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6 Generalized eigenproblem
without fermion doubling for
Dirac fermions on a lattice

6.1 Introduction

Three-dimensional topological insulators are Nature’s way of working around
the Nielsen-Ninomiya no-go theorem [100], which forbids the existence of
a single species of massless Dirac fermions on a lattice. The fermion dou-
bling required by the theorem is present in a topological insulator slab,
but the two species of Dirac fermions are spatially separated on oppo-
site surfaces [101, 102]. On each surface the two-dimensional (2D) Dirac
Hamiltonian

HD = ~vFk · σ = −i~vF

(
σx

∂

∂x
+ σy

∂

∂y

)
(6.1)

emerges as the effective low-energy Hamiltonian, with a single Dirac cone
at k = (kx, ky) = 0.

Since it is computationally expensive to work with a three-dimensional
(3D) lattice, one would like to be able to discretize the 2D Dirac Hamilto-
nian, without introducing a second Dirac cone. We can draw inspiration
from lattice gauge theory, where a variety of strategies have been devel-
oped to avoid fermion doubling [103, 104]. The condensed matter context
introduces its own complications, notably the lack of translational invari-
ance and breaking of chiral symmetry by disorder and boundaries.

In Ref. 105 it was shown how the transfer matrix of the Dirac equation
in a disorder potential can be discretized without fermion doubling. This
allows for efficient calculation of the conductance and other transport
properties in an open system [106–108]. Here we apply the same approach
to the Hamiltonian of a closed system, in order to study the spectral
statistics.

The Nielsen-Ninomiya theorem forbids a local discretization of the eigen-
value problemHDψ = Eψ without fermion doubling and without breaking
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

the chiral symmetry relation

σzHD = −HDσz. (6.2)

One way to circumvent the no-go theorem, is to abandon the locality
by introducing long-range hoppings in the discretized Dirac Hamiltonian
[109]. Here we follow an alternative route, following Stacey [110], which
is to work with a generalized eigenvalue problem

Hψ = EPψ, (6.3)

with local tight-binding operators H and P on both sides of the equation.
Going beyond Ref. 110, we transform the operators H and P such that
they remain, respectively, Hermitian and positive definite in the absence
of translational invariance. This favors a stable and efficient numerical
solution, and moreover guarantees that the resulting spectrum is real, not
only in the continuum limit but at any grid size.

A key feature of our approach, compared with the more familiar ap-
proaches of Wilson fermions [111] and Susskind fermions [112], is that both
the chiral symmetry (6.2) is preserved and the symplectic time-reversal
symmetry1

σyH
∗
Dσy = HD. (6.4)

This also implies the conservation of the product of the chiral and sym-
plectic symmetries, which is a particle-hole symmetry,

σxH
∗
Dσx = −HD. (6.5)

To demonstrate the capabilities of our approach we calculate the spectral
statistics of a disordered system and show how the numerics distinguishes
broken versus preserved chiral or symplectic symmetry in each of the four
symmetry classes of random-matrix theory [113].

The outline of the chapter is as follows: In the next section we formulate
the generalized eigenproblem, first following Stacey [110] for a translation-
ally invariant system, and then including disorder. The symmetrization
that produces a Hermitian H and positive definite P is introduced in Sec.
6.3. The locality of the discretization scheme is demonstrated by the con-
struction of a locally conserved current in Sec. 6.4. By applying different

1 The complex conjugation operation K in the symmetry relations (6.4) and (6.5)
is taken in the position basis. In momentum representation the relations read
σyH∗(−k)σy = H(k) and σxH∗(−k)σx = −H(k). Both symplectic and particle-
hole symmetries are anti-unitary symmetries, with operators T = iσyK and C =
σxK that square to −1 and +1, respectively.
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6.2 Construction of the generalized eigenproblem

types of disorder, in scalar potential, vector potential, or mass, we can ac-
cess the different symmetry classes and obtain the characteristic spectral
statistics for each, as we show in Sec. 6.5. We conclude in Sec. 6.6.

6.2 Construction of the generalized
eigenproblem

6.2.1 Staggered discretization

If we discretize the Dirac Hamiltonian (6.1) on a lattice (lattice constant
a), the replacement of the momentum k by a−1 sin ka produces a second
Dirac cone at the edge of the Brillouin zone (k = π/a). To place our work
into context, we summarize methods to remove this spurious low-energy
excitation.

