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4 Universal chiral magnetic
effect in the vortex lattice of
a Weyl superconductor

4.1 Introduction

This chapter combines two topics of recent research on Weyl fermions
in condensed matter. The first topic is the search for the chiral mag-
netic effect in equilibrium [47, 67–76]. The second topic is the search for
Landau levels in a superconducting vortex lattice [34–36, 57]. What we
will show is that the lowest Landau level in the Abrikosov vortex lattice
of a Weyl superconductor supports the equilibrium chiral magnetic ef-
fect at the universal limit of (e/h)2, unaffected by any renormalization of
the quasiparticle charge by the superconducting order parameter. Let us
introduce these two topics separately and show how they come together.

The first topic, the chiral magnetic effect (CME) in a Weyl semimetal,
is the appearance of an electrical current I along lines of magnetic flux
Φ, in response to a chemical potential difference µ+ − µ− between Weyl
fermions of opposite chirality. The universal value [55, 77, 78]

dI

dΦ
=
e2

h2
(µ+ − µ−) (4.1)

follows directly from the product of the degeneracy (e/h)Φ of the low-
est Landau level and the current per mode of (e/h)(µ+ − µ−). A Weyl
semimetal in equilibrium must have µ+ = µ−, hence a vanishing chiral
magnetic effect — in accord with a classic result of Levitov, Nazarov,
and Eliashberg [79, 80] that the combination of Onsager symmetry and
gauge invariance forbids a linear relation between electrical current and
magnetic field in equilibrium.

Because superconductivity breaks gauge invariance, a Weyl supercon-
ductor is not so constrained: As demonstrated in Ref. 47, one of the two
chiralities can be gapped out by the superconducting order parameter.
When a magnetic flux Φ penetrates uniformly through a thin film (no
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4 Universal CME in the vortex lattice of a Weyl superconductor

vortices), an equilibrium current

dI

dΦ
= ±ee

∗

h2
µ± (4.2)

appears along the flux lines, of a magnitude set by the equilibrium chem-
ical potential µ± of the ungapped chirality. The renormalized charge
e∗ < e determines the degeneracy (e∗/h)Φ of the lowest Landau level in
the superconducting thin film.

The second topic, the search for Landau levels in an Abrikosov vortex
lattice, goes back to the discovery of massless Dirac fermions in d -wave
superconductors [29, 30]. In that context scattering by the vortex lattice
obscures the Landau level quantization [1, 3, 33], however, as discovered
recently [57], the chirality of Weyl fermions protects the zeroth Landau
level by means of a topological index theorem. The same index theo-
rem enforces the (e/h)Φ degeneracy of the Landau level, even though the
charge of the quasiparticles is renormalized to e∗ < e. Does this topologi-
cal protection extend to the equilibrium chiral magnetic effect, so that we
can realize Eq. (4.2) with e∗ replaced by e? That is the question we set
out to answer in this work.

The outline of the chapter is as follows. In the next section we for-
mulate the problem of a Weyl superconductor in a vortex lattice. We
then show in Sec. 4.3 that a flux bias of the superconductor can drive
the quasiparticles into a topologically distinct phase where one chirality
is exponentially confined to the vortex cores. The unconfined Landau
bands contain electron-like or hole-like Weyl fermions, while the vortex-
core bands are charge-neutral Majorana fermions. The consequences of
this topological phase transition for the chiral magnetic effect are pre-
sented in Sec. 4.4. We support our analytical calculations with numerical
simulations and conclude in Sec. 4.5.

4.2 Formulation of the problem

We consider a multilayer heterostructure, see Fig. 4.1, composed of layers
in the x–y plane of a magnetically doped topological insulator (such as
Bi2Se3), separated in the z-direction by a normal-insulator spacer layer.
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4.2 Formulation of the problem

Figure 4.1: Cross-section through a heterostructure of alternating topological
insulator layers and superconducting spacer layers. A perpendicular magnetiza-
tion β separates a pair of Weyl cones of opposite chirality along kz. Each Weyl
cone is twofold degenerate in the electron-hole degree of freedom, mixed by the
superconducting pair potential ∆0. The mixing leaves the Weyl cones gapless,
as long as the pair potential ∆0 remains smaller than β.

