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1 Introduction

1.1 Preface

Quantum states of electrons in a strong magnetic field are massively de-
generate Landau levels – the quantized cyclotron orbits. Their presence
results in many important phenomena, the most striking of which is the
quantum Hall effect: accurate to an extraordinary precision quantization
of the Hall conductance in the units of e2/h.

In the presence of superconductivity, the formation of Landau levels
is hindered, as the magnetic field is repelled from a superconductor as a
result of the Meissner effect. It is possible for the magnetic field to pen-
etrate the superconductor in the case of type-II superconductors. Then,
however, the magnetic field is accompanied by supercurrents circulating
around the Abrikosov vortices. In the case of the d-wave superconductors
– an unconventional type of gapless superconductors which is postulated
to encompass the high temperature superconductors – it was shown that
these supercurrents spoil the degeneracy of the Landau levels, transform-
ing them into dispersive magnetic Bloch bands [1–11]. In this thesis we
consider a different kind of gapless superconductors: Weyl superconduc-
tors, which are formed when conventional s-wave superconductivity occurs
in Weyl semimetals [12, 13]. We show that the chiral symmetry present
in such systems gives rise to a zeroth Landau level, which persists even in
the presence of the Abrikosov vortices. We study the properties of this su-
perconducting Landau level. One of them is the universal chiral magnetic
effect in equilibrium. It is a signature of the topological properties of the
Weyl fermion that can only be accessed in the Weyl superconductors, as
it requires the presence of a non-vanishing equilibrium current, which is
forbidden in the absence of superconductivity.

We also study a different type of superconductors, which arises when
superconductivity is induced in the surface states of topological insulators
– the Fu-Kane model [14]. Under certain circumstances, the excitation of
such a system can also become gapless, which was recently demonstrated
experimentally [15]. This system also possesses chiral symmetry, which,
like in the Weyl superconductor, gives rise to a topologically protected
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor

zeroth Landau level, which is not spoiled by the vortices.

The cases above, discussed in detail in this thesis, are the first instances
of the coexistence of Landau levels and superconductivity. They open up
a path to a new range of possible effects that are only possible due to a
combination of these two phenomena. In the remainder of this chapter
we will introduce the basic concepts, which lie at the foundations of the
results presented afterwards.

1.2 Landau levels

1.2.1 Particles in a magnetic field

When a charged particle is moving through a uniform magnetic field B,
and its velocity v is perpendicular to the direction of the field, it follows
the circular trajectory of a cyclotron orbit of radius

lc =
mv

qB
, (1.1)

where q > 0 is the particle’s charge and m is its mass. If the particle is
simultaneously moving parallel to the magnetic field, its motion in that
direction is unaffected. As a result, the particle’s trajectory will be a
helix oriented along the magnetic field – Fig. 1.1. This phenomenon has
striking consequences: for instance, when a charged particle coming from
the Sun as a part of the solar wind reaches the Earth’s magnetosphere, it is
forced to follow the helical trajectory along the lines of the magnetic field,
which guide it towards the Earth’s poles. This provides the inhabitants
of the Earth protection from the harmful effects of space radiation, as
well as a marvelous spectacle of light produced once particles’ motion is
interrupted by the Earth’s atmosphere.

This periodic cyclotron motion carries on to the lowest-level description
of reality: quantum physics. There, however, due to the wave-like nature
of particles, not all sizes of their orbits are permitted. The phase of a
particle’s wave must change by an integer multiple of 2π upon completion
of one cycle, which puts a constraint that only allows orbits with energies
equal to

En = ~ωc
(
n+

1

2

)
, n = 0, 1, 2, . . . (1.2)

where ωc = v/lc = qB/m is the cyclotron frequency. The quantum states
corresponding to these orbits are called the Landau levels. Noticeably,

2



1.2 Landau levels

a charged particle

Earth

magnetic-field lines

a) b)

c)

Figure 1.1: a) Trajectory of a charged particle in a uniform magnetic field,
the direction of which is indicated by the blue arrow. The particle, represented
as a red dot, can propagate freely along the magnetic field, however its motion
in the perpendicular direction is confined. b) Trajectory of a charged particle
in the Earth’s magnetic field. The particle follows a helical path along the
magnetic-field lines, until it reaches the atmosphere in the polar regions, where
its kinetic energy is converted into radiation, producing the aurora. c) Picture
of an aurora in Norway, taken by the author.

the lowest energy allowed for a particle E0 = ~ωc/2 is greater than zero.
This can be understood as the particle’s zero-point motion.

The classical orbits can be centered at any point in the region of applied
magnetic field. In a quantum case, this means that there are multiple
states at each energy En. Their number, known as the degeneracy of a
given energy level, is limited by the requirement that different quantum
states must be orthogonal, and equals

N =
Φ

Φ0
, (1.3)

where Φ is the total flux of applied magnetic field, and Φ0 = h/q is the
magnetic flux quantum.

As in the classical case, the motion of a particle parallel to the field re-
mains unaffected. This manifests itself in a relation between the particle’s
momentum in that direction p‖ and its energy, given by

En(p‖) = ~ωc
(
n+

1

2

)
+

p2
‖

2m
, (1.4)

3



1 Topologically protected LL in the vortex lattice of a Weyl superconductor

energy energy energy
a) b) c)

Figure 1.2: a) Dispersion relation of a free non-relativistic massive particle.
b) Energies of the Landau levels at p‖ = 0. c) Dispersion relation of the Landau
levels in the direction parallel to the magnetic field.

which is simply a sum of the energy of the Landau level, and the kinetic
energy of motion in the direction parallel to the magnetic field – Fig. 1.2.

The group velocity of a particle equals to the derivative of its energy
with respect to its momentum in the direction of motion. For the nth
Landau level it then equals

vn(p‖) =
dEn(p‖)

dp‖
=
p‖

m
, (1.5)

which is a result familiar from classical physics. Unsurprisingly, as the
velocity can be positive or negative, depending on the sign of momentum
p‖, the particle is free to propagate in either direction along the magnetic
field, however, as it will be shown in Sec. 1.2.4, this property should not
be taken for granted.

1.2.2 Weyl semimetal

In this thesis, we will consider a more exotic type of particles: Weyl
fermions. They are massless relativistic particles. Unlike massive non-
relativistic particles, whose energy is given by E = |p|2/2, their dispersion
relation reads

E(p) = ±vF|p| , (1.6)

similar to that of a photon. vF is the Fermi velocity, and p is the three-
component momentum vector. This dispersion relation forms a three-
dimensional double cone in the energy-momentum space, called a Weyl
cone. Such particles are the basic building blocks of the Standard Model

4



1.2 Landau levels

(in which case vF is the speed of light), however, they are not found among
fundamental particles, as the spontaneous symmetry breaking introduces
coupling between different flavors of Weyl fermions, which gives rise to
emergent particles of a different type – massive Dirac fermions1.

Luckily, Weyl fermions can also be found as low-energy electronic exci-
tations in certain types of materials: Weyl semimetals, which allows for
an experimental study of their properties. In the following paragraphs, I
will explain how this can happen. An electron propagating in a material
undergoes scattering off the electrostatic potential of the crystalline lat-
tice, thus its momentum is not conserved. However, due to the periodic
structure of the lattice, a similar quantum number k, called the quasi-
momentum, is conserved. For each value of the quasi-momentum, the
energy of an electron can take one of the enumerably many values En(k),
where n is called the band index. As a result, the set of all allowed energy
values is split into energy bands labeled by n, which lies at the founda-
tions of the electronic band theory – the basic tool for describing the vast
majority of solid-state devices.

Typically, the energy bands are separated – if two of them are acciden-
tally crossing at some values of k, generally a perturbation to the system
will make these crossings avoided. This, however, may not be the case if
two bands are touching in an isolated point k0 in the quasi-momentum
space. It can turn out that for quasi-momenta near k0 and up to a con-
stant energy shift, the energies of the two bands touching are given by
the relativistic dispersion relation of Eq. (1.6) with p = k−k0. Then the
electronic excitations with energy and momentum close to the touching
point, in this case called the Weyl point, are Weyl fermions.

The effective low-energy Hamiltonian that leads to the Weyl dispersion
relation is

H = χvFp · σ , (1.7)

where σ = (σx, σy, σz) is the pseudo-spin operator, and χ ∈ {+1,−1} is
called chirality. Apart from their unusual dispersion relation, the Weyl
fermions have the property that they are topologically protected: there
is no perturbation that can be added to the Hamiltonian (1.7) that will
open an energy gap between the two bands that are touching. The only
effect that a perturbation can have is to change the position of the Weyl
point, or add anisotropy or tilting to the Weyl cone.

It is only possible to gap out a Weyl cone, if a pair of Weyl cones of
opposite chirality occurs at a single point in the quasi-momentum space.

1An exception to this are the neutrinos, for which the origin of mass is currently
unknown.

5



1 Topologically protected LL in the vortex lattice of a Weyl superconductor

A situation like this is captured by a Hamiltonian

H = vFτzp · σ , (1.8)

where τz is a Pauli matrix that distinguishes between the two Weyl fer-
mions. Then, a perturbation mτxσ0 opens a gap of width 2m, and the
dispersion becomes

E(p) = ±vF

√
m2 + p2 , (1.9)

which is that of a massive relativistic particle.

Another important property of a Weyl fermion is that its spin must
always be oriented along its momentum – a phenomenon known as spin-
momentum locking. In the context of a relativistic field theory it origi-
nates from the Lorentz invariance: the co-linear arrangement of spin and
momentum is the only one that does not depend on the frame of refer-
ence. (Pseudo-)spin momentum-locking also applies to Weyl fermions in
condensed-matter systems, even though the Lorentz invariance there is
emergent and can be broken by perturbations. The universality of this
phenomenon arises from the form of the Weyl Hamiltonian (1.7), which
also determines the character of the spin-momentum locking, depending
on the chirality χ: for χ = +1 the spin and the momentum of a positive-
energy Weyl fermion point in the same, while for χ = −1 in the opposite
direction.

1.2.3 Zeroth Landau level

Now we will turn our attention to the behavior of a Weyl fermion in the
presence of the magnetic field. The classical picture is similar to that for
a non-relativistic particle – the Lorentz force exerted on a moving Weyl
fermion guides it along a circular, or helical, trajectory. The only differ-
ence is that in the expression for the radius of such trajectory, given in Eq.
(1.1), the product mv must be replaced with the momentum component
perpendicular to the magnetic field p⊥, as the Weyl fermion is a massless
particle.

When quantum mechanics is taken into account, however, the differ-
ences become more significant: as a result of the spin-momentum locking,
when a Weyl fermion follows a closed cyclotron orbit and its velocity –
and with it the quasi-momentum – makes a 360◦ rotation, so does its
pseudo-spin. A full rotation of a spin-1/2 particle changes the phase of
its wave by π. The same holds for the pseudo-spin. This results in a
change in the wave-matching condition for the Landau level, with which

6



1.2 Landau levels

energy energy energy
a) b) c)

0 zeroth Landau level

Figure 1.3: a) Dispersion relation of a Weyl fermion. b) Energies of the
Landau levels at p‖ = 0. c) Dispersion relation of the Landau levels in the
direction parallel to the magnetic field.

the quantized energy levels become

En = sign(n)vF

√
2e~B|n| , n ∈ Z , (1.10)

where we took q = e, the charge of an electron. The allowed energies are
no longer just positive. This is a result of the fact that the Weyl cone
extends to both positive and negative energies. Central to the work pre-
sented in this thesis is the n = 0 state, known as the zeroth Landau level,
whose energy is exactly equal to zero (with respect to the Weyl point).
Its apparent lack of zero-point motion is the direct effect of the spin-
momentum locking discussed earlier. The zeroth Landau level is special –
it is robust against a wide class of perturbations [16]. For instance, while
for other Landau levels an inhomogeneity of the magnetic field results in
a broadening of their energy band, the states in the zeroth Landau level
remain all at zero energy. The cause of this is rooted in the topological
nature of the Weyl fermion and is a consequence of the Atiyah-Singer
index theorem [17].

1.2.4 Chiral anomaly

When the motion along the magnetic field is considered, the peculiarities
of the zeroth Landau level become even more pronounced. The energies
of the particle are then given by

En(p‖) = sign(n)vF

√
2e~B|n|+ p2

‖ , n ∈ Z \ {0} . (1.11)

and
E0(p‖) = χvFp‖ , (1.12)

7



1 Topologically protected LL in the vortex lattice of a Weyl superconductor

energy energy

Fermi level Δn extra particles

electric field  parallel
to the magnetic field
applied over time Δt

a) b)

energy

current density Δj 

c)

Figure 1.4: a) The distribution of electrons in the Landau levels of a Weyl
fermion in the ground state. The filled circles represent states occupied by
electrons, whereas the empty circles – unoccupied states. In the ground state
all the states up the Fermi level are occupied and all those above it – empty.
The velocity of each electron is given by the slope of the dispersion relation of
the Landau level it lies in. For all but the zeroth Landau level, the current
carried by electrons with positive velocity is cancelled by the current carried
by electrons with negative velocity, resulting in zero net current. However,
all the electrons in the zeroth Landau level are moving in the same direction,
resulting in an infinite ground-state current. b) The distribution of electrons
after applying a pulse of electric field parallel to the magnetic field over time
∆t. Each electron acquires an additional momentum ∆p‖, which makes some
of the previously unoccupied states, occupied. This produces a certain number
of extra particles, violating the particle conservation – a phenomenon known as
the chiral anomaly. c) A resolution to the lack of particle conservation ‘paradox’
in a Weyl semimetal. Each Weyl cone with chirality +1 is accompanied by a
cone with chirality −1. When a certain number of electrons is produced in one
of the Weyl cones, due to chiral anomaly, the same number vanishes from the
other Weyl cone, ensuring total particle conservation. This results in a unequal
number of left- and right-moving electrons, which produces a non-vanishing
current density ∆j. The appearance of this current is known as the chiral
magnetic effect.

8



1.2 Landau levels

which means that the zeroth Landau level can only propagate in one di-
rection along the magnetic field, depending on its chirality χ – Fig. 1.3.
This has two puzzling consequences. Firstly, such a dispersion relation
leads to an infinite current in the ground state: at zero temperature, elec-
trons occupy all the lowest-energy states up to a certain energy, called the
Fermi level. Then for all Landau levels with n 6= 0, at each energy there
is the same number of electrons propagating in either direction along the
magnetic field, thus the net current they carry vanishes. All the electrons
in the zeroth Landau level, however, propagate in the same direction, so
their total contribution to the current diverges. In quantum field theories,
diverging ground-state (also called the vacuum in this context) properties,
such as energy or charge density, are not unusual. A common practice is to
define all the observables with respect to the vacuum, by subtracting their
– possibly infinite – vacuum expectation values. In the condensed-matter
context, however, there is no such freedom, as the ground state properties
are directly accessible experimentally. The non-vanishing ground-state
current thus constitutes a contradiction as it is not allowed by the Bloch
theorem2 [18–21].

A second problem arises when, in addition to the magnetic field, an elec-
tric field E is applied in the same direction for some finite time ∆t. It will
exert a force F = eE on each electron, which will change its momentum
by ∆p‖ = eE∆t. If the Fermi level was originally between the n = −1 and
n = 1 Landau levels, it will effectively shift by ∆µ = χvFeE∆t, which im-
plies that the number of particles in the system will change. This change
is equal to

∆n = χ
eE∆t

h/L

Φ

Φ0
= χ

e2

h2
E ·BV∆t , (1.13)

where V is the total volume of the system [55]. This violation of particle-
number conservation is known as the chiral anomaly. In particle physics,
the chiral anomaly affects the decay rate of the neutral pion π0, which was
first explained by Adler [22], and Bell and Jackiw [23]. In the condensed-
matter context, however, the Weyl fermions arise from ordinary electrons,
the number of which must be conserved, which, once again, leads to a
contradiction.

The resolution to both of the issues discussed above is the same: in
the electronic band structure of a material, there must always be an even
number of Weyl points, and the number of those with +1 chirality must
be equal to those with −1 chirality. In that case the ground-state current

2The theorem allows for persistent currents, however their magnitude vanishes in the
thermodynamic limit.

9



1 Topologically protected LL in the vortex lattice of a Weyl superconductor

carried by the electrons in the zeroth Landau level of the Weyl fermions
with +1 chirality is canceled by that of the Weyl fermions with −1 chi-
rality, in agreement with the Bloch theorem – Fig. 1.4. In the same way,
the total change of the number of electron due to the chiral anomaly for
all the Weyl fermions is zero, as expected: the electric field simply pumps
the electrons from one Weyl fermion to the other.

1.2.5 Chiral magnetic effect

Even though the total number of electrons is conserved, the chiral anomaly
can still lead to observable consequences, as it creates an imbalance be-
tween the Weyl fermions of opposite chiralities. Since the current carried
by electrons in the zeroth Landau level depends on its chirality, such im-
balance produces an electric current. This phenomenon is known as the
chiral magnetic effect (CME). For each Weyl fermion, the resulting current
density is equal to

∆j = χ
e2

h
∆µ , (1.14)

where the proportionality coefficient only depends on the fundamental
constants: e – the elementary charge, and h – the Planck’s constant.
This independence of any details of the system is a case of universality.
Universal responses are often found in systems with topological properties.
The most prominent example of such a response is the quantized Hall
conductance in the quantum Hall effect, which, similarly, assumes values
of integer multiples of e2/h – independent of the sample. The accuracy of
this result lead to establishing a new definition of the kilogram in 2019,
based on the value of Planck’s constant, rather than a physical artifact.

