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5 Deconfinement of Majorana
vortex modes produces a
superconducting Landau
level

5.1 Introduction

Deconfinement transitions in physics refer to transitions into a phase
where particles can exist as delocalized states, rather than only as bound
states. Unlike thermodynamic phase transitions, the deconfinement tran-
sition is not associated with a spontaneously broken symmetry but with
a change in the momentum space topology of the ground state [85]. A
prominent example in superconductors is the appearance of a Fermi sur-
face for Bogoliubov quasiparticles when a superconductor becomes gapless
[86—89]. Such a Bogoliubov Fermi surface has been observed recently [15].

Motivated by these developments we consider here the deconfinement
transition for Majorana zero-modes in the vortex core of a topological
superconductor. We will demonstrate, analytically and by numerical sim-
ulations, that the delocalized phase at zero chemical potential remains
a highly degenerate zero-energy level — a superconducting counterpart
of the Majorana Landau level in a Kitaev spin liquid [90, 91]. Unlike
a conventional electronic Landau level, the Majorana Landau level has
a non-uniform density profile: quantum interference of the electron and
hole components creates spatial oscillations with a wave vector set by the
Cooper pair momentum that drives the deconfinement transition.

The system of Ref. 15 is shown in Fig. 5.1. It is a thin layer of topological
insulator deposited on a bulk superconductor, such that the proximity
effect induces a pairing gap A( in the surface states. A superflow with
Cooper pair momentum K lowers the excitation energy for quasiparticles
with velocity v by the Doppler shift v- K, closing the gap when v K exceeds
Ay. Following Fu and Kane [14], we add a perpendicular magnetic field
B to confine a Majorana zero-mode to the core of each h/2e vortex that
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5 Deconfinement of Majorana vortex modes produces a superconducting LL
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Figure 5.1: Schematic of the Fu-Kane heterostructure [14], a topological in-
sulator with induced superconductivity (gap Ao) in a perpendicular magnetic
field B. Vortices (red) bind midgap states known as Majorana zero-modes. Here
we study the deconfinement transition in response to an in-plane supercurrent
(blue arrows, momentum K). When vK > A the zero-modes delocalize into a
Majorana Landau level.

penetrates the superconductor. We seek to characterize the deconfined
phase that emerges when vK > Ag.

5.2 Confined phase

To set the stage we first investigate the confined phase for vK < Ag. Elec-
trons on the two-dimensional (2D) surface of a 3D topological insulator
have the Dirac Hamiltonian vk - o — p, with pu the chemical potential, v
the energy-independent Fermi velocity, k = (k, k,) the momentum oper-
ator in the z—y surface plane, and o = (0,,0,) two Pauli spin matrices.
(The 2 x 2 unit matrix o¢ is implicit when the Hamiltonian contains a
scalar term.) Application of a perpendicular magnetic field B (in the
z-direction), adds an in-plane vector potential A = (A;, A,) to the mo-
mentum, k — k — eA. The electron charge is +e and for ease of notation
we will set v and h both equal to unity in most equations.

The superconducting substrate induces a pair potential A = Age®.
The phase field ¢(r) winds by 27 around each vortex, at position R,
as expressed by

V x Vo(r) = £215% 6(r — R,,), V26 =0. (5.1)
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5.2 Confined phase

The pair potential couples electrons and holes in the 4 x 4 Bogoliubov-De
Gennes (BdG) Hamiltonian

o <K0w+(k—eA)~cr Agei® )_0>, 5:2)

Age*i‘b Ko, — (k +eA

at zero chemical potential, including a superflow momentum field X > 0 in
the z-direction'. The superflow can be a screening current in response to
a magnetic field in the y-direction [15], or it can result from an externally
imposed flux bias or current bias. The Zeeman energy from an in-plane
magnetic field has an equivalent effect [87] (although it was estimated to
be negligible relative to the orbital effect of the field in the experiment
[15]).

For vK < Ag a pair of Majorana zero-modes will appear in each vortex
core, one at the top surface and one at the bottom surface. We consider
these separately?. Setting A(r) = Ag(r)e*™, in polar coordinates (r,6)
for a £27 phase vortex at the origin, we need to solve the zero-mode
equation H1 V4 = 0 with

i (K% _(iV+eA) o Ao (r)e*i® ) (5.3)

Ag(r)eTi? Koy + (iV—eA)-o

The pair potential amplitude Ag(r) increases from 0 at » = 0 to a value
Ag > 0 when r becomes larger than the superconducting coherence length
fo = hv/Ao.

When K = 0 this is a familiar calculation [92], which is readily gen-
eralized to K > 0. The Majorana zero-mode has a definite chirality C,
meaning that its four-component wave function W is an eigenstate of the
chirality operator A = diag (1, —1,—1,1) with eigenvalue C = +1. One

IThe term Ko, in the BAG Hamiltonian (5.2) is equivalent, upon a gauge transfor-
mation, to a gradient Kz in ¢.

