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1 Introduction

1.1 Preface

Quantum states of electrons in a strong magnetic field are massively de-
generate Landau levels – the quantized cyclotron orbits. Their presence
results in many important phenomena, the most striking of which is the
quantum Hall effect: accurate to an extraordinary precision quantization
of the Hall conductance in the units of e2/h.

In the presence of superconductivity, the formation of Landau levels
is hindered, as the magnetic field is repelled from a superconductor as a
result of the Meissner effect. It is possible for the magnetic field to pen-
etrate the superconductor in the case of type-II superconductors. Then,
however, the magnetic field is accompanied by supercurrents circulating
around the Abrikosov vortices. In the case of the d-wave superconductors
– an unconventional type of gapless superconductors which is postulated
to encompass the high temperature superconductors – it was shown that
these supercurrents spoil the degeneracy of the Landau levels, transform-
ing them into dispersive magnetic Bloch bands [1–11]. In this thesis we
consider a different kind of gapless superconductors: Weyl superconduc-
tors, which are formed when conventional s-wave superconductivity occurs
in Weyl semimetals [12, 13]. We show that the chiral symmetry present
in such systems gives rise to a zeroth Landau level, which persists even in
the presence of the Abrikosov vortices. We study the properties of this su-
perconducting Landau level. One of them is the universal chiral magnetic
effect in equilibrium. It is a signature of the topological properties of the
Weyl fermion that can only be accessed in the Weyl superconductors, as
it requires the presence of a non-vanishing equilibrium current, which is
forbidden in the absence of superconductivity.

We also study a different type of superconductors, which arises when
superconductivity is induced in the surface states of topological insulators
– the Fu-Kane model [14]. Under certain circumstances, the excitation of
such a system can also become gapless, which was recently demonstrated
experimentally [15]. This system also possesses chiral symmetry, which,
like in the Weyl superconductor, gives rise to a topologically protected
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor

zeroth Landau level, which is not spoiled by the vortices.

The cases above, discussed in detail in this thesis, are the first instances
of the coexistence of Landau levels and superconductivity. They open up
a path to a new range of possible effects that are only possible due to a
combination of these two phenomena. In the remainder of this chapter
we will introduce the basic concepts, which lie at the foundations of the
results presented afterwards.

1.2 Landau levels

1.2.1 Particles in a magnetic field

When a charged particle is moving through a uniform magnetic field B,
and its velocity v is perpendicular to the direction of the field, it follows
the circular trajectory of a cyclotron orbit of radius

lc =
mv

qB
, (1.1)

where q > 0 is the particle’s charge and m is its mass. If the particle is
simultaneously moving parallel to the magnetic field, its motion in that
direction is unaffected. As a result, the particle’s trajectory will be a
helix oriented along the magnetic field – Fig. 1.1. This phenomenon has
striking consequences: for instance, when a charged particle coming from
the Sun as a part of the solar wind reaches the Earth’s magnetosphere, it is
forced to follow the helical trajectory along the lines of the magnetic field,
which guide it towards the Earth’s poles. This provides the inhabitants
of the Earth protection from the harmful effects of space radiation, as
well as a marvelous spectacle of light produced once particles’ motion is
interrupted by the Earth’s atmosphere.

This periodic cyclotron motion carries on to the lowest-level description
of reality: quantum physics. There, however, due to the wave-like nature
of particles, not all sizes of their orbits are permitted. The phase of a
particle’s wave must change by an integer multiple of 2π upon completion
of one cycle, which puts a constraint that only allows orbits with energies
equal to

En = ~ωc
(
n+

1

2

)
, n = 0, 1, 2, . . . (1.2)

where ωc = v/lc = qB/m is the cyclotron frequency. The quantum states
corresponding to these orbits are called the Landau levels. Noticeably,
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1.2 Landau levels
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Figure 1.1: a) Trajectory of a charged particle in a uniform magnetic field,
the direction of which is indicated by the blue arrow. The particle, represented
as a red dot, can propagate freely along the magnetic field, however its motion
in the perpendicular direction is confined. b) Trajectory of a charged particle
in the Earth’s magnetic field. The particle follows a helical path along the
magnetic-field lines, until it reaches the atmosphere in the polar regions, where
its kinetic energy is converted into radiation, producing the aurora. c) Picture
of an aurora in Norway, taken by the author.

the lowest energy allowed for a particle E0 = ~ωc/2 is greater than zero.
This can be understood as the particle’s zero-point motion.

