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3 Effect of charge
renormalization on electric
and thermo-electric
transport along the vortex
lattice of a Weyl
superconductor

3.1 Introduction

Weyl superconductors are nodal superconductors with topological protec-
tion [12, 53]: They have nodal points of vanishing excitation gap, just like
d-wave superconductors [54], but in contrast to those the gapless states
are not restricted to high-symmetry points in the Brillouin zone and can
appear for conventional s-wave pairing. The nodal points (Weyl points)
at £K in a Weyl superconductor are protected by the conservation of a
topological invariant: the Berry flux of £27 at Weyl points of opposite
chirality [55, 56].

The distinction between symmetry and topology has a major conse-
quence for the stability of Landau levels in a magnetic field. While in
a d-wave superconductor the strong scattering of nodal fermions by vor-
tices in the order parameter prevents the formation of Landau levels [1],
in a Weyl superconductor an index theorem for chiral fermions protects
the zeroth Landau level from broadening [57]. The appearance of chiral
Landau levels in a superconducting vortex lattice produces a quantized
thermal conductance parallel to the magnetic field, in units of 1/2 times
the thermal quantum per h/2e vortex [57]. The factor of 1/2 reminds
us that Bogoliubov quasiparticles are Majorana fermions, “half a Dirac
fermion” [58, 59].

In this chapter we turn from thermal transport to electrical transport,
by studying the geometry of Fig. 3.1 and addressing the question “What
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

Figure 3.1: a) Vortex lattice in a Weyl superconductor sandwiched between
metal electrodes; b) Circuit to measure the electrical transport along the vor-
tex lines. The nonlocal conductance G12 = dI2/dVi gives the current carried
through the vortex lattice by nonequilibrium Weyl fermions in a chiral Landau
level.

is the charge transported along the vortices in a chiral Landau level?” It
is known [48] that the charge of Weyl fermions in a superconductor (pair
potential Ag) is reduced by a factor K = K(Ag)/K(0). We find a direct
manifestation of this charge renormalization in the electrical conductance,
which is quantized at 3 (ex)?/h per vortex. Because the charge renormal-
ization is energy dependent, a coupling between thermal and electrical
transport appears even without any energy-dependent scattering mecha-
nism — resulting in a nonzero thermo-electric effect in a chiral Landau
level.

In the next section 3.2 we summarize the effective low-energy theory of
the superconducting vortex lattice [57], on which we base our scattering
theory in Sec. 3.3, followed by a calculation of electrical and thermo-
electric transport properties in Sec. 3.4. These analytical results are com-
pared with numerical simulations of a tight-binding model in Sec. 3.5. We
conclude in Sec. 3.6.

3.2 Landau level Hamiltonian in the vortex
lattice

We summarize the findings of Ref. 57 for the Landau level Hamiltonian
of Weyl fermions in a superconducting vortex lattice, which we will need
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3.2 Landau level Hamiltonian in the vortex lattice
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Figure 3.2: Left panel: The red solid curves show the dispersion of Landau
levels in the k;—k, plane perpendicular to the magnetic field (energy E nor-
malized by the energy FEi of the first Landau level). The black dotted curves
show the dispersion in zero magnetic field, with a Weyl cone at the I' point of
the magnetic Brillouin zone. Right panel: Particle density profile in the zeroth
Landau level, in the x—y plane perpendicular to the magnetic field, for a wave
vector at the Weyl point (k = KZ2). The magnetic unit cell is indicated by
a white dashed rectangle. Both panels are calculated numerically for a Weyl
superconductor with a triangular vortex lattice. The vortex cores are located at
the bright points in the density profile. Similar plots for a square vortex lattice
are in Ref. 57.

to calculate the transport properties.

3.2.1 Dispersion relation

A Landau level is a dispersionless flat band in the plane perpendicular to
the magnetic field. The lowest (zeroth) Landau level is protected by chiral
symmetry from scattering by the vortices, see Fig. 3.2. This is the Landau
level on which we focus our analysis. It is a celebrated result of Nielsen
and Ninomiya [55] that Weyl fermions in the zeroth Landau level have a
definite chirality x = 41, defined as the sign of the velocity v, = 0F/0k.,
parallel or antiparallel to B. To account for the electron-hole degree of
freedom the number of bands is doubled for each chirality, so that we have
four bands in total. Electron-like and hole-like bands are related related
by the charge-conjugation symmetry relation E, (k,) = —E, (—k,).