Unfortunately, the chiral magnetic effect – a universal response of the
Weyl semimetal – is difficult to access: the electric field applied brings the
system out of equilibrium – a state, which must decay once the electric
field is removed, due to random scattering processes. In order to maintain
the imbalance of chiralities, the electric field must be applied continuously,
which keeps the system in a steady state in which the rate of scattering
between the Weyl cones balances out the pumping of electrons. Then, if
the characteristic relaxation time associated with this scattering is τ , the
current density contribution of a single Weyl cone can be shown to be

∆j = χvF
e3

h2
E ·Bτ . (1.15)

This results in an appearance of negative magnetoresistance in Weyl semi-
metals – an increase in conductance proportional to the applied magnetic

10



1.3 Superconductivity

field, regarded as the basic transport signature of Weyl fermions in con-
densed matter systems [24, 25]. It has been demonstrated experimentally
in agreement with the presented theory [26, 27]. In this phenomenon,
however, the universality of CME becomes obscured, as the observed ef-
fect depends on the relaxation time τ , which is an effective parameter
depending on the microscopic details of the system.

1.3 Superconductivity

1.3.1 Bogoliubov-de Gennes formalism

In normal materials the electric current must vanish in equilibrium, which
prevents the access to the chiral magnetic effect in such a situation. Super-
conductors, however, can support a non-vanishing current in equilibrium.
This opens a tantalizing possibility that in such systems the equilibrium
CME can be accessed. It would then allow for a direct observation of the
universal coefficient e2/h of Eq. (1.14). This possibility was the main
motivation for the work presented in this thesis.

To demonstrate how it can happen, I will first explain the effect of
superconductivity on Weyl semimetals. In the ground state of a super-
conductor, the electrons form a condensate of Cooper pairs, which allows
for a frictionless flow of the current. The presence of the condensate mod-
ifies the dynamics of excitations in a superconductor: if energy is supplied
to the system, a Cooper pair can split into two independent electrons. A
converse process is also possible, in which two electrons combine and form
a Cooper pair, which becomes a part of the condensate. In the simplest
case, a Cooper pair consists of two electrons of opposite quasi-momenta
and spin. This is the case in the s-wave superconductors. In the mean-
field approximation, these processes are captured by the Bogoliubov-de
Gennes (BdG) formalism, in which the number of degrees of freedom is
doubled: in addition to electrons, one introduces new particles – holes.
Then, for an s-wave superconductor, a given state of the system can be
represented in two ways: the electron at energy E (with respect to the
Fermi level), quasi-momentum k and spin s, is equivalent to the absence
of a hole at energy −E, quasi-momentum −k and spin −s. With this
redundancy, a multi-particle process of a decay of a Cooper pair, which
results in the creation of two electrons of opposite quasi-momenta and
spins, is equivalently described as a scattering process of a hole at quasi-
momentum k and spin s into an electron with the same quasi-momentum
and spin, which is a single-particle process – Fig. 1.5. In this formal-
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor

a) b) c) d)

Figure 1.5: a) Dispersion relation of an electron in a normal material. b)
Dispersion relation for a normal material in the BdG formalism: dispersion
relation of an electron is in red, and that of a hole is in blue. Electron at energy
E, quasi-momentum k and spin s (marked by a red dot), can be equivalently
described as absence of a hole at energy −E, quasi-momentum −k and spin −s
(marked by a blue circle). c) Decay of a Cooper pair: a hole at quasi-momentum
k and spin s is scattered into an electron with the same quasi-momentum and
spin. d) Resulting dispersion relation of a superconductor, given by Eq. (1.18)

ism, the dynamics of the system is captured by a single-body Bogoliubov
de-Gennes Hamiltonian

H(k) =

(
H0(k) ∆

∆† −syH∗0 (−k)sy

)
, (1.16)

where the top block describes the behavior of electrons, the bottom block
that of the holes and ∆ – the superconducting pairing – introduces the
scattering between them induced by the Cooper pair condensate. Opera-
tor sy is the Pauli matrix acting on the spin.

1.3.2 Weyl superconductor

Typically, the superconducting pairing induces an energy gap in the sys-
tem. For instance, if an electron is described by a simple quadratic Hamil-
tonian

H0 =
k2

2m
− µ , (1.17)

the BdG Hamiltonian results in the dispersion

E = ±
√(

k2

2m∗
− µ

)2

+ ∆2 , (1.18)

which is gapped. This gap is in fact a crucial feature of the supercon-
ductors, as the lack of low-energy excitations means that they cannot
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1.3 Superconductivity

participate in the dissipation of energy, which suppresses the production
of heat when the current is passing through the system.

However, if the superconducting pairing is present in a Weyl semimetal,
in which case the system is dubbed a Weyl superconductor [12, 13], the
appearance of such a gap can be generally avoided. This is due to the
topological protection of the Weyl cones. As explained in Sec. 1.2.2, it is
only possible for a small perturbation to open a gap of a Weyl cone if there
are two Weyl cones of opposite chirality at the same quasi-momentum k0.
In the BdG formalism, the band structure is doubled, thus additional
Weyl cones appear originating from the dispersion relation of the holes.
A hole Weyl cone at quasi-momentum k0 with chirality χ appears as a
redundant representation of an electronic Weyl cone at quasi-momentum
−k0 and chirality −χ. Thus, in the BdG formalism, two Weyl cones of
opposite chirality – one for electron and one for hole – occur at the same
quasi-momentum, in which case a small superconducting pairing can open
a gap, only if two Weyl cones of the same chirality occur at opposite
quasi-momenta, k0 and −k0, in the original electronic band structure of
a Weyl semimetal. Such a configuration requires either fine-tuning, or
the presence of certain symmetry – in this case time-reversal symmetry,
combined with a broken inversion symmetry. Thus, generically the band
structure of a Weyl superconductor remains gapless.

In normal materials, the current from CME vanishes in equilibrium, be-
cause there is the same number of Weyl cones of each chirality. Then, if
the chemical potential is changed by ∆µ, it changes by the same amount
for all the Weyl cones, and the contributions – given by Eq. (1.14) –
from the Weyl cones of opposite chiralities cancel out. If the supercon-
ducting pairing fails to open a gap of any of the Weyl cones in the Weyl
superconductor, the situation is the same there. However, as explained
before, a gap can open for a given electronic Weyl cone at momentum k0,
if there also exists another one with the same chirality at the opposite
momentum. The superconducting pairing then opens a gap in both of
these two Weyl cones simultaneously. Alternatively, a gap can also open
for a single Weyl cone, if it occurs at k0 = 0. Such a gap is analogous to
the Majorana mass in the high-energy physics context. In either of these
situations, the number of Weyl fermions of a single chirality is reduced –
by either 2 or 1, depending on the number of Weyl cones involved. While
for an infinitesimal ∆ such a case is only possible with fine-tuning, it is
not so when ∆ is finite – the regime with an unequal number of Weyl
fermions with different chiralities occurs in finite regions in the parameter
space. In such a regime then, if the zeroth Landau level forms when the
magnetic field is applied, the chiral magnetic effect should manifest itself
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1 Topologically protected LL in the vortex lattice of a Weyl superconductor

in equilibrium.

1.3.3 Vortex lattice

As discovered by Meissner in 1933, a magnetic field is repelled from a
superconductor. This poses both practical and conceptual difficulties in
the observation of the equilibrium CME: if the magnetic field cannot pen-
etrate the superconductor, the Landau levels cannot develop and CME
will not occur. A way around this is to consider a thin sample, as the
magnetic field can penetrate the superconductor up to a certain distance
called the penetration depth λ. For a superconducting slab much thinner
than λ, the magnetic field applied parallel to its surface will penetrate it
almost uniformly. Such a situation was considered by O’Brien et al. [47]
who found that when a Weyl superconductor is driven into a regime with
just a single Weyl cone present, the equilibrium CME occurs, with the
current given by

∆j = κ
e2

h
∆µ , (1.19)

where κ is a non-universal coefficient describing the effective charge κe
of the low-energy excitations. This factor appears due to change in the
degeneracy of the Landau level, in which the electron charge is replaced
by the effective charge.

If a sample is thicker, and the magnetic field is strong enough, the super-
conductor may enter a mixed phase, in which the magnetic field penetrates
the superconductor in the form of vortices of circulating supercurrent –
Abrikosov vortices. In each vortex core, the size of which is approximately
equal to the superconducting coherence length ξ, the superconductivity is
destroyed, whereas the magnetic field decays exponentially with the dis-
tance from the vortex core, with the decay length λ. The number of vor-
tices is equal to the number of superconducting flux quanta h/(2e) = 1

2Φ0

of the applied magnetic field. If λ > ξ/
√

2, the mixed phase is energeti-
cally favorable to the Meissner effect, which is the defining property of a
type-II superconductor. Moreover, if λ�

√
h/(eB)� ξ, the vortex cores

occupy a negligible volume of the system, and the distances between them
are small compared to λ, which yields an almost homogeneous magnetic
field.

One can ask whether the Landau levels can develop in this mixed phase.
A similar question was considered in the context of unconventional d-wave
superconductors, whose superconducting pairing depends on the quasi-
momentum, and vanishes on certain lines in the quasi-momentum space.
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1.4 Outline of this thesis

On these lines the superconducting gap closes, which gives rise to a linear
dispersion relation around certain points in the quasi-momentum space,
similar to that of a Weyl fermion. The robustness of the zeroth Landau
level of massless relativistic fermions lead Gor’kov and Schrieffer [29] to
a conclusion that the zeroth Landau level would also occur in the d-wave
superconductor. The same prediction was also made by Anderson [30].
This, however, turned out not to be the case. Franz and Tešanović [1]
showed that scattering of the quasiparticles from circulating vortex cur-
rents broadens the zeroth Landau level, leading to a dispersive magnetic
Bloch band.

One of the questions considered in this thesis was whether the same fate
awaits the zeroth Landau level in Weyl superconductors. If that was the
case, it would close the way to access the equilibrium CME in the mixed
phase. It turned out, however, otherwise: in the Weyl superconductors,
the topological protection of the zeroth Landau level holds up against the
effects of the vortices. Moreover, this leads to a CME current given by
Eq. (1.14) with the universal coefficient e2/h, independent of the effective
charge κe, as it was in a thin slab.

1.4 Outline of this thesis

Chapter 2

In this chapter, we address the question whether Landau levels can emerge
in a superconductor in the presence of Abrikosov vortices, induced by
the applied magnetic field. We show that in a Weyl superconductor –
a type of gapless superconductor, in which the low-energy excitations
are Weyl fermions – it is possible. This is a surprising result, as the
quasiparticle scattering off the superconducting vortices is known to spoil
the Landau levels in a different type of gapless superconductors, the d-
wave superconductor. We show that in the Weyl superconductor the
situation is different: as a result of topological properties of the Weyl
fermions, the zeroth Landau level is robust against such scattering. The
particles in the zeroth Landau level can propagate along the magnetic
field lines, which allows them to carry energy in that direction. This
manifests itself in a contribution to the thermal conductance, which takes
a universal value G = 1

2g0Φ/Φ0, where g0 is the thermal conductance
quantum, Φ0 is the superconducting flux quantum, and Φ is the total flux
of the applied magnetic field.

15



1 Topologically protected LL in the vortex lattice of a Weyl superconductor

Chapter 3

In this chapter we further explore the consequences of the formation of
the zeroth Landau level in a Weyl superconductor. We study how it af-
fects electric and thermoelectric transport properties along the applied
magnetic field. We show that the vortex lattice carries an electric current
I = 1

2 (Q2
eff/h)(Φ/Φ0)V between two normal metal contacts at voltage

difference V , with Φ the magnetic flux through the system, Φ0 the su-
perconducting flux quantum, and Qeff < e the renormalized charge of the
Weyl fermions in the superconducting Landau level. Because the charge
renormalization is energy-dependent, a nonzero thermo-electric coefficient
appears even in the absence of energy-dependent scattering processes.

Chapter 4

In this chapter we study the chiral magnetic effect in the zeroth Landau
level in the Weyl superconductor: the appearance of current I along the
lines of magnetic flux Φ, due to an imbalance between Weyl fermions of
opposite chirality. In Weyl semimetals, the presence of such a current is
only possible out of equilibrium, which makes it only accessible through
indirect observations, e.g. through the negative magnetoresistance mea-
surements. We show that in a Weyl superconductor, the chiral magnetic
effect is accessible in equilibrium, manifesting itself as a universal cur-
rent contribution dI/dΦ = (e/h)2µ (at equilibrium chemical potential µ
relative to the Weyl point), when quasiparticles of one of the two chiral-
ities are confined in vortex cores. The confined states are charge-neutral
Majorana fermions.

Chapter 5
Shared contribution with Gal Lemut, who was responsible for the numerical simulations.

In this chapter we consider a different type of a superconductor: the Fu-
Kane heterostructure, which consists of a superconductor on top of the
surface of a topological insulator. The gapless surface excitations of a
topological insulator acquire an energy gap in the presence of supercon-
ductivity. It is known that when a vortex-forming magnetic field is applied
perpendicular to the surface, each vortex binds a zero-energy Majorana
mode exponentially localized at its core. We examine the consequences
of applying a supercurrent parallel to the surface. When the magnitude
of the supercurrent exceeds a critical value, the surface quasiparticle gap
closes, which drives a deconfinement transition of the Majorana bound
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1.4 Outline of this thesis

states. In the deconfined phase at zero chemical potential, the Majorana
fermions form a dispersionless Landau level, protected by chiral symmetry
against broadening due to vortex scattering. The coherent superposition
of electrons and holes in the Majorana Landau level is detectable as a
local density of states oscillation with a known wave vector. The striped
pattern also provides a means to measure the chirality of the Majorana
fermions.

Chapter 6
Shared contribution with Gal Lemut, who was responsible for the numerical simulations.

In this chapter we study a mathematical problem of discretizing the single-
cone Dirac equation. Such a problem arises when performing a computer
simulation of gapless excitations on the surface of a topological insulator
or superconductor. The simplest approach results in so-called fermion
doubling: appearance of an additional gapless low energy excitations in
the simulated system. It is known that this cannot be avoided without
breaking locality or chiral symmetry of the model. In this chapter we
examine a special staggered discretization by Stacey [110], which avoids
the fermion doubling. In this approach the Dirac equation is discretized
as a generalized eigenvalue problem Hψ = EPψ. While maintaining the
chiral symmetry, this formulation breaks locality, as it can be cast in the
form of an ordinary eigenvalue problem with a non-local Hamiltonian.
We show that despite this shortcoming, the resulting theory possesses
a locally-conserved particle current. As the discretization maintains the
symmetries of the original Dirac equation, this permits the study of the
spectral statistics of Dirac fermions in each of the four symmetry classes
A, AII, AIII and D of random-matrix theory.
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2 Topologically protected
Landau level in the vortex
lattice of a Weyl
superconductor

2.1 Introduction

In 1998 Gor’kov, Schrieffer [29], and Anderson [30] made the remarkable
prediction that the excitation spectrum in the mixed phase of a high-Tc su-
perconductor (with massless quasiparticles at nodal points of the d -wave
pair potential) has the Landau levels of the relativistic Dirac equation.
This was nearly a decade before the quantum Hall effect of massless elec-
trons was measured in graphene [31, 32], and it would have marked the
first appearance in the solid state of a magnetic-field independent zeroth
Landau level.

It did not turn out that way: The spatially varying supercurrent in the
Abrikosov vortex lattice strongly scatters the quasiparticles [33], even if
the vortices overlap and produce a uniform magnetic field. Since Franz
and Tes̆anović [1] we know that the quasiparticles in the mixed phase of
a d -wave superconductor retain the zero-field Dirac cone, the main effect
of the magnetic field being a renormalization of the Fermi velocity [2–11].
Recent proposals [34–36] use strain to mimic the effect of a magnetic field
in a d -wave superconductor without breaking time-reversal symmetry, but
the coexistence of Landau levels and a vortex lattice has remained elusive.

Here we propose that Weyl superconductors can make it happen. A
Weyl semimetal with induced s-wave superconductivity has massless nodal
quasiparticles in a 3D Weyl cone [12, 13], with the same linear dispersion
as the 2D Dirac cone of a d -wave superconductor [37, 38]. We compare
the band structures in Fig. 2.11. In zero magnetic field the gapless nodal

1See the appendices, which includes Refs. [39–46], for: (A) the derivation of the
boundary condition at the vortex core; (B) details of the tight-binding calculation;
(C) demonstration of the power law scaling of the quasiparticle density near the
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Q M X Q W L -X X M Y MΓ ΓΓ L

Figure 2.1: Excitation spectrum of a nodal superconductor in zero magnetic
field (black dashed curves) and in the mixed phase with a square lattice of
Abrikosov vortices (red solid curves)2. Panel a) is for a 2D d-wave supercon-
ductor, panel b) for a 3D Weyl superconductor (with kz = π/3 at the Weyl
point). The momentum follows a path through the magnetic Brillouin zone
of Fig. 2.2. The location of the zero-field Dirac and Weyl points is indicated
by green arrows. The n-th Landau level is expected at En =

√
nE1, with

E1 = 2
√
π vF/d0. In the d-wave superconductor the Landau levels are de-

stroyed by the vortex lattice [1], while in the Weyl superconductor they are
protected by chiral symmetry.

points at the Fermi level (E = 0) are qualitatively the same in both
superconductors. But the response to a vortex lattice is fundamentally
different: While in the d -wave superconductor the dispersive Dirac cones
persist, as expected [1], in the Weyl superconductor a zeroth Landau level
appears that is completely dispersionless in the plane perpendicular to the
magnetic field.

We will return to these numerical calculations later on, but first we
want to explain why the zeroth Landau level in a Weyl superconductor is
not broadened by the vortex lattice, as it is in a d -wave superconductor.

vortex core. The appendices also include a demonstration of the robustness of our
results to: (D) anisotropic Weyl cones and arbitrary orientation of the magnetic
field; (E) tilting of the Weyl cones, all the way up to the type-I–II transition.