If one is willing to abandon the locality of the Hamiltonian, one can
eliminate the fermion doubling by a discretization of the spatial derivative
that involves all lattice points, df/dx 7→ ∑

n(−1)nn−1f(x − na). The
resulting dispersion remains strictly linear in the first Brillouin zone. This
discretization scheme goes by the name of slac fermions [109] in the high-
energy physics literature. It has recently been implemented in a condensed
matter context [114].

An alternative line of approach preserves the locality at the expense of
a symmetry breaking. The simplest way is to couple the top and bottom
surfaces of the topological insulator slab [95, 115]. The coupling adds
a momentum dependent mass term µσz(1 − cos ka) which gaps out the
second cone, while breaking both chiral symmetry and symplectic sym-
metry2. This is the Wilson fermion regularization of lattice gauge theory
[111, 116]. The product of chiral and symplectic symmetry is preserved by
Wilson fermions, which may be sufficient for some applications [117, 118].

It is possible to maintain the chiral symmetry by discretizing the Dirac
Hamiltonian on a pair of staggered grids. Much of the lattice gauge theory
literature is based on the Susskind discretization [112], which applies a
different grid to each of the two components of the spinor wave function
ψ. On a 2D lattice it reduces the number of Dirac cones in the Brillouin

2Breaking of the symplectic symmetry (6.4) does not necessarily imply breaking of
time-reversal symmetry. While a mass term µσz(1− cos ka) due to the coupling of
top and bottom surfaces in a topological insulator slab breaks symplectic symme-
try, time-reversal symmetry is preserved, because the time-reversal operation also
changes the sign of µ.
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

Figure 6.1: A pair of staggered grids (lattice constant a, lattice vectors ex, ey)
used in the Stacey discretization of the 2D Dirac equation. The wave function
and its spatial derivatives are evaluated at the open lattice points, in terms of
the values on the four neighboring closed lattice points. The basis states 〈n|
and |n〉 on the two lattices are indicated.

zone from 4 to 2. Chiral symmetry is preserved, but symplectic symmetry
is broken by the Susskind discretization (see App. 6.A).

Hammer, Pötz, and Arnold [119, 120] have developed an ingenious
single-cone discretization method for the time-dependent Dirac equation.
As in the Susskind discretization, different grids are used for each of
the spinor components, but these are staggered not only in space but
also in time. While this method is well suited for dynamical simulations
[121, 122], it is not easily adapted to energy-resolved spectral studies.

An altogether different approach, introduced by Stacey [110, 123], is to
evade the fermion-doubling no-go theorem by the replacement of the con-
ventional eigenvalue problem HDψ = Eψ by a generalized eigenproblem
Uψ = EΦψ. There is now no obstruction to having a local U and Φ and
also preserving chiral and symplectic symmetry.

The Stacey discretization of the transfer matrix was implemented in
Ref. 105. In what follows we show how to apply it to the Hamiltonian, to
solve the time-independent Dirac equation on a 2D lattice. In the next
subsection we first summarize the results of Ref. 110 for a translationally
invariant system, and then will present the modifications needed to apply
the method in the presence of a disorder potential.

6.2.2 Translationally invariant system

We seek to discretize the Dirac equation HDψ = Eψ on a 2D square
lattice (lattice constant a). We denote the discretized wave function by
ψn, with n = (nx, ny) ∈ Z2 labeling the lattice points at nxex + nyey.
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6.2 Construction of the generalized eigenproblem

For ease of notation we will henceforth set vF, ~, and a to unity.
Staggered discretization a la Stacey means that the wave function and

its spatial derivatives are evaluated on a displaced lattice with sites at
the center of the unit cells of the original lattice (see Fig. 6.1). The
discretization rules are:

∂ψ

∂x
7→ 1

2 (ψn+ex + ψn+ex+ey − ψn − ψn+ey ), (6.6a)

∂ψ

∂y
7→ 1

2 (ψn+ey + ψn+ex+ey − ψn − ψn+ex), (6.6b)

ψ 7→ 1
4 (ψn + ψn+ex + ψn+ey + ψn+ex+ey ). (6.6c)

In distinction to Susskind staggering, the same discretization applies to
each spinor component.

In momentum representation, ψ(k) =
∑
n ψne

−ik·n, the discretized
Dirac equation reads

U(k)ψ(k) = EΦ(k)ψ(k), (6.7)

with the k-dependent operators

U = − 1
2 iσx(eikx − 1)(eiky + 1)− 1

2 iσy(eikx + 1)(eiky − 1),

Φ = 1
4 (eikx + 1)(eiky + 1).