The effect of a superconducting vortex lattice on this four-band disper-
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3 Effect of charge renormalization on electric and thermo-electric transport. . .
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Figure 3.3: Dispersion relation of the zeroth Landau level in a superconducting
vortex lattice, plotted from Eq. (3.1) for p = 0, Ag = 0.5, 3 = 1. Only
the dependence on the momentum k. along the magnetic field B is shown,
the dispersion is flat in the z—y plane (see Fig. 3.2). The four branches are
distinguished by the sign of the chirality (solid or dashed) and by the sign of
the electric charge (red or blue). The zero-field Weyl points at k, = £K are
indicated by arrows. Each branch has a degeneracy Niandau = €¢®/h set by the
enclosed flux ® = BW?2.

sion is given by [57]

By (k.) = —(sgnk,)xM (k) — xpr(k.),

d (3.1)

M(k:) = 8= A3+ K2, w(k) = ——M(k.),

plotted in Fig. 3.3. (We have set i and the Fermi velocity vr equal to
unity, so  is dimensionless.) The magnitude of the superconducting pair
potential outside of the vortex cores is denoted by Ag and ( is an internal
magnetization along the z-direction that breaks time-reversal symmetry
even in the absence of any external magnetic field. In Eq. (3.1) we have
assumed that [ is parallel to B, but we will later relax this assumption
(see Sec. 3.5.3).

Provided that Ay < B there is a pair of Landau levels for each chirality,
located in the magnetic Brillouin zone near the Weyl points at k, = K

and k, = —K, with [12]
K(Ag) = /B2 — A2. (3.2)
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3.2 Landau level Hamiltonian in the vortex lattice

The charge expectation value
OE, exk,
= —e—= =exklk,) = —————
O g~ xlks) VAZ + k2

for a given chirality has the opposite sign at the two Weyl points. (We
say that the chiral Landau levels near k, = £K are charge-conjugate.)
When k, = +£K is at the Weyl point, the charge renormalization factor

equals Fkg, with
ro = K(80)/K(0) = /1 — A3/, (3.4)

while k(k,) varies linearly with energy away from the Weyl point [48].

(3.3)

3.2.2 Effective Hamiltonian

The dispersion (3.1) follows from the effective low-energy Hamiltonian

[57]

He 00 0
H=U 8 o 8 U, (3.5a)
0 0 0 H-
Hy = (ks + eAyz)on + (ky + eAyy)oy
+ Mo, — xpukoo, (3.5b)
U = exp(3ifvyT.0.), 0= arccosk. (3.5¢)

The 2 x 2 Pauli matrices vy, To, and o, (with o = 0 the corresponding unit
matrix) act on, respectively, the electron-hole, orbital, and spin degrees of
freedom. The full Hamiltonian H is an 8 x 8 matrix and the 2 x 2 matrices
H_ act on the o index in the v = 7 = %1 sector.

The central block in Eq. (3.5a) indicated by dots refers to higher-lying
bands that are approximately decoupled from the low-energy bands. Vir-
tual transitions to these higher bands contribute order p? terms that re-
move the discontinuity in the derivative 0F/0k, at k, = 0 for u # 0. No
such decoupling approximations are made in the numerics of Sec. 3.5.

The gauge field A, (r), dependent on the position r = (z,y) in the z—y
plane, defines the effective magnetic field B, = V x A, in the z-direction
felt by the Weyl fermions in the lattice of vortices at positions R,,,

B, =1+ Xn)q)oZé(r - R,) — xkB. (3.6)
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

There are Nyoriox = BW?/®q vortices of flux ®y = h/2e in an area
W? perpendicular to the applied magnetic field B, so the spatial average
[ Bydr = ® equals the total enclosed flux ® = BW? independent of x
or of the lattice of vortices. (In the numerics that follows we will use a
square lattice for definiteness.)

3.2.3 Zeroth Landau level wave functions

As shown in Ref. 57, the Aharonov-Casher index theorem [16, 49, 50], to-
gether with the requirement that the wave functions are square-integrable
at a vortex core, implies that the zeroth Landau level eigenstates 1, of
H,, which are rank-two spinors, are also eigenstates |+), of o,

0.y = (g0 Qy )V (3.7)
The eigenvalue is determined by the sign of the effective quasiparticle
charge (3.3).
It follows that the eigenstates W, of the full Hamiltonian #, which are
rank-eight spinors, have the form

] li VyT2O
Uy = ™2 f (2, y)e2 % |sgn x), [sgn X) - [sgn Qy o
=<7 £, (2, y) [ cos(0/2)|sgn x)u |sgn x) - [sgn Qy )
— sin(0/2)(sgn Qy )| —sgn ) [sgn x) - [sgn Qy ) - (3.8)

The spatial density profile fy(z,y) is peaked at the vortex cores, with
a power law decay |fy|? oc or~'Fl@xI/e at a distance 67 from the core
[57]. The renormalization of the quasiparticle charge does not affect the
degeneracy of the zeroth Landau level: each of the four chiral modes in
Fig. 3.3 has a degeneracy

NLandau = e@/h (39)

set by the bare charge e.