2In dimensionless units (t0, a0, ~ ≡ 1) the parameters for the band structure of Fig.
2.1a are: ∆0 = 1 (dx2−y2 pairing), vF = v∆ = 2

√
2 (isotropic Dirac cone), µ = 4

(band center), d0 = 49, E1 = 4
√

2π/d0; for Fig. 2.1b they are: ∆0 = 1 (s-wave
pairing), β =

√
2, vF = 1 (isotropic Weyl cone), µ = 0 (Weyl point), d0 = 49,

E1 = 2
√
π/d0. In the Weyl semimetal with a vortex lattice we increased µ slightly

from 0 to 0.0031, to line up with the crossing point of the zeroth Landau levels of
opposite chirality.

20



2.2 Weyl superconductor in the mixed phase
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Figure 2.2: Weyl superconductor in the mixed phase. Panel a) shows a
Weyl semimetal–superconductor heterostructure (layers of a topological insula-
tor, with perpendicular magnetization β, separated by s-wave superconducting
spacer layers [12]). A magnetic field B0 is applied perpendicular to the layers.
The heterostructure has lattice constant a0, while the square vortex array has
lattice constant d0 (with two h/2e vortices per unit cell). Panels b) and c) show
two different paths through the magnetic Brillouin zone of the vortex array.

We have traced the origin of the difference to the topological protection of
the zero-mode enforced by an index theorem for Hamiltonians with chiral
symmetry [17]. For this explanation we will use an effective low-energy
Hamiltonian. The numerics uses the full Hamiltonian and serves as a test
of our analytics. We conclude with a discussion of the universal thermal
conductance supported by the zero-mode.

2.2 Weyl superconductor in the mixed phase

We start quite generally from the Bogoliubov-De Gennes (BdG) Hamil-
tonian in the Anderson gauge [30],

H(k) = U†
(
H0(k − eA) ∆

∆∗ −σyH∗0 (−k − eA)σy

)
U

=

(
H0(k + a+mvs) ∆0

∆0 −σyH∗0 (−k − a+mvs)σy

)
, (2.1)

with the definitions (~ ≡ 1, electron charge +e, mass m):

U =

(
eiφ 0
0 1

)
, a = 1

2∇φ, mvs = 1
2∇φ− eA. (2.2)
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor

The 2×2 matrix structure of H refers to electron and hole quasiparticles,
with single-particle Hamiltonian H0 and its time-reverse in the diagonal
blocks, coupled by the superconducting pair potential ∆ = ∆0e

iφ in the
off-diagonal blocks. The unitary transformation U removes the spatially
dependent phase φ(x, y) from the pair potential into the single-particle
Hamiltonian, where it combines with the vector potential A(x, y) in the
x–y plane, corresponding to the magnetic field B = ∇×A along z.

Both the gauge field a(x, y) and the supercurrent velocity vs(x, y) wind
around the positions Rn of the vortex cores, according to

∇×∇φ = 2πẑ
∑
nδ(r −Rn). (2.3)

(For definiteness we assume the field points in the positive z-direction.) A
spatial average over the vortices gives a vanishing supercurrent velocity,
vs = 0, while the average ∇× a = eB̄ gives the average magnetic field.
The field is approximately uniform, equal to B0, in the mixed phaseHc1 �
B0 � Hc2 of a type-II superconductor with overlapping vortices. In this
regime the vortex cores occupy only a small fraction B0/Hc2 � 1 of the
volume, so the amplitude ∆0 of the pair potential is also approximately
uniform and only the phase φ is strongly position dependent.

We now specify to a Weyl superconductor, in the heterostructure con-
figuration of Meng and Balents [12]3: a stack in the z-direction of layers of
Weyl semimetal alternating with an s-wave superconductor. A magnetiza-
tion β perpendicular to the layers separates the Weyl cones in the Brillouin
zone along kz. The Weyl points are at k = (0, 0,±K), v2

FK
2 = β2 −∆2

0,
with vF the Fermi velocity (assumed isotropic for simplicity). The Weyl
cones remain gapless as long as ∆0 < β4.

In the BdG Hamiltonian (2.1) each Weyl cone is doubled into an electron
and hole cone, mixed by the pair potential. We describe this mixing
following Ref. 47, in the simplest case that the Weyl cones are close to
the center k = 0 of the Brillouin zone and we may linearize the momenta.
(All nonlinearities in the full Brillouin zone are included in our numerics.)
The single-particle Weyl Hamiltonian H0 is a 4× 4 matrix,

H0(k) = vFτzk · σ + βτ0σz − µτ0σ0, (2.4)

3We use the heterostructure model of Ref. 12 for concreteness, but we have checked
that the Landau levels appear as well in the model of Ref. 13, which refers to a Weyl
semimetal with intrinsic superconductivity. The difference between the two models,
scalar versus pseudoscalar pairing [28], does not affect the topological protection.

4A supercurrent perpendicular to the layers can gap out the Weyl cones even if ∆0 <
β, but for now we only consider supercurrents flowing in the plane of the layers.
In the presence of time-reversal symmetry, for β = 0, the Weyl superconductor is
gapped except at the vortex cores, so no Landau level can exist in the bulk.
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2.2 Weyl superconductor in the mixed phase

with µ the chemical potential. It is composed from Pauli matrices σα and
τα that act on the spin and orbital degree of freedom, respectively. We
also need a third set of Pauli matrices να in the electron-hole basis. (The
corresponding 2× 2 unit matrices are σ0, τ0, ν0.)

A unitary transformation H 7→ V †HV with

V = exp( 1
2 iθνyτzσz), tan θ = − ∆0

vFkz
, θ ∈ (0, π), (2.5)

followed by a projection onto the ν = τ = ±1 blocks, gives for the Weyl
cones an effective 2× 2 low-energy Hamiltonian5:

H±(k) = vF

∑
α=x,y(kα + aα ± κmvs,α)σα

+ (β −mkz )σz ∓ κµσ0, (2.6)

mkz =
√

∆2
0 + v2

Fk
2
z , κ = −vFkz/mkz . (2.7)

The electron-like and hole-like cones have opposite sign of the effective
charge qeff = ±κe, with |qeff | → e

√
1−∆2

0/β
2 for |kz| → K, smaller than

the bare charge e due to the mixing of electrons and holes by the pair
potential [48]. The velocity vz = ∂mkz/∂kz perpendicular to the layers is
also renormalized by the superconductivity: vz → v2

FK/β for |kz| → K.

At the Weyl point, for µ = 0 and |kz| = K, the Hamiltonian (2.6)
anticommutes with σz. This socalled chiral symmetry gives a formal cor-
respondence with a problem first studied 40 years ago by Aharonov and
Casher [16], as an application of an index theorem from supersymmet-
ric quantum mechanics [17]. The problem of Ref. 16, to determine the
zeroth Landau level of a two-dimensional massless electron in an inhomo-
geneous magnetic field, has also been studied more recently in the context
of graphene [49–51]. We need to adapt the calculation here to account
for the fractionally charged quasiparticles, but the basic approach carries
through.

5The low-energy Hamiltonian (2.6) does not include virtual transitions to higher
bands, of second order in µ and vs. These are included in the numerics, which is
based on the full Hamiltonian.
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor

2.3 Calculation of the zero-modes

To study the effect of chiral symmetry on the Landau level spectrum we
set µ = 0, |kz| = K and focus our attention on the chiral Hamiltonian

Hchiral = vF

(
0 D
D† 0

)
, D = Πx − iΠy,

Π = −i∇+ eA, eA = a± κmvs.
(2.8)

(We omit the ± subscript for ease of notation.) The effective vector
potential A describes the effective magnetic field

B = ∂xAy − ∂yAx = Φ0(1± κ)
∑
nδ(r −Rn)∓ κB (2.9)

felt by the Weyl fermions in the vortex lattice.
For what follows it is convenient to choose a gauge such that ∇ · A =

0 and to assume that the external magnetic field B0 is imposed on a
large but finite area S. Because there are Nvortex = B0S/Φ0 vortices in
that area (with Φ0 = h/2e the superconducting flux quantum), the flux
Φ =

∫
dr B = B0S through the system corresponding to the effective

field equals the real flux. (The κ-dependence of B drops out upon spatial
integration.)

A zero-mode ψ of Hchiral is either a spinor
(
u
0

)
with D†u = 0 or it is

a spinor
(

0
v

)
with Dv = 0. The general solution of these two differential

equations has the form [16, 50]6:

u = f(ζ)eW , v = f(ζ∗)e−W , ζ = x+ iy,

W (r) =
1

2Φ0

∫
dx′
∫
dy′ B(r′) ln |r − r′|.

(2.10)

The difference N = Nu −Nv in the number of normalizable solutions for
u and v is called the index of Hchiral. The absolute value |N | is a lower
bound on the degeneracy of the zero-mode and the sign of N determines
the chirality: whether the zero-mode is an eigenstate of σz with eigenvalue
+1 or −1.

To determine the index of Hchiral we proceed as follows. In the absence
of vortices the function f(ζ) is analytic in the entire complex plane and

6To verify Eq. (2.10), first note that (−i∂x ± ∂y)f(x ± iy) = 0, so we only need to
consider derivatives of W . For that purpose it is helpful to write A = ∇ × ẑω
(which is possible in the gauge where ∇ · A = 0), then note that B = −∇2ω and
use the identity ∇2 ln |r− r′| = 2πδ(r− r′), to derive that W = −(π/Φ0)ω = −eω
and (−i∂x±∂y)W = ∓eAx− ieAy . Hence one concludes that (Πx± iΠy)e±W = 0.
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2.3 Calculation of the zero-modes

we can use a basis of polynomials. A polynomial f(ζ) of degree N − 1
then produces N linearly independent zero-modes — provided u or v is
normalizable,

∫
rdr |ψ|2 <∞. For large r one has asymptotically

W → 1
2 (Φ/Φ0) ln |r| ⇒ eW → |r|Nvortex/2, (2.11)

so if only the decay at infinity would be an issue we would conclude that
Nu = 0, Nv = Int [Nvortex/2]. This is the answer in the absence of vortices
[16], when the degeneracy of the zero-mode is determined by the enclosed
flux in units of h/e = 2Φ0, while the chirality is set by the sign of the
magnetic field (which we have assumed positive). As we will now show,
the presence of vortices introduces a dependence of the chirality on the
sign of the fractional charge qeff = ±κe of the quasiparticles, while the
degeneracy remains given by the bare electron charge e.

With vortices the function f(ζ) may have poles at the vortex cores
ζn = xn + iyn. We use this freedom to re-express the solution (2.10) as

u = g(ζ)eW
∏
n(ζ − ζn)−1, v = f(ζ∗)e−W . (2.12)

If for f and g we take polynomials of degreeN−1, withN = Int [Nvortex/2],
then both the functions u and v decay sufficiently rapidly at infinity. The
boundary condition at the vortex cores now determines which of the two
solutions is realized.

Near a vortex at position rn the asymptotics is

|u|2 → |r − rn|−1+qeff/e, |v|2 → |r − rn|−1−qeff/e. (2.13)

Since |qeff | < e both solutions ψu =
(
u
0

)
and ψv =

(
0
v

)
remain square

integrable at the vortex core. The boundary condition1

σzψ = (sign qeff)ψ, for r → rn. (2.14)

selects the most weakly divergent solution in Eq. (2.13): ψ = ψu with
positive chirality for qeff > 0 and ψ = ψv with negative chirality for
qeff < 0.

All of this was for µ = 0, |kz| = K, but both terms µσ0 and (β−mkz )σz
from Eq. (2.6) can be immediately reinstated since the zero-mode is an
eigenstate of σz. The resulting µ and kz-dependence of the zeroth Landau
level is

E±(kz) = ∓κµ+ (sign qeff)(β −mkz ). (2.15)

We have thus seen how the chiral symmetry protects the zeroth Lan-
dau level from being destroyed by the vortex lattice. To complete this
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor

analytical treatment, we point out why the d -wave superconductor lacks
a similar protection. In the Anderson gauge, the low-energy Hamiltonian
near the nodal point of a d -wave pair potential reads [1, 6, 30]

Hd-wave = vF(kx + ax)σz + v∆(ky + ay)σx +mvs,xσ0. (2.16)

There are inessential differences with Hchiral from Eq. (2.8) — the Dirac
cone is anisotropic and the basis of Pauli matrices is rotated — but the
essential difference is that the superfluid velocity breaks the chiral sym-
metry: Hd-wave anticommutes with σy only if vs,x = 0. In the d -wave su-
perconductor the superfluid velocity enters as a chirality-breaking scalar
potential, while in the Weyl superconductor it is a chirality-preserving
vector potential. The former is a strong scatterer, which effectively de-
stroys the Landau levels, while the latter cannot by force of the topological
index theorem.

2.4 Comparison with numerics

To test our analytical theory we have numerically calculated the spectrum
of a Weyl superconductor with a vortex lattice, using the Kwant tight-
binding code [52]. The 8 × 8 Hamiltonian has the BdG form (2.1) with
[12, 13, 28]

H0(k) = t0
∑

α=x,y,z

[τzσα sin kαa0 + τxσ0(1− cos kαa0)]

+ βτ0σz − µτ0σ0. (2.17)

Near the center of the Brillouin zone this reduces to the linearized Hamil-
tonian (2.4), but now we will not make any linearization. Results are
shown in Figs. 2.1b, 2.3, and 2.41. They are fully consistent with the
analytics.

2.5 Thermal conductance

The chiral zeroth Landau level governs the thermal transport properties
of the Weyl superconductor, in the direction parallel to the magnetic field.
The degeneracy eB0S/h = 1

2Φ/Φ0 of the zeroth Landau level implies a
thermal conductance

G=
1
2g0Φ/Φ0, g0 = LTe2/h, (2.18)

26



2.5 Thermal conductance

Figure 2.3: Same as Fig. 2.1b, but now as a function of kz for kx = 0 = ky
at the center of the Brillouin zone7. The color scale indicates the charge expec-
tation value. The dashed curve is the dispersion (2.15) of the zeroth Landau
level, calculated analytically for K � 1 (which explains the deviation from
the numerics). The effective charge at E = 0 is ±0.73, close to the analytical
prediction of ±κ = ±1/

√
2.

with L = 1
3 (πkB/e)

2 the Lorenz number. In words, each vortex con-
tributes half a thermal conductance quantum to the heat transport —
the factor 1/2 being a reminder that the quasiparticles in the Weyl su-
perconductor are Majorana fermions [48]. Do note that the states in the
zeroth Landau level are extended over the x–y plane, the current flow is
not confined to the vortex cores (see Fig. 2.4)8. We expect the universal
thermal conductance (2.18) to be robust against non-magnetic disorder,
which in the effective Hamiltonian would enter as a term ∝ σz that does
not couple Landau levels of opposite chirality.

7The parameters for the band structure of Fig. 2.3 are the same as those of Fig. 2.1b,
except that we took a larger magnetic field (d0 = 10) so that the Landau level
splitting is more clearly visible on this scale.

8As we will discuss in Chapter 4, it is possible to concentrate the heat flow to the
vortex cores by applying a flux bias, and in that way realize a situation reminiscent
of the axion insulator of Ref. 84.
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor

Figure 2.4: Color scale plot of |ψ(x, y)|2 in the zeroth Landau level of the
Weyl superconductor9. The white dashed lines indicate the vortex array, with
a pair of h/2e vortices in each unit cell. On approaching a vortex core, when

the separation δr → 0, the density diverges as a power law |ψ|2 ∝ δr1/
√

2−1, in
accord with Eq. (2.13).

2.6 Conclusion

In this work we have revisited the celebrated question [29, 30] whether
quasiparticles in the vortex lattice of a gapless superconductor can con-
dense into Landau levels. We have shown that Weyl superconductors can
accomplish what d -wave superconductors could not [1]: The chirality of
Weyl fermions protects the zeroth Landau level from broadening due to
scattering by the vortices. We have developed the analytical argument
for a simple low-energy Hamiltonian and supported it by numerical cal-
culations for a heterostructure model of the Weyl superconductor [12].
We anticipate that the Landau levels will govern the thermodynamic and

9The wave function in Fig. 2.4 is evaluated for the same parameters as Fig. 2.1b, but
at a smaller magnetic field (d0 = 202), to have a smaller overlap of the vortices.
There are two zero-modes of opposite effective charge qeff = ±κe, with identical
density profile so we only show one of them.
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2.6 Conclusion

transport properties of the vortex lattice, finally allowing for the observa-
tion of quantum effects that proved elusive in the d -wave context.
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Appendices

2.A Boundary condition at the vortex core

We consider the chiral Hamiltonian (2.8) near a vortex at the origin,

Hvortex = vF

∑
α=x,y

(pα + eAα)σα +M(r)σz, (2.19)

retaining only the singular contribution to the vector potential,

∇× eA = (e+ qeff)Φ0ẑδ(r)⇒ eA =
(e+ qeff)Φ0

2πr
θ̂. (2.20)

A similar eigenvalue problem has been studied in the context of graphene
[39], but without the fractional charge qeff = ±κe characteristic of the
Weyl superconductor.

We model the delta-function vortex singularity by a mass term M(r) =
M0θ(dvortex − r), in the limit M0 →∞, dvortex → 0 with M0d

2
vortex finite.

In that limit the effective charge tends to the bare charge, qeff → ±e,
within the vortex core.