(6.8)

The dispersion relation

E(k) = ±2
√

tan2(kx/2) + tan2(ky/2) (6.9)

has a single Dirac point at k = 0. The Dirac point at the edge of the
Brillouin zone has been converted into a pole by the Stacey discretization.

6.2.3 Including a disorder potential

We break translational invariance by including in the Dirac equation a
spatially dependent scalar potential V σ0, vector potential Axσx + Ayσz,
and mass Mσz,

(−i∇+ eA) · σψ + (V σ0 +Mσz)ψ = Eψ. (6.10)

The electron charge e is set to unity in what follows. The Pauli matrices
σ = (σx, σy) and σz act on the spin degree of freedom, with σ0 the 2× 2
unit matrix.
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

symmetry symplectic chiral particle-hole class
V 6= 0 6= M × × × A
V 6= 0 = M,A X × × AII
A 6= 0 = V,M × X × AIII
M 6= 0 = V,A × × X D

Table 6.1: The four symmetry classes realized by single-cone Dirac fermions
[113]. The table lists the broken (×) and preserved (X) symmetries of the Dirac
Hamiltonian, in the presence of a scalar potential V , vector potential A, and
mass M . Class A applies if at least two of the three V,M,A are nonzero.

On the surface of a topological insulator the mass term represents a
perpendicular magnetization. Alternatively, we can consider a 2D topo-
logical superconductor with chiral p-wave pair potential, described by the
Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG =

(
k2

2m
+ V − EF

)
σz + v∆(k · σ). (6.11)

The Pauli matrices now act on the electron-hole degree of freedom, elec-
trons and holes are coupled by the pair potential ∝ v∆. Since this coupling
is linear in momentum k, the quadratic kinetic energy k2/2m can be ne-
glected near k = 0. The difference V −EF of electrostatic potential V and
Fermi energy EF then plays the role of the mass term M in Eq. (6.10).

The low-energy physics of the problem is governed by three symmetry
relations, the chiral symmetry (6.2), the symplectic symmetry (6.4), and
the particle-hole symmetry (6.5). Chiral symmetry is preserved by A and
broken by V or M . Symplectic symmetry is preserved by V and broken
by M or A. If at least two of the three potentials V,M,A are nonzero
all symmetries of the Dirac Hamiltonian are broken. Finally, if V = 0,
A = 0 while M 6= 0 the particle-hole symmetry (6.5) remains. Table 6.1
summarizes the symmetry classification [113].

The inclusion of the vector potential requires a separate consideration,
in order to preserve gauge invariance. We delay that to Sec. 6.4, at first
we only include V and M .

To incorporate the spatially dependent terms in the discretization scheme
we write the operators U and Φ in the position basis. In view of the iden-
tity

eikα =
∑
n

|n〉〈n|eikα =
∑
n

|n〉〈n+ eα|, (6.12)
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6.3 Symmetrization of the generalized eigenproblem

we have

U = − 1
2 iσxΩ+− − 1

2 iσyΩ−+, Φ = 1
4Ω++, (6.13)

Ωss′ =
∑
n

(
ss′|n〉〈n|+ s|n〉〈n+ ex|+ s′|n〉〈n+ ey|+ |n〉〈n+ ex + ey|

)
.

(6.14)

For later use we also define the factorization Φ = ΦxΦy, with commuting
operators Φx,Φy given by

Φα = 1
2 (eikα + 1) = 1

2

∑
n

(
|n〉〈n|+ |n〉〈n+ eα|

)
. (6.15)

In these equations the ket states |n〉 refer to sites on the displaced
lattice (open lattice points in Fig. 6.1), while the bra states 〈n| refer to
sites on the original lattice (closed lattice points). The inner product is
defined such that the two sets of eigenstates of position are orthonormal,
〈n′|n〉 = δn,n′ .

We define the potential and mass operators,

V =
∑
n

Vn|n〉〈n|, M =
∑
n

Mn|n〉〈n|, (6.16)

where Vn and Mn denote the value at the open lattice point n. With this
notation we have the discretized Dirac equation

Uψ + (V σ0 +Mσz)Φψ = EΦψ. (6.17)

The product V Φψ multiplies the value of V on an open lattice point with
the average of the values of ψ on the four adjacent closed lattice points,
and similarly for MΦψ.