The classical orbits can be centered at any point in the region of applied
magnetic field. In a quantum case, this means that there are multiple
states at each energy En. Their number, known as the degeneracy of a
given energy level, is limited by the requirement that different quantum
states must be orthogonal, and equals

N =
Φ

Φ0
, (1.3)

where Φ is the total flux of applied magnetic field, and Φ0 = h/q is the
magnetic flux quantum.

As in the classical case, the motion of a particle parallel to the field re-
mains unaffected. This manifests itself in a relation between the particle’s
momentum in that direction p‖ and its energy, given by

En(p‖) = ~ωc
(
n+

1

2

)
+

p2
‖

2m
, (1.4)
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor

energy energy energy
a) b) c)

Figure 1.2: a) Dispersion relation of a free non-relativistic massive particle.
b) Energies of the Landau levels at p‖ = 0. c) Dispersion relation of the Landau
levels in the direction parallel to the magnetic field.

which is simply a sum of the energy of the Landau level, and the kinetic
energy of motion in the direction parallel to the magnetic field – Fig. 1.2.

The group velocity of a particle equals to the derivative of its energy
with respect to its momentum in the direction of motion. For the nth
Landau level it then equals

vn(p‖) =
dEn(p‖)

dp‖
=
p‖

m
, (1.5)

which is a result familiar from classical physics. Unsurprisingly, as the
velocity can be positive or negative, depending on the sign of momentum
p‖, the particle is free to propagate in either direction along the magnetic
field, however, as it will be shown in Sec. 1.2.4, this property should not
be taken for granted.

1.2.2 Weyl semimetal

In this thesis, we will consider a more exotic type of particles: Weyl
fermions. They are massless relativistic particles. Unlike massive non-
relativistic particles, whose energy is given by E = |p|2/2, their dispersion
relation reads

E(p) = ±vF|p| , (1.6)

similar to that of a photon. vF is the Fermi velocity, and p is the three-
component momentum vector. This dispersion relation forms a three-
dimensional double cone in the energy-momentum space, called a Weyl
cone. Such particles are the basic building blocks of the Standard Model
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1.2 Landau levels

(in which case vF is the speed of light), however, they are not found among
fundamental particles, as the spontaneous symmetry breaking introduces
coupling between different flavors of Weyl fermions, which gives rise to
emergent particles of a different type – massive Dirac fermions1.

Luckily, Weyl fermions can also be found as low-energy electronic exci-
tations in certain types of materials: Weyl semimetals, which allows for
an experimental study of their properties. In the following paragraphs, I
will explain how this can happen. An electron propagating in a material
undergoes scattering off the electrostatic potential of the crystalline lat-
tice, thus its momentum is not conserved. However, due to the periodic
structure of the lattice, a similar quantum number k, called the quasi-
momentum, is conserved. For each value of the quasi-momentum, the
energy of an electron can take one of the enumerably many values En(k),
where n is called the band index. As a result, the set of all allowed energy
values is split into energy bands labeled by n, which lies at the founda-
tions of the electronic band theory – the basic tool for describing the vast
majority of solid-state devices.

Typically, the energy bands are separated – if two of them are acciden-
tally crossing at some values of k, generally a perturbation to the system
will make these crossings avoided. This, however, may not be the case if
two bands are touching in an isolated point k0 in the quasi-momentum
space. It can turn out that for quasi-momenta near k0 and up to a con-
stant energy shift, the energies of the two bands touching are given by
the relativistic dispersion relation of Eq. (1.6) with p = k−k0. Then the
electronic excitations with energy and momentum close to the touching
point, in this case called the Weyl point, are Weyl fermions.