Although the spatial density profile of these chiral modes is nonuniform,
the wave functions extend over the entire z—y plane — they are not expo-
nentially confined to the vortex cores (see Fig. 3.2). This is a qualitative
difference between the zeroth Landau level of a Weyl superconductor and
zero-modes bound to vortices in topological superconductors [14, 60].

3.3 Transmission through the NSN junction

Refering to the geometry of Fig. 3.1, we seek the transmission matrix ¢tNgn
for propagating modes of electrons and holes transmitted from the first
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3.3 Transmission through the NSN junction

metal contact N; in the region z < 0, through the Weyl superconductor
in the region 0 < z < L, into the second metal contact Ny in the region
z> L.

3.3.1 Renormalized charge transfer

We start by examining a single NS interface, to study how a chiral mode in
the superconductor injects a renormalized charge into the normal metal.

On the superconducting side z < L of the NS interface at z = L the
incident modes have positive chirality x = +1. There is a mode ¥g with
perpendicular momentum k. near K and a mode ¥ with k. near —K.
We do not specify the transverse momentum kj = (k;, k,), which gives
each mode a degeneracy of Npandau = €®/h, see Eq. (3.9).

According to Eq. (3.8), the spinor structure of the chiral modes is

\Ifs X COS(G/2)|++7>DTU + Sin(9/2)|7+7>1’70’

Lo cos(0 /2) |4+ vro — Sin(0/2)|—++)vro- (3.10)

We have abbreviated |++=),,, = |£),|%),|E)s and denote 6 = 0(k,),

o' = 0(k.).
For the normal metal we take the free-electron Hamiltonian
1
HN = %(k}Q — ]{?%)I/ZT()O'(), (311)

isotropic in the spin and valley degrees of freedom, in the high Fermi-
momentum limit krl,, — co when the effect of the magnetic field on the
spectrum may be neglected (I,,, = \/fi/eB is the magnetic length).

Because of the large potential step experienced upon traversing the
NS interface, the perpendicular momentum £k, is boosted to +kg for the
electron component of the state and to —kp for the hole component. A
state in N moving away from the NS interface of the form

Uy ox P L) cos(0/2)[++—)vre

+ e~k r =D gin(0/2)|—4+—) yro (3.12a)
can be matched to the incident state Wg in S, while the state

\I]i\I X eikF(ziL) COS(0//2)|+++>VT(T
L ) | (3.12b)

can be matched to V.
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

The charge transferred through the interface when Uy — Wy equals the
renormalized charge from Eq. (3.3),

—ek,

dependent on the perpendicular momentum k, in S, before the boost to
kr in N. When k, = K, this gives

QN = —€4/ 1-— A(Q)/ﬁQ = —kp€ = —Qeff. (314)

This is for the transmission ¥g — Uy . The other transmission ¥§ — U
transfers for k., = —K a charge Qf = +Qer-

Similarly, at the opposite NS interface z = 0 the chiral Landau level
modes in S moving away from the interface are matched to incoming states
in N of the form

Qn = (Uxlev,|¥N) = ecost = ek = (3.13)

Dy o €72 cos(0/2)|4++—)vro

+ e 6in(0/2)|—+—)uro, (3.15a)
D o €72 cos(0'/2) [+ ++) vro
_ e—ikpz sin(9//2)\—++>wa~ (315b)

3.3.2 Transmission matrix

At a given energy FE relative to the Fermi level the perpendicular momenta
k. and k. of the chiral Landau levels in S moving in the +z direction are
determined by the dispersion relation (3.1) with x = +1. For p = 0 the
expressions are simple,

k.=K+ (B/K)E, k., =—-K + (B/K)E. (3.16)
For any pu, particle-hole symmetry ensures that
k.(E)=—k(-E). (3.17)

The Landau level Ug propagating from z = 0 to z = L accumulates a
phase k. L, and similarly ¥§ accumulates a phase k., L. The full transmis-
sion matrix of the NSN junction at energy E can thus be written as

tasn(E) = e L) (O + =L wi) (@], (3.18)

with k., and k., determined by Eq. (3.16).
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3.4 Transport properties

We can rewrite Eq. (3.18) in the basis of propagating electron modes
in the normal metal. In the region z < 0 one has the basis states