Eq. (6.17) is a generalized eigenvalue problem, with operators on both
sides of the equation. Neither operator is Hermitian. This is problematic
in a numerical implementation, and we will show in the next section how
to resolve that difficulty.

6.3 Symmetrization of the generalized
eigenproblem

We wish to rewrite Eq. (6.17) in the form Hψ = EPψ, with Hermitian H
and Hermitian positive definite P. Such a symmetrization of the general-
ized eigenvalue problem allows for a stable and efficient numerical solution
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

[124, 125]3. Moreover, it guarantees real eigenvalues E and eigenvectors
ψE that satisfy the orthogonality relation 〈ψE |P|ψ′E〉 = 0 if E 6= E′.

We multiply both sides of Eq. (6.17) by Φ† and note that

Φ†U = 1
2σx(1 + cos ky) sin kx + 1

2σy(1 + cos kx) sin ky (6.18)

is a Hermitian operator. In position basis, this reads

Φ†U = −iD · σ, D = (Dx, Dy), (6.19a)

Dx = 1
8

∑
n

(
2|n〉〈n+ ex|+ |n〉〈n+ ex + ey|+ |n〉〈n+ ex − ey|

)
−H.c,

(6.19b)

Dy = 1
8

∑
n

(
2|n〉〈n+ ey|+ |n〉〈n+ ex + ey|+ |n〉〈n+ ey − ex|

)
−H.c.

(6.19c)

We thus arrive at the generalized eigenproblem

Hψ = EPψ, P = Φ†Φ,

H = −iD · σ + Φ†(V σ0 +Mσz)Φ,
(6.20)

with Hermitian H and positive semi-definite P. Moreover, P is positive
definite provided that Φ has no zero-modes, which is the case if the edges of
the Brillouin zone (kx or ky equal to ±π) are excluded from the spectrum.
To ensure that, we can choose an odd number Nx, Ny of lattice points with
periodic boundary conditions in the x- and y-directions (or alternatively,
even Nx, Ny with antiperiodicity).

By way of illustration, we work out the expectation value

〈ψ|Φ†V σ0Φ|ψ〉 =
∑
n

Vn| 14 (ψn + ψn+ex + ψn+ey + ψn+ex+ey )|2, (6.21)

so the value of the potential on an open lattice point is multiplied by the
norm squared of the average of the wave function amplitudes on the four
adjacent closed lattice points.

Eq. (6.20) is local in the sense that the operators H and P only couple
nearby lattice sites. It can be converted into a conventional eigenvalue
problem H̃ψ̃ = Eψ̃ with ψ̃ = Φψ and H̃ a nonlocal effective Hamiltonian:

H̃ = (Φ†)−1HΦ−1 = UΦ−1 + σ0V +Mσz. (6.22)

3Both H and P should be Hermitian and one of these operators should be positive
semi-definite to guarantee real eigenvalues of Hψ = EPψ. Hermiticity alone is not
sufficient, see the counterexample H = σx, P = σz with eigenvalues E = ±i.
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6.4 Locally conserved particle current

In the translationally invariant case, the effective Hamiltonian reduces
simply to

H̃ = 2σx tan(kx/2) + 2σy tan(ky/2). (6.23)

Both chiral symmetry and symplectic symmetry are preserved on the
lattice if present in the continuum description: σzH̃ = −H̃σz when
V = 0 = M , and σyH̃∗σy = H̃ when M = 0.

6.4 Locally conserved particle current

In real space the effective Hamiltonian (6.22) produces infinitely long-
range hoppings, as in the slac fermion discretization [109, 114]. The
transformation to the generalized eigenproblem (6.20) restores the locality
of the hoppings. One might wonder whether there is a physical content
to this mathematical statement. Yes there is, as we show in this section
the Stacey discretization allows for the construction of a locally conserved
particle current.