2The overlap of states on the top and bottom surfaces of the topological insulator
thin film shifts the Majorana Landau away from E = 0 by the hybridization gap,
while keeping the spatial structure of the wave functions intact. We include this
effect in the calculations in App. 5.A.
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Figure 5.2: Intensity profile |¥(z,y)|? of a Majorana zero-mode in the vortex
lattice*. The left panel shows the confined phase (K < Ayp), the right panel
the deconfined phase (K > Ag). The dotted square indicates the unit cell
containing a pair of h/2e vortices. These plots are for Majorana fermions of
positive chirality, for negative chirality the density profile is inverted y — —y.

has \II-I- = (iw+70703¢+)3 v_ = (Oaiw—ad)—?o) Wlth3

Vi (r) = eTEVeTX(M) exp < /T Ao(r") dr’), (5.4a)
0
x(r) = %/dr'B(r')ln lr —7'|. (5.4b)

The factor e¥X(") is a power law for large r, so the zero-mode is confined
exponentially to the vortex core as long as K < Ag. When K > Aq the
solution (5.4) is no longer normalizable, it diverges exponentially along
the y-axis. This signals a transition into a deconfined phase, which we
consider next.

3To understand how the solution (5.4) relates to the K = 0 solution in Ref. [92],
note the (non-unitary) transformation eF¥AHp KA = Hy 4 Koy, with A =
diag (1, —1,—1,1). The spinor ¥4 is an eigenstate of A with eigenvalue +1, so if
HiWy =0 for K =0, then HyeTKvW¥ L =0 for K # 0.

4The data in Fig. 5.2 is obtained from the tight-binding Hamiltonian (5.14) of the
topological insulator layer. The parameters are Ag = 20 fiv/do, do = 302a9, B =
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5.3 Deconfined phase

5.3 Deconfined phase

In Fig. 5.2 we show results from a numerical simulation of the decon-
finement transition for the model Hamiltonian described below. The left
panel shows zero-modes confined to a pair of vortex cores for K < Ay,
the right panel shows the deconfined state for K > Ag. The decay
|P| e~ KYe=2o7 in the confined phase is anisotropic, with a decay rate
Ag along the z-axis and two different decay rates Ag + K in the +y-
direction. The direction into which the zero-mode decays more slowly is
set by the chirality®: Fig. 5.2 shows C = +1 with a slow decay in the —y
direction, for C = —1 the slow decay is in the +y direction.

In the deconfined phase the zero-mode density profile has a pronounced
periodic modulation in the z-direction, parallel to the superflow, with
bifuration points at the vortex cores. This striped pattern is unexpected
for a Landau level. We present an analytical description.

Chiral symmetry protected Majorana Landau level — The chiral sym-
metry of the Hamiltonian (5.2) plays a key role in our analysis of the
Majorana Landau level, similar to the role it plays for Landau level quan-
tization in graphene [49, 50] and in a Weyl superconductor [57]. Chiral
symmetry means that H at p = 0 anticommutes with A. The Hamiltonian
then becomes block-off-diagonal in the basis of eigenstates of A,

1 0 0 O
0 = 0 010
T - —
UHU_<ET o)’ U=10 0 0 1l (5.5)
01 00
=_ [(k-—eA_+K Age'?
- ( Aoeiid) 7k+ — €A+ + K>’ (55b)

where we have abbreviated k+ = k, £1ik,, Ay = A, £1A4,.

A zero-mode is either a wave function (u,0) of positive chirality with
Efu = 0, or a wave function (0,u) of negative chirality with Zu = 0. The
difference between the number of normalizable eigenstates of either chi-
rality is called the index of the Hamiltonian. It is topologically protected,
meaning insensitive to perturbations [16].

h/ed2, u =0, Mg =0, M; =0.2ag. The vortex pair in a unit cell is at the positions
(z,y) = (do/4)(1,1) and (do/4)(3,3). The superflow momentum K equals 0.8 Ag /v
in the left panel and 2 Ag/v in the right panel.

5The anisotropic decay of the Majorana zero-mode in the left panel of Fig. 5.2 can
be understood as the effect of the Magnus force which the superflow momentum
K = K& exerts on the axial spin S = CZ of the Majorana fermions (as determined
by their chirality C = £1). The direction of slow decay of the zero-mode is given
by the cross product K x S.
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

Vortices are strong scatterers [33], completely obscuring the Landau
level quantization in a nontopological superconductor [1]. Here chiral
symmetry ensures that the vortices cannot broaden the zeroth Landau
level.

Helmholtz equation for the Majorana Landau level — Let us focus on
the Landau level of positive chirality, described by the equation Zfu = 0.
This 2 x 2 matrix differential equation can be simplified by the substitution

1

u(r) = e_Ky_q(")ei“z’(r)”zﬂ(r), (5.6)

with 9,9 = —%@!(é +eA,, Oyq= %6$¢ —eA,, (5.7)
—10y + 0y Ay _

= < ) +ay)u —0. (5.8)

The fields A, ¢, and K no longer appear explicitly in the differential equa-
tion (5.8) for @, but they still determine the solution by the requirements
of normalizability and single-valuedness of the zero-mode u.