= () o= (5 3): (3.192)
le 1) = eikFZ|+++>VTm A1) = e_ikFZ‘_‘f"Hu'rm

le ) = €™ | ++—)ro, |h]) = e FF|—4—), 0, (3.19b)

and similarly for z > L with kpz replaced by kp(z — L).
The transmission matrix is block diagonal in the spin degree of freedom,

wss(®) = ("0, ), (3.20a)
o e““;L( cos?(0'/2) —cos(6'/2) sin(@’/2)>
T —cos(0'/2) sin(6'/2) sin?(0'/2) ’
ik cos?(6/2) cos(0/2)sin(6/2)
=" L(cos(0/2)sin(0/2) sin?(6/2) ) (3.20b)

The 2 x 2 matrix ¢4 acts on the electron-hole spinor |U4) and ¢ acts
on |¥;). We may write this more compactly as

1/ —ap’
elkzL<VQ+l/26 6 uy>7

eik;L(VO 4 Vzeieuy).

h= (3.21)

N~ N~

t, =

These are each rank-one matrices, one eigenvalue equals 0 and the other
equals 1 in absolute value. The unit transmission eigenvalue is Nyandau-
fold degenerate in the transverse momentum k.
At the Fermi level E = 0 the particle-hole symmetry relation (3.17)
implies k., = —k,, ¢ =7 — 0, hence
tnsn(0) = 2emH=Los (g — v, 0, e0). (3.22)
One verifies that
tnsn (0) = vyoytnsn (0)ryoy, (3.23)

as required by particle-hole symmetry.

3.4 Transport properties

The transmission matrix allows us to calculate the transport properties of
the NSN junction, under the assumption that there is no backscattering of
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

the chiral modes in the Weyl superconductor. To simplify the notation, we
write ¢ for the Fermi-level transmission matrix ¢txgn(0). The submatrices
of electron and hole components are denoted by tee, thh, the, and tep. We
define the combinations

Tj: = tz€t€e :I: tilethe7 (3.24a)
Ti = Lo +va)tit, T = Lo+ v)tat. (3.24b)

3.4.1 Thermal conductance

As a check, we first recover the result of Ref. 57 for the quantization of
the thermal conductance.

The thermal conductance Gihermal = J12/0T gives the heat current
Jio transported at temperature Ty from contact Ni to No via the super-
conductor, in response to a small temperature difference §7 between the
contacts. It follows from the total transmitted quasiparticle current,

ed
Gthermal = %QONLandau Tr tTt = 907’ (325)

with Npandau = €®/h the Landau level degeneracy and gg = %(WkB)z(To/h)
the thermal conductance quantum. The factor 1/2 in the first equation
appears because the quasiparticles in the Weyl superconductor are Majo-
rana fermions. It is cancelled by the factor of two from Trtt’ = 2, in view
of Eq. (3.22).

3.4.2 Electrical conductance

Referring to the electrical circuit of Fig. 3.1b, we consider the electrical
conductance Gyo = dIy/dV;, given by

o2
G12 = ZNLandau Tr7-
o2
= Niandaus Tr (vo + v2)tT vt (3.26)

In the linear response limit V; — 0 we substitute ¢ from Eq. (3.22), which
gives

2 2

9 € (ek)? e
= 0— N andau — .

G12 (0) COS h, Land h h

The conductance quantum e?/h is renormalized by the effective charge

e — er. At u = 0, when k, = K, the renormalization factor is k2 =

(3.27)
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3.4 Transport properties

(Qer/€)? = 1 — A3/B? from Eq. (3.14). Note that the conductance per
h/2e vortex is i(ero)?/h, with an additional factor 1/2 to signal the
Majorana nature of the quasiparticles.

At finite £ = eV; we must use the energy-dependent transmission ma-
trix (3.20), which gives

2

G12(E) = %%NLandau (cos @ + cos®’ + cos® 0 + cos® §'). (3.28)

Substituting Eq. (3.13) for cos # and cos§’ at k, and k., given as a function
of E by Eq. (3.16), we find

Gra(E) = G12(0)<1 ___AGE o+ 0(E2)>. (3.29)

(8% — Af)

The energy dependence of the differential conductance comes entirely
from the energy dependence of the effective charge: At E' = 0 the electron-
like and hole-like chiral Landau levels have precisely opposite effective
charge £Qeg, but for E # 0 the effective charges differ in absolute value
by an amount « dk,/dE.

3.4.3 Shot noise

At temperatures small compared to the applied voltage V5, the time de-
pendent fluctuations in the current I are due to shot noise. The formula
for the shot noise power is [61]

63 V1

P12 = Tr (T+ - T_2) (330)

This can again be written in terms of the Pauli matrix 7, and evaluated
using Eq. (3.22),

nggﬁﬁ1f§£f§#) (3.31)
The shot noise vanishes when x — 1, it is fully due to the charge renor-
malization.