The tight-binding Hamiltonian is [81]

H0(k) =
∑

i=x,y,z

τzσi ti sin kiai + βτ0σz

+ τxσ0

∑
i=x,y,z

t′i(1− cos kiai)− µτ0σ0, (4.3)

where ti, t
′
i are nearest-neighbor hopping energies, ai are lattice constants,

and µ is the chemical potential. For simplicity we will equate ai = a0 and
ti = t′i = t0 for i = x, y, z.

The Pauli matrices σi (i = x, y, z, with i = 0 for the unit matrix) act on
the spin degree of freedom of the surface electrons in the topological insu-
lator layers. The τz = ±1 index distinguishes the orbitals on the top and
bottom surfaces. Magnetic impurities in the topological insulator layers
produce a perpendicular magnetization, leading to an exchange splitting
β. A Weyl point with a linear dispersion appears at k = (0, 0,±β/a0t0).
For ease of notation we will set a0, t0, and ~ to unity.

Following Meng and Balents [12], the spacer layer may have a spin-
singlet s-wave pair potential ∆ = ∆0e

iφ. The pair potential induces
superconductivity in the top and bottom surfaces of the topological in-
sulator layers, as described by the Bogoliubov-De Gennes Hamiltonian
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Figure 4.2: Panel a) shows a square vortex lattice in a Weyl superconductor,
panels b) and c) show a circuit to measure the chiral magnetic effect (current
I parallel to an external magnetic field B). The current exists in equilibrium
because Weyl fermions having one of the two chiralities are confined to vortex
cores by a flux bias (panel b) or a current bias (panel c).

H(k) =

(
H0(k − eA) ∆0e

iφ

∆0e
−iφ −σyH∗0 (−k − eA)σy

)
. (4.4a)

We have introduced a vector potential A and take the electron charge
e > 0. For definiteness we also fix the sign β > 0. The Fermi velocity
vF = a0t0/~ is unity for our chosen units.

As shown in Fig. 4.2, the heterostructure can be placed in either a flux-
biased or a current-biased circuit. We seek the current Iz in equilibrium,
parallel to the external magnetic field B = ∇×A in the z-direction.

The superconductor has length L parallel to B, while the dimensions
in the perpendicular direction are W ×W , large compared to the London

74



4.3 Chirality confinement in a vortex lattice

penetration length λ. This is the key difference with Ref. 47, where W < λ
was assumed in order to prevent the formation of Abrikosov vortices. For
W � λ � lm � ξ0 (with lm =

√
~/eB the magnetic length and ξ0 =

~vF/∆0 the superconducting coherence length) we are in the vortex phase
of a strong-type-II superconductor, where the magnetic field penetrates
in the form of vortices of magnetic flux Φ0 = h/2e. The vortex lattice has
two vortices per unit cell, we take the square array (lattice constant d0)
indicated in Fig. 4.2.

In the gauge with ∇ ·A = 0 the superconducting phase is determined
by

∇×∇φ(r) = 2πẑ
∑
n

δ(r −Rn), ∇ · ∇φ = 0. (4.5)

The first equation specifies a 2π winding of the phase around each vortex
core at Rn, and the second equation ensures that the superconducting
velocity

mvs = 1
2∇φ− eA (4.6)

has vanishing divergence. Since the vortex cores occupy only a small
fraction (ξ0/lm)2 of the volume, we may take a uniform pair potential
amplitude |∆| = ∆0 and a uniform magnetic field strength |B| = B0.
The dominant effect of the vortex lattice is the purely quantum mechanical
scattering of quasiparticles by the superconducting phase [1].

The vector potential contains a constant contribution Az = Λ/e in the
z-direction controlled by either the flux bias or the current bias [82]:

Λ =

{
(e/L)Φbias (flux bias),

eµ0(λ/W )2Ibias (current bias).
(4.7)

4.3 Chirality confinement in a vortex lattice

In the absence of a vortex lattice, for W < λ, it was shown in Ref. 47 that
a flux bias or current bias confines Weyl fermions of one definite chirality
to the surfaces parallel to the magnetic field, gapping them out in the
bulk. Here we consider the opposite regime W � λ in which a vortex
lattice forms in the Weyl superconductor. We will show that effect of
the Λ bias is qualitatively different: both chiralities remain gapless in the
bulk, but one of the two chiralities is confined to the vortex cores.