The effective low-energy Hamiltonian that leads to the Weyl dispersion
relation is

H = χvFp · σ , (1.7)

where σ = (σx, σy, σz) is the pseudo-spin operator, and χ ∈ {+1,−1} is
called chirality. Apart from their unusual dispersion relation, the Weyl
fermions have the property that they are topologically protected: there
is no perturbation that can be added to the Hamiltonian (1.7) that will
open an energy gap between the two bands that are touching. The only
effect that a perturbation can have is to change the position of the Weyl
point, or add anisotropy or tilting to the Weyl cone.

It is only possible to gap out a Weyl cone, if a pair of Weyl cones of
opposite chirality occurs at a single point in the quasi-momentum space.

1An exception to this are the neutrinos, for which the origin of mass is currently
unknown.
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor

A situation like this is captured by a Hamiltonian

H = vFτzp · σ , (1.8)

where τz is a Pauli matrix that distinguishes between the two Weyl fer-
mions. Then, a perturbation mτxσ0 opens a gap of width 2m, and the
dispersion becomes

E(p) = ±vF

√
m2 + p2 , (1.9)

which is that of a massive relativistic particle.

Another important property of a Weyl fermion is that its spin must
always be oriented along its momentum – a phenomenon known as spin-
momentum locking. In the context of a relativistic field theory it origi-
nates from the Lorentz invariance: the co-linear arrangement of spin and
momentum is the only one that does not depend on the frame of refer-
ence. (Pseudo-)spin momentum-locking also applies to Weyl fermions in
condensed-matter systems, even though the Lorentz invariance there is
emergent and can be broken by perturbations. The universality of this
phenomenon arises from the form of the Weyl Hamiltonian (1.7), which
also determines the character of the spin-momentum locking, depending
on the chirality χ: for χ = +1 the spin and the momentum of a positive-
energy Weyl fermion point in the same, while for χ = −1 in the opposite
direction.

1.2.3 Zeroth Landau level

Now we will turn our attention to the behavior of a Weyl fermion in the
presence of the magnetic field. The classical picture is similar to that for
a non-relativistic particle – the Lorentz force exerted on a moving Weyl
fermion guides it along a circular, or helical, trajectory. The only differ-
ence is that in the expression for the radius of such trajectory, given in Eq.
(1.1), the product mv must be replaced with the momentum component
perpendicular to the magnetic field p⊥, as the Weyl fermion is a massless
particle.

When quantum mechanics is taken into account, however, the differ-
ences become more significant: as a result of the spin-momentum locking,
when a Weyl fermion follows a closed cyclotron orbit and its velocity –
and with it the quasi-momentum – makes a 360◦ rotation, so does its
pseudo-spin. A full rotation of a spin-1/2 particle changes the phase of
its wave by π. The same holds for the pseudo-spin. This results in a
change in the wave-matching condition for the Landau level, with which
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1.2 Landau levels

energy energy energy
a) b) c)

0 zeroth Landau level

Figure 1.3: a) Dispersion relation of a Weyl fermion. b) Energies of the
Landau levels at p‖ = 0. c) Dispersion relation of the Landau levels in the
direction parallel to the magnetic field.

the quantized energy levels become

En = sign(n)vF

√
2e~B|n| , n ∈ Z , (1.10)

where we took q = e, the charge of an electron. The allowed energies are
no longer just positive. This is a result of the fact that the Weyl cone
extends to both positive and negative energies. Central to the work pre-
sented in this thesis is the n = 0 state, known as the zeroth Landau level,
whose energy is exactly equal to zero (with respect to the Weyl point).
Its apparent lack of zero-point motion is the direct effect of the spin-
momentum locking discussed earlier. The zeroth Landau level is special –
it is robust against a wide class of perturbations [16]. For instance, while
for other Landau levels an inhomogeneity of the magnetic field results in
a broadening of their energy band, the states in the zeroth Landau level
remain all at zero energy. The cause of this is rooted in the topological
nature of the Weyl fermion and is a consequence of the Atiyah-Singer
index theorem [17].