The Fano factor F', the dimensionless ratio of shot noise power and
average current, results as

_ P 1
_6V1G12 /{2

— 11+ &%), (3.32)
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

3.4.4 Thermo-electricity

Because of the energy dependence of the effective charge, a temperature
difference 0T between contacts 1 and 2 will produce an electrical current
T2 = a120T in addition to a heat current. The thermo-electric coefficient
oo is given by [62]

2
_ 2T lim L
a12 = 3¢ kBTO Ehglo dEGl2(E) (333)

Substitution of Eq. (3.29) gives

A

(32— A3
A

(32— 837

(Bo/B)*
= —go@NLandauW.

72 9
Ql2 = *@kBTOGw(O)

2
—9gdo€ky NLandau

(3.34)

3.5 Numerical simulations

To test these analytical results, we have carried out numerical calculations
in a tight-binding model of the Weyl superconductor with a vortex lattice.

3.5.1 Tight-binding Hamiltonian

The Bogoliubov-de Gennes Hamiltonian Hg in the superconducting region
0<z<Lis

_ (Ho(k +eA) A
Hs = < A* —o Hi(—k + cA)a, )’ (3.352)
Hy(k) =t Z [T.0q sin kqag + To00(1 — coskqap)]
a=x,Yy,z
+ B100. — pT000. (3.35b)

The cubic lattice constant of the tight-binding model is ag and tg is the
nearest-neigbor hopping energy. In what follows we will set ag and %y
both equal to unity.

In the strong-type-II limit the magnetic field B = ByZ penetrates the
superconductor uniformly, with vector potential A = (—Bgyy,0,0). The
absolute value Ag of the pair potential A = Age’® can also be taken
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3.5 Numerical simulations
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Figure 3.4: Data points: Electrical conductance (top panel) and Fano factor
(bottom panel) in the superconducting vortex lattice (lattice constant dyp), as
a function of the pair potential Ao at fixed magnetization 8 = 1, calculated
from the tight-binding model (lattice constant ag) for different lattice constant
ratios No = do/ao. The black curves are the analytical predictions from the
charge renormalization factor x, both in the approximation of a linearized dis-
persion (black dashed curve, k = kg = /1 — A2/B32) and for the full nonlinear
dispersion (black solid).

uniform, assuming that the size §, = hup/Aq of the vortex core is small
compared to the magnetic length [,,, = \/h/eBy. For the analytical cal-
culations this is the only requirement. For the numerics we also take &g
small compared to the tight-binding discretization length ag, and then
ensure that a vortex core (where the phase field is undefined) does not
coincide with a lattice point. This implies that ag is large compared to

57



3 Effect of charge renormalization on electric and thermo-electric transport. . .
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Figure 3.5: Dependence on Ay for = 0.5 of the thermo-electric coefficient
(3.33), calculated from the infinite-system analytics (black solid curve) or ob-
tained from finite-size numerics (colored data points).

the atomic lattice constant (which itself must be much smaller than ).
The vortices are arranged on a square lattice in the z—y plane, lattice
constant dy = Ngag, with two h/2e vortices in a unit cell. The number

No = (a2eBy/h)~1/? (3.36)

is set at an integer value. The phase ¢(7) winds around the vortex cores
R, according to
V x V¢ =2nz) d(r — Ry). (3.37)

In the normal metal leads z < 0, z > L we have Ay = 0 and a large
chemical potential uy, so only modes with a large longitudinal momen-
tum k., couple to the superconductor. We effectuate the uy — oo limit
by removing the transverse x,y couplings in the leads, resulting in the
Hamiltonian'

Hx =v, 7.0, 8ink, + v, 7,00(1 — cosk,). (3.38)

The gauge-invariant discretization of the Hamiltonian (3.35) in the mag-
netic Brillouin zone is detailed in Ref. 57. The scattering matrix is calcu-
lated using the Kwant code [52].

1 We have checked that the continuum limit of the tight-binding Hamiltonian of Sec.
3.5.1 gives the same analytical results for the transport coefficients as calculated in
Sec. 3.4, see Appendix A.
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3.5 Numerical simulations
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Figure 3.6: Same as Fig. 3.4, but for a magnetization 8 that is perpendicular
rather than parallel to the magnetic field B.

3.5.2 Results

Results for the conductance and shot noise are shown in Fig. 3.4, as a
function of Ag for 8 =1, u = 0. The analytical predictions (3.27) for the
conductance and (3.32) for the Fano factor are given by the black curves.
As a check, for these curves we have also calculated the charge renormal-
ization factor x from the full sinusoidal dispersion, without making the
small-k expansion of Eq. (3.1) — the difference with ko = /1 — A%/3?
is small.