The analytics is greatly simplified if the magnetic field is along the same
z-axis as the separation of the Weyl cones. The corresponding vector
potential is

A(r) = (B0y, 0,Λ/e), Λ = (e/L)Φbias, (4.8)
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4 Universal CME in the vortex lattice of a Weyl superconductor

where for definiteness we take Λ ≥ 0. This is the flux-biased geometry of
Fig. 4.2b. Numerical simulations indicate that the current-biased geome-
try of Fig. 4.2c, with B along the y-axis, is qualitatively similar — but we
have not succeeded in obtaining a complete analytical treatment in that
geometry.

4.3.1 Landau bands

We have calculated the eigenvalues and eigenfunctions of the tight-binding
Hamiltonian (4.4) using the Kwant code [52] as described in Ref. 57. We
take parameters β = t0, ∆0 = 0.5 t0, µ = 0. We arrange h/2e vortices on
the square lattice shown in Fig. 4.2a. The lattice constant d0 = Na0 of
the vortex lattice determines the magnetic field B0 = (h/e)d−2

0 . In the
numerics the full nonlinear k-dependence of H(k) is used, while for the
analytical expressions we expand near k = 0.

The zero-field spectra in Figs. 4.3a and 4.3b reproduce the findings of
Ref. 47: For small Λ and provided that ∆0 < β one sees two pairs of
oppositely charged gapless Weyl cones, symmetrically arranged around
kz = 0 at momenta K± and −K± given by

K± =
√

(β ± Λ)2 −∆2
0. (4.9)

The pair at |kz| = K− is displaced relative to the other pair at |kz| = K+

by the flux bias Λ, becoming gapped when Λ is in the critical range

Λ ∈ (β −∆0, β + ∆0) ≡ (Λc1,Λc2). (4.10)

Application of a magnetic field in Figs. 4.3c and 4.3d shows the forma-
tion of chiral zeroth-order Landau bands: a pair of electron-like Landau
levels of opposite chirality and a similar pair of hole-like Landau levels.
The Landau bands have a linear dispersion in the z-direction, along the
magnetic field, while they are dispersionless flat bands in the x–y plane.

For kz near K± the electron-like and hole-like dispersions are given by
[57]

Eelectron(k) = (−µ− kz +K+) cos θ,

Ehole(k) = (µ+ kz −K−) cos θ,
(4.11a)

and similarly near −K± the dispersions are

Eelectron(k) = (−µ+ kz +K−) cos θ,

Ehole(k) = (µ− kz −K+) cos θ.
(4.11b)
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4.3 Chirality confinement in a vortex lattice

The kz-dependent factor cos θ renormalizes the charge and velocity of the
quasiparticles, according to [47, 83]

cos θ(k) =
|kz|√

∆2
0 + k2

z

→
√

1− ∆2
0

(β ± Λ)2
≡ κ± when |kz| → K±.

(4.12)

The degeneracy of a Landau band is not affected by charge renormal-
ization [57], each electron-like or hole-like Landau band contains

N0 = 1
2Φ/Φ0 = (e/h)Φ (4.13)

chiral modes, determined by the ratio of the enclosed flux Φ = B0W
2 and

the bare single-electron flux quantum h/e.
While the dispersion of a Landau band in the Brillouin zone changes

only quantitatively with the flux bias, it does have a pronounced qual-
itative effect on the spatial extension in the x–y plane. As shown in
Fig. 4.4, the intensity profile |ψ±(x, y)|2 of a zeroth-order Landau level at
|kz| = K± peaks when r = (x, y) approaches a vortex core at Rn. The
dependence on the separation δr = |r −Rn| is a power law [57],

|ψ±|2 ∝ δr−1+κ± . (4.14)

When Λ enters the critical range (4.10) this power law decay applies
only to one of the two chiralities: the two Landau bands at kz = K+

and kz = −K+ with dE/dkz < 0 still have the power law decay (4.14),
but the other two bands with dE/dkz > 0 merge at kz = 0 and become
exponentially confined to a vortex core. As we shall derive in the next
subsection,

|ψvortex|2 ∝ exp(−δr/lconf),

lconf = 1
2 max

(
1

Λ− β + ∆0
,

1

β − Λ + ∆0

)
.

(4.15)

These two vortex-core bands are separated spatially, one in each of the
two vortices in the unit cell. They form unpaired Majorana fermions, in
contrast to the two Landau bands that overlap spatially and as a pair
constitute a Dirac fermion.