In polar coordinates (r, θ) one has

∂

∂x
+ i

∂

∂y
= eiθ

(
∂

∂r
+
i

r

∂

∂θ

)
, (2.21a)

eAx + ieAy =
λ

r
ieiθ, λ = 1

2 + qeff/2e ∈ (0, 1). (2.21b)

(Recall that eΦ0/2π = ~/2 ≡ 1/2.) The Dirac Hamiltonian then takes
the form

Hvortex =

(
M D−
D+ −M

)
, (2.22a)

D± = vFe
±iθ
(
−i ∂
∂r
± 1

r

∂

∂θ
± iλ

r

)
. (2.22b)

Since Hvortex commutes with the angular momentum operator J =
−i∂θ + 1

2σz, with eigenvalues m − 1/2 for integer m, the eigenstates of
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor

Hvortex can be chosen as eigenstates of J ,

ψm(r, θ) = eimθ
(
e−iθum(r)
ivm(r)

)
, (2.23a)

(M − E)um + vF[∂r + (m+ λ)r−1]vm = 0, (2.23b)

(M + E)vm + vF[∂r − (m− 1 + λ)r−1]um = 0. (2.23c)

We take E = 0 and consider the solutions outside the vortex core (r >
dvortex, where M = 0) and inside the vortex core (r < dvortex, M = M0 >
0). Outside the vortex core the solutions for um and vm decouple,

um = C1r
m−1+λ, vm = C2r

−m−λ, (2.24)

with independent coefficients C1, C2. Inside the vortex core we have, in
view of the Bessel function identities

∂rIα(r)± (α/r)Iα(r) = Iα∓1(r), (2.25a)

∂rKα(r)± (α/r)Kα(r) = −Kα∓1(r), (2.25b)

the general solution

um(r) = C3 Im−1+λ(M0 r/vF) + C4Km−1+λ(M0 r/vF),

vm(r) = −C3 Im+λ(M0 r/vF) + C4Km+λ(M0 r/vF).
(2.26)

We may set C4 = 0 to obtain a regular solution at r = 0 for qeff = ±e⇒
λ ∈ {0, 1}.

The global solution (2.12) has outside the vortex at rn ≡ 0 the asymp-
totics

ψoutside =

(
C1e

−iθr−1/2+qeff/2e

C2ir
−1/2−qeff/2e

)
, (2.27)

since ζ−ζn = eiθr. This corresponds to the local solution ψm(r, θ) outside
the vortex core for quantum number m = 0. We need to match this to
the m = 0 solution inside the vortex core. In the large-M0 limit, for
M0 � vF/r, this has the asymptotics

ψinside =
C3 e

M0r/vF√
2πM0r/vF

(
e−iθ

−i

)
, (2.28)

since the Bessel-K function becomes exponentially small∝ exp(−M0r/vF).
Equating ψoutside and ψinside at r = dvortex gives the ratio of coefficients

C2/C1 = −(dvortex)qeff/e. (2.29)

If we finally send dvortex → 0, we find that C2 → 0 for qeff > 0, while
C1 → 0 for qeff < 0. This corresponds to the boundary condition (2.14)
in the main text.
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2.B Details of the tight-binding calculations

2.B Details of the tight-binding calculations

2.B.1 Weyl superconductor

We discretize the BdG Hamiltonian (2.1) in the Anderson gauge on a
square lattice, lattice constant a0 ≡ 1, nearest-neigbor hopping energy
t0 ≡ 1. For the diagonal block H0(k) we take the four-band model of Eq.
(2.17). The tight-binding Hamiltonian is

H =
∑
n

(
h(kz) ∆0

∆0 −σyh(−kz)∗σy

)
|n〉〈n|

+
1

2

∑
n,δ̂

exp
(
i
∫ n+δ̂

n
eA · dl− iφn+δ̂ + iφn

)
0

0 − exp
(
−i
∫ n+δ̂

n
eA · dl

)


× (iτzσ · δ̂ − τxσ0)|n+ δ̂〉〈n|,
h(kz) = τzσz sin kz + τxσ0(3− cos kz) + βτ0σz − µτ0σ0. (2.30)

The vector n labels the lattice sites and the unit vector δ̂ points to the
four nearest neighbors. We denote by φn the superconducting phase φ(r)
at site n.

We assume a uniform magnetic field B = B0ẑ (appropriate for the
strong-type-II regime Hc1 � B0 � Hc2), with vector potential

A(x, y) = − 2π

eN2
(y, 0, 0) (2.31)

corresponding to a flux h/e through a supercell of N×N unit cells (square
magnetic unit cell, lattice constant d0 = Na0). The conjugate vector
potential

Ā(x, y) = − 2π

eN2
(0, x, 0) (2.32)

is defined such that Π = p−eA and Π̄ = p−eĀ commute, [Πα,Πβ ] = 0.
It enters in the magnetic periodic boundary conditions [40–42]

ψ(N, y) = eiN [kx−eĀx(0,y)]ψ(0, y) = eikxNψ(0, y),

ψ(x,N) = eiN [ky−eĀy(x,0)]ψ(x, 0) = eikyN+2πix/Nψ(x, 0),
(2.33)

for x, y ∈ {0, 1, . . . , N − 1}.
In each supercell we place a pair of h/2e vortices, at positions

x
(1)
vortex = y

(1)
vortex = Int [N/4] + 1/2,

x
(2)
vortex = y

(2)
vortex = N − 1/2− Int [N/4],

(2.34)
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor
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Figure 2.5: Magnetic unit cell for N = 10, containing a pair of h/2e vortices
at the positions specified by Eq. (2.34). The superconducting phase winds by
2π upon encircling a vortex, producing a branch cut. At the two sides (x, y± ε)
of a branch cut one has φ(x, y + ε) = φ(x, y − ε) + 2π .

see Fig. 2.5. This produces a square vortex array consisting of two sub-
lattices with lattice constant d0.

2.B.2 Superconducting phase

In the continuum description the phase φ(r) of the superconducting order
parameter is determined by

∇×∇φ =
∑
n

2π δ(r − rn), ∇ · ∇φ = 0. (2.35)

The first equation specifies a 2π winding of the phase around each vortex,
at position rn, and the second equation ensures that the supercurrent
velocity mvs = 1

2∇φ−eA has vanishing divergence. (Note that ∇·A = 0
for our choice of gauge.)
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2.B Details of the tight-binding calculations

Figure 2.6: Two integration paths C along the boundary of the magnetic unit
cell for which

∫
C
vs·dl = 0, as a consequence of Eq. (2.38). Vortices are indicated

by crosses, the branch cuts in the phase by dashed lines. For the red path the
integral along segment BC vanishes, while the contributions from the segments
AB and CD cancel. For the blue path the segment FG does not contribute and
EF cancels with GH.

We discretize Eq. (2.35) in the N ×N magnetic unit cell of Fig. 2.5. To
each of the two vortices in this supercell we assign a branch cut running
from (xvortex, yvortex) to (0, yvortex), at which the phase jumps by 2π. The
discrete version of Eq. (2.35) then reads

φ(x, y − 1) + φ(x+ 1, y) + φ(x− 1, y) + φ(x, y + 1)

− 4φ(x, y) =


±2π if (x, y)→ (x, y ± 1)

crosses a branch cut,

0 otherwise,

(2.36)

for x, y ∈ {0, 1, 2, . . . N − 1}.
We need to supplement Eq. (2.36) by periodic boundary conditions at

the edges of the magnetic unit cell. To determine these we integrate

φ(r)− φ(r′) = 2

∫ r

r′
(mvs + eA) · dl+ 2πn (2.37)

along a path C from r′ to r. The discontinuity of φ when C crosses a
branch cut is accounted for by the 2πn offset: The integer n equals the
number of branch cut lines crossed from below minus those crossed from
above.

The trick is to choose a path such that the integral of the supercurrent
velocity vanishes. The combination of periodicity and inversion symmetry
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor

implies that

vs(x, y) = vs(x+N, y) = vs(x, y +N),

vs(x, y) = − vs(−x,−y)

⇒ vs(N, y) = −vs(N,N − y),

vs(x, 0) = −vs(N − x, 0).

(2.38)

As a consequence, the integral
∫
C
vs · dl = 0 vanishes for the two paths of

Fig. 2.6. Integration of the vector potential gives the boundary conditions.

φ(x, y0 +N) = φ(x, y0) + 4π(1− x/N) , (2.39a)

φ(x0 +N, y) = φ(x0, y)− 2π × (number of branch cuts

below y) , (2.39b)

where x0, y0 ∈ {0,−1}.
The set of equations (2.36) and (2.39) can be written in a matrix form,∑
jMijφj = bi for a real symmetric matrix M , which we solved using the

conjugate gradient method.

2.B.3 d-wave superconductor

A 2D superconductor with spin-singlet dx2−y2 pairing symmetry has BdG
Hamiltonian

H =

(
1

2m (k − eA)2 − µ (k − eA) ·∆ · (k + eA)
(k + eA) ·∆† · (k − eA) − 1

2m (k + eA)− µ

)
,

k = (kx, ky) = −i~(∂x, ∂y), ∆(r) = ∆0e
iφ(r)

(
1 0
0 −1

)
.

(2.40)

Our choice of symmetrization of the pair potential follows Ref. 43. One
checks that the choice (2.40) satisfies the requirement of gauge invariance,(

e−iχ 0
0 eiχ

)
H(eA,∆)

(
eiχ 0
0 e−iχ

)
= H(eA−∇χ, e−2iχ∆). (2.41)

Following Ref. 43 we discretize H on a square lattice (lattice constant
a0 ≡ 1, nearest neighbor hopping energy t0 = ~2/2ma2

0). At the end we
carry out the Anderson gauge transformation,

H 7→
(
e−iφ 0

0 1

)
H
(
eiφ 0
0 1

)
. (2.42)
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2.C Quasiparticle density profile near the vortex core

The resulting tight-binding Hamiltonian

H =
∑
m,n

(
tee(m,n) teh(m,n)
the(m,n) thh(m,n)

)
|m〉〈n| (2.43)

has nonzero matrix elements for m = n and m = n + δ̂, with δ̂ ∈
{±x̂,±ŷ}, given by

tee(n,n) = − thh(n,n) = 4t0 − µ, (2.44a)

teh(n,n) = t∗he(n,n)

= 1
2∆0

[
exp

(
−2i

∫ n+x̂

n

eA · dl+ iφn+x̂ − iφn
)

+ exp

(
−2i

∫ n−x̂

n

eA · dl+ iφn−x̂ − iφn
)

− exp

(
−2i

∫ n+ŷ

n

eA · dl+ iφn+ŷ − iφn
)

− exp

(
−2i

∫ n−ŷ

n

eA · dl+ iφn−ŷ − iφn
)]

, (2.44b)

tee(n+ δ̂,n) = − t0 exp

(
i

∫ n+δ̂

n

eA · dl− iφn+δ̂ + iφn

)
, (2.44c)

thh(n+ δ̂,n) = − t0 exp

(
−i
∫ n+δ̂

n

eA · dl
)
, (2.44d)

teh(n+ δ̂,n) = t∗he(n,n+ δ̂)

= 1
2∆0

[
exp

(
i

∫ n+δ̂

n

eA · dl− iφn+δ̂ + iφn

)

+ exp

(
−i
∫ n+δ̂

n

eA · dl
)]
×
{
−1 if δ̂ = ±x̂,
+1 if δ̂ = ±ŷ.

(2.44e)
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Figure 2.7: Red data points: Dependence of the probability density |ψ(x, y)|2
on the distance from a vortex core along the line x = y, calculated in the
zeroth Landau level at momentum k = (π/2, π/2, π/3), for parameters ∆0 = 1,
β =

√
2, µ = 0, d0 = 502 a0. We took a weaker magnetic field than in Fig. 2.4

(which had a vortex array with lattice constant d0 = 202 a0), so that the vortices
are more widely separated and we can extract the single-vortex asymptotics
more easily. The slope of the dashed line is the analytical prediction (2.46).

2.C Quasiparticle density profile near the
vortex core

In the main text we showed that our numerical simulations reproduce the
dispersion relation expected from the analytical theory: The dispersionless
zeroth Landau level in the plane perpendicular to the applied magnetic
field, see Fig. 2.2b, and the linear dispersion along the field, see Fig. 2.3.
We also checked that the numerical result qeff ≈ ±0.73 e for the effective
charge of the quasiparticles at the Weyl point is close to the analytical
prediction:

|qeff/e| =
√

1−∆2
0/β

2 = 1/
√

2 ≈ 0.71. (2.45)

As a further test, we compare in Fig. 2.7 the dependence of the quasi-
particle density |ψ|2 on the distance δr from a vortex core. The analytical
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2.D Arbitrary angle between internal magnetization and external magnetic field

prediction from Eq. (2.13),

|ψ|2 ' δr−1+|qeff |/e = δr−1+1/
√

2, (2.46)

is in excellent agreement with the numerics.

2.D Arbitrary angle between internal
magnetization and external magnetic
field

The four-band Hamiltonian (2.17) of the Weyl semimetal has an internal
magnetization β pointing in the z-direction, parallel to the external mag-
netic field B = B0ẑ. If instead the magnetization vector β = (βx, βy, βz)
points in an arbitrary direction, the Hamiltonian becomes

H0(k) = t0
∑

α=x,y,z

[τzσα sin kαa0 + τxσ0(1− cos kαa0)]

+ τ0 β · σ − µτ0σ0. (2.47)

Numerical results for the spectrum are shown in Fig. 2.8 for a magneti-
zation at a 45◦ degree angle and at a 90◦ angle with the magnetic field.
The zeroth Landau level remains dispersionless in the x–y plane.

We note that now the Weyl cone is anisotropic in the x–y plane, but
that also does not spoil the protection of the zeroth Landau level.

2.E Tilting of the Weyl cones

To further explore the robustness of the zeroth Landau level, we consider
what happens if we break Lorentz invariance by tilting the Weyl cones.
Following Ref. 44 one distinguishes type-I from type-II Weyl cones, de-
pending on whether the equi-energy contours are closed elliptic (type-I) or
open hyperbolic (type-II). In the absence of superconductivity, it is known
that the topological protection of the zeroth Landau level persists all the
way up to the Lifshitz transition from a type-I to a type-II Weyl semi-
metal [45, 46]. Here we show that the same applies in the superconducting
vortex lattice.
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor

-X X M Y MΓ Γ -X X M Y MΓ Γ

Figure 2.8: Same as Fig. 2.1b, but for an internal magnetization β that is
rotated away from the magnetic field B in the z-direction. The Weyl points
are at K = ±(0.684, 0, 0.684) for β = (1, 0, 1) and at K = ±(π/3, 0, 0) for
β = (

√
2, 0, 0), in each case aligned along the magnetization. The (kx, ky)

momentum is varied along the path through the magnetic Brillouin zone of Fig.
2.2b, at fixed kz = Kz, so it passes through one Weyl point for β = (1, 0, 1)
and through two Weyl points for β = (

√
2, 0, 0) (green arrows). The flatness of

the Landau levels in the vortex lattice is essentially unaffected by the rotation
of the magnetization, but the energies themselves are shifted because of the
anisotropic Fermi velocity: En =

√
nE1, with E1 = (2/d0)

√
πvxvy, and vx = 1,

vy = 0.774 for β = (1, 0, 1); vx = 1, vy = 0.612 for β = (
√

2, 0, 0).

2.E.1 Hamiltonian of a type-I Weyl supserconductor

We break Lorentz-invariance (particle-hole symmetry) of the Hamiltonian
(2.4) by adding momentum dependent terms proportional to the unit
matrix,

H0(k) = vFτzk · σ + βτ0σz − µτ0σ0 − vF(η · k)τ0σ0. (2.48)

The Weyl cones are tilted in the direction of the vector η. To simplify
the equations we orient the x–y axes so that the cones are tilted in the
x–z plane, hence without loss of generality we may set ηy = 0 (allowing
for both ηx and ηz to be nonzero). The equi-energy contours are closed
elliptic (type-I Weyl cone) for |η| < 1.

The low-energy Hamiltonian, obtained by the unitary transformation
(2.5) followed by a projection on the ν = τ = ±1 subspace, is

H±(k) = vF

∑
α=x,y(kα + aα ± κmvs,α)(σα − ηασ0)

+ (β −mkz )σz ∓ κµσ0 − vFkzηzσ0. (2.49)
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2.E Tilting of the Weyl cones

-X X M Y MΓ Γ -X X M Y MΓ Γ

Figure 2.9: Same as Fig. 2.1b, but for tilted Weyl cones with η = (0.5, 0, 0.05)
(left panel) and η = (1.1, 0, 0) (right panel). The energies are shifted by E0 =
−vFηz sinK. The energy E1 of the first Landau level was calculated numerically.
In the type-I regime |η| < 1 the Landau levels remain intact. For |η| > 1 the
Weyl superconductor goes through a Lifshitz transition to type-II Weyl cones
and the Landau levels disappear.

For |kz| = K at the Weyl point, this reduces to

H±(k) = Hchiral + E±σ0, E± = ∓κµ− vFKηz, (2.50)

where Hchiral differs from Eq. (2.8) by the appearance of diagonal terms,

Hchiral = vF

(
−ηxΠx Πx − iΠy

Πx + iΠy −ηxΠx

)
. (2.51)

2.E.2 Generalized chiral symmetry protects the
zeroth Landau level

The Hamiltonian (2.51) no longer anticommutes with σz, so chiral sym-
metry is broken. However, following Refs. 45, 46, for |ηx| < 1 we can
generalize the chiral symmetry relation by means of the non-Hermitian
operator

γ = λ−1σz(σ0 − ηxσx), λ =
√

1− η2
x, (2.52)

such that
γ†Hchiral +Hchiralγ = 0, γ2 = 1. (2.53)

The right eigenvectors of γ are

|+〉 =
1√

2 + 2λ

(
1 + λ
ηx

)
,

|−〉 =
1√

2 + 2λ

(
ηx

1 + λ

)
,

(2.54)
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2 Topologically protected LL in the vortex lattice of a Weyl superconductor

with γ|±〉 = ±|±〉. The generalized chirality relation (2.53) implies that

〈+|Hchiral|+〉 = 0 = 〈−|Hchiral|−〉. (2.55)

Upon substitution of |ψ〉 = ψ+|+〉 + ψ−|−〉 the zero-mode equation
H|ψ〉 = 0 takes the form(

0 D̃
D̃† 0

)(
ψ+

ψ−

)
= 0, D̃ =

1

vFλ
〈+|Hchiral|−〉. (2.56)

The matrix elements on the diagonal vanish in view of Eq. (2.55). The
off-diagonal term D̃ equals

D̃ = λΠx − iΠy. (2.57)

This is almost of the form (2.8), except for the factor-λ rescaling of Πx.
If rescale the coordinates as x′ = x/λ, y′ = y, and the gauge potential as
A′x = λAx, A′y = Ay, we have equivalently

D̃ = Π′x − iΠ′y, Π′ = −i∇′ + eA′. (2.58)

The rescaling does not affect the existence of the zeroth Landau level, nor
its degeneracy, since the enclosed flux is unchanged:

Φ′ =

∫
dx′
∫
dy′ (∂x′A′y − ∂y′A′x)

=

∫
dx

λ

∫
dy (λ∂xAy − ∂yλAx)

=

∫
dx

∫
dy (∂xAy − ∂yAx) = Φ. (2.59)

We conclude that the zeroth Landau level remains topologically pro-
tected against scattering by the superconducting vortex lattice even if
Lorentz invariance is broken by tilting the Weyl cones — up to the Lif-
shitz transition at |η| = 1 from type-I to type-II Weyl cones10. In Fig. 2.9
we show numerical data that confirms this conclusion from the analytics.

