parisons (Roy 1985; Behzadian et al. 2010; Greco et al. 2016).
Here, we apply a version of outranking known as
PROMETHEE II (Preference Ranking Organization
METHod for Enrichment of Evaluations), which results in a
full rank ordering of alternatives. PROMETHEE II consists of
a scaling step via outranking and application of importance
weights in a mathematically meaningful manner (Cinelli et al.
2014; Munda 2016). PROMETHEE II algorithm used in this
study allows accounting for uncertainty in two ways: (1) via
the inclusion of uncertainty in the characterized performances
by sampling the values propagated when calculating mutual
differences and (2) by assigning a preference and indifference
thresholds (P and Q respectively in Fig. 2) as a function of the
average standard deviation of performances within each im-
pact category (specifically, in this work, P was set to be the
average standard deviation for each impact category, and Q
was set to be half of P). This implies that in impact categories
with larger standard deviations, alternatives need to outper-
form each other by a greater margin to achieve the largest
outranking score of 1. While the preference thresholds are
static, they will change given any refinement in the data so
that the results are subject to change even if median results do
not. Note that while these thresholds are called “preference
thresholds” in this application, these are based on the data
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and not expert elicitation as done in other contexts (Rogers
and Bruen 1998).

PROMETHEE II also limits compensation which is useful
in environmental manage as it can avoid few extreme perfor-
mances to dominate the assessment. Outranking consists of
evaluating mutual differences with respect to a defined value
function where it generates unweighted scores (referred to as
outranking score) depending on how each alternative per-
forms against each other in every single criterion (in this case
impact category). Pairwise evaluation is executed in both di-
rections, leading to two measures called positive and negative
flows for each alternative. The former indicates the strength of
the target alternative against the other one, while the latter is
the weakness of the target alternative in comparison with the

other one. The combination of the two flows leads to the net
flow. We provide a brief explanation and visualization of the
outranking procedure with the use of a generic example in Fig.
2, leaving the detailed step-by-step explanation of calculation
procedures of PROMETHEE II as applied to LCA to Prado
and Heijungs (2018).

2.4 Stochastic exploration of weights

Sampling of weights is implemented stochastically so that the
weight values are equally distributed among all the impact
categories, the sum of the weights equal 100, and each indi-
vidual weight ranges between 0 and 100 (Tervonen and
Lahdelma 2007). Stochastic weights can also be applied in-
cluding specific constraints from decision makers (Rogers and
Seager 2009; Du et al. 2019), but in this study, we apply the
same weight distribution in impact categories. We follow the
weights calculation according to the pseudoMarkov Chain by
Tylock et al. (2012) where each weight value distribution fol-
lows a beta distribution as a function of the number of criteria.
We apply a beta distribution as a function of the number of
impact categories (n) where α = 1 and β = n − 1.These distri-
butions are calculated consecutively where the result of the
first one affects the second one (hence, a pseudo Markov
Chain procedure) so that when n = 1, meaning the last impact
category, is calculated as the remaining possible value so
∑w = 100. Resulting weight value distributions for ReCiPe
and CML-IA are equally distributed (Fig. 3). Note that in the
case of ReCiPe, WD was excluded because it cannot be in-
corporated in the weighted sum with external normalization;
therefore, the aggregated score for both aggregation methods
will be a function of the remaining 17 impact categories.

2.5 Rank acceptability index

When aggregating stochastic weights and performances, each
combination generates a single score per alternative that can
be used to generate a rank for each of the 1000 Monte Carlo
runs. Rank frequency is then evaluated via the Rank
Acceptability Index (RAI) (Tervonen and Lahdelma 2007).
The use of RAI is widely accepted and confirmed as a useful
measure to assess ranking robustness and stability (Tervonen
et al. 2011; Corrente et al. 2014; Greco et al. 2018a, b). It
allows to easily visualize the trend of the stochastic results
by accounting for a multitude of stakeholders’ perspectives,
which has the added value of making the decision makers
more comfortable when exerting their decisions, as the vari-
ability in the results is visible (Bertola et al. 2019).

It should be pointed out that Kalbar et al. (2017) discuss the
issue of rankings comparisons by illustrating the overall extent
of difference between the rankings is assessed, while in this
paper, ranking variability is analyzed at the distribution level.
More specifically, the RAI is used to study the variability of

Fig. 2 PROMETHEE outranking procedure illustrated with a decision
matrix consisting of two alternatives (A and B) and two criteria (x and y).
For each criterion (x on the left and y on the right), there is a process of
pair wise comparisons. The pair wise differences in the respective units of
the criteria (in this case, impact categories) are harmonized to unitless
outranking scores, α, ranging from 0 to 1 as shown in step 3. As shown
in the illustration, when dealing with environmental impact, a lower value
is preferred. Then, the outranking scores for both directions are converted
into “net flows,” π (step 4). Finally, in step 5, weight factors (wxand wy)
are applied to the net flows to generate a single score
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the rankings based on stochastic simulation of the input,
which is not part of the work in the mentioned study.