All of this applies to magnetic fields in the regime W � λ � lm � ξ0
of a vortex lattice. At weaker fields, when lm & min(W,λ), no vortices
can form and the analysis of Ref. 57 applies: The bands with chirality
dE/dkz > 0 are pushed out of the bulk and confined to the surfaces along
the z-direction.
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Figure 4.3: Dispersion relations of a Weyl superconductor at two values of the
flux bias Az (left and right column), without and with a magnetic field B (top
and bottom row). In zero field and at a small value of the flux bias (panel a),
there are four cones in the spectrum. As the flux bias increases the electron-like
cones (red) are shifted to positive kz, whereas the hole-like cones (blue) are
shifted to negative kz. At the critical value eAz = β−∆0 = 0.5/a0 two cones of
opposite chirality meet at kz = 0, a gap opens and the system transitions into
the two-cone regime (panel b). When a magnetic field is applied, each Weyl
cone gives rise to a chiral zeroth Landau level (panel c). In the two-cone regime
(panel d) a pair of chiral Landau levels forms charge-neutral Majorana modes
(green). The spectra were calculated for the tight-binding Hamiltonian (4.4),
with β = t0, ∆ = 0.5t0, and µ = 0. The B 6= 0 data is for a square vortex lattice
with lattice constant d0 = 18a0. For an electron-like Landau level marked with
a square and for a Majorana mode marked with a circle we show the spatial
probability density in Fig. 4.4.

4.3.2 Vortex core bands

To demonstrate the exponential confinement in a vortex core of the τz =
+1 chirality we expand the Hamiltonian (4.4) to first order in kx, ky at
kz = 0, µ = 0,

H =

(
kxσx + kyσy 0

0 −kxσx − kyσy

)
+

(
(β − Λ)σz ∆0e

iϕ

∆0e
−iϕ (β − Λ)σz

)
. (4.16)

78



4.3 Chirality confinement in a vortex lattice

0 50 100

x=a0

0

50

100

y
=
a
0

(a) zeroth Landau level

0 50 100

x=a0

(b) vortex bound state

0

max

p
ro
b
a
b
ility

d
en

sity

0 5 10 15 20 25

distance from the vortex core r=a0

0:0

0:2

0:4

0:6

0:8

1:0

p
ro
b
a
b
il
it
y
d
en

si
ty

(a
.u
.)

(c) asymptotic behavior near a vortex line

vortex bound state zeroth Landau level

100 101

100

5� 10�1
6� 10�1
7� 10�1
8� 10�1
9� 10�1

0 20

10�7

100

Figure 4.4: Spatial distribution of the probability density for an electron-like
Landau band (panel a) and for a Majorana vortex-core band (panel b). Panel
c shows both probability distributions as a function of the distance r from the
vortex core, measured along the dashed white line in panels a,b. In the insets in
panel c the same data is presented using a log-log scale (for the zeroth Landau
level) and log-linear scale (for the vortex-core band). The Landau band is spread
over the magnetic unit cell, with an algebraic divergence at the vortex cores,
whereas the vortex-core band is exponentially localized at the vortices. The
profiles were calculated for the same set of parameters as the spectra in Fig.
4.3, with the Landau band corresponding to the state marked with a square,
and the vortex-core band corresponding to the state marked with a circle. To
improve the spatial resolution, we used a larger ratio d0/a0 = 102.
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4 Universal CME in the vortex lattice of a Weyl superconductor

The applied magnetic field does not contribute on length scales below
lm, so we only need to include the constant eAz = Λ term in the vector
potential. The winding of the superconducting phase is accounted for by
the factor eiϕ, in polar coordinates (x, y, z) = (r cosϕ, r sinϕ, z) centered
on the vortex core.

In view of the identity

∂x + i∂y = eiϕ
(
∂r + ir−1∂ϕ

)
, (4.17)

with ∂q ≡ ∂/∂q, the Hamiltonian (4.16) reads

H =

(
(β − Λ)σz −D ∆0e

iϕ

∆0e
−iϕ (β − Λ)σz +D

)
, (4.18a)

D =

(
0 e−iϕ(i∂r + r−1∂ϕ)

eiϕ(i∂r − r−1∂ϕ) 0

)
. (4.18b)

We seek a solution HΨ = 0 of the form

Ψ =
(
φ1(r), eiϕφ2(r), e−iϕφ3(r), φ4(r)