To assess finite-size effects in the numerics we show results for different
values of the ratio Ny = dy/ag of magnetic unit cell and tight-binding
unit cell. As expected, the agreement between numerics and analytics
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

improves with increasing Ny, for Ag/S not close to unity. (At Ag = 8 the
spectrum becomes gapless and the low-energy analytics breaks down.)
These are results at the Fermi level, E = 0. The energy dependence
of the conductance determines the thermo-electric coefficient (3.33). We
show numerical results for a2 « dG12/dFE in Fig. 3.5, for a smaller 5 = 0.5
to reduce the oscillations that disappear only slowly with increasing Ng.

3.5.3 Test for isotropy of the charge renormalization

So far we assumed that the internal magnetization [ is parallel to the
external magnetic field in the z-direction. This assumption is needed
for our low-energy analytics, but numerically we can take an arbitrary
angle between the magnetization 3 = (53, 8y, 8-) and the magnetic field,
by replacing the term S79o, in the Hamiltonian (3.35b) with 703 - o.
Results for 3 = (8,0,0), so for a magnetization perpendicular to the
magnetic field, are shown in Fig. 3.6. There is no qualitative difference
with Fig. 3.4 for the parallel configuration, the quantitative difference is
that the finite-size effects are smaller.

3.6 Conclusion

In summary, we have shown how the charge renormalization e — ke of
Weyl fermions in a superconducting vortex lattice modifies the electrical
and thermo-electrical transport properties.

In the electrical conductance, the current per vortex is reduced by a
factor %/12 — a prefactor 1/2 because of the Majorana nature of the
quasiparticles and a factor k2 because of the effective charge. At the Weyl
point k — ko = /1 — A%/3? depends on the ratio of the superconducting
gap Ag and the separation 23 of the Weyl points of opposite chirality.

The charge-squared renormalization of the electrical conductance is a
simple result, but perhaps not what one might have guessed by analogy
with the fractional quantum Hall effect, where a 1/3 fractional charge
reduces the conductance by 1/3 rather than 1/9. The key difference is
that here the quasiparticles are not in an eigenstate of charge; the charge
renormalization is due to quantum fluctuations, which give uncorrelated
reductions by k X k at entrance and exit. These quantum fluctuations of
the charge are also responsible for the large shot noise power that we have
found, with a diverging Fano factor (3.32) in the limit x — 0.

The energy dependence of the charge renormalization implies that charge
transport parallel to the magnetic field B goes hand-in-hand with heat
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3.6 Conclusion

transport. As a result, a nonzero thermo-electric coefficient ays along
the field lines appears in a chiral Landau level — something that would
not be possible in the normal state: The Landau level contributes an
energy-independent number of propagating modes along B (one mode per
flux quantum) and the chirality suppresses backscattering, so the energy
derivative in Eq. (3.33) would vanish in the normal state.

There is much recent interest in thermo-electricity of Weyl fermions in
a Landau level [63-66], but that refers to currents perpendicular to B.
Our findings show that charge renormalization in a Weyl superconductor
provides a mechanism for a nonzero effect parallel to the field lines.

In our calculations we have assumed a clean system, without impu-
rity scattering. However, we expect the transport properties to be robust
against non-magnetic disorder, which in the effective low-energy Hamilto-
nian (3.5) would enter as a term proportional to o, that does not couple
Landau levels of opposite chirality.
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Appendix

3.A Calculation of transport properties from
the continuum limit of the tight-binding
model

In the tight-binding model of Sec. 3.5.1 the wave matching at the normal-
superconductor (NS) interface is implemented by a nearest-neighbor cou-
pling on a square lattice of the Hamiltonians (3.35) in S to (3.38) in N.
Microscopically this results in different matching conditions on the wave
function than the matching conditions (3.12) from the analytical treat-
ment of Sec. 3.3. In this Appendix we check that the continuum limit
of the tight-binding model still gives the same results for the transport
properties as obtained in Sec. 3.4 from the main text. For simplicity, we
set u = 0 and restrict our considerations to £ = 0.

3.A.1 Matching condition

The linearized Hamiltonian for the normal metal reads

Hy =v,1,0.k, (3.39)
and for the superconductor it reads
(10 (k—eA)+ fo, Aget?
HS - < Aoe—M) —T,0 - (k + €A) + BO’Z . (340)

The particle current operator is the same for both the normal metal and
the superconductor,
Jp =V,T,0,, (3.41)

therefore, at the NS interfaces the matching condition
VU(z=0_)=T(z=04), U(z=L+0_)=T(z=L+0,), (3.42)

will respect the particle current conservation. This matching condition
corresponds to the continuum limit of the tight-binding model of the in-
terface.
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

As done in Sec. 3.3.1, we start by examining a single NS interface at
z = L, with a superconductor at z < L and a normal metal at z > L. In
contrast to the situation described in the main text, the incident modes
in the superconductor from Eq. (3.10),