We define the particle number

〈ψ̃|ψ̃〉 = 〈ψ|Φ†Φ|ψ〉, (6.24)

corresponding to the density operator

ρ(n) = Φ†|n〉〈n|Φ. (6.25)

With reference to the two staggered grids in Fig. 6.1, the particle density
on an open lattice point n is given by the norm squared of the average of
the wave function on the four adjacent closed lattice points,

〈ψ|ρ(n)|ψ〉 = | 14 (ψn + ψn+ex + ψn+ey + ψn+ex+ey )|2. (6.26)

The current density operator is given by

jα(n) = (Φ†α)−1σαρ(n)Φ−1
α , (6.27)

or equivalently,

jx(n) = σx
∑
n

Φ†y|n〉〈n|Φy,

jy(n) = σy
∑
n

Φ†x|n〉〈n|Φx,
(6.28)
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

in terms of the operators Φx,Φy defined in Eq. (6.15). The current density
in the state ψ then takes the form

〈ψ|jx(n)|ψ〉 = 1
4 (ψn + ψn+ey )†σx(ψn + ψn+ey ),

〈ψ|jy(n)|ψ〉 = 1
4 (ψn + ψn+ex)†σy(ψn + ψn+ex).

(6.29)

The current density at an open lattice point is evaluated by averaging
the wave function at the two nearby closed lattice points connected by an
edge perpendicular to the current flow.

The local conservation law

− ∂

∂t
〈ψ|ρ(n)|ψ〉 =

∑
α=x,y

〈ψ|jα(n+ eα)− jα(n)|ψ〉 (6.30)

is derived in App. 6.B.
Knowledge of the current operator allows us to introduce the vector

potential operator A =
∑
nAn|n〉〈n| such that

lim
A→0

∂H
∂An

= j(n). (6.31)

This is satisfied if

H = − iD · σ + Φ†
(
V σ0 +Mσz

)
Φ + Φ†yσxAxΦy + Φ†xσyAyΦx +O(A2).

(6.32)

In App. 6.C we check that the Hamiltonian (6.32) is gauge invariant to
first order in A. Higher order terms are nonlocal and we will not include
them.

6.5 Spectral statistics

We have solved the generalized eigenproblem

Hψ = EPψ, P = Φ†Φ,

H = −iD · σ + Φ†
(
V σ0 +Mσz

)
Φ + Φ†yσxAxΦy + Φ†xσyAyΦx

(6.33)

on a square lattice of size Nx ×Ny. Antiperiodic boundary conditions in
the x- and y-direction account for the π Berry phase accumulated by the
spin when it makes one full rotation. The dimensions Nx, Ny are even to
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6.5 Spectral statistics

Figure 6.2: Histograms: Spacing distributions computed from the discretized
Dirac Hamiltonian (6.33), with different types of disorder corresponding to the
four symmetry classes in Table 6.1. The red dashed line is the prediction (6.34)
from random-matrix theory in the presence of symplectic symmetry (β = 4)
and in its absence (β = 2).

ensure a positive definite Φ (no zero-mode in the spectrum). The spec-
trum was calculated for 5 · 104 realizations of a random disorder, chosen
independently on each site from a uniform distribution in the interval
(−δ, δ).

To access the four symmetry classes from Table 6.1 we took

• Ax, Ay ≡ 0 and random V,M with δ = 15/
√

2 for class A;

• M,Ax, Ay ≡ 0 and random V with δ = 15 for class AII;

• V,M ≡ 0 and random Ax, Ay with δ = 1
4

√
2 for class AIII;

• V,Ax, Ay ≡ 0 and random M with δ = 15 for class D.

The relatively weak disorder in class AIII was chosen in view of the lin-
earization in the vector potential. For that case we took Nx = Ny = 150,
in the other symmetry classes with stronger disorder we took Nx = Ny =
100.

Symmetry class D is insulating for weak disorder in the mass M ∈
(−δ, δ), it undergoes a metal-insulator transition at δc = 3.44 [106]. This
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

Figure 6.3: Density of states in the four symmetry classes, calculated numer-
ically from the discretized Dirac Hamiltonian (blue solid lines) and compared
with the RMT prediction (6.35) (red dashed lines). Chiral symmetry introduces
a linear dip (class AIII), while particle-hole symmetry introduces a quadratic
peak (class D).

is the thermal metal phase of a topological superconductor [126]. The
thermal metal can be reached by vortex disorder, as in the network model
studied in Ref. 127, or it can be reached by electrostatic disorder in the
BdG Hamiltonian (6.11), as in the tight-binding models studied in Refs.
106, 128. Here we follow the latter approach, taking δ = 15 much larger
than δc, so that we are deep in the metallic regime.