Outside of the vortex core the spatial dependence of the pair potential
amplitude Ay may be neglected and one further simplification is possible:
Substitution of @ = (f, g) gives g = Ay *(i0, — d,)f and a scalar second-
order differential equation for f,

V2f = ALf. (5.9)

In the context of classical wave equations this is the Helmholtz equation
with imaginary wave vector.

Eq. (5.6) requires that % and hence f have an exponential envelope e®¥
in the y-direction. The Helmholtz equation (5.9) then ties that to a plane
wave o eF1?? in the x-direction, with wave vector Q = /K2 — A2. This
already explains the striped pattern in the numerical simulations of Fig.
5.2. For a more detailed comparison we proceed to a full solution of the
Helmholtz equation.

Analytical solution of the Majorana Landau level wave function — The
solutions of Eq. (5.9) for f are constrained by the requirements of nor-
malizability and single-valuedness of u. To determine the normalizability
constraint we use that the field ¢(r) defined in Eq. (5.7) has the integral
representation®

q(r)

_ ! !/ S l _
= 5%, dr' B(r')In |r — r'| 2¥ln|r R,| (5.10)

6The integral equation (5.10) for g(r) follows from the definition (5.7), which implies
that V2g(r) = 2-V x (eA — %Vd)) =eB—m), 6(r — Ry). The Green function
of this 2D Poisson equation is (27)~!1In|r — r’|. Also note that ®y = 7/e in units
where h = 1.
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5.3 Deconfined phase

We consider N vortices (each of +2m vorticity) in a region S enclosing
a flux ® = N®g, with &) = h/2e the superconducting flux quantum?.
If we set B — 0 outside of 3, the field ¢(r) = (®/®y — N)Inr = 0
for r — oco. In view of Eq. (5.6), normalizability requires that e %Y f is
square integrable for r — oco. Near a vortex core e 9f o |r — Rn|1/2f
must be square integrable®.

Concerning the single-valuedness, the factor e**/2 in Eq. (5.6) intro-
duces a branch cut at each vortex position R, across which the function
f should change sign — to ensure a single-valued u. This is a local con-
straint: branch cuts can be connected pairwise, hence there is no sign
change in f on a contour encircling a vortex pair.

We have obtained an exact analytical solution® of the Helmholtz equa-
tion in the limit that the separation of a vortex pair goes to zero. We
place the two vortices at the origin of a disc of radius R, enclosing a flux
h/e, with zero magnetic field outside of the disc. The envelope function
then equals e~ 9(") = rmine*’"ﬁﬂin/QRQ, with 7y, = min(r, R).

The two independent solutions are given by @ = (fi, fo) and @’ = o, a*,
with

. Q _
fn = 2" K, (Agr) — / dp C’n(P)e”EP*y\/Wv
-Q

Cn(p) = Ay ™AL +p*) V2 (p— /A2 +p2)". (5.11)

The vortex pair is at the origin, with z + iy = re’?, and K,, is a Bessel
function.
The corresponding zero-modes follow from Eq. (5.6),

u=e"1Me Ky f e f)) u =out. (5.12)

For small r the zero-modes tend to a constant (the factor 1/r from K is
canceled by the factor r from e~9). The large-r asymptotics follows upon
an expansion of the integrand around the extremal points +Q), giving

W5 (1 Qe (K - Q)”ei@z>

Al 1Kx — Qy iKx+ Qy

7We assume there is an even number of vortices in S. If the number of vortices is
odd, a zero-energy edge state along the perimeter of S will ensure that the total
number of Majorana zero-modes remains even.

8This normalization requirement at the vortex core ties the chirality of the Majorana
zero-modes to the sign of the vorticity. If we would have chosen —2m vortices
the field g(r) would tend to +% In|r — Ry| near a vortex core, and the product

fo — (1) (5.13)

e~ 9f  |r — R,|~1/2f would not have been square integrable.
9Details of the solution of the Helmholtz equation are given in Apps. 5.B and 5.C.
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Figure 5.3: Dispersion relation of the topological superconductor, calculated
from the model Hamiltonian (5.14) for zero magnetic field (black dashed lines,
chemical potential ¢ = 0) and in the presence of the magnetic vortex lattice
(colored flat bands at charge %qese, for two values of u). For both data sets
K =2A0 =20hv/dp.

The zero-modes decay as e XY, oc 1/r for > R, which needs to be
regularized for a square-integrable wave function [93, 94]'°. In a chain
of vortices (spacing b), the superposition of the solution (5.13) decays
exponentially in the direction perpendicular to the chain®. The decay
length is A = bK/Q or A = bQ/K for a chain oriented along the z-axis or

y-axis, respectively.

5.4 Numerical simulation

For a numerical study of the deconfinement transition we represent the
topological insulator layer by the low-energy Hamiltonian [95, 96]

Hy(k) = (”/aO)Z]‘:x,ij sinkjag + o, M (k) — p,

; (5.14)
M(k) = Mo — (My/ag)_

jmay (1 — coskjao),

in the basis ¥ = 2_1/2 (wTupper + leoweh /(pl,upper - wilower) of SpiH'UP and
spin-down states on the upper and lower surfaces !'. The atomic lattice

10The 1/r decay of the deconfined Majorana zero-mode implies a density of states
peak which decays slowly o< 1/InL as a function of the system size L. There is
a formal similarity here with the zero-modes originating from vacancies in a 2D
bipartite lattice [93, 94].