The RAI, Rr
x; is calculated per alternative (x) and

rank position (r), and it evaluates the likelihood of an
alternative to occupy a certain rank. For each run, the
scores (ux) of each alternative is ranked against each
other. The frequency of a given rank throughout the
runs for a certain alternative is divided by the number
of runs to give the RAI for that rank. Figure 4 provides
an illustration of an example consisting of three alterna-
tives and four runs. The best alternatives have a higher
RAI in the first rank and the poor alternatives tend to
dominate in the lower ranks (such as alternative C in
Fig. 4). The RAI allows identifying good and poor al-
ternatives, and the level of competitiveness between
them (for example, alternatives A and B appear to be
competitive in the first rank in Fig. 4). We compute the
RAI numerically over the final score in each aggrega-
tion method as illustrated in Fig. 4. Comparing the RAI
associated to each aggregation method identifies those
approaches that are most and least sensitive to weight
ranges. Rank orderings with larger RAIs (dominant in a
position) are more weight insensitive because results
remain the same given most weight values.

3 Results

3.1 Weigh sensitivity in CML-IA

Figure 5 shows the RAIs for the PV comparative LCA using
CML-IA baseline characterization and two aggregation
methods: a weighed sumwithWorld 2000 and EU 25 external
normalization and outranking. From all three results, World
2000 shows the greatest weight insensitivity as alternatives
have the highest probability of remaining in a single rank.
The ranking, in the order from first to fifth, shows ribbon-Si
(79.4%), single-Si (81.4%), multi-Si (87.1%), CdTe (87.1%),
and a-Si (98%), respectively. This means that for much of the
weight space, the rank ordering of alternatives remains the
same. The RAI results for EU 25 show slightly more variation
of ranks, but still, the position of alternatives stays the same in
most of the sampled weight space: probabilities of ranking
first to fifth shows ribbon-Si (62.1%), single-Si (70.1%),
multi-Si (63.7%), CdTe (63.9%), and a-Si (93.6), respectively.
Contrary to the weighted sum with World 2000 and EU 25,
outranking shows a greater distribution of the ranks where the

largest RAI does not exceed 65.2% (for R1
CdTe ). Rank order-

ings generated with outranking show alternatives CdTe
(65.2%), a-Si (43.5%), ribbon-Si (36.2%), multi-Si (35%),

Fig. 3 Weight distributions
consisting of 1000 Monte Carlo
runs for the 17 impact categories
in ReCiPe (left) and 10 impact
categories in CML-IA (right)

Fig. 4 Illustration of numerical
computation of the RAI. In a per
run basis, the lowest score (ux),
obtains the first rank. Here,
alternative A obtains the first rank
twice (runs 2 and 3). Alternative
B also ranks first twice (runs 1
and 4) and therefore obtains the
same RAI as alternative A—
illustrated by the figure to the
right
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and single-Si (54.9%) ranking first to fifth, respectively.
Overall, RAIs in outranking are smaller than a weighted sum
with World 2000 and EU 25, indicating that the rank ordering
of alternatives generated by outranking is more sensitive to
weight values than any of the weighted sum methods as ap-
plied in CML-IA.

When comparing the rank ordering of alternatives, we see
that the weighted sum methods (EU 25 and World 2000) gen-
erate the same ranking. Ribbon-Si is ranked as the most pre-
ferred alternative followed by single-Si, multi-Si, CdTe, and a-
Si. The ordering in outranking is quite different since CdTe is
ranked first followed by a-Si; ribbon-Si and multi-Si compete
for the third and fourth place, and single-Si ranks last. It is
notable how a-Si moves from ranking last in EU 25 andWorld
2000 to a competitive second place in outranking. The reason
for the difference in rank orderings between the weighted sum

methods and outranking is the dominance of one impact cat-
egory, marine aquatic ecotoxicity (MAET) in EU 25 and
World 2000 (Fig. 5). Here, MAET contributes the majority
of the total score for the externally normalized values (EU
25 and World 2000), followed by fresh aquatic ecotoxicity
(FAET).

Alternatively, outranking score shows contribution of mul-
tiple impact categories where there is not a single or a few that
override other performances (Fig. 5). Comparing lowest-
ranked A-si to highest-ranked alternative Ribbon-si in both
the EU25 and World 2000, A-si outperforms Ribbon-si in
seven impact categories, is nearly equivalent twice, and is
environmentally more burdensome only once for the MAET
category (Fig. 1). Therefore, the ranking in EU 25 and World
2000 is determined by the performance in this single impact

Fig. 6 Rank acceptability indices of the Comparative LCA of PV using
two aggregation methods inReCiPe H midpoint. From left to right:
weighted sum with Europe (EU) external normalization, weighted sum
with World external normalization and outranking. The x-axis represents
the rank ordering and the y-axis represents the RAI. Individual alterna-
tives are denoted by color as shown in the legend to the right. Bottom:
Impact category contributions per alternative and per aggregation ap-
proach. The numbers denote the impact category (as shown in the legend
to the right of the graph). The contributions correspond to the share of the
overall score that is attributed to each impact category. For weighted sum
approaches, the contribution is based on each impact category weighted
performance relative to the total score and averaged over the 1000 MC
simulations. For outranking, this contribution was calculated by the share,
according to the average over the MC simulations, to the single score
from each individual weighted net flow. Weighted net flows are shown in
step 5 of Fig. 2. Values can be found in the Supplementary Information

Fig. 5 Top: RAIs of the Comparative LCA of PV using the different
aggregation methods in CML-IA baseline. From left to right: Weighted
sum with EU 25 external normalization, weighted sum with World 2000
external normalization and outranking. The x-axis represents the rank
ordering and the y-axis represents the rank acceptability index (RAI).
Bottom: Impact category contributions per alternative and per aggrega-
tion method. The numbers denote the impact category (as shown in the
legend to the right of the graph). The contributions correspond to the
share of the overall score that is attributed to each impact category. For
weighted sum approaches, the contribution is based on each impact cat-
egory weighted performance relative to the total score and averaged over
the 1000 MC simulations. For outranking, this contribution was calculat-
ed by the share, according to the average over the MC simulations, to the
single score from each individual weighted net flow. Weighted net flows
are shown in step 5 of Fig. 2. Values can be found in the Supplementary
Information
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category. A favorable performance in MAETwill compensate
poor performances as is the case of Ribbon-si. Outranking
however, where partial compensation is allowed, allows A-si
to achieve better ranks under certain weighting conditions.
Overall, the contribution plots in Fig. 5 show a different pat-
tern between the composition of scores of a weighted sum and
outranking.