\I/S X COS(@/?)‘++7>DTU + Sin(9/2)|7+7>l/7'0’

3.43
WY o cos(# /) 4+ Hhuro — S )|~ Hro. D

can no longer be continuously matched to an outgoing state in the normal
lead

\I/N S Span(|+++>u707 |_+_>l/7'0'7 ‘__+>VTG') |+__>u'ra) . (344)

To satisfy the matching condition (3.42), an evanescent wave is excited
in the superconductor. (There are no evanescent modes in the normal
metal.) Because all the incident modes reside in the 7 = +1 sector and
different 7 sectors are decoupled, in what follows we will focus on 7 = +1
sector, and omit the 7 component of the spinor.

3.A.2 Evanescent modes

The evanescent modes are the eigenstates of the effective low energy
Hamiltonian (3.5a) with Im(k,) < 0. In this section we will show how
to construct them.

We first investigate the spectrum of Hy for k. in the vicinity of —K:
k,=—K + 0k,, M(—K + 6k.) = k(—K)dk, + O(5k?), k(—K) =k > 0,
0 =0(—K):

KOk, D . .
H, = ( o —nék;) 7 D =—i0, — 0y +eAy , —ieAy . (3.45)

The states at zero energy satisfy

H. ¢ =0. (3.46)
Acting with H; from the left on both sides of the equation yields
2 o 2 _ (H}(gkz)2 + DDT O
H+¢ - 07 H+ - ( 0 (Iiakz)Q _|_D1‘D ) (347)

therefore the two components of the state 1) = (1)1, 12)7 must be be eigen-
states of DDt and DT D respectively, with the same eigenvalue. Suppose
we can find the eigenstates of DT D:

DTD¢n:6n¢n7 €en >0, n=12... (348)
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3.A Calculation of transport properties from the continuum limit of the tight-binding model

Note that €, = 0 is not allowed as shown in Ref. 57, and ¢, > 0 because
they are the eigenvalues of a square of a Hermitian operator. The operator
DD has one zero-mode: 1)y, Dy = 0. The remainder of the spectrum
of DD can be obtained by acting with operator D on wavefunctions ¢y,

DD (D¢,) = €, Doy, . (3.49)

This means that the sought wavefunction can be written as

aDe, %o
= or = . 3.50
o= () o v () (3.50)
The second possibility corresponds to the propagating zeroth Landau

level. Therefore, we will now focus on the first possibility. Substitut-
ing the wavefunction of this form into eigenvalue equation (3.46) yields

KOk, D aDon\
(s 2 (Do) <o, .
which gives us
Kok, = ti/e,, B = Fian/e,. (3.52)

We choose the lower sign in the solution in order to satisfy the condition
Im(k,) < 0. With this we can obtain the evanescent modes of the full
Hamiltonian H,

_ (—iK+yen)z, ib vy Doy,
\I/ e e?2 |+>V<Z\/a¢n .

Dy, cos %

. (U4 .

z\/gjn c.osef2 (K VE)z (3.53a)
—Dé¢yp, sin 5

. . /
I\/€n Pr SIN %

where the spinor on the right hand side is written in the basis |[++),,,
[+=)vo, |—+)vos |——)ve- The evanescent modes corresponding to k,
around +K can be obtained by acting with charge conjugation operator
on v,

NG
—D*¢* sin % -
U =pyo, KU =| T Tn7T 2 R EVE)z (3.53b)
—i\/€n®;, COS 5

r
—D*¢} cos %
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

We can also obtain the two chiral Landau levels

1y cos %
U, — e—z'Kze%iO’uyaz|+> Yo _ 0 , | eiK= (3.54a)
o v O —’L/)o sin % ’
0
0
Vs = v,0,K05 = | V° FREN (3.54b)
1y cOs %

which correspond to states in Eq. (3.43). From now on we will drop the
prime at ¢ and define 6§ = §(—K).

3.A.3 Transmitted wave

We will now consider an incoming wave which is ¥g — the chiral Landau
level at zero energy with momentum k, = —K, cf. Eq. (3.54a). The
solution for Ug can be obtained using particle-hole symmetry. We want
to find a superposition of evanescent modes Eq. (3.53) such that its profile
at the interface z = L,

Do, cos g , i\/Eny, Sin %
_ in/€nPn COS 5 ;| —D*¢;sing
\Ijeva — TZL Qi _D¢n Sil’lg + ay _Z\/agb: COS% ’ (355)
I\/€n Pr SIN g —D*¢} cos g
will satisfy the boundary condition
5+ Peva = Y. (3.56)
Writing it down explicitly we get
g cos g Da,, cos g , i\/€n @} sin % g1
0 iy/€ntn COS 5 | —D*¢psing | |0
—1)o sing +zn:a" —Do, sing +am —i\/End cosg 10|
0 I\/€n Oy SIN g —D* ¢} cos g g2
(3.57)

where g1, g2 are some functions of » = (x,y). If we project both sided of
the equation on the second and third component of the spinor, we obtain