1In the basis ¥ = (Ypuppers ¥luppers Ytlower; Yllower) the 4 X 4 Hamiltonian of

the topological insulator layer is Hy = tOZj:z 4 T=0; sin kjao + TeooM (k) — p,
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5.4 Numerical simulation
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Figure 5.4: Left panel: Numerically calculated intensity profile |¥(z,y)|? of
the zeroth Landau level in a vortex lattice with a pair of h/2e vortices at the
center of the unit cell (K = 2A¢ = 40 hw/do, p = 0). Right panel: Analytical
result from the solution of the Helmholtz equation (5.9) for a single h/e vortex'2.

constant is ag, the Fermi velocity is v, and p is the chemical potential.
Hybridization of the states on the two surfaces introduces the mass term
M(k). We set My = 0, to avoid the opening of a gap? at k = 0, but
retain a nonzero M; = 0.2 agv in order to eliminate the fermion doubling
at agk = (m, ).

In the corresponding BdG Hamiltonian the electron block Hy(k —eA +
K) is coupled to the hole block —Hy(k + eA — K) by the s-wave pair
potential Age’®, which we take the same for both layers. We assume a
strong type-II superconductor, for which we can take a uniform magnetic
field B and uniform pair potential amplitude Ay. The +27 vortices are
positioned on a square lattice (lattice constant dy = 302ag) with two
vortices per unit cell.

The spectrum is calculated using the Kwant tight-binding code [52]'3.

with Pauli matrix 7, acting on the layer index. A unitary transformation block-
diagonalizes the Hamiltonian. One of the 2 x 2 blocks is given in Eq. (5.14), the
other block has M replaced by —M.

12The comparison between numerics and analytics in Fig. 5.4 involves no adjustable
parameters. To compare the same state in the degenerate zeroth Landau level we
choose the state with left-right reflection symmetry. There are two of these, the
other is compared in App. 5.E.

13Details of the method of numerical simulation, with supporting data, are given in

99



5 Deconfinement of Majorana vortex modes produces a superconducting LL

In Fig. 5.3 we show the dispersionless Landau levels, both for chemical
potential 4 = 0 and for nonzero pu. The zeroth Landau level has energy
Ey = £qeap, with gege the charge expectation value. For the model
Hamiltonian (5.2) we have' ¢og = Q/K = /1 — A2/K?2. The numerics
at K = 2/, gives a value 0.85, within 2% of /3/4 = 0.866. The first Lan-
dau level is expected at energy F1 = Ep, & gegrpp with B, = /Amqeg hv/dp,
again in very good agreement with the numerics. Notice that the flatness
of the dispersion persists at nonzero p — even though the topological
protection due to chiral symmetry'® is only rigorously effective at p = 0.

In Fig. 5.4 we compare numerical and analytical results for the case that
the two h/2e vortices are both placed at the center of the unit cell. The
agreement is quite satisfactory, given the different geometries (a vortex
lattice in the numerics, a single h/e vortex in the analytics).

5.5 Striped local density of states

The striped pattern of the Majorana Landau level is observable by tun-
neling spectroscopy, which measures the local density of states

p(r) = Zplle(r)Pf'(Eo — eV) + [un(r)Pf'(Bo + V)], (5.15)

averaged over the 2D magnetic Brillouin zone, >, = (2m)~? [ dk,dk,,
weighted by the derivative of the Fermi function. If Ey is much larger
than temperature, the sign of the bias voltage V' determines whether the
electron component 1, or the hole component 1, contributes, so these
can be measured separately.

As shown in Fig. 5.5, the oscillations are most pronounced for the hole
component when g > 0 (or equivalently the electron component when
i < 0). This asymmetry in the tunneling current for V. = +F; is an
additional experimental signature of the effect.

App. 5.A.
14The renormalized charge geg in the Majorana Landau level is calculated in App. 5.D.
That calculation also gives the renormalized Fermi velocity veg = /U200y = /Goft ¥

that appears in the Landau level energy FEf,.

15The chiral symmetry at = 0 is broken by the mass term M (k) in the Hamiltonian
(5.14). This residual chiral symmetry breaking is visible in Fig. 5.3 as a very small
splitting of the u = 0 Landau levels (green flat bands).
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Figure 5.5: Electron and hole contributions to the local density of states in
the zeroth Landau level, along a line parallel to the z-axis which passes close
through a vortex core at x = y = 3do/4. The curves are plots of >_, [te.n(z,y)|?
normalized to unit peak height at the vortex core. The parameters are K =
2A0 = 40 hv/do, p = 0.5hv/dy. The expected oscillation period of 7h/Q =
0.091 do is indicated.

5.6 Conclusion

Concerning the experimental feasibility, we note that the gap closing
due to a superflow has already been observed [15], and Majorana vor-
tex lattices in a perpendicular field of 250 mT have been detected by
scanning probes in several experiments [97] — so by combining these two
ingredients the Majorana Landau level should become accessible. The
main additional requirement is that the Fermi level is sufficiently small,
< min(Er, Ag) >~ 1meV at 250mT, to benefit from the protection af-
forded by chiral symmetry. Experiments [98] where u was tuned through
the charge neutrality point give confidence that this is feasible.