)
, (4.19)

and denote Φ = (φ1, φ2, φ3, φ4). This produces the ordinary differential
equation

−dΦ

dr
=


0 −i(β − Λ) 0 i∆0

i(β − Λ) r−1 i∆0 0
0 −i∆0 r−1 i(β − Λ)
−i∆0 0 −i(β − Λ) 0

Φ

≡
(
M1 + r−1M2

)
Φ. (4.20)

In the critical regime Λc1 < Λ < Λc2 the two positive eigenvalues of the
matrix M1 are Λ−Λc1 and Λc2−Λ. At large r, the normalizable solution
of Eq. (4.20) decays ∝ e−αr, with α the smallest positive eigenvalue of
M1:

α = min(Λ− Λc1,Λc2 − Λ). (4.21)

The confinement length lconf = 1/2α is thus given by Eq. (4.15).

4.4 Chiral magnetic effect

4.4.1 Charge renormalization

We summarize the formulas from Ref. 47 that show how charge renormal-
ization by the superconductor affects the CME.
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4.4 Chiral magnetic effect

The equilibrium expectation value Iz of the electrical current in the
z-direction is given by

Iz = 1
2

∑
n

∫
dkz
2π

f(E)〈jz〉E . (4.22)

The sum over n is over transverse modes with energy En(kz) ≡ E at
longitudinal momentum kz, weighted by the Fermi function f(E) = (1 +
eE/kBT )−1 at temperature T . The factor 1/2 corrects for a double-counting
of states in the Bogoliubov-De Gennes formalism. The expectation value
of the current operator jz = −∂H/∂Az in the state with energy E equals

〈jz〉E = −〈∂H/∂Az〉E = −∂E/∂Az, (4.23)

according to the Hellmann-Feynman theorem. Two other expectation
values that we need are those of the velocity operator vz = ∂H/∂kz and
the charge operator Q = −e∂H/∂µ, given by

〈vz〉E = ∂E/∂kz, 〈Q〉E = −e∂E/∂µ. (4.24)

Following Ref. 47 we also define the “vector charge”

Q = (Qx, Qy, Qz), with Qα(E) ≡ 〈jα〉E〈vα〉E
, (4.25)

which may be different from the average (scalar) charge Q0 ≡ 〈Q〉E be-
cause the average of the current as the product of charge and velocity may
differ from the product of the averages.

The CME is a contribution to Iz that is linear in the equilibrium chem-
ical potential µ, measured relative to the Weyl points. We extract this
contribution by taking the derivative ∂µIz in the limit µ→ 0. Two terms
appear, an on-shell term from the Fermi level and an off-shell term from
energies below the Fermi level,

∂µIz = Jon-shell + Joff-shell ≡ Jtotal, (4.26a)

Jon-shell = − 1

2e

∑
n

∫
dkz
2π

f ′(E)〈Q〉E〈jz〉E , (4.26b)

Joff-shell = − 1

2

∑
n

∫
dkz
2π

f(E)
∂2

∂Az∂µ
En(kz). (4.26c)

At low temperatures, when −f ′(E) → δ(E) becomes a delta function,
the on-shell contribution Jon-shell involves only Fermi surface properties.
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4 Universal CME in the vortex lattice of a Weyl superconductor

It is helpful to rewrite it as a sum over modes at E = 0. For that purpose
we replace the integration over kz by an energy integration weighted with
the density of states:

Jon-shell = − 1

4πe

∑
n

∫ ∞
−∞

dE f ′(E)

∣∣∣∣ ∂E∂kz
∣∣∣∣−1

〈Q〉E〈jz〉E . (4.27)

In the T → 0 limit a sum over modes remains,

Jon-shell =
1

2

e

h

∑
n

Q0Qz
e2

(
sign 〈vz〉

)∣∣∣∣
En=0

, (4.28)

where we have restored the units of ~ = h/2π.

4.4.2 On-shell contributions

We apply Eq. (4.28) to the vortex lattice of the flux-biased Weyl su-
perconductor. Derivatives with respect to Az are then derivatives with
respect to the flux bias Λ. According to the dispersion relation (4.11a),
the electron-like Landau band near K+ has renormalized charges

Q0 = eκ+, Qz = e
∂K+

∂Λ
=

e

κ+
, (4.29)

in the limit kz → K+, µ→ 0. The charge renormalization factors cancel,
so this Landau band with sign 〈vz〉 < 0 contributes to Jon-shell an amount
− 1

2e/h times the degeneracy N0 = (e/h)Φ, totalling − 1
2 (e/h)2Φ.