3.2 Weight sensitivity in ReCiPe

Similar to Fig. 5, Fig. 6 shows the RAIs for the PV
comparative LCA using ReCiPe H midpoint characteri-
zation. For ReCiPe, a weighted sum with World normal-
ization leads to the greatest weight insensitivity because
rank shares tend to be larger than in a weighted sum
with Europe normalization and outranking. ReciPe
World shows alternatives a-Si (97.6%), ribbon-Si
(95.7%), multi-Si (94.8%), single-Si (81%), and CdTe
(81%) rank first to fifth, respectively. Rank orderings
with EU normalization reference result in a-Si (96.7%),
ribbon-Si (77.1%), multi-Si (59.3%), CdTe (32.7%), and
single-Si (72.9%) ranking first to fifth, respectively. In
outranking, rank orderings do not generate a RAI higher
than 66% (for R5

Single−si ). Here, CdTe (62.0%), a-Si

(50.8%), ribbon-Si (42.7%), multi-Si (39.5%), and
single-Si (58.8%) rank first to fifth, respectively.
Overall, there is a greater distribution of ranks among
alternatives in outranking than in both weighted sum
approaches (EU and World), indicating greater weight
sensitivity like in the CML-IA case.

Rank orderings between weighted sum with external
normalization (EU and World) and outranking align
more in ReCipe than in CML-IA. For example, all three
aggregation approaches in ReCiPe place single-Si in the
lowest ranks and a-Si in the higher ranks. The greatest
discrepancy in ranks occurs with CdTe, which according
to outranking it is a much better alternative than in the
weighted sum approaches (EU and World). The differ-
ence in rank can be explained by the corresponding
contributions per impact category (Fig. 6). In the
weighted sum approaches in ReCiPe, EU, and World,
there are two dominating categories: freshwater
ecotoxicity (FET) and marine ecotoxicity (MET). In
outranking, individual contributions of impact categories
are muchmore balanced similar to the results in CML-IA (Fig.
5). The ranks in ReCipe from a weighted sum with EU and
World normalization, where a-Si and ribbon-Si are the most
likely first and second alternatives, coincide with their corre-
sponding impacts in FET (Fig. 1) where these are the alterna-
tives with the lowest two mean impacts in this impact catego-
ry. In essence, the dominance of these two impact categories
dictates the final rank.

4 Discussion

When evaluating the weight sensitivity of aggregation ap-
proaches in CML-IA and ReCiPe, weighted sum approaches
(with EU and World references) led to higher weight insensi-
tivity than outranking. In both impact assessment methods, the
global reference (World 2000 in CML-IA and World in
ReCiPe) had the greatest weight insensitivity because of the
higher RAI values, followed by the EU normalization refer-
ences. That means that despite sampling all possible weight
values (within the number of Monte Carlo runs and consider-
ing natural numbers), the ranking of alternatives remained the
same.

Weight insensitivity in a weighted sum using external nor-
malization is due to the large differences in magnitude at the
point of scaling—a difference inmagnitude that is much larger
than typical differences found in weight values. While scaled
results in external normalization can deviate for up to two
orders of magnitude, scaled results via outranking range be-
tween 0 and 1. Weight values of impact categories are typical-
ly within the same order of magnitude (0 to 100 with most
weight values around 5—Fig. 3) so that the influence of
weights is limited when the measurement scale of impact cat-
egories differ by more than the orders of magnitude of the
weights. Such setting then leads to systematic biases where
the same impact categories drive the analysis regardless of the
alternative’s performance in other aspects, or the assigned
weights (Figs. 5 and 6)—a result that agrees with Prado
et al. (2017). For CML-IA, this meant that the normalized
MAET category indicator result dominates the final aggregat-
ed score and hence the ranking, and in ReCiPe the normalized
FETandMET indicator results. The case of bias was such that
for instance, when applying a weighted sum in CML-IAwith
World 2000 and EU 25 normalization references (Fig. 5), a-Si
ranked last and ribbon-Si ranked first despite a-Si
outperforming ribbon-Si in seven impact categories, being
nearly equivalent in two and only being more environmentally
burdensome in MAET. The same trend occurs in ReCiPe with
the alternative CdTe, which has a lower impact in all but two
categories, FET and MET, and yet obtains a poor rank in
weighted sum approaches (Fig. 6). Results showed that with
a weighted sumwith external normalization, it is possible for a
single (or two) impact categories to determine the ranks for all
alternatives despite uncertainty and differences in inventory.
In fact, the dominant impact categories in the weighted sum
approaches for CML-IA and ReCiPe as applied to the PV case
study are those with some of the largest uncertainties at char-
acterization (Fig. 1). Prado et al. (2017) document the same
dominant impact categories in results using a weighted sum
with external normalization in ReCiPe (seven published stud-
ies) and CML (six published studies and one including this
finding in hundreds of processes as in White and Carty 2010)
which shows a tendency in LCIA results. Anyhow, the
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dominant impact categories in the weighted sum approaches
included here are calculated independently of uncertainties at
characterization. This means that when using a weighted sum
with external normalization to aggregate results, there is the
risk of making the weight irrelevant and thus insensitive to the
underlying values that weights are intended to represent.
Decisions based on such results will reflect the bias in the
normalization reference and neglect the relative performance
of the alternatives in highly weighted impact categories. The
risk of masking weights is shown here with respect to a
weighted sum with external normalization. Other studies find
this phenomenon in weighted sum with internal normalization
and AHP where the normalization dominates the outcome of
single scores (Myllyviita et al. 2014). With TOPSIS, this ef-
fect was reduced by applying a partially compensatory meth-
od prior to the complete rank ordering (Kalbar et al. 2017).
Further studies should be conducted to gain a general under-
standing of the relative weight sensitivity of different ranking
methods.