The striped interference pattern in the local density of states, with wave
number Q = /K? — (Ag/fw)? (~ 27/0.2 um for K = 2Ay/hv at typical
values of Ag = 1meV and v = 10°m/s) should be accessible by scanning
probe spectroscopy. Surface defects would themselves introduce Friedel
oscillations in the density of states, but the highly directional pattern that
is the hallmark of the Majorana Landau level would stand out.

The Majorana Landau level provides a realization of a flat band with
extended wave functions, in which interaction effects are expected to be
enhanced due to the quenching of kinetic energy. Interacting Majorana
fermions in a Fu-Kane superconductor have been studied by placing vor-
tices in close proximity inside a quantum dot [99]. The deconfinement
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

transition provides a means to open up the system and obtain a fully 2D
flat band with widely separated vortices. An intriguing topic for further
research is to investigate how the exchange of vortices operates on this
highly degenerate manifold.
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Appendices

5.A Details of the numerical simulation

5.A.1 Tight-binding model

The model Hamiltonian we consider is

He — (H:I:(kA—O:x?(b-i- K) in(kAf;: ) K))’ (5.16a)
H, (k) = £(v/ag)oy sinagky £ (v/ag)oy sinagk,

t o, M(k) — p, (5.16b)
M (k) = My — (M /a3)(2 — cos apk, — cos agk,). (5.16¢)

The Hamiltonian acts on a spinor with the four components

[q/jTupper =+ leower] (k)
\I/i(k) _ i [d@upper + wilower]géczk) 7
(—k)

B \/i _i[w,l,upper + wilowerl (517)

i [wTupper + leower]

for spin-up and spin-down electrons on the upper and lower surface of the
topological insulator layer. The first two elements of the spinor ¥ refer
to electrons and the last two elements to holes. These are coupled by the
s-wave pair potential Ay, which we take the same on both surfaces. The
particle-hole symmetry relation is

He (k) = —0,uy M (—K)o,uy, (5.18)

where the o, and 7, Pauli matrices act on the spin and electron-hole
degree of freedom, respectively.

For the mass term M (k) we take My = 0, M1 = 0.2 agv, such that Hy
has a single gapless Dirac point at k = 0. Near this Dirac point the upper
and lower surface are uncoupled, so the eigenstate can equivalently be
written in the single-surface basis (4, 9,, -7, u/}?) The effect of a gap
opening due to a nonzero M is examined at the end of this Appendix.
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

The Hamiltonian is discretized on a square lattice (lattice constant ag)
with nearest neighbor hopping (hopping energy v/ap). The magnetic
field B is uniform in the z-direction, vector potential A = —Byz. The
superflow momentum is K = Kz. The amplitude A of the pair potential
is taken as a constant, the phase ¢(x,y) winds by 27 around each vortex.

We take a square vortex lattice, with lattice constant dy = Nag. The
flux through each magnetic unit cell is h/e, so it contains a pair of
h/2e vortices. The integer N determines the magnetic field via B =
(Nag)~2h/e. The vortices are placed on the diagonal of the magnetic
unit cell, at the positions (z,y) = (Nao/4)(1,1) and (Nao/4)(3,3). By
taking for N twice an odd integer, we ensure that the singularity in the
phase field at the vortex core does not coincide with a lattice point. The
phase field is discretized along the lines set out in App. B of Ref. 57.
The eigenvalues and eigenfunctions of H are calculated using the Kwant
tight-binding code [52].

5.A.2 Additional numerical results

Here we collect some additional results to those shown in the main text.
In the confined phase vK < Ay we show in Fig. 5.6 the anisotropic decay
rates of the Majorana zero-modes bound to a vortex core, as in the left
panel of Fig. 5.2. The localization length (Ag/v—K)~! of the zero-modes
diverges at the transition.

Fig. 5.7 shows how at the deconfinement transition the quasi-continuum
of excited states in the vortex core is reorganized into a sequence of Landau
levels. The critical exponents for the gap closing are different on the two
sides of the transition. In the confined phase the gap to the first excited
state scales with the inverse localization length, so o< (Ag/v — K)!. In
the deconfined phase the gap scales with the Landau level separation
Bl o \/Geft, 50 o< (K — Ag/v)/4.

In the deconfined phase vK > Aj we show in Fig. 5.8 the Landau levels
in the vortex lattice (complementing Fig. 5.3). Fig. 5.9 shows the local
density of states in the zeroth Landau level. This shows the variation
over the entire unit cell of the vortex lattice, to complement the line cut
through a vortex core shown in Fig. 5.5 of the main text.