In Fig. 6.2 we show the probability distribution of the level spacing δE
in the bulk of the spectrum, far from E = 0, where the average spacing
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6.6 Conclusion

〈E〉 is energy independent. We compare with the Wigner surmise from
random-matrix theory (RMT) [129],

P (s) =

{
32
π2 s

2e−4s2/π in class A, AIII, D,
218

(9π)3 s
4e−64s2/9π in class AII,

(6.34)

with s = δE/〈δE〉. The characteristic difference between the two distri-
butions is the decay ∝ sβ for small spacings, with β = 4 in the presence
of symplectic symmetry, while β = 2 in its absence. (The case β = 1 of
RMT is not realized in a spin-full system.)

In Fig. 6.3 we make a similar comparison for the density of states near
E = 0. In class A and AII the ensemble averaged density of states ρ(E)
is flat in a broad energy range around E = 0. Chiral symmetry in class
AIII introduces a linear dip in the density of states, while particle-hole
symmetry in class D introduces a quadratic peak. The RMT predictions
are [130]

ρ(E) =
1

〈δE〉 ×
{

1
2π

2|ε|
[
J2

0 (πε) + J2
1 (πε)

]
in class AIII,

1 + (2πε)−1 sin(2πε) in class D,
(6.35)

with ε = E/〈δE〉. The mean level spacing 〈δE〉 is computed away from
E = 0.

The good agreement between the numerical results from the disordered
Dirac equation and the RMT predictions, evident in Figs. 6.2 and 6.3, is
reached without any adjustable parameter.

6.6 Conclusion

In conclusion, we have developed and implemented a lattice fermion Hamil-
tonian that, unlike the familiar Wilson fermion and Susskind fermion
Hamiltonians [111, 112], preserves both chiral symmetry and symplec-
tic symmetry while avoiding fermion doubling. Our approach is a sym-
metrized version of Stacey’s generalized eigenvalue problem [110], which
allows for the construction of a locally conserved particle current. To
demonstrate the universal applicability of the lattice fermion Hamiltonian
we have shown how it can reproduce the characteristic spectral statistics
for each of the four symmetry classes of Dirac fermions. We believe this
to be the first demonstration of a single-cone discretization scheme with
that capability.
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Appendices

6.A Susskind discretization breaks
symplectic symmetry

The staggered discretization of the 2D Dirac equation a la Susskind [112]
produces a conventional eigenvalue problem, with a local Hamiltonian.
There is a single Dirac cone in 1D but there are 2 Dirac cones in 2D.
Chiral symmetry is preserved, but symplectic symmetry is broken. To
contrast this with the symplectic-symmetry-preserving single-cone Stacey
discretization used in the main text, we give a brief description of the
Susskind discretization, first in 1D and then in 2D.

In 1D the staggering refers to the prescription that the derivative of the
A component of the spinor ψ = (ψA, ψB) is calculated at x = n + 1/2,
while the derivative of the B component is calculated at x = n − 1/2.
Hence the term kxσx in the Dirac Hamiltonian is substituted by

kxσxψ 7→ −i
(
ψB(n)− ψB(n− 1)
ψA(n+ 1)− ψA(n)

)
⇒ HD 7→ −i

(
0 1− e−∂x

e∂x − 1 0

)
. (6.36)

The exponential e∂x , with ∂x = ∂/∂x, is the translation operator: e∂xψ(x) =
ψ(x+ 1).

In momentum representation, ∂x 7→ ikx, the discretized Hamiltonian
reads

H = σx sin kx + σy(1− cos kx). (6.37)

The corresponding dispersion relation

E(kx) = ±
√

2− 2 cos kx (6.38)

has a single Dirac cone at kx = 0 in the Brillouin zone −π < kx ≤ π.
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

The 2D generalization is

HD 7→ − 1
2 i

(
0 (1− e−∂x)(1 + e∂y )

(e∂x − 1)(1 + e−∂y ) 0

)
− 1

2 i

(
0 −i(1− e∂y )(1 + e−∂x)

i(e−∂y − 1)(1 + e∂x) 0

)
= 1

2

(
σx + σy)(sin(kx − ky)− cos kx + cos ky

)
+ 1

2 (σx − σy)
(
cos(kx − ky) + sin kx + sin ky − 1

)
. (6.39)

The resulting dispersion relation,

E(kx, ky) = ±
√

2− 2 cos kx cos ky, (6.40)

vanishes at k = (0, 0) and k = (π, π). (This is the dispersion studied in
Ref. 131.) Without staggering there would also have been Dirac cones at
k = (0, π) and (π, 0), so the number of Dirac cones in the Brillouin zone
has been halved by the Susskind discretization.