In contrast, contributions from individual impact categories
in outranking showed a greater balance, where there is no
impact category dominating the composition of aggregated
scores across alternatives. Consider the different visuals in
the composition of scores between weighted sum approaches
and outranking (Figs. 5 and 6). For the graphs depicting the
outranking, there is no dominant pattern. This is due to the
partially compensatory nature of the aggregation algorithm in
outranking. The ranking generated by this method (Figs. 5 and
6) is defensible taking into account the characterized results
(Fig. 1). In both impact assessment methods, CdTe was the
most preferred alternative and Single-si was the least preferred
alternative (Figs. 5 and 6). When inspecting characterized re-
sult in Fig. 1, CdTe appears to have a lower impact in most
impact categories in CML-IA and ReCiPe, while single-Si
tends to be at the higher end. Given these results, a ranking
like the one generated with outranking is more defensible than
the ranking generated with either weighted sum approaches
using EU or World normalization references in CML-IA and
ReCiPe, which result in ribbon-Si and a-Si ranked first, re-
spectively. In fact, the ranking of alternatives using outranking
is consistent between the two impact assessment methods be-
cause the alternatives show a similar profile at the point of
characterization. The take away is that the ranking generated
with outranking shows a greater sensitivity to weight values,
accounts for uncertainty in the aggregation, does not rely upon
normalization references which can hinder incorporation of
certain aspects (as it was for WD in this case), does not have
a few impact categories determining the ranking of all alter-
natives, and is congruent with characterized results.

Application of this outranking approach for a comparative
LCA as illustrated here requires quantification of uncertainty
which can be a limiting factor because uncertainty analysis is
not a feature contained in all LCA software packages or

versions, nor is something that LCA practitioners exercise
widely, although the practice is advancing in this direction.
Quantitative uncertainty information also enables calculation
of preference thresholds, although these could also be based
on genuine preferences from decision makers if such informa-
tion is available.

When considering aggregation, it is fundamental to under-
stand how the method deals with facts and values—the
relational claim. A method that produces a result with limited
to negligible sensitivity to weights is not a suitable method for
decision support. This relational claim exits the realms of ob-
jectivity, but for science to be useful, to be applicable, it must
relate appropriately to decision-maker values. We found that
extent of sensitivity to the weights is variable in the aggrega-
tion methods used, where outranking confirms a higher sen-
sitivity compared to a weighted sum with external normaliza-
tion. The critique of external normalization in this study refers
to aggregation purposes, and it does not apply to the other
purposes of normalization such as error checking and hotspot
identification in improvement assessment.

Findings of this study show that the scaling procedure (ei-
ther outranking or external normalization) in the aggregation
method is the most determining factor across all the feasible
weight space and even beyond the performance of alternatives
and uncertainty. These findings call for a reevaluation of the
latest UNEP-SETAC recommendation (Pizzol et al. 2016;
Verones et al. 2017) and the PEF guide (PEF 2013) to use
external normalization in the aggregation of results. The rec-
ommendation also calls for using global references so as to
minimize bias, but using global references does not minimize
bias in aggregation as shown by this study. The bias as
discussed by UNEP pertains to data gaps and discrepancy,
but this committee does not acknowledge the role of compen-
sation in aggregation which is an issue that remains beyond
data repair issues. The effect of compensation still makes the
use of a weighted sum with this type of external normalization
questionable for aggregation of comparative LCA results.

5 Conclusions

Aweighted sum approach with a linear aggregation algorithm
is questionable to environmental management as it allows for
a single impact category to dominate results. As opposed to
what the committee from the UNEP-SETAC explains, bias
reduction is not gained solely by expanding the geographical
boundaries of the normalization reference but mainly by eval-
uating the mathematics of aggregation as it pertains to aspects
of compensation (Rowley et al. 2012; Cinelli et al. 2014;
Pollesch and Dale 2015, 2016; Seager and Prado 2017).