5.A.3 Effect of overlap of top and bottom surface
states

A nonzero mass term +Myo,v, in the Hamiltonian (5.16) opens up a
hybridization gap in the Dirac cone. Since the Majorana Landau level is
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5.B Solution of the Helmholtz equation for the Majorana Landau level
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Figure 5.6: Decay rate of the Majorana mode confined to a vortex core. The
data from the numerical simulation (colored points, Ag = 20wv/do) closely fol-
lows the analytical prediction |¥| o e K¥e™(A0/%)7" (dashed lines).

an eigenstate of the chirality operator A = o,v,, the effect of this term
is to displace the flat band away from F = 0 by an amount M. In Fig.
5.10 we show numerical results that demonstrate this. Provided that M
remains smaller than the Landau level separation FEp,, we do not expect
the overlap of top and bottom surface states to prevent the detection of
the Majorana Landau level. This is helpful because the overlap will favor
a strong proximity effect on both surfaces.

5.B Solution of the Helmholtz equation for
the Majorana Landau level

The general solution of the 2D Helmholtz equation V2 f = A2 f that gov-
erns the Majorana Landau level is a superposition of waves e’P*+¥V PIHAG,
Which superposition we need is determined by the requirement that
e~ Ky=a(") f(2,4) is square integrable in the z—y plane, with K > Ag > 0.
We denote @ = y/K? — A3. For ease of notation we will set Ag =1 in
this appendix.
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Figure 5.7: Excitation spectrum as a function of the superflow momentum
(parameters as in Fig. 5.2). For K < Ag/v the states are confined to vortex
cores and form a quasi-continuum, for K > Ag/v they are extended states
arranged into a sequence of Landau levels (distinguished by different colors, the
Majorana zero-modes are the light-green dots). The deconfinement transition
at K = Ag/v is accompanied by a near closing of the gap to the first excited
state. The dashed curves show the expected gap scaling «x (Ag/v — K) and
o (K — Ag/v)'/* on the two sides of the transition.

We construct a class of solutions for the case
q(r) = er — Nlnmin(r, 1), N =1,2,..., (5.19)

corresponding to 2\ vortices, each of vorticity +27, at the origin. The
positive infinitesimal € > 0 is introduced to regularize integrals at r — oo.
The restriction to an even number of overlapping vortices means that the
branch cut which connects vortices pairwise can be ignored. (We have not
succeeded in finding an analytical solution that incorporates the branch
cut, but of course in the numerics this is not a limitation.)

The superposition of elementary solutions eP**¥VP*+1 that cancels the
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Figure 5.8: Dispersion relation in zero magnetic field (black dashed lines) and
in the presence of the magnetic vortex lattice (green solid lines, the right panel
shows the magnetic Brillouin zone). Both band structures are for p = 0, and
the same parameters as in Fig. 5.3. The red dots indicate the Dirac points
at k = (£Q,0) in zero magnetic field. The Landau levels are at ++/n Ey,
n=20,1,2, with By, = \/%hv/do.

exponential growth factor e™%¥ has the general form

Jipiso @ C(p)eP=HoVPitt if y <0,
=4 fiyeqdpClp)emmvv/v il (5.20)
+ [dp D(p)eP==yVP*+1 if 4 > 0.

(We can use the symbol C' twice without loss of generality because the
integration ranges do not overlap.)

The solution should be continuously differentiable at r # 0, which is
satisfied if f(x,y) and 9, f (x, y) are continuous functions of y at y = 0, z #
0. The continuity requirement is that the Fourier transform [ ---e*dp
of C(p) equals the Fourier transform of D(p) for x # 0, which means
that C(p) and D(p) differ by a polynomial L(p) of p. [Recall that the
Fourier transform of a polynomial is given by derivatives of §(x).] Simi-
larly, the requirement of a continuous derivative is that 1/p? + 1 C(p) and
—+/p? + 1 D(p) differ by a polynomial T'(p). The unique solution of these
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Figure 5.9: Local density of states in the unit cell of the vortex lattice, at
the energy Fop > 0 of the zeroth Landau level pushed above the Fermi level
by a chemical potential 4 > 0. The color scale plot shows >, [Ven(z,y)[?,
summed over the magnetic Brillouin zone, normalized to unit maximum value.
The white dotted line indicates the cut shown in Fig. 5.5 of the main text, at
the same parameters. The electron contribution to the local density of states
(right panel) and the hole contribution (left panel) can be measured separately
by tunnel spectroscopy at voltages V = Ey and V = —FEj, respectively.

two requirements is

Vi (5.21)
D(p) = —m

We are free to choose a convenient basis for the polynomials T'(p) and
L(p), we will choose one for which the integral over D(p) has a closed-form
expression. The basis polynomials T),(p) and L, (p), n =0,1,2,... are

Tn(p) = (p+ VP2 +1)n+ (p— v p? +1)n,
(v +1)" (p-viP+1) (5.22)
ViE+l PP+l

Ly(p) =
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Figure 5.10: Same as Fig. 5.8, but now for a nonzero mass term My, to show
how the hybridization gap shifts the zeroth Landau level away from E = 0. The
plot shows the spectrum of the Hamiltonian H4+ in Eq. (5.16), the spectrum
of H_ has the zeroth Landau level shifted to —Mj (so that the full spectrum
is particle-hole symmetric). The parameters are K = 2A¢ = 20 /iv/do, do =
102 ap, Mo = 0.02/a0, M1 =0.2 ag.