Similarly, for the hole-like Landau band near −K− Eq. (4.11a) gives

Q0 = −eκ+, Qz = −e∂K+

∂Λ
= − e

κ+
, (4.30)

for the same contribution of − 1
2 (e/h)2Φ. The total on-shell contribution

for this chirality is

Jon-shell(|kz| = K+) = −(e/h)2Φ. (4.31)

We can repeat the calculation for the electron-like band near K− and
the hole-like band near −K−, the only change is the sign 〈vz〉 > 0, result-
ing in

Jon-shell(|kz| = K−) = (e/h)2Φ. (4.32)

We conclude that the Dirac fermions in the Landau bands of opposite
chirality give identical opposite on-shell contributions ±(e/h)2Φ to ∂µIz.

82



4.5 Conclusion

The net result vanishes when Λ is outside of the critical region (Λc1,Λc2).
When Λc1 < Λ < Λc2 one of the two chiralities is transformed into un-
paired Majorana fermions confined to the vortex cores. The vortex-core
bands have Q0 = 0 at E = 0, so they have no on-shell contribution,
resulting in

Jon-shell =

{
0 if Λ /∈ (Λc1,Λc2),

(e/h)2Φ if Λ ∈ (Λc1,Λc2).
(4.33)

The coefficient (e/h)2 contains the bare charge, unaffected by the charge
renormalization.

4.4.3 Off-shell contributions

Turning now to the off-shell contributions (4.26c), we note that the Lan-
dau bands do not contribute in view of Eq. (4.11):

∂2

∂Λ∂µ
E(k) = ± ∂

∂Λ
cos θ(k) = 0. (4.34)

For the vortex-core bands, off-shell contributions cancel because of particle-
hole symmetry.

This does not exclude off-shell contributions from states far below the
Fermi level, where our entire low-energy analysis no longer applies. In
fact, as we show in Figs. 4.5 and 4.6, we do find a substantial off-shell
contribution to ∂µIz in our numerical calculations (see App. 4.A for de-
tails). Unlike the on-shell contribution (4.33), which has a discontinuity
at Λ = Λc1,Λc2, the off-shell contribution depends smoothly on the flux
bias and can therefore be extracted from the data.

4.5 Conclusion

In summary, we have demonstrated that a flux bias in a Weyl supercon-
ductor drives a confinement/deconfinement transition in the vortex phase:
For weak flux bias the subgap excitations are all delocalized in the plane
perpendicular to the vortices. With increasing flux bias a transition oc-
curs at which half of the states become exponentially localized inside the
vortex cores. The localized states have a definite chirality, meaning that
they all propagate in the same direction along the vortices. (The sign of
the velocity is set by the sign of the external magnetic field B0.)

As a physical consequence of this topological phase transition we have
studied the chiral magnetic effect. The states confined to the vortex cores
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Figure 4.5: Numerical calculation of ∂µIz at µ = 0.05 t in the tight-binding
Hamiltonian (4.4). The solid curves are the total current, while the dashed
curves show only the off-shell contribution (4.26c). The vertical dashed lines
mark eAz = Λc1,Λc2 – the values of the flux bias which correspond to a topolog-
ical phase transition into and out of the two-cone regime. The horizontal dashed
lines mark the universal CME value of (h/e)2Φ. As the size N = d/a0 of the
magnetic unit cell increases, the numerically calculated value of the on-shell
contribution approaches the universal value, which jumps at the topological
phase transition.

are charge-neutral Majorana fermions, so they carry no electrical current.
The states of opposite chirality, which remain delocalized, are charged,
and because they all move in the same direction they can carry a nonzero
current density j parallel to the vortices. This is an equilibrium supercur-
rent, proportional to the magnetic field B0 and to the chemical potential
µ (measured relative to the Weyl point).