It is also necessary to re-asses the ISO guidelines 14044
(ISO 2006) as far as normalization and weighting are con-
cerned. Although ISO 14044 states that normalization could
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be helpful in “preparing for additional procedures, such as
grouping, weighting, or life cycle interpretation,” in practice,
it is shown that it can lead to biased aggregated results.
Moreover, the ISO 14044 states that weighted scores “shall
not be used in LCA studies intended to be used in comparative
assertions intended to be disclosed to the public”. Contrary to
this recommendation, sharing weighted results does not result
in imposing values to an audience because it has been shown
that weights have limited influence. It is in fact the scaling step
(normalization step) that has the most influence. This has al-
ready been documented in the literature in and out of the LCA
field (Stewart 2008; Rogers and Seager 2009; Myllyviita et al.
2014; Pollesch and Dale 2015; Wulf et al. 2017). Given the
biases in external normalization, adopting externally normal-
ized results for comparative assertions should be re-evaluated
as it might bias the interpretation of overall environmental
performance to one or a few dominating impact categories.

Equally problematic is the fact that even in the event of
legitimate weights consisting of importance coefficients, these
can have little effect on the results of the weighted sum with
external normalization, which would be already determined
by the normalization reference. It is thus recommended that
practitioners and researchers become more aware of the meth-
odological implications of aggregation methods to advance
the interpretation of LCIA results. As LCA becomes more
important in decision-making and given efforts in expanding
the scope to all sustainability dimensions, interpretation
methods that mask the role of value systems can be detrimen-
tal to decision making. Aggregation methods based on
outranking algorithms, as shown here, are partially compen-
satory, account for uncertainty, operate with importance coef-
ficient weights, and do not rely upon external normalization
references, whichmakes them appropriate candidates for deal-
ing with aggregation of multiple sustainability dimensions.

Funding information Marco Cinelli declares that this project has re-
ceived funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agree-
ment No 743553.

References

Ahlroth S, Nilsson M, Finnveden G et al (2011) Weighting and valuation
in selected environmental systems analysis tools – suggestions for
further developments. J Clean Prod 19:145–156. https://doi.org/10.
1016/j.jclepro.2010.04.016

Behzadian M, Kazemzadeh RB, Albadvi A, Aghdasi M (2010)
PROMETHEE: a comprehensive literature review on methodolo-
gies and applications. Eur J Oper Res 200:198–215. https://doi.
org/10.1016/j.ejor.2009.01.021

Bengtsson M, Steen B (2000) Weighting in LCA – approaches and ap-
plications. Environ Prog 19:101–109. https://doi.org/10.1002/ep.
670190208

Bertola NJ, Cinelli M, Casset S et al (2019) A multi-criteria decision
framework to support measurement-system design for bridge load
testing. Adv Eng Inform 39:186–202. https://doi.org/10.1016/j.aei.
2019.01.004

Cao XH, Stojkovic I, Obradovic Z (2016) A robust data scaling algorithm
to improve classification accuracies in biomedical data. BMC
Bioinforma 17:1–10. https://doi.org/10.1186/s12859-016-1236-x

Castellani V, Benini L, Sala S, Pant R (2016a) A distance-to-target
weighting method for Europe 2020. Int J Life Cycle Assess 21:
1159–11669. https://doi.org/10.1007/s11367-016-1079-8

Castellani V, Sala S, Benini L (2016b) Hotspots analysis and critical
interpretation of food life cycle assessment studies for selecting
eco-innovation options and for policy support. J Clean Prod.
https://doi.org/10.1016/j.jclepro.2016.05.078

Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi
criteria decision analysis methods to conduct sustainability assess-
ment. Ecol Indic 46:138–148. https://doi.org/10.1016/j.ecolind.
2014.06.011

Corrente S, Figueira JR, Greco S (2014) The SMAA-PROMETHEE
method. Eur J Oper Res 239:514–522. https://doi.org/10.1016/j.
ejor.2014.05.026

Cucurachi S, Seager TP, Prado V (2017) Normalization in comparative
life cycle assessment to support environmental decision making. J
Ind Ecol 21:242–243. https://doi.org/10.1111/jiec.12549

Dias LC, Passeira C, Malça J, Freire F (2016) Integrating life-cycle as-
sessment and multi-criteria decision analysis to compare alternative
biodiesel chains. Ann Oper Res:1–16. https://doi.org/10.1007/
s10479-016-2329-7

Domingues AR,Marques P, Garcia R et al (2015) Applying multi-criteria
decision analysis to the life-cycle assessment of vehicles. J Clean
Prod 107:749–759. https://doi.org/10.1016/j.jclepro.2015.05.086

Du C, Dias LC, Freire F (2019) Robust multi-criteria weighting in com-
parative LCA and S-LCA: a case study of sugarcane production in
Brazil. J Clean Prod 218:708–717. https://doi.org/10.1016/J.
JCLEPRO.2019.02.035

Edwards W, Barron FH (1994) Smarts and smarter: improved simple
methods for multiattribute utility measurement. Organ Behav Hum
Decis Process 60:306–325

Figueira JR, Roy B (2009) A note on the paper, “ranking irregularities
when evaluating alternatives by using some ELECTRE methods”,
by Wang and Triantaphyllou, Omega (2008). Omega 37:731–733.
https://doi.org/10.1016/j.omega.2008.05.001

Fischer G (1995) Range sensitivity of attribute weights in multiattribute
value models. Organ Behav Hum Decis Process 62:252–266

Goedkoop M, Heijungs R, Huijbergts M et al (2009) ReCiPe 2008.
Report 1: Characterisation

Greco S, Ehrgott M, Rui Figueira J (2016) Multiple criteria decision
analysis: state of the art surveys, 2nd edn. Springer New York
Heidelberg Dordrecht London

Greco S, Ishizaka A, Matarazzo B, Torrisi G (2018a) Stochastic multi-
attribute acceptability analysis (SMAA): an application to the rank-
ing of Italian regions. Reg Stud 52:585–600. https://doi.org/10.
1080/00343404.2017.1347612