This choice of basis is related to a basis of Chebyshev polynomials 7,, via
the identities

Tu(p) = 2(=1)"Tu(ip),

m=0
Note that
T_n(p) = (=1)"Ta(p), L-n(p)=—(=1)"L_n(p). (5.24)

A complete basis for the pairs of polynomials T'(p), L(p) is therefore given
by the two sets {T},, L,} U{T,,—L,} withn =0,1,2,..., or equivalently
by the single set {T},,L,} with n = 0,£1,+2,.... The corresponding
basis of the functions C(p) and D(p) in Eq. (5.21) is

1 — )
Culp) = fﬂ L) = (pp)
p*+1 p*+1 (5.25)
1 +vp?+1
Dy (p) = 2Tn(p) i %Ln(p) _ (pp>,
p?>+1 VvpE+1

109



5 Deconfinement of Majorana vortex modes produces a superconducting LL

with n =0,+1,4£2,....
We next use the Bessel function identities!®
1 eint f dpD 1pac—y\/p2+1 if y >0,
Kn(r) - 2 B
1 7,719 f de zpery\/p +1 if y < O7

Z"

(5.26)

where r = /22 + y2 and e’ = (z + iy)/r, to write the solution (5.20) in
the form

Q — V1)
fn(xvy):_/ dp memery\/;TH
-Q VPP 1

+ 2i"e ™MK, (1), (5.27)

which is Eq. (5.11) in the main text (upon restoring the units of Ag).
The function f, is the first component of the spinor @ = (f,g), the
second component is

In = (Zar - 8y)fn = fn-1. (5.28)

We now obtained an infinite countable set of solutions i, = (fy, fn—1),
n = 0,£1,4+2,... of the Helmholtz equation, such that e %¥e~"q,, is
square integrable at infinity. The condition that V'@ is square integrable
at the origin (containing 2\ overlapping vortices) selects a finite subset.
For r — 0 we have f, ~ r~1"l'if n # 0 and fy ~ Inr. Normalizability
requires that both |n| < A and |n — 1| < A/, hence there are 2N allowed
valuesof n € {-N+1,-N+2,...N —1,N'}.

All of this was for zero-modes ¥ = (f, g,0,0) of positive chirality, in a
lattice of 427 vortices. Alternatively, we can consider zero-modes ¥ =
(0,0, f, g) of negative chirality in a lattice of —27 vortices. The differential
equations for f and g remain the same, but now the exponential factor
that needs to be canceled is eX¥ rather than e % ¥. The sign change gives
the negative chirality solution

Q ( —\p*+ 1)n
/ P b e TP—yy\/ PP+l

n\T, = - d
fn(@,y) L7 NS
+ 2i"e™K,, (1), (5.29a)
gn = (i0p — 0y) fn = —frt1- (5.29b)

The 2N zero-modes are now labeled by the index n € {-N,-N +
L..N=2N -1}

6The identities (5.26) follow from the integral representatlon Kn(r) =
%(r/2)" oot Lexp(—t — 77‘2/15) dt, upon the substitution p = 3 Lt —1/t).
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5.C Chain of vortices

5.C Chain of vortices

The regularization at infinity by the € term in Eq. (5.19) is not needed if
we have a periodic lattice of vortices. We demonstrate this by considering
a linear chain of vortices at positions Ry, spaced by b at an angle 9 €
[0, 7/2] with the x-axis. We take a linear superposition of the solutions
e Ky f.(r — Ry) from Eq. (5.27), with complex weights,

oo
F,(r) = Z elretKbsind =Ky £ (n _ Ry). (5.30)
f=—o00
We do not include the envelope e™9, because it tends to unity for large r

if we set ¢ = 0. The Bloch phase k is arbitrary.
We substitute the large-r expansion (5.13),

e ) (K 4 Q)nefiQ(wféb cos )
¢ (zK(w — ¢bcos V) — Q(y — Lbsin )

(K _ Q)neiQ(xféb cos )

We seek the decay of F), in the direction perpendicular to the chain, so
for large |p| when (z,y) = (—psind, pcos ).

We thus need to evaluate an infinite sum of the form'”
> eiia
Sla,z)= Y o € (0,27), z € C\Z, (5.32a)
l=—o0
B 2mi b
In the limit [Im z| — oo this tends to
—9i —(27—a)Imz if 1 -

S(a,z) =4 °amE e, (5.33)

2mie™ ™ ? if Imz — —oo0.

Substitution of Eq. (5.32) into Eq. (5.31) gives, for z = —psinf, y =
pcosb,
(1) (K + Qei@rsin?
Qbsin¥ — iKbcos?
(1) (K — Qe i@nin?
Qbsind 4 iKbcos

7For a derivation of Eq. (5.32b), and its relation to the Lerch zeta function, see
https://mathoverflow.net/q/379157/11260

Fn_> S(a+72—)

Sla—, zy), (5.34)

111


https://mathoverflow.net/q/379157/11260

5 Deconfinement of Majorana vortex modes produces a superconducting LL

where we abbreviated
ayr = k£ Qbcos?Y mod 2,
_ p3sin20 +iKQ (5.35)
TR —sin?0

Provided that ay # 0 mod 27w, the decay is exponential: |F,| =~
e~clPl/A with (reinserting the units of Ag)

K? — AZsin?v

A=b 5.36
KK?— A3 (5.36)
and c a coefficient of order unity that depends on the sign of p,
. m?n(a% 2r —a) %f p >0, (5.37)
min(a_, 27 —ay) if p<O0.