1.2.4 Chiral anomaly

When the motion along the magnetic field is considered, the peculiarities
of the zeroth Landau level become even more pronounced. The energies
of the particle are then given by

En(p‖) = sign(n)vF

√
2e~B|n|+ p2

‖ , n ∈ Z \ {0} . (1.11)

and
E0(p‖) = χvFp‖ , (1.12)
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor
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Figure 1.4: a) The distribution of electrons in the Landau levels of a Weyl
fermion in the ground state. The filled circles represent states occupied by
electrons, whereas the empty circles – unoccupied states. In the ground state
all the states up the Fermi level are occupied and all those above it – empty.
The velocity of each electron is given by the slope of the dispersion relation of
the Landau level it lies in. For all but the zeroth Landau level, the current
carried by electrons with positive velocity is cancelled by the current carried
by electrons with negative velocity, resulting in zero net current. However,
all the electrons in the zeroth Landau level are moving in the same direction,
resulting in an infinite ground-state current. b) The distribution of electrons
after applying a pulse of electric field parallel to the magnetic field over time
∆t. Each electron acquires an additional momentum ∆p‖, which makes some
of the previously unoccupied states, occupied. This produces a certain number
of extra particles, violating the particle conservation – a phenomenon known as
the chiral anomaly. c) A resolution to the lack of particle conservation ‘paradox’
in a Weyl semimetal. Each Weyl cone with chirality +1 is accompanied by a
cone with chirality −1. When a certain number of electrons is produced in one
of the Weyl cones, due to chiral anomaly, the same number vanishes from the
other Weyl cone, ensuring total particle conservation. This results in a unequal
number of left- and right-moving electrons, which produces a non-vanishing
current density ∆j. The appearance of this current is known as the chiral
magnetic effect.
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1.2 Landau levels

which means that the zeroth Landau level can only propagate in one di-
rection along the magnetic field, depending on its chirality χ – Fig. 1.3.
This has two puzzling consequences. Firstly, such a dispersion relation
leads to an infinite current in the ground state: at zero temperature, elec-
trons occupy all the lowest-energy states up to a certain energy, called the
Fermi level. Then for all Landau levels with n 6= 0, at each energy there
is the same number of electrons propagating in either direction along the
magnetic field, thus the net current they carry vanishes. All the electrons
in the zeroth Landau level, however, propagate in the same direction, so
their total contribution to the current diverges. In quantum field theories,
diverging ground-state (also called the vacuum in this context) properties,
such as energy or charge density, are not unusual. A common practice is to
define all the observables with respect to the vacuum, by subtracting their
– possibly infinite – vacuum expectation values. In the condensed-matter
context, however, there is no such freedom, as the ground state properties
are directly accessible experimentally. The non-vanishing ground-state
current thus constitutes a contradiction as it is not allowed by the Bloch
theorem2 [18–21].

A second problem arises when, in addition to the magnetic field, an elec-
tric field E is applied in the same direction for some finite time ∆t. It will
exert a force F = eE on each electron, which will change its momentum
by ∆p‖ = eE∆t. If the Fermi level was originally between the n = −1 and
n = 1 Landau levels, it will effectively shift by ∆µ = χvFeE∆t, which im-
plies that the number of particles in the system will change. This change
is equal to

∆n = χ
eE∆t

h/L

Φ

Φ0
= χ

e2

h2
E ·BV∆t , (1.13)

where V is the total volume of the system [55]. This violation of particle-
number conservation is known as the chiral anomaly. In particle physics,
the chiral anomaly affects the decay rate of the neutral pion π0, which was
first explained by Adler [22], and Bell and Jackiw [23]. In the condensed-
matter context, however, the Weyl fermions arise from ordinary electrons,
the number of which must be conserved, which, once again, leads to a
contradiction.

The resolution to both of the issues discussed above is the same: in
the electronic band structure of a material, there must always be an even
number of Weyl points, and the number of those with +1 chirality must
be equal to those with −1 chirality. In that case the ground-state current

2The theorem allows for persistent currents, however their magnitude vanishes in the
thermodynamic limit.