Greco S, Ishizaka A, Tasiou M, Torrisi G (2018b) On the methodological
framework of composite indices: a review of the issues of weighting,
aggregation, and robustness. Soc Indic Res 141:1–34. https://doi.
org/10.1007/s11205-017-1832-9

Guinée JB, Gorree M, Heijungs R, et al (2002) Handbook on life cycle
assessment - operational guide to the ISO standards. In: Guinée JB
(ed) Handbook on life cycle assessment: operational guide to the
ISO standards Series: Eco-Efficiency in Industry and Science.
Springer, Dordrecht

2404 Int J Life Cycle Assess (2020) 25:2393–2406

https://doi.org/10.1016/j.jclepro.2010.04.016
https://doi.org/10.1016/j.jclepro.2010.04.016
https://doi.org/10.1016/j.ejor.2009.01.021
https://doi.org/10.1016/j.ejor.2009.01.021
https://doi.org/10.1002/ep.670190208
https://doi.org/10.1002/ep.670190208
https://doi.org/10.1016/j.aei.2019.01.004
https://doi.org/10.1016/j.aei.2019.01.004
https://doi.org/10.1186/s12859-016-1236-x
https://doi.org/10.1007/s11367-016-1079-8
https://doi.org/10.1016/j.jclepro.2016.05.078
https://doi.org/10.1016/j.ecolind.2014.06.011
https://doi.org/10.1016/j.ecolind.2014.06.011
https://doi.org/10.1016/j.ejor.2014.05.026
https://doi.org/10.1016/j.ejor.2014.05.026
https://doi.org/10.1111/jiec.12549
https://doi.org/10.1007/s10479-016-2329-7
https://doi.org/10.1007/s10479-016-2329-7
https://doi.org/10.1016/j.jclepro.2015.05.086
https://doi.org/10.1016/J.JCLEPRO.2019.02.035
https://doi.org/10.1016/J.JCLEPRO.2019.02.035
https://doi.org/10.1016/j.omega.2008.05.001
https://doi.org/10.1080/00343404.2017.1347612
https://doi.org/10.1080/00343404.2017.1347612
https://doi.org/10.1007/s11205-017-1832-9
https://doi.org/10.1007/s11205-017-1832-9


Heijungs R, de Koning A, Ligthart T, Korenromp R (2004) Improvement
of LCA characterization factors and LCA practice for metals.
Apeldoorn

Heijungs R, Guinée J, Kleijn R, Rovers V (2007) Bias in normalization:
causes, consequences, detection and remedies. Int J Life Cycle
Assess 12:211–216

Hertwich EG, Hammitt JK, PeaseWS (2000) A theoretical foundation for
life-cycle assessment. J Ind Ecol 4:13–28. https://doi.org/10.1162/
108819800569267

Huppes G, van Oers L, Pretato U, Pennington D (2012) Weighting envi-
ronmental effects: analytic survey with operational evaluation
methods and a meta-method. Int J Life Cycle Assess:1–16. https://
doi.org/10.1007/s11367-012-0415-x

ISO (2006) ISO 14044: environmental management— life cycle assess-
ment — requirements and guidelines. Environ Manag 3:54

Itsubo N, Murakami K, Kuriyama K et al (2015) Development of
weighting factors for G20 countries—explore the difference in en-
vironmental awareness between developed and emerging countries.
Int J Life Cycle Assess:1–16. https://doi.org/10.1007/s11367-015-
0881-z

Ji C, Hong T (2016) New internet search volume-based weighting meth-
od for integrating various environmental impacts. Environ Impact
Assess Rev 56:128–138. https://doi.org/10.1016/j.eiar.2015.09.008

Jungbluth N, Stucki M, Flury K, Frischknecht R (2012) Life Cycle
Inventories of Photovoltaics, ESU-services Ltd.: Uster, CH, 2012.

Kalbar PP, Birkved M, Nygaard SE, Hauschild M (2017) Weighting and
aggregation in life cycle assessment: do present aggregated single
scores provide correct decision support? J Ind Ecol 21:1591–1600.
https://doi.org/10.1111/jiec.12520

Keeney RL (2002) Common mistakes in making value trade-offs. Oper
Res 50:935–945. https://doi.org/10.1287/opre.50.6.935.357

Kim J, Yang Y, Bae J, Suh S (2013) The importance of normalization
references in interpreting life cycle assessment results. J Ind Ecol 17:
385–395. https://doi.org/10.1111/j.1530-9290.2012.00535.x

Laurin L, Amor B, Bachmann TM, Bare J, Koffler C, Genest S, Preiss P,
Pierce J, Satterfield B, Vigon B (2016) Life cycle assessment capac-
ity roadmap (section 1): decision-making support using LCA. Int J
Life Cycle Assess 21:443–447. https://doi.org/10.1007/s11367-016-
1031-y

Matarazzo A, Clasadonte MT, Ingrao C, Zerbo A (2013) Criteria interac-
tion modelling in the framework of Lca analysis. Int J Eng Res Appl
3:523–530

Muller S, Lesage P, Ciroth A, et al (2014) The application of the pedigree
approach to the distributions foreseen in ecoinvent v3. Int J Life
Cycle Assess. https://doi.org/10.1007/s11367-014-0759-5