For a chain oriented along the z-axis or y-axis we have A equal to bK/Q
or bQ /K, respectively.

5.D Renormalized charge in the Majorana
Landau level

The charge expectation value of the deconfined zero-mode can be calcu-
lated by means of the block diagonalization approach of Ref. 57. Starting

from the BAG Hamiltonian (5.2) we first make the gauge transformation
i

Hw— UTHU with U = (eo ?), resulting in

- (k+a+q)-o—p Ay
h Ag —(k+a—q)-o+pu)
a=1Ve, q=1iVp—ecA+ Ki. (5.38)

We have included the chemical potential p.
For K > Ay in zero magnetic field there are gapless Dirac points at
k = (kg ky) = (K,0) with

K = +kK, k=1/1—A%/K2 (5.39)

To focus on the effect of a magnetic field on states near K we set k, =
K + 6k, and consider 6k, small.
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5.E Comparison of numerics and analytics

A unitary transformation H — VTHV with

_ ( oocos(a/2)  oysin(a/2)
'e (f% sin(a/2) oo Cos(a/Q))’ (5.40)

tana = —A¢/K, cosa=—(1+A2/K*)~Y? = g,

approximately block-diagonalizes the Hamiltonian; the 2 x 2 off-diagonal
blocks contribute to the spectrum in second order in dk;, a, q, and p.
The 2 x 2 block along the diagonal that describes the hole-like states near
k = (kK,0) is given by

Hy = kp — (kOky + Kag — qz)05 + (ky + ay — Kagy)oy, (5.41)
while the electron-like states near k = (—x K, 0) are described by
H_ = —kp+ (kOky + Kag + qz)op — (ky + ay + Kqy)oy. (5.42)

The block diagonalization removes any interference between the elec-
tron and hole blocks, so this approximation cannot describe the striped
density of states of Fig. 5.2 — for that we need the Helmholtz equa-
tion considered in the main text. Because the charge operator Q =
—e0Hy /0p = Fre commutes with Hy, the expectation value is given
simply by

(Q) = Fre = e = k. (5.43)

The Fermi velocity in the z-direction is renormalized by the same factor,
v, = kv, while vy is unaffected. This affects the Landau level energy
E1, = V4w hvegr /dy of the anisotropic Dirac cone, via Veg = /Uz0y = /K.

5.E Comparison of numerics and analytics

In order to compare the analytic solution (5.11) of the Helmholtz equation
with the numerical results from the tight-binding Hamiltonian (5.14) we
proceed as follows. For the analytic solution we take a single pair of
vortices located at 7 = 0, in a uniform magnetic field with total flux h/e
in a large disc centered at the origin. There are then two independent
zero-modes u, v’ given by Eq. (5.12) with ¢(r) = —Inr.

For the numerical calculation we consider an infinite lattice of vortices,
with pairs of vortices positioned at points R,, = don, n € Z2%, in a
uniform magnetic field B = (h/e)dy?, vector potential A = —B(y,0).
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Figure 5.11: Comparison between numerical and analytical intensity profiles
|¥(z,)|?, normalized to unit maximal value, for one of the two reflection-
symmetric states in the zeroth Landau level. The parameter values are the
same as in Fig. 5.4, which compared the other state.

The Hamiltonian commutes with the magnetic translation operator

ihnyx/do
77n, = <€ ) 0 >T'n.a

0 efihnyz/dg (544)

TprT) =7 +don.
(The 2 x 2 matrix acts on the electron-hole degree of freedom.) The
eigenvalue e ™ of the eigenstates defines the magnetic momentum k €
[0,27)2. At each value of k there are two independent zero-modes.

To make sure we are comparing the same state in the degenerate man-
ifold we consider the operator product

0 e3id(r) e~ 2i¢(r) 0
F :<e—;i¢(r> 0 >"””P”C< 0 e;wm)v (5.4)

with eigenvalues +1, which is a symmetry respected both by the analytic
and by the numerical calculation. The operator P, is the mirror symmetry
operator in the z-direction,

P,aPl = —x, PuyPl=1y. (5.46)
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The magnetic momentum transforms under P, as k, — —k,, k, — ky.

For the comparison we set k = 0, which is invariant under the action
of P,. Then we can take the two zero-modes obtained numerically to be
eigenstates of P,, and compare them with the corresponding eigenstates
obtained analytically. Those are

ug(r) =u(r) £u'(r), (5.47)
which, in view of the fact that
fn(=z,y) = fr(z,y) (5.48)

are eigenfunctions of P, with eigenvalues +1. Figs. 5.4 and 5.11 compare
the modulus squared of the +1 and —1 eigenstates of P, respectively, with
quite satisfactory correspondence.
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