0= g pin/€ndn cosg —al,D*¢r sing7
" (3.58)
o si 6 _ —a. D nl A * 8 '
osin g = an Doy sin 5 — g in/€n @y, cOS 5,

n
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3.A Calculation of transport properties from the continuum limit of the tight-binding model

or equivalently

Qpir/€ndn = an, D*¢r sme/cos
2 amin/endn =3

, (3.59)
Zaanﬁn = Z —ai\/€nd;, cos & /smf — g .

Substituting this back into Eq. (3.57) and projecting it on the first and
fourth component we get

A . ¥ wi 6 0
() = Zenlaminsay) rn (i) < (57%)
—1 * 20 in @ *
et Hhtyead ) ()
(—?ﬁogos g) N (1/)0 (E)OS g)
- ) ((iv/Endr(sin § — cos® §/sin )
- Zn:an (_D*Qﬁ (COb% — sin? é/cos %))

Y, (i\/@biﬁ/sm 2) , (3.60)

+

—D*¢hk/ cos &
therefore, the transmitted wave has the form

—i\/en ¢/ sin
Uy = o 8 : (3.61)
—D* ¢/ cos §
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

3.A.4 Charge transfer

Since there is no reflection, we normalize the outgoing wave such that the
outgoing particle current is 1:

—iyendir/sin 8\ T (=i /engt s/ sin
— /% O 0
(Wl ox) = 3 al 0 o 0
nm _D*(;5*I<L/COSQ —D*qﬁ* H/COS%
= ZO/* L Venvem(dn) ¢k k) sin § 8r/sin g
+ (¢n) (D*)'D* ¢,/ cos 4/ cos 4]
= Z |y, |*€en [/ sin® § + K%/ cos® §]

n

= (k*/sin® § + K2/ cos? §) 3 Jal e, = 1. (3.62)

~

Albeit coefficients o, cannot be determined in a closed form, the in-
formation we obtained in Eqgs. (3.61) and (3.62) is sufficient to calculate
the transport properties. In particular, the transmitted electric charge is
given by

(Uiler: W) =€) oy, [Pen[s?/ sin § — £7/ cos® §]
n

K?/sin® § — K%/ cos? §

=e
K2/sin® § + K2/ cos? §
1/sm2 % —1/cos? ¢

2 2 in?
= 2 =cos”0/2—sin"0/2 = ek = Qe
l/sm 5 +1/cos? 3

(3.63)

which is the same result as Q) obtained in the main text in Eq. (3.14).
The transmitted wave for the incident mode Vg is Uy = Vyale\I/{\I (as
required by the particle hole symmetry). Therefore, the corresponding
transmitted charge is (Unlev,|UN) = —ke = —Qosr-

3.A.5 Transport properties

An analogous analysis can be performed for the interface at z = 0, yielding
the corresponding incident waves in the z < 0 metallic lead: ®x and P},
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3.A Calculation of transport properties from the continuum limit of the tight-binding model

which couple perfectly to the chiral Landau levels ¥g, g respectively.
This yields a transmission matrix

t = e Un)(@x| + T HEUL) (@], (3.64)

like in Eq. (3.18), with the difference that the modes in the supercon-
ductor can no longer be written explicitly in a closed form. Still we can
compute the thermal conductance

1 ed
G'thermal = igONLandau Trtft = 907 ) (365)
where we used that (¥y|U%) = 0, as required by the unitarity of the

scattering matrix. We can also compute the electric conductance

e? v, +1
G2 = ﬁNLandau Tr tVth
e? v, +1
= Nt (O ) 01 )
v, +1
+ (0l ) (0| 5 4
e? 1 (ek)? e®
= Niandany [Ku Fr)—r(1— m)} ===, (3.66)
Where we used the fact that
s\ (o)
(Unlv i) = [dr| O X
NIVEN) = A g [ V2L o
gi(r) ga(r)
— [ drlga(rian(r) = 9 (rigalr)] = 0. (3.67)

and similarly (®y|v,|Py) =0

The thermal and electric conductance obtained in Egs. (3.65) and (3.66)
are identical to the results obtained in the main text: Egs. (3.25) and
(3.27). Furthermore, a similar calculation shows that the shot noise power
is also given by the same formula as in the main text: Eq. (3.31). This
confirms that the tight-binding model is equivalent in the continuum limit
to the analytics.
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