Munda G (2016) Multiple criteria decision analysis and sustainable de-
velopment. In: Greco S, Ehrgott M, Figueira JR (eds) Multiple
Criteria Decision Analysis. State of the Art Surveys, New York,
pp 1235–1267

Myllyviita T, Leskinen P, Seppälä J (2014) Impact of normalisation, elic-
itation technique and background information on panel weighting
results in life cycle assessment. Int J Life Cycle Assess 19:377–386.
https://doi.org/10.1007/s11367-013-0645-6

Nardo M, Saisana M, Saltelli A et al (2008) Handbook on Constructing
Composite Indicators: Methodology and User Guide. OECD, JRC
European Commission

Norris G a (2001) The requirement for congruence in normalization. Int J
Life Cycle Assess 6:85–88. https://doi.org/10.1007/BF02977843

Nzila C, Dewulf J, Spanjers H et al (2012) Multi criteria sustainability
assessment of biogas production in Kenya. Appl Energy 93:496–
506. https://doi.org/10.1016/j.apenergy.2011.12.020

PEF (2013) Recommendations on the use of common methods to mea-
sure and communicate the life cycle environmental performance of
products and organizations

PizzolM,Weidema B, BrandãoM, Osset P (2015)Monetary valuation in
life cycle assessment: a review. J Clean Prod 86:170–179. https://
doi.org/10.1016/j.jclepro.2014.08.007

Pizzol M, Laurent A, Sala S et al (2016) Normalisation and weighting in
life cycle assessment: quo vadis? Int J Life Cycle Assess. https://doi.
org/10.1007/s11367-016-1199-1

Pollesch N, Dale VH (2015) Applications of aggregation theory to sus-
tainability assessment. Ecol Econ 114:117–127. https://doi.org/10.
1016/j.ecolecon.2015.03.011

Pollesch NL, Dale VH (2016)Normalization in sustainability assessment:
methods and implications. Ecol Econ 130:195–208. https://doi.org/
10.1016/j.ecolecon.2016.06.018

Prado V, Heijungs R (2018) Implementation of stochastic multi attribute
analysis (SMAA) in comparative environmental assessments.
Environ Model Softw 109:223–231. https://doi.org/10.1016/j.
envsoft.2018.08.021

Prado V, Rogers K, Seager TP (2012) Integration of MCDA tools in
valuation of comparative life cycle assessment. In: Curran MA
(ed) Life cycle assessment handbook: a guide for environmentally
sustainable products. Wiley, Hoboken, pp 413–431

Prado V, Wender BA, Seager TP (2017) Interpretation of comparative
LCAs: external normalization and a method of mutual differences.
Int J Life Cycle Assess 22:2018–2029. https://doi.org/10.1007/
s11367-017-1281-3

Prado-Lopez V, Seager TP, Chester M et al (2014) Stochastic multi-
attribute analysis (SMAA) as an interpretation method for compar-
ative life-cycle assessment (LCA). Int J Life Cycle Assess 19:405–
416. https://doi.org/10.1007/s11367-013-0641-x

Ravikumar D, Seager TP, Cucurachi S et al (2018) Novel method of
sensitivity analysis improves the prioritization of research in antici-
patory life cycle assessment of emerging technologies. Environ Sci
Technol 52:6534–6543. https://doi.org/10.1021/acs.est.7b04517

Riabacke M, Danielson M, Ekenberg L (2012) State-of-the-art prescrip-
tive criteria weight elicitation. Advances in Decision Sciences.
https://doi.org/10.1155/2012/276584

Rogers M, Bruen M (1998) Choosing realistic values of indifference,
preference and veto thresholds for use with environmental criteria
within ELECTRE. Eur J Oper Res 107:542–551. https://doi.org/10.
1016/S0377-2217(97)00175-6

Rogers K, Seager TP (2009) Environmental decision-making using life
cycle impact assessment and stochastic multiattribute decision anal-
ysis: a case study on alternative transportation fuels. Environ Sci
Technol 43:1718–1723. https://doi.org/10.1021/es801123h

Rowley HV, Peters GM, Lundie S, Moore SJ (2012) Aggregating sus-
tainability indicators: beyond the weighted sum. J Environ Manag
111:24–33. https://doi.org/10.1016/j.jenvman.2012.05.004

Roy B (1985)Méthodologie multicritère d’aide à la décision. Economica,
Paris

Seager TP, Prado V (2017) Letter to the editor on “weighting and aggre-
gation in life cycle assessment: do present aggregated single scores
provide correct decision support?”. J Ind Ecol. https://doi.org/10.
1111/jiec.12559

Sohn JL, Kalbar PP, Birkved M (2017) Life cycle based dynamic assess-
ment coupled with multiple criteria decision analysis: a case study of
determining an optimal building insulation level. J Clean Prod 162:
449–457. https://doi.org/10.1016/j.jclepro.2017.06.058

Steele K, Carmel Y, Cross J, Wilcox C (2009) Uses and misuses of
multicriteria decision analysis (MCDA) in environmental decision
making. Risk Anal 29:26–33. https://doi.org/10.1111/j.1539-6924.
2008.01130.x

Stewart TJ (2008) Robustness Analysis and MCDA. In: European
Working Group Multiple Criteria Decision Aiding. Newsletter of
the European Working Group “Multicriteria Aid for Decisions”

Tervonen T, Lahdelma R (2007) Implementing stochastic multicriteria
acceptability analysis. Eur J Oper Res 178:500–513. https://doi.
org/10.1016/j.ejor.2005.12.037