9



1 Topologically protected LL in the vortex lattice of a Weyl superconductor

carried by the electrons in the zeroth Landau level of the Weyl fermions
with +1 chirality is canceled by that of the Weyl fermions with −1 chi-
rality, in agreement with the Bloch theorem – Fig. 1.4. In the same way,
the total change of the number of electron due to the chiral anomaly for
all the Weyl fermions is zero, as expected: the electric field simply pumps
the electrons from one Weyl fermion to the other.

1.2.5 Chiral magnetic effect

Even though the total number of electrons is conserved, the chiral anomaly
can still lead to observable consequences, as it creates an imbalance be-
tween the Weyl fermions of opposite chiralities. Since the current carried
by electrons in the zeroth Landau level depends on its chirality, such im-
balance produces an electric current. This phenomenon is known as the
chiral magnetic effect (CME). For each Weyl fermion, the resulting current
density is equal to

∆j = χ
e2

h
∆µ , (1.14)

where the proportionality coefficient only depends on the fundamental
constants: e – the elementary charge, and h – the Planck’s constant.
This independence of any details of the system is a case of universality.
Universal responses are often found in systems with topological properties.
The most prominent example of such a response is the quantized Hall
conductance in the quantum Hall effect, which, similarly, assumes values
of integer multiples of e2/h – independent of the sample. The accuracy of
this result lead to establishing a new definition of the kilogram in 2019,
based on the value of Planck’s constant, rather than a physical artifact.

Unfortunately, the chiral magnetic effect – a universal response of the
Weyl semimetal – is difficult to access: the electric field applied brings the
system out of equilibrium – a state, which must decay once the electric
field is removed, due to random scattering processes. In order to maintain
the imbalance of chiralities, the electric field must be applied continuously,
which keeps the system in a steady state in which the rate of scattering
between the Weyl cones balances out the pumping of electrons. Then, if
the characteristic relaxation time associated with this scattering is τ , the
current density contribution of a single Weyl cone can be shown to be

∆j = χvF
e3

h2
E ·Bτ . (1.15)

This results in an appearance of negative magnetoresistance in Weyl semi-
metals – an increase in conductance proportional to the applied magnetic
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1.3 Superconductivity

field, regarded as the basic transport signature of Weyl fermions in con-
densed matter systems [24, 25]. It has been demonstrated experimentally
in agreement with the presented theory [26, 27]. In this phenomenon,
however, the universality of CME becomes obscured, as the observed ef-
fect depends on the relaxation time τ , which is an effective parameter
depending on the microscopic details of the system.

1.3 Superconductivity

1.3.1 Bogoliubov-de Gennes formalism

In normal materials the electric current must vanish in equilibrium, which
prevents the access to the chiral magnetic effect in such a situation. Super-
conductors, however, can support a non-vanishing current in equilibrium.
This opens a tantalizing possibility that in such systems the equilibrium
CME can be accessed. It would then allow for a direct observation of the
universal coefficient e2/h of Eq. (1.14). This possibility was the main
motivation for the work presented in this thesis.

To demonstrate how it can happen, I will first explain the effect of
superconductivity on Weyl semimetals. In the ground state of a super-
conductor, the electrons form a condensate of Cooper pairs, which allows
for a frictionless flow of the current. The presence of the condensate mod-
ifies the dynamics of excitations in a superconductor: if energy is supplied
to the system, a Cooper pair can split into two independent electrons. A
converse process is also possible, in which two electrons combine and form
a Cooper pair, which becomes a part of the condensate. In the simplest
case, a Cooper pair consists of two electrons of opposite quasi-momenta
and spin. This is the case in the s-wave superconductors. In the mean-
field approximation, these processes are captured by the Bogoliubov-de
Gennes (BdG) formalism, in which the number of degrees of freedom is
doubled: in addition to electrons, one introduces new particles – holes.
Then, for an s-wave superconductor, a given state of the system can be
represented in two ways: the electron at energy E (with respect to the
Fermi level), quasi-momentum k and spin s, is equivalent to the absence
of a hole at energy −E, quasi-momentum −k and spin −s. With this
redundancy, a multi-particle process of a decay of a Cooper pair, which
results in the creation of two electrons of opposite quasi-momenta and
spins, is equivalently described as a scattering process of a hole at quasi-
momentum k and spin s into an electron with the same quasi-momentum
and spin, which is a single-particle process – Fig. 1.5. In this formal-
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor

a) b) c) d)

