

On the coexistence of Landau levels and superconductivity Pacholski, M.J.

Citation

Pacholski, M. J. (2021, September 30). On the coexistence of Landau levels and superconductivity. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/3214421

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3214421

Note: To cite this publication please use the final published version (if applicable).

On the coexistence of Landau levels and superconductivity

Proefschrift

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN, OP GEZAG VAN RECTOR MAGNIFICUS PROF. DR. IR. H. BIJL, VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES TE VERDEDIGEN OP DONDERDAG 30 SEPTEMBER 2021 KLOKKE 11.15 UUR

DOOR

Michał Jan Pacholski

GEBOREN TE OTWOCK (POLEN) IN 1993

Promotores:	Prof. dr. C. W. J. Beenakker
	Prof. dr. İ. Adagideli (Sabancı University, Istanbul)
Promotiecommissie:	Prof. dr. M. Franz (University of British Columbia,
	Vancouver, Canada)
	Prof. dr. F. Hassler (RWTH Aachen University,
	Aachen, Duitsland)
	Prof. dr. E. R. Eliel
	Prof. dr. ir. S. J. van der Molen
	Dr. A. Silvestri

Casimir PhD series, Delft-Leiden 2021-19 ISBN 978-90-8593-485-1 An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

Cover: a watercolor painting of northern lights over an arctic landscape by Yevheniia Cheipesh. The northern lights, produced by charged particles swirling in the Earth's magnetic field, are depicted to form a striped pattern, resembling the density of a Landau level produced by electrons in the magnetic field in a two-dimensional topological superconductor (Fig. 5.4). To my Mom, my Grandparents, and all my Family.

Contents

1	\mathbf{Intr}	oduction	1
	1.1	Preface	1
	1.2	Landau levels	2
		1.2.1 Particles in a magnetic field	2
		1.2.2 Weyl semimetal \ldots	4
		1.2.3 Zeroth Landau level	6
		1.2.4 Chiral anomaly	7
		1.2.5 Chiral magnetic effect	10
	1.3	Superconductivity	11
		1.3.1 Bogoliubov-de Gennes formalism	11
		1.3.2 Weyl superconductor	12
		1.3.3 Vortex lattice	14
	1.4	Outline of this thesis	15
2	Top	ologically protected Landau level in the vortey lat-	
4	tice	of a Weyl superconductor	19
	2.1	Introduction	19
	2.2	Weyl superconductor in the mixed phase	21
	2.3	Calculation of the zero-modes	24
	2.4	Comparison with numerics	26
	2.5	Thermal conductance	26
	2.6	Conclusion	28
	2.A	Boundary condition at the vortex core	31
	$2.\mathrm{B}$	Details of the tight-binding calculations	33
		2.B.1 Weyl superconductor	33
		2.B.2 Superconducting phase	34
		2.B.3 <i>d</i> -wave superconductor	36
	$2.\mathrm{C}$	Quasiparticle density profile near the vortex core	38
	$2.\mathrm{D}$	Arbitrary angle between internal magnetization and exter-	
		nal magnetic field	39
	$2.\mathrm{E}$	Tilting of the Weyl cones	39
		2.E.1 Hamiltonian of a type-I Weyl supserconductor	40
		2.E.2 Generalized chiral symmetry protects the zeroth Lan-	
		dau level	41

elec	tric tr	ansport along the vortex lattice of a Weyl su-
per	conduc	ctor
3.1	Introd	
3.2	Landa	Lu level Hamiltonian in the vortex lattice
	3.2.1	Dispersion relation
	3.2.2	Effective Hamiltonian
0.0	3.2.3 T	Zeroth Landau level wave functions
3.3	Transi	mission through the NSN junction
	3.3.1	Renormalized charge transfer
.	3.3.2	Transmission matrix
3.4	Trans	port properties
	3.4.1	Thermal conductance
	3.4.2	Electrical conductance
	3.4.3	Shot noise
	3.4.4	Thermo-electricity
3.5	Nume	rical simulations
	3.5.1	Tight-binding Hamiltonian
	3.5.2	Results
	3.5.3	Test for isotropy of the charge renormalization
3.6	Conclu	usion
3.A	Calcul	lation of transport properties from the continuum
	limit c	of the tight-binding model
	3.A.1	Matching condition
	3.A.2	Evanescent modes
	3.A.3	Transmitted wave
	3.A.4	Charge transfer
	3.A.5	Transport properties
Uni	versal	chiral magnetic effect in the vortex lattice of
a W	Veyl su	perconductor
4.1	Introd	luction
4.2	Formu	lation of the problem
4.3	Chiral	lity confinement in a vortex lattice
-	4.3.1	Landau bands
	4.3.2	Vortex core bands
	Chirol	magnetic effect
4.4	()))) / ())	
4.4	4 4 1	Charge renormalization

Contents

		4.4.3 Off-shell contributions	83
	4.5	Conclusion	83
	4.A	Details of the numerical calculation	87
5	Dec	confinement of Majorana vortex modes produces a	
0	SUD	erconducting Landau level	91
	5 1	Introduction	91
	5.2	Confined phase	92
	5.2	Deconfined phase	95
	5.0	Numerical simulation	98
	5.5	Striped local density of states	100
	5.6	Conclusion	101
	5.A	Details of the numerical simulation	103
	0.11	5.A.1 Tight-binding model	103
		5.A.2 Additional numerical results	104
		5.A.3 Effect of overlap of top and bottom surface states.	104
	$5.\mathrm{B}$	Solution of the Helmholtz equation for the Majorana Lan-	
	0.2	dau level	105
	$5.\mathrm{C}$	Chain of vortices	111
	5.D	Renormalized charge in the Majorana Landau level	112
	$5.\mathrm{E}$	Comparison of numerics and analytics	113
6	Ger	peralized eigenproblem without fermion doubling for	
U	Dir	ac fermions on a lattice	117
	6.1	Introduction	117
	6.2	Construction of the generalized eigenproblem	119
	0.1	6.2.1 Staggered discretization	119
		6.2.2 Translationally invariant system	120
		6.2.3 Including a disorder potential	121
	6.3	Symmetrization of the generalized eigenproblem	123
	6.4	Locally conserved particle current	125
	6.5	Spectral statistics	126
	6.6	Conclusion	129
	6.A	Susskind discretization breaks symplectic symmetry	131
	$6.\mathrm{B}$	Derivation of the local conservation law for the particle	
		current	132
	$6.\mathrm{C}$	Gauge invariant vector potential	133
Bi	ibliog	graphy	135
Sa	men	vatting	147

Contents

Summary	149
Curriculum Vitæ	151
List of publications	153