2405Int J Life Cycle Assess (2020) 25:2393–2406

https://doi.org/10.1162/108819800569267
https://doi.org/10.1162/108819800569267
https://doi.org/10.1007/s11367-012-0415-x
https://doi.org/10.1007/s11367-012-0415-x
https://doi.org/10.1007/s11367-015-0881-z
https://doi.org/10.1007/s11367-015-0881-z
https://doi.org/10.1016/j.eiar.2015.09.008
https://doi.org/10.1111/jiec.12520
https://doi.org/10.1287/opre.50.6.935.357
https://doi.org/10.1111/j.1530-9290.2012.00535.x
https://doi.org/10.1007/s11367-016-1031-y
https://doi.org/10.1007/s11367-016-1031-y
https://doi.org/10.1007/s11367-014-0759-5
https://doi.org/10.1007/s11367-013-0645-6
https://doi.org/10.1007/BF02977843
https://doi.org/10.1016/j.apenergy.2011.12.020
https://doi.org/10.1016/j.jclepro.2014.08.007
https://doi.org/10.1016/j.jclepro.2014.08.007
https://doi.org/10.1007/s11367-016-1199-1
https://doi.org/10.1007/s11367-016-1199-1
https://doi.org/10.1016/j.ecolecon.2015.03.011
https://doi.org/10.1016/j.ecolecon.2015.03.011
https://doi.org/10.1016/j.ecolecon.2016.06.018
https://doi.org/10.1016/j.ecolecon.2016.06.018
https://doi.org/10.1016/j.envsoft.2018.08.021
https://doi.org/10.1016/j.envsoft.2018.08.021
https://doi.org/10.1007/s11367-017-1281-3
https://doi.org/10.1007/s11367-017-1281-3
https://doi.org/10.1007/s11367-013-0641-x
https://doi.org/10.1021/acs.est.7b04517
https://doi.org/10.1155/2012/276584
https://doi.org/10.1016/S0377-2217(97)00175-6
https://doi.org/10.1016/S0377-2217(97)00175-6
https://doi.org/10.1021/es801123h
https://doi.org/10.1016/j.jenvman.2012.05.004
https://doi.org/10.1111/jiec.12559
https://doi.org/10.1111/jiec.12559
https://doi.org/10.1016/j.jclepro.2017.06.058
https://doi.org/10.1111/j.1539-6924.2008.01130.x
https://doi.org/10.1111/j.1539-6924.2008.01130.x
https://doi.org/10.1016/j.ejor.2005.12.037
https://doi.org/10.1016/j.ejor.2005.12.037


Tervonen T, van Valkenhoef G, Buskens E, Hillege HL, Postmus D
(2011) A stochastic multicriteria model for evidence-based decision
making in drug benefit-risk analysis. Stat Med 30:1419–1428.
https://doi.org/10.1002/sim.4194

Tuomisto HL, Hodge ID, Riordan P, Macdonald DW (2012) Exploring a
safe operating approach to weighting in life cycle impact assessment
– a case study of organic, conventional and integrated farming sys-
tems. J Clean Prod 37:147–153. https://doi.org/10.1016/j.jclepro.
2012.06.025

Tylock SM, Seager TP, Snell J et al (2012) Energy management under
policy and technology uncertainty. Energy Policy 47:156–163.
https://doi.org/10.1016/j.enpol.2012.04.040

Verones F, Bare J, Bulle C et al (2017) LCIA framework and cross-cutting
issues guidance within the UNEP-SETAC life cycle initiative. J
Clean Prod 161:957–967. https://doi.org/10.1016/j.jclepro.2017.
05.206

White P, CartyM (2010) Reducing bias through process inventory dataset
normalization. Int J Life Cycle Assess 15:994–1013. https://doi.org/
10.1007/s11367-010-0215-0

Wulf C, Zapp P, Schreiber A et al (2017) Lessons learned from a life cycle
sustainability assessment of rare earth permanent magnets. J Ind
Ecol 00:1–13. https://doi.org/10.1111/jiec.12575

Zanghelini GM, Cherubini E, Soares SR (2018) How multi-criteria deci-
sion analysis (MCDA) is aiding life cycle assessment (LCA) in
results interpretation. J Clean Prod 172:609–622. https://doi.org/
10.1016/j.jclepro.2017.10.230

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2406 Int J Life Cycle Assess (2020) 25:2393–2406

https://doi.org/10.1002/sim.4194
https://doi.org/10.1016/j.jclepro.2012.06.025
https://doi.org/10.1016/j.jclepro.2012.06.025
https://doi.org/10.1016/j.enpol.2012.04.040
https://doi.org/10.1016/j.jclepro.2017.05.206
https://doi.org/10.1016/j.jclepro.2017.05.206
https://doi.org/10.1007/s11367-010-0215-0
https://doi.org/10.1007/s11367-010-0215-0
https://doi.org/10.1111/jiec.12575
https://doi.org/10.1016/j.jclepro.2017.10.230
https://doi.org/10.1016/j.jclepro.2017.10.230

	Sensitivity to weighting in life cycle impact assessment (LCIA)
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Weighting in LCA

	Methods
	Comparative LCA illustration and systematic evaluation
	Weighted sum with external normalization
	Outranking
	Stochastic exploration of weights
	Rank acceptability index

	Results
	Weigh sensitivity in CML-IA
	Weight sensitivity in ReCiPe

	Discussion
	Conclusions
	References