Figure 1.5: a) Dispersion relation of an electron in a normal material. b)
Dispersion relation for a normal material in the BdG formalism: dispersion
relation of an electron is in red, and that of a hole is in blue. Electron at energy
E, quasi-momentum k and spin s (marked by a red dot), can be equivalently
described as absence of a hole at energy −E, quasi-momentum −k and spin −s
(marked by a blue circle). c) Decay of a Cooper pair: a hole at quasi-momentum
k and spin s is scattered into an electron with the same quasi-momentum and
spin. d) Resulting dispersion relation of a superconductor, given by Eq. (1.18)

ism, the dynamics of the system is captured by a single-body Bogoliubov
de-Gennes Hamiltonian

H(k) =

(
H0(k) ∆

∆† −syH∗0 (−k)sy

)
, (1.16)

where the top block describes the behavior of electrons, the bottom block
that of the holes and ∆ – the superconducting pairing – introduces the
scattering between them induced by the Cooper pair condensate. Opera-
tor sy is the Pauli matrix acting on the spin.

1.3.2 Weyl superconductor

Typically, the superconducting pairing induces an energy gap in the sys-
tem. For instance, if an electron is described by a simple quadratic Hamil-
tonian

H0 =
k2

2m
− µ , (1.17)

the BdG Hamiltonian results in the dispersion

E = ±
√(

k2

2m∗
− µ

)2

+ ∆2 , (1.18)

which is gapped. This gap is in fact a crucial feature of the supercon-
ductors, as the lack of low-energy excitations means that they cannot
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1.3 Superconductivity

participate in the dissipation of energy, which suppresses the production
of heat when the current is passing through the system.

However, if the superconducting pairing is present in a Weyl semimetal,
in which case the system is dubbed a Weyl superconductor [12, 13], the
appearance of such a gap can be generally avoided. This is due to the
topological protection of the Weyl cones. As explained in Sec. 1.2.2, it is
only possible for a small perturbation to open a gap of a Weyl cone if there
are two Weyl cones of opposite chirality at the same quasi-momentum k0.
In the BdG formalism, the band structure is doubled, thus additional
Weyl cones appear originating from the dispersion relation of the holes.
A hole Weyl cone at quasi-momentum k0 with chirality χ appears as a
redundant representation of an electronic Weyl cone at quasi-momentum
−k0 and chirality −χ. Thus, in the BdG formalism, two Weyl cones of
opposite chirality – one for electron and one for hole – occur at the same
quasi-momentum, in which case a small superconducting pairing can open
a gap, only if two Weyl cones of the same chirality occur at opposite
quasi-momenta, k0 and −k0, in the original electronic band structure of
a Weyl semimetal. Such a configuration requires either fine-tuning, or
the presence of certain symmetry – in this case time-reversal symmetry,
combined with a broken inversion symmetry. Thus, generically the band
structure of a Weyl superconductor remains gapless.

In normal materials, the current from CME vanishes in equilibrium, be-
cause there is the same number of Weyl cones of each chirality. Then, if
the chemical potential is changed by ∆µ, it changes by the same amount
for all the Weyl cones, and the contributions – given by Eq. (1.14) –
from the Weyl cones of opposite chiralities cancel out. If the supercon-
ducting pairing fails to open a gap of any of the Weyl cones in the Weyl
superconductor, the situation is the same there. However, as explained
before, a gap can open for a given electronic Weyl cone at momentum k0,
if there also exists another one with the same chirality at the opposite
momentum. The superconducting pairing then opens a gap in both of
these two Weyl cones simultaneously. Alternatively, a gap can also open
for a single Weyl cone, if it occurs at k0 = 0. Such a gap is analogous to
the Majorana mass in the high-energy physics context. In either of these
situations, the number of Weyl fermions of a single chirality is reduced –
by either 2 or 1, depending on the number of Weyl cones involved. While
for an infinitesimal ∆ such a case is only possible with fine-tuning, it is
not so when ∆ is finite – the regime with an unequal number of Weyl
fermions with different chiralities occurs in finite regions in the parameter
space. In such a regime then, if the zeroth Landau level forms when the
magnetic field is applied, the chiral magnetic effect should manifest itself
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor

in equilibrium.