10Because the generalized chiral symmetry of tilted Weyl cones requires η2
x + η2

y < 1,
irrespective of the tilt ηz in the z-direction, the protection of the zeroth Landau level
for nonzero ηz extends somewhat beyond the Lifshitz transition at η2

x+η2
y+η2

z = 1.
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2.E Tilting of the Weyl cones

2.E.3 Chiral dispersion along the magnetic field

To complete the calculation we examine the dispersion of the zeroth Lan-
dau level in the kz-direction, parallel to the magnetic field. We go back
to the Hamiltonian (2.49), without setting kz = K. In the basis (2.54)
the eigenvalue equation (H − E)|ψ〉 = 0 takes the form(

E2 + λE1 vFλD̃ + ηxE2
vFλD̃† + ηxE2 E2 − λE1

)(
ψ+

ψ−

)
= 0,

E1 = β −mkz , E2 = ∓κµ− vFkzηz − E. (2.60)

We seek a solution(
ψ+

ψ−

)
=

(
exp(ixηxE1/vFλ)φ+

exp(−ixηxE1/vFλ)φ−

)
(2.61)

with either φ+ ≡ 0 or φ− ≡ 0. Substitution into Eq. (2.60) gives

either φ+ ≡ 0⇒ D̃φ− = 0 and E2 = λE1,
or φ− ≡ 0⇒ D̃†φ+ = 0 and E2 = −λE1.

(2.62)

The boundary condition (2.14) on the vortex core selects one of these two
solutions, depending on the sign of the effective charge qeff .

We conclude that the zeroth Landau level has the kz-dispersion

E±(kz) = (sign qeff)(λβ − λmkz )∓ κµ− vFkzηz. (2.63)

For η = 0, λ = 1 we recover the dispersion (2.15) for untilted Weyl cones.
The Landau level remains dispersionless in the kx–ky plane for any kz.

43





3 Effect of charge
renormalization on electric
and thermo-electric
transport along the vortex
lattice of a Weyl
superconductor

3.1 Introduction

Weyl superconductors are nodal superconductors with topological protec-
tion [12, 53]: They have nodal points of vanishing excitation gap, just like
d -wave superconductors [54], but in contrast to those the gapless states
are not restricted to high-symmetry points in the Brillouin zone and can
appear for conventional s-wave pairing. The nodal points (Weyl points)
at ±K in a Weyl superconductor are protected by the conservation of a
topological invariant: the Berry flux of ±2π at Weyl points of opposite
chirality [55, 56].

The distinction between symmetry and topology has a major conse-
quence for the stability of Landau levels in a magnetic field. While in
a d -wave superconductor the strong scattering of nodal fermions by vor-
tices in the order parameter prevents the formation of Landau levels [1],
in a Weyl superconductor an index theorem for chiral fermions protects
the zeroth Landau level from broadening [57]. The appearance of chiral
Landau levels in a superconducting vortex lattice produces a quantized
thermal conductance parallel to the magnetic field, in units of 1/2 times
the thermal quantum per h/2e vortex [57]. The factor of 1/2 reminds
us that Bogoliubov quasiparticles are Majorana fermions, “half a Dirac
fermion” [58, 59].

In this chapter we turn from thermal transport to electrical transport,
by studying the geometry of Fig. 3.1 and addressing the question “What
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Figure 3.1: a) Vortex lattice in a Weyl superconductor sandwiched between
metal electrodes; b) Circuit to measure the electrical transport along the vor-
tex lines. The nonlocal conductance G12 = dI2/dV1 gives the current carried
through the vortex lattice by nonequilibrium Weyl fermions in a chiral Landau
level.

is the charge transported along the vortices in a chiral Landau level?” It
is known [48] that the charge of Weyl fermions in a superconductor (pair
potential ∆0) is reduced by a factor κ = K(∆0)/K(0). We find a direct
manifestation of this charge renormalization in the electrical conductance,
which is quantized at 1

2 (eκ)2/h per vortex. Because the charge renormal-
ization is energy dependent, a coupling between thermal and electrical
transport appears even without any energy-dependent scattering mecha-
nism — resulting in a nonzero thermo-electric effect in a chiral Landau
level.

In the next section 3.2 we summarize the effective low-energy theory of
the superconducting vortex lattice [57], on which we base our scattering
theory in Sec. 3.3, followed by a calculation of electrical and thermo-
electric transport properties in Sec. 3.4. These analytical results are com-
pared with numerical simulations of a tight-binding model in Sec. 3.5. We
conclude in Sec. 3.6.

3.2 Landau level Hamiltonian in the vortex
lattice

We summarize the findings of Ref. 57 for the Landau level Hamiltonian
of Weyl fermions in a superconducting vortex lattice, which we will need
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Figure 3.2: Left panel: The red solid curves show the dispersion of Landau
levels in the kx–ky plane perpendicular to the magnetic field (energy E nor-
malized by the energy E1 of the first Landau level). The black dotted curves
show the dispersion in zero magnetic field, with a Weyl cone at the Γ point of
the magnetic Brillouin zone. Right panel: Particle density profile in the zeroth
Landau level, in the x–y plane perpendicular to the magnetic field, for a wave
vector at the Weyl point (k = Kẑ). The magnetic unit cell is indicated by
a white dashed rectangle. Both panels are calculated numerically for a Weyl
superconductor with a triangular vortex lattice. The vortex cores are located at
the bright points in the density profile. Similar plots for a square vortex lattice
are in Ref. 57.

to calculate the transport properties.

3.2.1 Dispersion relation

A Landau level is a dispersionless flat band in the plane perpendicular to
the magnetic field. The lowest (zeroth) Landau level is protected by chiral
symmetry from scattering by the vortices, see Fig. 3.2. This is the Landau
level on which we focus our analysis. It is a celebrated result of Nielsen
and Ninomiya [55] that Weyl fermions in the zeroth Landau level have a
definite chirality χ = ±1, defined as the sign of the velocity vz = ∂E/∂kz,
parallel or antiparallel to B. To account for the electron-hole degree of
freedom the number of bands is doubled for each chirality, so that we have
four bands in total. Electron-like and hole-like bands are related related
by the charge-conjugation symmetry relation Eχ(kz) = −Eχ(−kz).

The effect of a superconducting vortex lattice on this four-band disper-
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Figure 3.3: Dispersion relation of the zeroth Landau level in a superconducting
vortex lattice, plotted from Eq. (3.1) for µ = 0, ∆0 = 0.5, β = 1. Only
the dependence on the momentum kz along the magnetic field B is shown,
the dispersion is flat in the x–y plane (see Fig. 3.2). The four branches are
distinguished by the sign of the chirality (solid or dashed) and by the sign of
the electric charge (red or blue). The zero-field Weyl points at kz = ±K are
indicated by arrows. Each branch has a degeneracy NLandau = eΦ/h set by the
enclosed flux Φ = BW 2.

sion is given by [57]

Eχ(kz) = −(sgn kz)χM(kz)− χµκ(kz),

M(kz) = β −
√

∆2
0 + k2

z , κ(kz) =
d

dkz
M(kz),

(3.1)

plotted in Fig. 3.3. (We have set ~ and the Fermi velocity vF equal to
unity, so κ is dimensionless.) The magnitude of the superconducting pair
potential outside of the vortex cores is denoted by ∆0 and β is an internal
magnetization along the z-direction that breaks time-reversal symmetry
even in the absence of any external magnetic field. In Eq. (3.1) we have
assumed that β is parallel to B, but we will later relax this assumption
(see Sec. 3.5.3).

Provided that ∆0 < β there is a pair of Landau levels for each chirality,
located in the magnetic Brillouin zone near the Weyl points at kz = K
and kz = −K, with [12]

K(∆0) =
√
β2 −∆2

0. (3.2)
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3.2 Landau level Hamiltonian in the vortex lattice

The charge expectation value

Qχ = −e∂Eχ
∂µ

= eχκ(kz) = − eχkz√
∆2

0 + k2
z

(3.3)

for a given chirality has the opposite sign at the two Weyl points. (We
say that the chiral Landau levels near kz = ±K are charge-conjugate.)
When kz = ±K is at the Weyl point, the charge renormalization factor
equals ∓κ0, with

κ0 = K(∆0)/K(0) =
√

1−∆2
0/β

2, (3.4)

while κ(kz) varies linearly with energy away from the Weyl point [48].

3.2.2 Effective Hamiltonian

The dispersion (3.1) follows from the effective low-energy Hamiltonian
[57]

H = U


H+ 0 0 0
0 · · 0
0 · · 0
0 0 0 H−

U†, (3.5a)

Hχ = (kx + eAχ,x)σx + (ky + eAχ,y)σy

+Mσz − χµκσ0, (3.5b)

U = exp( 1
2 iθνyτzσz), θ = arccosκ. (3.5c)

The 2×2 Pauli matrices να, τα, and σα (with α = 0 the corresponding unit
matrix) act on, respectively, the electron-hole, orbital, and spin degrees of
freedom. The full Hamiltonian H is an 8×8 matrix and the 2×2 matrices
H± act on the σ index in the ν = τ = ±1 sector.

The central block in Eq. (3.5a) indicated by dots refers to higher-lying
bands that are approximately decoupled from the low-energy bands. Vir-
tual transitions to these higher bands contribute order µ2 terms that re-
move the discontinuity in the derivative ∂E/∂kz at kz = 0 for µ 6= 0. No
such decoupling approximations are made in the numerics of Sec. 3.5.

The gauge field Aχ(r), dependent on the position r = (x, y) in the x–y
plane, defines the effective magnetic field Bχ = ∇×Aχ in the z-direction
felt by the Weyl fermions in the lattice of vortices at positions Rn,

Bχ = (1 + χκ)Φ0

∑
n

δ(r −Rn)− χκB. (3.6)
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

There are Nvortex = BW 2/Φ0 vortices of flux Φ0 = h/2e in an area
W 2 perpendicular to the applied magnetic field B, so the spatial average∫
Bχdr = Φ equals the total enclosed flux Φ = BW 2 independent of κ

or of the lattice of vortices. (In the numerics that follows we will use a
square lattice for definiteness.)

3.2.3 Zeroth Landau level wave functions

As shown in Ref. 57, the Aharonov-Casher index theorem [16, 49, 50], to-
gether with the requirement that the wave functions are square-integrable
at a vortex core, implies that the zeroth Landau level eigenstates ψχ of
Hχ, which are rank-two spinors, are also eigenstates |±〉σ of σz,

σzψχ = (sgnQχ)ψχ. (3.7)

The eigenvalue is determined by the sign of the effective quasiparticle
charge (3.3).

It follows that the eigenstates Ψχ of the full Hamiltonian H, which are
rank-eight spinors, have the form

Ψχ = eikzzfχ(x, y)e
1
2 iθνyτzσz |sgnχ〉ν |sgnχ〉τ |sgnQχ〉σ

= eikzzfχ(x, y)
[

cos(θ/2)|sgnχ〉ν |sgnχ〉τ |sgnQχ〉σ
− sin(θ/2)(sgnQχ)|−sgnχ〉ν |sgnχ〉τ |sgnQχ〉σ

]
. (3.8)

The spatial density profile fχ(x, y) is peaked at the vortex cores, with
a power law decay |fχ|2 ∝ δr−1+|Qχ|/e at a distance δr from the core
[57]. The renormalization of the quasiparticle charge does not affect the
degeneracy of the zeroth Landau level: each of the four chiral modes in
Fig. 3.3 has a degeneracy

NLandau = eΦ/h (3.9)

set by the bare charge e.
Although the spatial density profile of these chiral modes is nonuniform,

the wave functions extend over the entire x–y plane — they are not expo-
nentially confined to the vortex cores (see Fig. 3.2). This is a qualitative
difference between the zeroth Landau level of a Weyl superconductor and
zero-modes bound to vortices in topological superconductors [14, 60].

3.3 Transmission through the NSN junction

Refering to the geometry of Fig. 3.1, we seek the transmission matrix tNSN

for propagating modes of electrons and holes transmitted from the first
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3.3 Transmission through the NSN junction

metal contact N1 in the region z < 0, through the Weyl superconductor
in the region 0 < z < L, into the second metal contact N2 in the region
z > L.

3.3.1 Renormalized charge transfer

We start by examining a single NS interface, to study how a chiral mode in
the superconductor injects a renormalized charge into the normal metal.

On the superconducting side z < L of the NS interface at z = L the
incident modes have positive chirality χ = +1. There is a mode ΨS with
perpendicular momentum kz near K and a mode Ψ′S with k′z near −K.
We do not specify the transverse momentum k‖ = (kx, ky), which gives
each mode a degeneracy of NLandau = eΦ/h, see Eq. (3.9).

According to Eq. (3.8), the spinor structure of the chiral modes is

ΨS ∝ cos(θ/2)|++−〉ντσ + sin(θ/2)|−+−〉ντσ,
Ψ′S ∝ cos(θ′/2)|+++〉ντσ − sin(θ′/2)|−++〉ντσ.

(3.10)

We have abbreviated |±±±〉ντσ = |±〉ν |±〉τ |±〉σ and denote θ = θ(kz),
θ′ = θ(k′z).

For the normal metal we take the free-electron Hamiltonian

HN =
1

2m
(k2 − k2

F)νzτ0σ0, (3.11)

isotropic in the spin and valley degrees of freedom, in the high Fermi-
momentum limit kFlm →∞ when the effect of the magnetic field on the
spectrum may be neglected (lm =

√
~/eB is the magnetic length).

Because of the large potential step experienced upon traversing the
NS interface, the perpendicular momentum kz is boosted to +kF for the
electron component of the state and to −kF for the hole component. A
state in N moving away from the NS interface of the form

ΨN ∝ eikF(z−L) cos(θ/2)|++−〉ντσ
+ e−ikF(z−L) sin(θ/2)|−+−〉ντσ (3.12a)

can be matched to the incident state ΨS in S, while the state

Ψ′N ∝ eikF(z−L) cos(θ′/2)|+++〉ντσ
− e−ikF(z−L) sin(θ′/2)|−++〉ντσ (3.12b)

can be matched to Ψ′S .
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

The charge transferred through the interface when ΨS 7→ ΨN equals the
renormalized charge from Eq. (3.3),

QN = 〈ΨN|eνz|ΨN〉 = e cos θ = eκ =
−ekz√
∆2

0 + k2
z

, (3.13)

dependent on the perpendicular momentum kz in S, before the boost to
kF in N. When kz = K, this gives

QN = −e
√

1−∆2
0/β

2 = −κ0e ≡ −Qeff . (3.14)

This is for the transmission ΨS 7→ ΨN . The other transmission Ψ′S 7→ Ψ′N
transfers for k′z = −K a charge Q′N = +Qeff .

Similarly, at the opposite NS interface z = 0 the chiral Landau level
modes in S moving away from the interface are matched to incoming states
in N of the form

ΦN ∝ eikFz cos(θ/2)|++−〉ντσ
+ e−ikFz sin(θ/2)|−+−〉ντσ, (3.15a)

Φ′N ∝ eikFz cos(θ′/2)|+++〉ντσ
− e−ikFz sin(θ′/2)|−++〉ντσ. (3.15b)

3.3.2 Transmission matrix

At a given energy E relative to the Fermi level the perpendicular momenta
kz and k′z of the chiral Landau levels in S moving in the +z direction are
determined by the dispersion relation (3.1) with χ = +1. For µ = 0 the
expressions are simple,

kz = K + (β/K)E, k′z = −K + (β/K)E. (3.16)

For any µ, particle-hole symmetry ensures that

kz(E) = −k′z(−E). (3.17)

The Landau level ΨS propagating from z = 0 to z = L accumulates a
phase kzL, and similarly Ψ′S accumulates a phase k′zL. The full transmis-
sion matrix of the NSN junction at energy E can thus be written as

tNSN(E) = eikzL|ΨN〉〈ΦN|+ eik
′
zL|Ψ′N〉〈Φ′N|, (3.18)

with kz and k′z determined by Eq. (3.16).
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3.4 Transport properties

We can rewrite Eq. (3.18) in the basis of propagating electron modes
in the normal metal. In the region z < 0 one has the basis states

|Ψ↑〉 =

(
|e ↑〉
|h ↑〉

)
, |Ψ↓〉 =

(
|e ↓〉
|h ↓〉

)
, (3.19a)

|e ↑〉 = eikFz|+++〉ντσ, |h ↑〉 = e−ikFz|−++〉ντσ,
|e ↓〉 = eikFz|++−〉ντσ, |h ↓〉 = e−ikFz|−+−〉ντσ, (3.19b)

and similarly for z > L with kFz replaced by kF(z − L).
The transmission matrix is block diagonal in the spin degree of freedom,

tNSN(E) =

(
t↑(E) 0

0 t↓(E)

)
, (3.20a)

t↑ = eik
′
zL

(
cos2(θ′/2) − cos(θ′/2) sin(θ′/2)

− cos(θ′/2) sin(θ′/2) sin2(θ′/2)

)
,

t↓ = eikzL
(

cos2(θ/2) cos(θ/2) sin(θ/2)
cos(θ/2) sin(θ/2) sin2(θ/2)

)
. (3.20b)

The 2 × 2 matrix t↑ acts on the electron-hole spinor |Ψ↑〉 and t↓ acts
on |Ψ↓〉. We may write this more compactly as

t↑ = 1
2e
ik′zL

(
ν0 + νze

−iθ′νy
)
,

t↓ = 1
2e
ikzL

(
ν0 + νze

iθνy
)
.