We have calculated that the supercurrent along the vortices jumps at
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Figure 4.6: Same numerical calculation as in Fig. 4.5, but now for a fixed flux
bias eAz = 1.05/a0 in the two-cone regime, showing the contributions to ∂µIz
from different momenta kz along the magnetic field. We distinguish between
the total current and the off-shell contribution. The difference between the
two is the on-shell contribution, which peaks at the momenta where the Fermi
level crosses the chiral Landau bands. The vortex-core bands at kz = 0 have
vanishing on-shell contribution.

the topological phase transition by an amount which for a large system
size tends to the universal limit

j =
e2

h2
B0µ. (4.35)

Remarkably enough, the proportionality constant contains the bare elec-
tron charge e, even though the quasiparticles have a renormalized charge
e∗ < e. This electromagnetic response is generated by the axion term
(e/h)2

∫
dt
∫
dr θ(t)EzBz in the Lagrangian, where θ(t) = µt is the axion

angle.
The chiral fermions confined in the vortex cores are a superconducting

realization of the “topological coaxial cable” of Schuster et al. [84], where
the fermions are confined to vortex lines in a Higgs field. There is one
difference: the chiral fermions in the Higgs field are charge-e Dirac fer-
mions, while in our case they are charge-neutral Majorana fermions. The
difference manifests itself in the physical observable that serves as a sig-
nature of the confinement: for Schuster et al. this is a quantized current
dI/dV = e2/h per vortex out of equilibrium, in our case it is a quantized
current dI/dµ = 1

2e/h per vortex in equilibrium.
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Appendix

4.A Details of the numerical calculation

The numerical calculation was performed on a square lattice with two
h/2e vortices in a magnetic unit cell, using the discretization described in
Ref. 57. We calculate separately the total induced current response

∂µIz = Jon-shell + Joff-shell ≡ Jtotal, (4.36)
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Figure 4.7: Bottom: momentum-resolved current response ∆Iz(µ, kz), as de-
fined in Eqs. (4.37) and (4.39), in the four-cone regime at eAz = 0.25/a0 (panel
a) and in the two-cone regime at eAz = 1.05/a0 (panel b). Top: low-energy
dispersion relation for the corresponding system. The on-shell contribution to
the current response, which is the difference between the total and off-shell con-
tributions, only appears at momenta for which a band crosses the Fermi energy.
In the four-cone regime four peaks are present, the contributions of which cancel
out. In the two-cone regime the vortex-core band at kz = 0 has a vanishing
on-shell contribution, whereas the contribution of the other two Landau levels
remains unchanged. The plots were obtained for a system size N = 18.
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Figure 4.8: The current response ∆Iz(µ), as defined in Eqs. (4.37) and (4.39),
in the two-cone regime at eAz = 1.05/a0 for a finite chemical potential µ. The
colored data points give the total response, as well as the off-shell and on-shell
contributions. The dotted line µe2Φ/h2 is the theoretical prediction (4.33) for
the on-shell contribution to first order in µ, which is a good approximation to
the numerical result for small µ. The plots were obtained for a system size
N = 18.

and the off-shell contribution Joff-shell. The defining equations (4.22) and
(4.26c) are rewritten in terms of finite differences,

Jtotal =
1

2
lim
µ→0

1

2µ

∑
n

∫
dkz
2π

[
f
(
En(kz, µ)

)
〈jz〉En(kz,µ)

− f
(
En(kz,−µ)

)
〈jz〉En(kz,−µ)

]
=

1

2
lim
µ→0

1

2µ

∫
dkz ∆Itotal

z (µ, kz) = lim
µ→0

1

µ
∆Itotal

z (µ), (4.37)

Joff-shell =
1

2
lim
µ→0

1

2µ

∑
n

∫
dkz
2π

f
(
En(kz, µ = 0)

)[
〈jz〉En(kz,µ) (4.38)

− 〈jz〉En(kz,−µ)

]
=

1

2
lim
µ→0

1

2µ

∫
dkz ∆Ioff-shell

z (µ, kz) = lim
µ→0

1

µ
∆Ioff-shell

z (µ).

(4.39)

We computed the values of the expressions on the right-hand-side at
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4.A Details of the numerical calculation

finite µ. The kz-integral was estimated from 256 values of kz, equally
spaced in the [−π, π] interval. For the sum over transverse modes n we
averaged over 4 values of both kx and ky. To smoothen the integrand
we took a small nonzero temperature T = 0.01 in the Fermi function —
much smaller than the energy of the first Landau level (which was & 0.2
for the parameters we considered). In Fig. 4.7 we present the results prior
to integration over kz, for two different values of Az. For µ = 0.05 the
finite differences have converged to the derivative – see Fig. 4.8.
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