1.3.3 Vortex lattice

As discovered by Meissner in 1933, a magnetic field is repelled from a
superconductor. This poses both practical and conceptual difficulties in
the observation of the equilibrium CME: if the magnetic field cannot pen-
etrate the superconductor, the Landau levels cannot develop and CME
will not occur. A way around this is to consider a thin sample, as the
magnetic field can penetrate the superconductor up to a certain distance
called the penetration depth λ. For a superconducting slab much thinner
than λ, the magnetic field applied parallel to its surface will penetrate it
almost uniformly. Such a situation was considered by O’Brien et al. [47]
who found that when a Weyl superconductor is driven into a regime with
just a single Weyl cone present, the equilibrium CME occurs, with the
current given by

∆j = κ
e2

h
∆µ , (1.19)

where κ is a non-universal coefficient describing the effective charge κe
of the low-energy excitations. This factor appears due to change in the
degeneracy of the Landau level, in which the electron charge is replaced
by the effective charge.

If a sample is thicker, and the magnetic field is strong enough, the super-
conductor may enter a mixed phase, in which the magnetic field penetrates
the superconductor in the form of vortices of circulating supercurrent –
Abrikosov vortices. In each vortex core, the size of which is approximately
equal to the superconducting coherence length ξ, the superconductivity is
destroyed, whereas the magnetic field decays exponentially with the dis-
tance from the vortex core, with the decay length λ. The number of vor-
tices is equal to the number of superconducting flux quanta h/(2e) = 1

2Φ0

of the applied magnetic field. If λ > ξ/
√

2, the mixed phase is energeti-
cally favorable to the Meissner effect, which is the defining property of a
type-II superconductor. Moreover, if λ�

√
h/(eB)� ξ, the vortex cores

occupy a negligible volume of the system, and the distances between them
are small compared to λ, which yields an almost homogeneous magnetic
field.

One can ask whether the Landau levels can develop in this mixed phase.
A similar question was considered in the context of unconventional d-wave
superconductors, whose superconducting pairing depends on the quasi-
momentum, and vanishes on certain lines in the quasi-momentum space.
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1.4 Outline of this thesis

On these lines the superconducting gap closes, which gives rise to a linear
dispersion relation around certain points in the quasi-momentum space,
similar to that of a Weyl fermion. The robustness of the zeroth Landau
level of massless relativistic fermions lead Gor’kov and Schrieffer [29] to
a conclusion that the zeroth Landau level would also occur in the d-wave
superconductor. The same prediction was also made by Anderson [30].
This, however, turned out not to be the case. Franz and Tešanović [1]
showed that scattering of the quasiparticles from circulating vortex cur-
rents broadens the zeroth Landau level, leading to a dispersive magnetic
Bloch band.

One of the questions considered in this thesis was whether the same fate
awaits the zeroth Landau level in Weyl superconductors. If that was the
case, it would close the way to access the equilibrium CME in the mixed
phase. It turned out, however, otherwise: in the Weyl superconductors,
the topological protection of the zeroth Landau level holds up against the
effects of the vortices. Moreover, this leads to a CME current given by
Eq. (1.14) with the universal coefficient e2/h, independent of the effective
charge κe, as it was in a thin slab.