Chiral symmetry is preserved, HD still anticommutes with σz in its
discretized form (6.39). But symplectic symmetry is broken: σyH

∗σy 6= H
after discretization. To ensure symplectic symmetry each Pauli matrix
should be multiplied by an odd function of k, while Eq. (6.39) contains a
mixture of odd and even functions of k.

6.B Derivation of the local conservation law
for the particle current

To derive Eq. (6.30) we first note the identity

∂

∂t
〈ψ|O|ψ〉 = i〈ψ|Φ†[H̃, Õ]Φ|ψ〉, (6.41)

which holds for any operator O, with Õ = (Φ†)−1OΦ−1. The nonlocal
effective Hamiltonian H̃ is defined in Eq. (6.22).

We take for O the density operator (6.25), so ρ̃(n) = |n〉〈n|. This
projector commutes with the operators V and M in H̃, what remains is
the commutator with UΦ−1:

− ∂

∂t
〈ψ|ρ(n)|ψ〉 = −i〈ψ|Φ†

[
UΦ−1, |n〉〈n|

]
Φ|ψ〉

= i〈ψ|Φ†|n〉〈n|U |ψ〉 − i〈ψ|Φ†UΦ−1|n〉〈n|Φ|ψ〉
= i〈ψ|Φ†|n〉〈n|U |ψ〉+ H.c. (6.42)
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In the last equality we used that Φ†U = U†Φ.

In terms of the current operator (6.27) we have

iΦ†|n〉〈n|U = 1
2

∑
α=x,y

(e−ikα + 1)jα(n)(eikα − 1)

⇒ iΦ†|n〉〈n|U + H.c =
∑
α=x,y

(
e−ikαjα(n)eikα − jα(n)

)
=
∑
α=x,y

(
jα(n+ eα)− jα(n)

)
. (6.43)

Substitution into Eq. (6.42) gives the conservation law (6.30).

6.C Gauge invariant vector potential

To include the vector potential A(r) in a gauge invariant way in the
discretized Dirac equation, we follow the procedure of minimal coupling:
We first discretize without a vector potential, then perform a U(1) gauge
transformation on the lattice, and finally replace the gradient of the phase
field by the vector potential.

We define the gauge field operator

eiθ =
∑
n

eiθn |n〉〈n|, (6.44)

with θn the value of the phase θ(r) at site n on the displaced lattice
(open points in Fig. 6.1). With this field we perform the U(1) gauge
transformation

H̃ 7→ eiθH̃e−iθ,
⇒ H 7→ Φ†eiθ(Φ†)−1HΦ−1e−iθΦ

= Φ†eiθUΦ−1e−iθΦ + Φ†(V σ0 +Mσz)Φ. (6.45)

In the last equation we have used that eiθ commutes with V and M .

To proceed we apply the identity

e−ikαeiθeikαe−iθ = eiδαθ,

δαθ =
∑
n

(
θ(n+ eα)− θ(n)

)
|n〉〈n| (6.46)
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to the operator product

eiθUΦ−1e−iθ = −2i
∑
α=x,y

σα
eiθeikαe−iθ − 1

eiθeikαe−iθ + 1

= −2i
∑
α=x,y

σα
eikαeiδαθ − 1

eikαeiδαθ + 1
. (6.47)

The gauge transformed Hamiltonian thus takes the form

H = Φ†
(
−2i

∑
α=x,y

σα
eikαeiδαθ − 1

eikαeiδαθ + 1
+ V σ0 +Mσz

)
Φ. (6.48)

The vector potential is then introduced by the Peierls substitution

θ(n+ eα)− θ(n) =

∫ n+eα

n

A(r) · dl, (6.49)

where the line integral of the vector potential is taken along a lattice
bond. With this prescription the substitution can also be applied to vector
potentials that do not derive from a gauge field.

The Hamiltonian (6.48) is Hermitian but nonlocal. If the phase field
varies slowly on the scale of the lattice spacing, the nonlocality can be
eliminated by expanding

eiδαθ ≈ 1 + iδαθ ≡ 1 + iAα, A =
∑
n

An|n〉〈n|. (6.50)

Continuing the expansion to first order in Aα, we have

eikαeiδαθ − 1

eikαeiδαθ + 1
= (eikα − 1)(eikα + 1)−1

+ 2(e−ikα + 1)−1iAα(eikα + 1)−1 +O(A2
α). (6.51)

Substitution into Eq. (6.48) gives the Hamiltonian (6.32) to first order in
the vector potential.
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