(3.21)

These are each rank-one matrices, one eigenvalue equals 0 and the other
equals 1 in absolute value. The unit transmission eigenvalue is NLandau-
fold degenerate in the transverse momentum k‖.

At the Fermi level E = 0 the particle-hole symmetry relation (3.17)
implies k′z = −kz, θ′ = π − θ, hence

tNSN(0) = 1
2e
−ikzLσz

(
ν0 − νzσzeiθνy

)
. (3.22)

One verifies that
tNSN(0) = νyσyt

∗
NSN(0)νyσy, (3.23)

as required by particle-hole symmetry.

3.4 Transport properties

The transmission matrix allows us to calculate the transport properties of
the NSN junction, under the assumption that there is no backscattering of
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

the chiral modes in the Weyl superconductor. To simplify the notation, we
write t for the Fermi-level transmission matrix tNSN(0). The submatrices
of electron and hole components are denoted by tee, thh, the, and teh. We
define the combinations

T± = t†eetee ± t†hethe, (3.24a)

T+ = 1
2 (ν0 + νz)t

†t, T− = 1
2 (ν0 + νz)t

†νzt. (3.24b)

3.4.1 Thermal conductance

As a check, we first recover the result of Ref. 57 for the quantization of
the thermal conductance.

The thermal conductance Gthermal = J12/δT gives the heat current
J12 transported at temperature T0 from contact N1 to N2 via the super-
conductor, in response to a small temperature difference δT between the
contacts. It follows from the total transmitted quasiparticle current,

Gthermal = 1
2g0NLandau Tr t†t = g0

eΦ

h
, (3.25)

withNLandau = eΦ/h the Landau level degeneracy and g0 = 1
3 (πkB)2(T0/h)

the thermal conductance quantum. The factor 1/2 in the first equation
appears because the quasiparticles in the Weyl superconductor are Majo-
rana fermions. It is cancelled by the factor of two from Tr tt† = 2, in view
of Eq. (3.22).

3.4.2 Electrical conductance

Referring to the electrical circuit of Fig. 3.1b, we consider the electrical
conductance G12 = dI2/dV1, given by

G12 =
e2

h
NLandau Tr T−

=
e2

h
NLandau

1
2 Tr (ν0 + νz)t

†νzt. (3.26)

In the linear response limit V1 → 0 we substitute t from Eq. (3.22), which
gives

G12(0) = cos2 θ
e2

h
NLandau =

(eκ)2

h

eΦ

h
. (3.27)

The conductance quantum e2/h is renormalized by the effective charge
e 7→ eκ. At µ = 0, when kz = K, the renormalization factor is κ2

0 =
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3.4 Transport properties

(Qeff/e)
2 = 1 − ∆2

0/β
2 from Eq. (3.14). Note that the conductance per

h/2e vortex is 1
2 (eκ0)2/h, with an additional factor 1/2 to signal the

Majorana nature of the quasiparticles.

At finite E = eV1 we must use the energy-dependent transmission ma-
trix (3.20), which gives

G12(E) = 1
2

e2

h
NLandau

(
cos θ + cos θ′ + cos2 θ + cos2 θ′

)
. (3.28)

Substituting Eq. (3.13) for cos θ and cos θ′ at kz and k′z, given as a function
of E by Eq. (3.16), we find

G12(E) = G12(0)

(
1− ∆2

0E

(β2 −∆2
0)3/2

+O(E2)

)
. (3.29)

The energy dependence of the differential conductance comes entirely
from the energy dependence of the effective charge: At E = 0 the electron-
like and hole-like chiral Landau levels have precisely opposite effective
charge ±Qeff , but for E 6= 0 the effective charges differ in absolute value
by an amount ∝ dkz/dE.

3.4.3 Shot noise

At temperatures small compared to the applied voltage V2, the time de-
pendent fluctuations in the current I2 are due to shot noise. The formula
for the shot noise power is [61]

P12 =
e3V1

h
Tr (T+ − T 2

−). (3.30)

This can again be written in terms of the Pauli matrix τz and evaluated
using Eq. (3.22),

P12 =
e3V1

h

(
1− 1

2κ
2 − 1

2κ
4
)
. (3.31)

The shot noise vanishes when κ → 1, it is fully due to the charge renor-
malization.

The Fano factor F , the dimensionless ratio of shot noise power and
average current, results as

F =
P12

eV1G12
=

1

κ2
− 1

2 (1 + κ2). (3.32)
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

3.4.4 Thermo-electricity

Because of the energy dependence of the effective charge, a temperature
difference δT between contacts 1 and 2 will produce an electrical current
I12 = α12δT in addition to a heat current. The thermo-electric coefficient
α12 is given by [62]

α12 =
π2

3e
k2

BT0 lim
E→0

d

dE
G12(E). (3.33)

Substitution of Eq. (3.29) gives

α12 = −π
2

3e
k2

BT0G12(0)
∆2

0

(β2 −∆2
0)3/2

= −g0eκ
2
0NLandau

∆2
0

(β2 −∆2
0)3/2

= −g0eNLandau
(∆0/β)2

(β2 −∆2
0)1/2

. (3.34)

3.5 Numerical simulations

To test these analytical results, we have carried out numerical calculations
in a tight-binding model of the Weyl superconductor with a vortex lattice.

3.5.1 Tight-binding Hamiltonian

The Bogoliubov-de Gennes Hamiltonian HS in the superconducting region
0 < z < L is

HS =

(
H0(k + eA) ∆

∆∗ −σyH∗0 (−k + eA)σy

)
, (3.35a)

H0(k) = t0
∑

α=x,y,z

[τzσα sin kαa0 + τxσ0(1− cos kαa0)]

+ βτ0σz − µτ0σ0. (3.35b)

The cubic lattice constant of the tight-binding model is a0 and t0 is the
nearest-neigbor hopping energy. In what follows we will set a0 and t0
both equal to unity.

In the strong-type-II limit the magnetic field B = B0ẑ penetrates the
superconductor uniformly, with vector potential A = (−B0y, 0, 0). The
absolute value ∆0 of the pair potential ∆ = ∆0e

iφ can also be taken
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3.5 Numerical simulations

Figure 3.4: Data points: Electrical conductance (top panel) and Fano factor
(bottom panel) in the superconducting vortex lattice (lattice constant d0), as
a function of the pair potential ∆0 at fixed magnetization β = 1, calculated
from the tight-binding model (lattice constant a0) for different lattice constant
ratios N0 = d0/a0. The black curves are the analytical predictions from the
charge renormalization factor κ, both in the approximation of a linearized dis-
persion (black dashed curve, κ = κ0 =

√
1−∆2

0/β
2) and for the full nonlinear

dispersion (black solid).

uniform, assuming that the size ξ0 = ~vF/∆0 of the vortex core is small
compared to the magnetic length lm =

√
~/eB0. For the analytical cal-

culations this is the only requirement. For the numerics we also take ξ0
small compared to the tight-binding discretization length a0, and then
ensure that a vortex core (where the phase field is undefined) does not
coincide with a lattice point. This implies that a0 is large compared to
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3 Effect of charge renormalization on electric and thermo-electric transport. . .

Figure 3.5: Dependence on ∆0 for β = 0.5 of the thermo-electric coefficient
(3.33), calculated from the infinite-system analytics (black solid curve) or ob-
tained from finite-size numerics (colored data points).

the atomic lattice constant (which itself must be much smaller than ξ0).
The vortices are arranged on a square lattice in the x–y plane, lattice

constant d0 = N0a0, with two h/2e vortices in a unit cell. The number

N0 = (a2
0eB0/h)−1/2 (3.36)

is set at an integer value. The phase φ(r) winds around the vortex cores
Rn according to

∇×∇φ = 2πẑ
∑
nδ(r −Rn). (3.37)

In the normal metal leads z < 0, z > L we have ∆0 ≡ 0 and a large
chemical potential µN, so only modes with a large longitudinal momen-
tum kz couple to the superconductor. We effectuate the µN → ∞ limit
by removing the transverse x, y couplings in the leads, resulting in the
Hamiltonian1

HN = νzτzσz sin kz + νzτxσ0(1− cos kz). (3.38)

The gauge-invariant discretization of the Hamiltonian (3.35) in the mag-
netic Brillouin zone is detailed in Ref. 57. The scattering matrix is calcu-
lated using the Kwant code [52].

1 We have checked that the continuum limit of the tight-binding Hamiltonian of Sec.
3.5.1 gives the same analytical results for the transport coefficients as calculated in
Sec. 3.4, see Appendix A.
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3.5 Numerical simulations

Figure 3.6: Same as Fig. 3.4, but for a magnetization β that is perpendicular
rather than parallel to the magnetic field B.

3.5.2 Results

Results for the conductance and shot noise are shown in Fig. 3.4, as a
function of ∆0 for β = 1, µ = 0. The analytical predictions (3.27) for the
conductance and (3.32) for the Fano factor are given by the black curves.
As a check, for these curves we have also calculated the charge renormal-
ization factor κ from the full sinusoidal dispersion, without making the
small-k expansion of Eq. (3.1) — the difference with κ0 =

√
1−∆2

0/β
2

is small.

To assess finite-size effects in the numerics we show results for different
values of the ratio N0 = d0/a0 of magnetic unit cell and tight-binding
unit cell. As expected, the agreement between numerics and analytics
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improves with increasing N0, for ∆0/β not close to unity. (At ∆0 = β the
spectrum becomes gapless and the low-energy analytics breaks down.)

These are results at the Fermi level, E = 0. The energy dependence
of the conductance determines the thermo-electric coefficient (3.33). We
show numerical results for α12 ∝ dG12/dE in Fig. 3.5, for a smaller β = 0.5
to reduce the oscillations that disappear only slowly with increasing N0.

3.5.3 Test for isotropy of the charge renormalization

So far we assumed that the internal magnetization β is parallel to the
external magnetic field in the z-direction. This assumption is needed
for our low-energy analytics, but numerically we can take an arbitrary
angle between the magnetization β = (βx, βy, βz) and the magnetic field,
by replacing the term βτ0σz in the Hamiltonian (3.35b) with τ0 β · σ.
Results for β = (β, 0, 0), so for a magnetization perpendicular to the
magnetic field, are shown in Fig. 3.6. There is no qualitative difference
with Fig. 3.4 for the parallel configuration, the quantitative difference is
that the finite-size effects are smaller.

3.6 Conclusion

In summary, we have shown how the charge renormalization e 7→ κe of
Weyl fermions in a superconducting vortex lattice modifies the electrical
and thermo-electrical transport properties.

In the electrical conductance, the current per vortex is reduced by a
factor 1

2κ
2 — a prefactor 1/2 because of the Majorana nature of the

quasiparticles and a factor κ2 because of the effective charge. At the Weyl
point κ→ κ0 =

√
1−∆2

0/β
2 depends on the ratio of the superconducting

gap ∆0 and the separation 2β of the Weyl points of opposite chirality.
The charge-squared renormalization of the electrical conductance is a

simple result, but perhaps not what one might have guessed by analogy
with the fractional quantum Hall effect, where a 1/3 fractional charge
reduces the conductance by 1/3 rather than 1/9. The key difference is
that here the quasiparticles are not in an eigenstate of charge; the charge
renormalization is due to quantum fluctuations, which give uncorrelated
reductions by κ× κ at entrance and exit. These quantum fluctuations of
the charge are also responsible for the large shot noise power that we have
found, with a diverging Fano factor (3.32) in the limit κ→ 0.

The energy dependence of the charge renormalization implies that charge
transport parallel to the magnetic field B goes hand-in-hand with heat
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transport. As a result, a nonzero thermo-electric coefficient α12 along
the field lines appears in a chiral Landau level — something that would
not be possible in the normal state: The Landau level contributes an
energy-independent number of propagating modes along B (one mode per
flux quantum) and the chirality suppresses backscattering, so the energy
derivative in Eq. (3.33) would vanish in the normal state.

There is much recent interest in thermo-electricity of Weyl fermions in
a Landau level [63–66], but that refers to currents perpendicular to B.
Our findings show that charge renormalization in a Weyl superconductor
provides a mechanism for a nonzero effect parallel to the field lines.

In our calculations we have assumed a clean system, without impu-
rity scattering. However, we expect the transport properties to be robust
against non-magnetic disorder, which in the effective low-energy Hamilto-
nian (3.5) would enter as a term proportional to σz that does not couple
Landau levels of opposite chirality.
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Appendix

3.A Calculation of transport properties from
the continuum limit of the tight-binding
model

In the tight-binding model of Sec. 3.5.1 the wave matching at the normal-
superconductor (NS) interface is implemented by a nearest-neighbor cou-
pling on a square lattice of the Hamiltonians (3.35) in S to (3.38) in N.
Microscopically this results in different matching conditions on the wave
function than the matching conditions (3.12) from the analytical treat-
ment of Sec. 3.3. In this Appendix we check that the continuum limit
of the tight-binding model still gives the same results for the transport
properties as obtained in Sec. 3.4 from the main text. For simplicity, we
set µ = 0 and restrict our considerations to E = 0.

3.A.1 Matching condition

The linearized Hamiltonian for the normal metal reads

HN = νzτzσzkz (3.39)

and for the superconductor it reads

HS =

(
τzσ · (k − eA) + βσz ∆0e

iφ

∆0e
−iφ −τzσ · (k + eA) + βσz

)
. (3.40)

The particle current operator is the same for both the normal metal and
the superconductor,

Jp = νzτzσz , (3.41)

therefore, at the NS interfaces the matching condition

Ψ(z = 0−) = Ψ(z = 0+) , Ψ(z = L+ 0−) = Ψ(z = L+ 0+), (3.42)

will respect the particle current conservation. This matching condition
corresponds to the continuum limit of the tight-binding model of the in-
terface.
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As done in Sec. 3.3.1, we start by examining a single NS interface at
z = L, with a superconductor at z < L and a normal metal at z > L. In
contrast to the situation described in the main text, the incident modes
in the superconductor from Eq. (3.10),

ΨS ∝ cos(θ/2)|++−〉ντσ + sin(θ/2)|−+−〉ντσ,
Ψ′S ∝ cos(θ′/2)|+++〉ντσ − sin(θ′/2)|−++〉ντσ.

(3.43)

can no longer be continuously matched to an outgoing state in the normal
lead

ΨN ∈ span(|+++〉ντσ, |−+−〉ντσ, |−−+〉ντσ, |+−−〉ντσ) . (3.44)

To satisfy the matching condition (3.42), an evanescent wave is excited
in the superconductor. (There are no evanescent modes in the normal
metal.) Because all the incident modes reside in the τ = +1 sector and
different τ sectors are decoupled, in what follows we will focus on τ = +1
sector, and omit the τ component of the spinor.

3.A.2 Evanescent modes

The evanescent modes are the eigenstates of the effective low energy
Hamiltonian (3.5a) with Im(kz) < 0. In this section we will show how
to construct them.

We first investigate the spectrum of H+ for kz in the vicinity of −K:
kz = −K + δkz, M(−K + δkz) = κ(−K)δkz +O(δk2

z), κ(−K) ≡ κ > 0,
θ′ = θ(−K):

H+ =

(
κδkz D
D† −κδkz

)
, D = −i∂x − ∂y + eA+,x − ieA+,y. (3.45)

The states at zero energy satisfy

H+ψ = 0 . (3.46)

Acting with H+ from the left on both sides of the equation yields

H2
+ψ = 0 , H2

+ =

(
(κδkz)

2 +DD† 0
0 (κδkz)

2 +D†D

)
, (3.47)

therefore the two components of the state ψ = (ψ1, ψ2)T must be be eigen-
states of DD† and D†D respectively, with the same eigenvalue. Suppose
we can find the eigenstates of D†D:

D†Dφn = εnφn , εn > 0 , n = 1, 2 . . . (3.48)
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Note that εn = 0 is not allowed as shown in Ref. 57, and εn ≥ 0 because
they are the eigenvalues of a square of a Hermitian operator. The operator
DD† has one zero-mode: ψ0, D†ψ0 = 0. The remainder of the spectrum
of DD† can be obtained by acting with operator D on wavefunctions φn,

DD†(Dφn) = εnDφn . (3.49)

This means that the sought wavefunction can be written as

ψ =

(
αDφn
βφn

)
or ψ =

(
ψ0

0

)
. (3.50)

The second possibility corresponds to the propagating zeroth Landau
level. Therefore, we will now focus on the first possibility. Substitut-
ing the wavefunction of this form into eigenvalue equation (3.46) yields(

κδkz D
D† −κδkz

)(
αDφn
βφn

)
= 0 , (3.51)

which gives us
κδkz = ±i√εn , β = ∓iα√εn. (3.52)

We choose the lower sign in the solution in order to satisfy the condition
Im(kz) < 0. With this we can obtain the evanescent modes of the full
Hamiltonian H,

Ψ = e(−iK+
√
εn)ze

1
2 iθ
′νyσz |+〉ν

(
Dφn
i
√
εnφn

)
σ

=


Dφn cos θ

′

2

i
√
εnφn cos θ

′

2

−Dφn sin θ′

2

i
√
εnφn sin θ′

2

e(−iK+
√
εn)z , (3.53a)

where the spinor on the right hand side is written in the basis |++〉νσ,
|+−〉νσ, |−+〉νσ, |−−〉νσ. The evanescent modes corresponding to kz
around +K can be obtained by acting with charge conjugation operator
on Ψ,

Ψ′ = νyσyKΨ =


i
√
εnφ
∗
n sin θ′

2

−D∗φ∗n sin θ′

2

−i√εnφ∗n cos θ
′

2

−D∗φ∗n cos θ
′

2

e(iK+
√
εn)z . (3.53b)
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We can also obtain the two chiral Landau levels

Ψ′S = e−iKze
1
2 iθ
′νyσz |+〉ν

(
ψ0

0

)
=


ψ0 cos θ

′

2
0

−ψ0 sin θ′

2
0

e−iKz, (3.54a)

ΨS = νyσyKΨS =


0

ψ0 sin θ′

2
0

ψ0 cos θ
′

2

eiKz, (3.54b)

which correspond to states in Eq. (3.43). From now on we will drop the
prime at θ′ and define θ = θ(−K).