1.4 Outline of this thesis

Chapter 2

In this chapter, we address the question whether Landau levels can emerge
in a superconductor in the presence of Abrikosov vortices, induced by
the applied magnetic field. We show that in a Weyl superconductor –
a type of gapless superconductor, in which the low-energy excitations
are Weyl fermions – it is possible. This is a surprising result, as the
quasiparticle scattering off the superconducting vortices is known to spoil
the Landau levels in a different type of gapless superconductors, the d-
wave superconductor. We show that in the Weyl superconductor the
situation is different: as a result of topological properties of the Weyl
fermions, the zeroth Landau level is robust against such scattering. The
particles in the zeroth Landau level can propagate along the magnetic
field lines, which allows them to carry energy in that direction. This
manifests itself in a contribution to the thermal conductance, which takes
a universal value G = 1

2g0Φ/Φ0, where g0 is the thermal conductance
quantum, Φ0 is the superconducting flux quantum, and Φ is the total flux
of the applied magnetic field.
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Chapter 3

In this chapter we further explore the consequences of the formation of
the zeroth Landau level in a Weyl superconductor. We study how it af-
fects electric and thermoelectric transport properties along the applied
magnetic field. We show that the vortex lattice carries an electric current
I = 1

2 (Q2
eff/h)(Φ/Φ0)V between two normal metal contacts at voltage

difference V , with Φ the magnetic flux through the system, Φ0 the su-
perconducting flux quantum, and Qeff < e the renormalized charge of the
Weyl fermions in the superconducting Landau level. Because the charge
renormalization is energy-dependent, a nonzero thermo-electric coefficient
appears even in the absence of energy-dependent scattering processes.

Chapter 4

In this chapter we study the chiral magnetic effect in the zeroth Landau
level in the Weyl superconductor: the appearance of current I along the
lines of magnetic flux Φ, due to an imbalance between Weyl fermions of
opposite chirality. In Weyl semimetals, the presence of such a current is
only possible out of equilibrium, which makes it only accessible through
indirect observations, e.g. through the negative magnetoresistance mea-
surements. We show that in a Weyl superconductor, the chiral magnetic
effect is accessible in equilibrium, manifesting itself as a universal cur-
rent contribution dI/dΦ = (e/h)2µ (at equilibrium chemical potential µ
relative to the Weyl point), when quasiparticles of one of the two chiral-
ities are confined in vortex cores. The confined states are charge-neutral
Majorana fermions.

Chapter 5
Shared contribution with Gal Lemut, who was responsible for the numerical simulations.

In this chapter we consider a different type of a superconductor: the Fu-
Kane heterostructure, which consists of a superconductor on top of the
surface of a topological insulator. The gapless surface excitations of a
topological insulator acquire an energy gap in the presence of supercon-
ductivity. It is known that when a vortex-forming magnetic field is applied
perpendicular to the surface, each vortex binds a zero-energy Majorana
mode exponentially localized at its core. We examine the consequences
of applying a supercurrent parallel to the surface. When the magnitude
of the supercurrent exceeds a critical value, the surface quasiparticle gap
closes, which drives a deconfinement transition of the Majorana bound
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states. In the deconfined phase at zero chemical potential, the Majorana
fermions form a dispersionless Landau level, protected by chiral symmetry
against broadening due to vortex scattering. The coherent superposition
of electrons and holes in the Majorana Landau level is detectable as a
local density of states oscillation with a known wave vector. The striped
pattern also provides a means to measure the chirality of the Majorana
fermions.

Chapter 6
Shared contribution with Gal Lemut, who was responsible for the numerical simulations.

In this chapter we study a mathematical problem of discretizing the single-
cone Dirac equation. Such a problem arises when performing a computer
simulation of gapless excitations on the surface of a topological insulator
or superconductor. The simplest approach results in so-called fermion
doubling: appearance of an additional gapless low energy excitations in
the simulated system. It is known that this cannot be avoided without
breaking locality or chiral symmetry of the model. In this chapter we
examine a special staggered discretization by Stacey [110], which avoids
the fermion doubling. In this approach the Dirac equation is discretized
as a generalized eigenvalue problem Hψ = EPψ. While maintaining the
chiral symmetry, this formulation breaks locality, as it can be cast in the
form of an ordinary eigenvalue problem with a non-local Hamiltonian.
We show that despite this shortcoming, the resulting theory possesses
a locally-conserved particle current. As the discretization maintains the
symmetries of the original Dirac equation, this permits the study of the
spectral statistics of Dirac fermions in each of the four symmetry classes
A, AII, AIII and D of random-matrix theory.
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