3.A.3 Transmitted wave

We will now consider an incoming wave which is Ψ′S – the chiral Landau
level at zero energy with momentum kz = −K, cf. Eq. (3.54a). The
solution for ΨS can be obtained using particle-hole symmetry. We want
to find a superposition of evanescent modes Eq. (3.53) such that its profile
at the interface z = L,

Ψeva =
∑
n

αn


Dφn cos θ2
i
√
εnφn cos θ2
−Dφn sin θ

2

i
√
εnφn sin θ

2

+ α′n


i
√
εnφ
∗
n sin θ

2

−D∗φ∗n sin θ
2

−i√εnφ∗n cos θ2
−D∗φ∗n cos θ2

 , (3.55)

will satisfy the boundary condition

Ψ′S + Ψeva = Ψ′N. (3.56)

Writing it down explicitly we get
ψ0 cos θ2

0
−ψ0 sin θ

2
0

+
∑
n

αn


Dφn cos θ2
i
√
εnφn cos θ2
−Dφn sin θ

2

i
√
εnφn sin θ

2

+α′n


i
√
εnφ
∗
n sin θ

2

−D∗φ∗n sin θ
2

−i√εnφ∗n cos θ2
−D∗φ∗n cos θ2

 =


g1

0
0
g2

 ,

(3.57)
where g1, g2 are some functions of r = (x, y). If we project both sided of
the equation on the second and third component of the spinor, we obtain

0 =
∑
n

αni
√
εnφn cos θ2 − α′nD∗φ∗n sin θ

2 ,

ψ0 sin θ
2 =

∑
n

−αnDφn sin θ
2 − α′ni

√
εnφ
∗
n cos θ2 ,

(3.58)
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or equivalently

∑
n

αni
√
εnφn =

∑
n

α′nD
∗φ∗n sin θ

2/ cos θ2 ,∑
n

αnDφn =
∑
n

−α′ni
√
εnφ
∗
n cos θ2/ sin θ

2 − ψ0 .
(3.59)

Substituting this back into Eq. (3.57) and projecting it on the first and
fourth component we get

(
g1

g2

)
=
∑
n

αn

(
Dφn cos θ2
i
√
εnφn sin θ

2

)
+ α′n

(
i
√
εnφ
∗
n sin θ

2

−D∗φ∗n cos θ2

)
+

(
ψ0 cos θ2

0

)
=
∑
n

α′n

(
−i√εnφ∗n cos2 θ

2/ sin θ
2

D∗φ∗n sin2 θ
2/ cos θ2

)
+ α′n

(
i
√
εnφ
∗
n sin θ

2

−D∗φ∗n cos θ2

)
+

(
−ψ0 cos θ2

0

)
+

(
ψ0 cos θ2

0

)
=
∑
n

α′n

(
i
√
εnφ
∗
n(sin θ

2 − cos2 θ
2/ sin θ

2 )
−D∗φ∗n(cos θ2 − sin2 θ

2/ cos θ2 )

)
=
∑
n

α′n

(
−i√εnφ∗nκ/ sin θ

2

−D∗φ∗nκ/ cos θ2

)
, (3.60)

therefore, the transmitted wave has the form

Ψ′N =
∑
n

α′n


−i√εnφ∗nκ/ sin θ

2
0
0

−D∗φ∗nκ/ cos θ2

. (3.61)
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3.A.4 Charge transfer

Since there is no reflection, we normalize the outgoing wave such that the
outgoing particle current is 1:

〈ΨN|Jp|ΨN〉 =
∑
nm

α′∗n


−i√εnφ∗nκ/ sin θ

2
0
0

−D∗φ∗nκ/ cos θ2


†

α′m


−i√εmφ∗mκ/ sin θ

2
0
0

−D∗φ∗mκ/ cos θ2


=
∑
nm

α′∗n α
′
m[
√
εn
√
εm(φ∗n)†φ∗mκ/ sin θ

2κ/ sin θ
2

+ (φ∗n)†(D∗)†D∗φ∗mκ/ cos θ2κ/ cos θ2 ]

=
∑
n

|α′n|2εn[κ2/ sin2 θ
2 + κ2/ cos2 θ

2 ]

= (κ2/ sin2 θ
2 + κ2/ cos2 θ

2 )
∑
n

|α′n|2εn
!
= 1 . (3.62)

Albeit coefficients α′n cannot be determined in a closed form, the in-
formation we obtained in Eqs. (3.61) and (3.62) is sufficient to calculate
the transport properties. In particular, the transmitted electric charge is
given by

〈Ψ′N|eνz|Ψ′N〉 = e
∑
n

|α′n|2εn[κ2/ sin2 θ
2 − κ2/ cos2 θ

2 ]

= e
κ2/ sin2 θ

2 − κ2/ cos2 θ
2

κ2/ sin2 θ
2 + κ2/ cos2 θ

2

= e
1/ sin2 θ

2 − 1/ cos2 θ
2

1/ sin2 θ
2 + 1/ cos2 θ

2

= cos2 θ/2− sin2 θ/2 = eκ = Qeff ,

(3.63)

which is the same result as Q′N obtained in the main text in Eq. (3.14).
The transmitted wave for the incident mode ΨS is ΨN = νyσyKΨ′N (as
required by the particle hole symmetry). Therefore, the corresponding
transmitted charge is 〈ΨN|eνz|ΨN〉 = −κe = −Qeff .

3.A.5 Transport properties

An analogous analysis can be performed for the interface at z = 0, yielding
the corresponding incident waves in the z < 0 metallic lead: ΦN and Φ′N,
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which couple perfectly to the chiral Landau levels ΨS, Ψ′S respectively.
This yields a transmission matrix

t = eiKL|ΨN〉〈ΦN|+ e−iKL|Ψ′N〉〈Φ′N| , (3.64)

like in Eq. (3.18), with the difference that the modes in the supercon-
ductor can no longer be written explicitly in a closed form. Still we can
compute the thermal conductance

Gthermal =
1

2
g0NLandau Tr t†t = g0

eΦ

h
, (3.65)

where we used that 〈ΨN |Ψ′N 〉 = 0, as required by the unitarity of the
scattering matrix. We can also compute the electric conductance

G12 =
e2

h
NLandau Tr

νz + 1

2
tνzt

†

=
e2

h
NLandau

(
〈ΨN|νz|ΨN〉〈ΦN|

νz + 1

2
|ΦN〉

+ 〈Ψ′N|νz|Ψ′N〉〈Φ′N|
νz + 1

2
|Φ′N〉

)
=
e2

h
NLandau

1

2

[
κ(1 + κ)− κ(1− κ)

]
=

(eκ)2

h

eΦ

h
, (3.66)

Where we used the fact that

〈ΨN|νz|Ψ′N〉 =

∫
dr


g∗2(r)

0
0

g∗1(r)


†

νz


g1(r)

0
0

g2(r)


=

∫
dr[g2(r)g1(r)− g1(r)g2(r)] = 0 , (3.67)

and similarly 〈ΦN|νz|Φ′N〉 = 0
The thermal and electric conductance obtained in Eqs. (3.65) and (3.66)

are identical to the results obtained in the main text: Eqs. (3.25) and
(3.27). Furthermore, a similar calculation shows that the shot noise power
is also given by the same formula as in the main text: Eq. (3.31). This
confirms that the tight-binding model is equivalent in the continuum limit
to the analytics.
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4 Universal chiral magnetic
effect in the vortex lattice of
a Weyl superconductor

4.1 Introduction

This chapter combines two topics of recent research on Weyl fermions
in condensed matter. The first topic is the search for the chiral mag-
netic effect in equilibrium [47, 67–76]. The second topic is the search for
Landau levels in a superconducting vortex lattice [34–36, 57]. What we
will show is that the lowest Landau level in the Abrikosov vortex lattice
of a Weyl superconductor supports the equilibrium chiral magnetic ef-
fect at the universal limit of (e/h)2, unaffected by any renormalization of
the quasiparticle charge by the superconducting order parameter. Let us
introduce these two topics separately and show how they come together.

The first topic, the chiral magnetic effect (CME) in a Weyl semimetal,
is the appearance of an electrical current I along lines of magnetic flux
Φ, in response to a chemical potential difference µ+ − µ− between Weyl
fermions of opposite chirality. The universal value [55, 77, 78]

dI

dΦ
=
e2

h2
(µ+ − µ−) (4.1)

follows directly from the product of the degeneracy (e/h)Φ of the low-
est Landau level and the current per mode of (e/h)(µ+ − µ−). A Weyl
semimetal in equilibrium must have µ+ = µ−, hence a vanishing chiral
magnetic effect — in accord with a classic result of Levitov, Nazarov,
and Eliashberg [79, 80] that the combination of Onsager symmetry and
gauge invariance forbids a linear relation between electrical current and
magnetic field in equilibrium.

Because superconductivity breaks gauge invariance, a Weyl supercon-
ductor is not so constrained: As demonstrated in Ref. 47, one of the two
chiralities can be gapped out by the superconducting order parameter.
When a magnetic flux Φ penetrates uniformly through a thin film (no
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4 Universal CME in the vortex lattice of a Weyl superconductor

vortices), an equilibrium current

dI

dΦ
= ±ee

∗

h2
µ± (4.2)

appears along the flux lines, of a magnitude set by the equilibrium chem-
ical potential µ± of the ungapped chirality. The renormalized charge
e∗ < e determines the degeneracy (e∗/h)Φ of the lowest Landau level in
the superconducting thin film.

The second topic, the search for Landau levels in an Abrikosov vortex
lattice, goes back to the discovery of massless Dirac fermions in d -wave
superconductors [29, 30]. In that context scattering by the vortex lattice
obscures the Landau level quantization [1, 3, 33], however, as discovered
recently [57], the chirality of Weyl fermions protects the zeroth Landau
level by means of a topological index theorem. The same index theo-
rem enforces the (e/h)Φ degeneracy of the Landau level, even though the
charge of the quasiparticles is renormalized to e∗ < e. Does this topologi-
cal protection extend to the equilibrium chiral magnetic effect, so that we
can realize Eq. (4.2) with e∗ replaced by e? That is the question we set
out to answer in this work.

The outline of the chapter is as follows. In the next section we for-
mulate the problem of a Weyl superconductor in a vortex lattice. We
then show in Sec. 4.3 that a flux bias of the superconductor can drive
the quasiparticles into a topologically distinct phase where one chirality
is exponentially confined to the vortex cores. The unconfined Landau
bands contain electron-like or hole-like Weyl fermions, while the vortex-
core bands are charge-neutral Majorana fermions. The consequences of
this topological phase transition for the chiral magnetic effect are pre-
sented in Sec. 4.4. We support our analytical calculations with numerical
simulations and conclude in Sec. 4.5.

4.2 Formulation of the problem

We consider a multilayer heterostructure, see Fig. 4.1, composed of layers
in the x–y plane of a magnetically doped topological insulator (such as
Bi2Se3), separated in the z-direction by a normal-insulator spacer layer.
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Figure 4.1: Cross-section through a heterostructure of alternating topological
insulator layers and superconducting spacer layers. A perpendicular magnetiza-
tion β separates a pair of Weyl cones of opposite chirality along kz. Each Weyl
cone is twofold degenerate in the electron-hole degree of freedom, mixed by the
superconducting pair potential ∆0. The mixing leaves the Weyl cones gapless,
as long as the pair potential ∆0 remains smaller than β.

The tight-binding Hamiltonian is [81]

H0(k) =
∑

i=x,y,z

τzσi ti sin kiai + βτ0σz

+ τxσ0

∑
i=x,y,z

t′i(1− cos kiai)− µτ0σ0, (4.3)

where ti, t
′
i are nearest-neighbor hopping energies, ai are lattice constants,

and µ is the chemical potential. For simplicity we will equate ai = a0 and
ti = t′i = t0 for i = x, y, z.

The Pauli matrices σi (i = x, y, z, with i = 0 for the unit matrix) act on
the spin degree of freedom of the surface electrons in the topological insu-
lator layers. The τz = ±1 index distinguishes the orbitals on the top and
bottom surfaces. Magnetic impurities in the topological insulator layers
produce a perpendicular magnetization, leading to an exchange splitting
β. A Weyl point with a linear dispersion appears at k = (0, 0,±β/a0t0).
For ease of notation we will set a0, t0, and ~ to unity.

Following Meng and Balents [12], the spacer layer may have a spin-
singlet s-wave pair potential ∆ = ∆0e

iφ. The pair potential induces
superconductivity in the top and bottom surfaces of the topological in-
sulator layers, as described by the Bogoliubov-De Gennes Hamiltonian
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Figure 4.2: Panel a) shows a square vortex lattice in a Weyl superconductor,
panels b) and c) show a circuit to measure the chiral magnetic effect (current
I parallel to an external magnetic field B). The current exists in equilibrium
because Weyl fermions having one of the two chiralities are confined to vortex
cores by a flux bias (panel b) or a current bias (panel c).

H(k) =

(
H0(k − eA) ∆0e

iφ

∆0e
−iφ −σyH∗0 (−k − eA)σy

)
. (4.4a)

We have introduced a vector potential A and take the electron charge
e > 0. For definiteness we also fix the sign β > 0. The Fermi velocity
vF = a0t0/~ is unity for our chosen units.

As shown in Fig. 4.2, the heterostructure can be placed in either a flux-
biased or a current-biased circuit. We seek the current Iz in equilibrium,
parallel to the external magnetic field B = ∇×A in the z-direction.

The superconductor has length L parallel to B, while the dimensions
in the perpendicular direction are W ×W , large compared to the London
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penetration length λ. This is the key difference with Ref. 47, where W < λ
was assumed in order to prevent the formation of Abrikosov vortices. For
W � λ � lm � ξ0 (with lm =

√
~/eB the magnetic length and ξ0 =

~vF/∆0 the superconducting coherence length) we are in the vortex phase
of a strong-type-II superconductor, where the magnetic field penetrates
in the form of vortices of magnetic flux Φ0 = h/2e. The vortex lattice has
two vortices per unit cell, we take the square array (lattice constant d0)
indicated in Fig. 4.2.

In the gauge with ∇ ·A = 0 the superconducting phase is determined
by

∇×∇φ(r) = 2πẑ
∑
n

δ(r −Rn), ∇ · ∇φ = 0. (4.5)

The first equation specifies a 2π winding of the phase around each vortex
core at Rn, and the second equation ensures that the superconducting
velocity

mvs = 1
2∇φ− eA (4.6)

has vanishing divergence. Since the vortex cores occupy only a small
fraction (ξ0/lm)2 of the volume, we may take a uniform pair potential
amplitude |∆| = ∆0 and a uniform magnetic field strength |B| = B0.
The dominant effect of the vortex lattice is the purely quantum mechanical
scattering of quasiparticles by the superconducting phase [1].

The vector potential contains a constant contribution Az = Λ/e in the
z-direction controlled by either the flux bias or the current bias [82]:

Λ =

{
(e/L)Φbias (flux bias),

eµ0(λ/W )2Ibias (current bias).
(4.7)

4.3 Chirality confinement in a vortex lattice

In the absence of a vortex lattice, for W < λ, it was shown in Ref. 47 that
a flux bias or current bias confines Weyl fermions of one definite chirality
to the surfaces parallel to the magnetic field, gapping them out in the
bulk. Here we consider the opposite regime W � λ in which a vortex
lattice forms in the Weyl superconductor. We will show that effect of
the Λ bias is qualitatively different: both chiralities remain gapless in the
bulk, but one of the two chiralities is confined to the vortex cores.

The analytics is greatly simplified if the magnetic field is along the same
z-axis as the separation of the Weyl cones. The corresponding vector
potential is

A(r) = (B0y, 0,Λ/e), Λ = (e/L)Φbias, (4.8)
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4 Universal CME in the vortex lattice of a Weyl superconductor

where for definiteness we take Λ ≥ 0. This is the flux-biased geometry of
Fig. 4.2b. Numerical simulations indicate that the current-biased geome-
try of Fig. 4.2c, with B along the y-axis, is qualitatively similar — but we
have not succeeded in obtaining a complete analytical treatment in that
geometry.

4.3.1 Landau bands

We have calculated the eigenvalues and eigenfunctions of the tight-binding
Hamiltonian (4.4) using the Kwant code [52] as described in Ref. 57. We
take parameters β = t0, ∆0 = 0.5 t0, µ = 0. We arrange h/2e vortices on
the square lattice shown in Fig. 4.2a. The lattice constant d0 = Na0 of
the vortex lattice determines the magnetic field B0 = (h/e)d−2

0 . In the
numerics the full nonlinear k-dependence of H(k) is used, while for the
analytical expressions we expand near k = 0.

The zero-field spectra in Figs. 4.3a and 4.3b reproduce the findings of
Ref. 47: For small Λ and provided that ∆0 < β one sees two pairs of
oppositely charged gapless Weyl cones, symmetrically arranged around
kz = 0 at momenta K± and −K± given by

K± =
√

(β ± Λ)2 −∆2
0. (4.9)

The pair at |kz| = K− is displaced relative to the other pair at |kz| = K+

by the flux bias Λ, becoming gapped when Λ is in the critical range

Λ ∈ (β −∆0, β + ∆0) ≡ (Λc1,Λc2). (4.10)

Application of a magnetic field in Figs. 4.3c and 4.3d shows the forma-
tion of chiral zeroth-order Landau bands: a pair of electron-like Landau
levels of opposite chirality and a similar pair of hole-like Landau levels.
The Landau bands have a linear dispersion in the z-direction, along the
magnetic field, while they are dispersionless flat bands in the x–y plane.

For kz near K± the electron-like and hole-like dispersions are given by
[57]

Eelectron(k) = (−µ− kz +K+) cos θ,

Ehole(k) = (µ+ kz −K−) cos θ,
(4.11a)

and similarly near −K± the dispersions are

Eelectron(k) = (−µ+ kz +K−) cos θ,

Ehole(k) = (µ− kz −K+) cos θ.
(4.11b)
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4.3 Chirality confinement in a vortex lattice

The kz-dependent factor cos θ renormalizes the charge and velocity of the
quasiparticles, according to [47, 83]

cos θ(k) =
|kz|√

∆2
0 + k2

z

→
√

1− ∆2
0

(β ± Λ)2
≡ κ± when |kz| → K±.

(4.12)

The degeneracy of a Landau band is not affected by charge renormal-
ization [57], each electron-like or hole-like Landau band contains

N0 = 1
2Φ/Φ0 = (e/h)Φ (4.13)

chiral modes, determined by the ratio of the enclosed flux Φ = B0W
2 and

the bare single-electron flux quantum h/e.
While the dispersion of a Landau band in the Brillouin zone changes

only quantitatively with the flux bias, it does have a pronounced qual-
itative effect on the spatial extension in the x–y plane. As shown in
Fig. 4.4, the intensity profile |ψ±(x, y)|2 of a zeroth-order Landau level at
|kz| = K± peaks when r = (x, y) approaches a vortex core at Rn. The
dependence on the separation δr = |r −Rn| is a power law [57],

|ψ±|2 ∝ δr−1+κ± . (4.14)

When Λ enters the critical range (4.10) this power law decay applies
only to one of the two chiralities: the two Landau bands at kz = K+

and kz = −K+ with dE/dkz < 0 still have the power law decay (4.14),
but the other two bands with dE/dkz > 0 merge at kz = 0 and become
exponentially confined to a vortex core. As we shall derive in the next
subsection,

|ψvortex|2 ∝ exp(−δr/lconf),

lconf = 1
2 max

(
1

Λ− β + ∆0
,

1

β − Λ + ∆0

)
.

(4.15)

These two vortex-core bands are separated spatially, one in each of the
two vortices in the unit cell. They form unpaired Majorana fermions, in
contrast to the two Landau bands that overlap spatially and as a pair
constitute a Dirac fermion.

All of this applies to magnetic fields in the regime W � λ � lm � ξ0
of a vortex lattice. At weaker fields, when lm & min(W,λ), no vortices
can form and the analysis of Ref. 57 applies: The bands with chirality
dE/dkz > 0 are pushed out of the bulk and confined to the surfaces along
the z-direction.
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Figure 4.3: Dispersion relations of a Weyl superconductor at two values of the
flux bias Az (left and right column), without and with a magnetic field B (top
and bottom row). In zero field and at a small value of the flux bias (panel a),
there are four cones in the spectrum. As the flux bias increases the electron-like
cones (red) are shifted to positive kz, whereas the hole-like cones (blue) are
shifted to negative kz. At the critical value eAz = β−∆0 = 0.5/a0 two cones of
opposite chirality meet at kz = 0, a gap opens and the system transitions into
the two-cone regime (panel b). When a magnetic field is applied, each Weyl
cone gives rise to a chiral zeroth Landau level (panel c). In the two-cone regime
(panel d) a pair of chiral Landau levels forms charge-neutral Majorana modes
(green). The spectra were calculated for the tight-binding Hamiltonian (4.4),
with β = t0, ∆ = 0.5t0, and µ = 0. The B 6= 0 data is for a square vortex lattice
with lattice constant d0 = 18a0. For an electron-like Landau level marked with
a square and for a Majorana mode marked with a circle we show the spatial
probability density in Fig. 4.4.

4.3.2 Vortex core bands

To demonstrate the exponential confinement in a vortex core of the τz =
+1 chirality we expand the Hamiltonian (4.4) to first order in kx, ky at
kz = 0, µ = 0,

H =

(
kxσx + kyσy 0

0 −kxσx − kyσy

)
+

(
(β − Λ)σz ∆0e

iϕ

∆0e
−iϕ (β − Λ)σz

)
. (4.16)
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Figure 4.4: Spatial distribution of the probability density for an electron-like
Landau band (panel a) and for a Majorana vortex-core band (panel b). Panel
c shows both probability distributions as a function of the distance r from the
vortex core, measured along the dashed white line in panels a,b. In the insets in
panel c the same data is presented using a log-log scale (for the zeroth Landau
level) and log-linear scale (for the vortex-core band). The Landau band is spread
over the magnetic unit cell, with an algebraic divergence at the vortex cores,
whereas the vortex-core band is exponentially localized at the vortices. The
profiles were calculated for the same set of parameters as the spectra in Fig.
4.3, with the Landau band corresponding to the state marked with a square,
and the vortex-core band corresponding to the state marked with a circle. To
improve the spatial resolution, we used a larger ratio d0/a0 = 102.
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4 Universal CME in the vortex lattice of a Weyl superconductor

The applied magnetic field does not contribute on length scales below
lm, so we only need to include the constant eAz = Λ term in the vector
potential. The winding of the superconducting phase is accounted for by
the factor eiϕ, in polar coordinates (x, y, z) = (r cosϕ, r sinϕ, z) centered
on the vortex core.

In view of the identity

∂x + i∂y = eiϕ
(
∂r + ir−1∂ϕ

)
, (4.17)

with ∂q ≡ ∂/∂q, the Hamiltonian (4.16) reads

H =

(
(β − Λ)σz −D ∆0e

iϕ

∆0e
−iϕ (β − Λ)σz +D

)
, (4.18a)

D =

(
0 e−iϕ(i∂r + r−1∂ϕ)

eiϕ(i∂r − r−1∂ϕ) 0

)
. (4.18b)

We seek a solution HΨ = 0 of the form

Ψ =
(
φ1(r), eiϕφ2(r), e−iϕφ3(r), φ4(r)

)
, (4.19)

and denote Φ = (φ1, φ2, φ3, φ4). This produces the ordinary differential
equation

−dΦ

dr
=


0 −i(β − Λ) 0 i∆0

i(β − Λ) r−1 i∆0 0
0 −i∆0 r−1 i(β − Λ)
−i∆0 0 −i(β − Λ) 0

Φ

≡
(
M1 + r−1M2

)
Φ. (4.20)

In the critical regime Λc1 < Λ < Λc2 the two positive eigenvalues of the
matrix M1 are Λ−Λc1 and Λc2−Λ. At large r, the normalizable solution
of Eq. (4.20) decays ∝ e−αr, with α the smallest positive eigenvalue of
M1:

α = min(Λ− Λc1,Λc2 − Λ). (4.21)

The confinement length lconf = 1/2α is thus given by Eq. (4.15).

4.4 Chiral magnetic effect

4.4.1 Charge renormalization

We summarize the formulas from Ref. 47 that show how charge renormal-
ization by the superconductor affects the CME.
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4.4 Chiral magnetic effect

The equilibrium expectation value Iz of the electrical current in the
z-direction is given by

Iz = 1
2

∑
n

∫
dkz
2π

f(E)〈jz〉E . (4.22)

The sum over n is over transverse modes with energy En(kz) ≡ E at
longitudinal momentum kz, weighted by the Fermi function f(E) = (1 +
eE/kBT )−1 at temperature T . The factor 1/2 corrects for a double-counting
of states in the Bogoliubov-De Gennes formalism. The expectation value
of the current operator jz = −∂H/∂Az in the state with energy E equals

〈jz〉E = −〈∂H/∂Az〉E = −∂E/∂Az, (4.23)

according to the Hellmann-Feynman theorem. Two other expectation
values that we need are those of the velocity operator vz = ∂H/∂kz and
the charge operator Q = −e∂H/∂µ, given by

〈vz〉E = ∂E/∂kz, 〈Q〉E = −e∂E/∂µ. (4.24)

Following Ref. 47 we also define the “vector charge”

Q = (Qx, Qy, Qz), with Qα(E) ≡ 〈jα〉E〈vα〉E
, (4.25)

which may be different from the average (scalar) charge Q0 ≡ 〈Q〉E be-
cause the average of the current as the product of charge and velocity may
differ from the product of the averages.

The CME is a contribution to Iz that is linear in the equilibrium chem-
ical potential µ, measured relative to the Weyl points. We extract this
contribution by taking the derivative ∂µIz in the limit µ→ 0. Two terms
appear, an on-shell term from the Fermi level and an off-shell term from
energies below the Fermi level,

∂µIz = Jon-shell + Joff-shell ≡ Jtotal, (4.26a)

Jon-shell = − 1

2e

∑
n

∫
dkz
2π

f ′(E)〈Q〉E〈jz〉E , (4.26b)

Joff-shell = − 1

2

∑
n

∫
dkz
2π

f(E)
∂2

∂Az∂µ
En(kz). (4.26c)

At low temperatures, when −f ′(E) → δ(E) becomes a delta function,
the on-shell contribution Jon-shell involves only Fermi surface properties.
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4 Universal CME in the vortex lattice of a Weyl superconductor

It is helpful to rewrite it as a sum over modes at E = 0. For that purpose
we replace the integration over kz by an energy integration weighted with
the density of states:

Jon-shell = − 1

4πe

∑
n

∫ ∞
−∞

dE f ′(E)

∣∣∣∣ ∂E∂kz
∣∣∣∣−1

〈Q〉E〈jz〉E . (4.27)

In the T → 0 limit a sum over modes remains,

Jon-shell =
1

2

e

h

∑
n

Q0Qz
e2

(
sign 〈vz〉

)∣∣∣∣
En=0

, (4.28)

where we have restored the units of ~ = h/2π.

4.4.2 On-shell contributions

We apply Eq. (4.28) to the vortex lattice of the flux-biased Weyl su-
perconductor. Derivatives with respect to Az are then derivatives with
respect to the flux bias Λ. According to the dispersion relation (4.11a),
the electron-like Landau band near K+ has renormalized charges

Q0 = eκ+, Qz = e
∂K+

∂Λ
=

e

κ+
, (4.29)

in the limit kz → K+, µ→ 0. The charge renormalization factors cancel,
so this Landau band with sign 〈vz〉 < 0 contributes to Jon-shell an amount
− 1

2e/h times the degeneracy N0 = (e/h)Φ, totalling − 1
2 (e/h)2Φ.

Similarly, for the hole-like Landau band near −K− Eq. (4.11a) gives

Q0 = −eκ+, Qz = −e∂K+

∂Λ
= − e

κ+
, (4.30)

for the same contribution of − 1
2 (e/h)2Φ. The total on-shell contribution

for this chirality is

Jon-shell(|kz| = K+) = −(e/h)2Φ. (4.31)

We can repeat the calculation for the electron-like band near K− and
the hole-like band near −K−, the only change is the sign 〈vz〉 > 0, result-
ing in

Jon-shell(|kz| = K−) = (e/h)2Φ. (4.32)

We conclude that the Dirac fermions in the Landau bands of opposite
chirality give identical opposite on-shell contributions ±(e/h)2Φ to ∂µIz.
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4.5 Conclusion

The net result vanishes when Λ is outside of the critical region (Λc1,Λc2).
When Λc1 < Λ < Λc2 one of the two chiralities is transformed into un-
paired Majorana fermions confined to the vortex cores. The vortex-core
bands have Q0 = 0 at E = 0, so they have no on-shell contribution,
resulting in

Jon-shell =

{
0 if Λ /∈ (Λc1,Λc2),

(e/h)2Φ if Λ ∈ (Λc1,Λc2).
(4.33)

The coefficient (e/h)2 contains the bare charge, unaffected by the charge
renormalization.

4.4.3 Off-shell contributions

Turning now to the off-shell contributions (4.26c), we note that the Lan-
dau bands do not contribute in view of Eq. (4.11):

∂2

∂Λ∂µ
E(k) = ± ∂

∂Λ
cos θ(k) = 0. (4.34)

For the vortex-core bands, off-shell contributions cancel because of particle-
hole symmetry.

This does not exclude off-shell contributions from states far below the
Fermi level, where our entire low-energy analysis no longer applies. In
fact, as we show in Figs. 4.5 and 4.6, we do find a substantial off-shell
contribution to ∂µIz in our numerical calculations (see App. 4.A for de-
tails). Unlike the on-shell contribution (4.33), which has a discontinuity
at Λ = Λc1,Λc2, the off-shell contribution depends smoothly on the flux
bias and can therefore be extracted from the data.

4.5 Conclusion

In summary, we have demonstrated that a flux bias in a Weyl supercon-
ductor drives a confinement/deconfinement transition in the vortex phase:
For weak flux bias the subgap excitations are all delocalized in the plane
perpendicular to the vortices. With increasing flux bias a transition oc-
curs at which half of the states become exponentially localized inside the
vortex cores. The localized states have a definite chirality, meaning that
they all propagate in the same direction along the vortices. (The sign of
the velocity is set by the sign of the external magnetic field B0.)

As a physical consequence of this topological phase transition we have
studied the chiral magnetic effect. The states confined to the vortex cores
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Figure 4.5: Numerical calculation of ∂µIz at µ = 0.05 t in the tight-binding
Hamiltonian (4.4). The solid curves are the total current, while the dashed
curves show only the off-shell contribution (4.26c). The vertical dashed lines
mark eAz = Λc1,Λc2 – the values of the flux bias which correspond to a topolog-
ical phase transition into and out of the two-cone regime. The horizontal dashed
lines mark the universal CME value of (h/e)2Φ. As the size N = d/a0 of the
magnetic unit cell increases, the numerically calculated value of the on-shell
contribution approaches the universal value, which jumps at the topological
phase transition.

are charge-neutral Majorana fermions, so they carry no electrical current.
The states of opposite chirality, which remain delocalized, are charged,
and because they all move in the same direction they can carry a nonzero
current density j parallel to the vortices. This is an equilibrium supercur-
rent, proportional to the magnetic field B0 and to the chemical potential
µ (measured relative to the Weyl point).

We have calculated that the supercurrent along the vortices jumps at
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Figure 4.6: Same numerical calculation as in Fig. 4.5, but now for a fixed flux
bias eAz = 1.05/a0 in the two-cone regime, showing the contributions to ∂µIz
from different momenta kz along the magnetic field. We distinguish between
the total current and the off-shell contribution. The difference between the
two is the on-shell contribution, which peaks at the momenta where the Fermi
level crosses the chiral Landau bands. The vortex-core bands at kz = 0 have
vanishing on-shell contribution.

the topological phase transition by an amount which for a large system
size tends to the universal limit

j =
e2

h2
B0µ. (4.35)

Remarkably enough, the proportionality constant contains the bare elec-
tron charge e, even though the quasiparticles have a renormalized charge
e∗ < e. This electromagnetic response is generated by the axion term
(e/h)2

∫
dt
∫
dr θ(t)EzBz in the Lagrangian, where θ(t) = µt is the axion

angle.
The chiral fermions confined in the vortex cores are a superconducting

realization of the “topological coaxial cable” of Schuster et al. [84], where
the fermions are confined to vortex lines in a Higgs field. There is one
difference: the chiral fermions in the Higgs field are charge-e Dirac fer-
mions, while in our case they are charge-neutral Majorana fermions. The
difference manifests itself in the physical observable that serves as a sig-
nature of the confinement: for Schuster et al. this is a quantized current
dI/dV = e2/h per vortex out of equilibrium, in our case it is a quantized
current dI/dµ = 1

2e/h per vortex in equilibrium.
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Appendix

4.A Details of the numerical calculation

The numerical calculation was performed on a square lattice with two
h/2e vortices in a magnetic unit cell, using the discretization described in
Ref. 57. We calculate separately the total induced current response

∂µIz = Jon-shell + Joff-shell ≡ Jtotal, (4.36)
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Figure 4.7: Bottom: momentum-resolved current response ∆Iz(µ, kz), as de-
fined in Eqs. (4.37) and (4.39), in the four-cone regime at eAz = 0.25/a0 (panel
a) and in the two-cone regime at eAz = 1.05/a0 (panel b). Top: low-energy
dispersion relation for the corresponding system. The on-shell contribution to
the current response, which is the difference between the total and off-shell con-
tributions, only appears at momenta for which a band crosses the Fermi energy.
In the four-cone regime four peaks are present, the contributions of which cancel
out. In the two-cone regime the vortex-core band at kz = 0 has a vanishing
on-shell contribution, whereas the contribution of the other two Landau levels
remains unchanged. The plots were obtained for a system size N = 18.
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Figure 4.8: The current response ∆Iz(µ), as defined in Eqs. (4.37) and (4.39),
in the two-cone regime at eAz = 1.05/a0 for a finite chemical potential µ. The
colored data points give the total response, as well as the off-shell and on-shell
contributions. The dotted line µe2Φ/h2 is the theoretical prediction (4.33) for
the on-shell contribution to first order in µ, which is a good approximation to
the numerical result for small µ. The plots were obtained for a system size
N = 18.

and the off-shell contribution Joff-shell. The defining equations (4.22) and
(4.26c) are rewritten in terms of finite differences,

Jtotal =
1

2
lim
µ→0

1

2µ

∑
n

∫
dkz
2π

[
f
(
En(kz, µ)

)
〈jz〉En(kz,µ)

− f
(
En(kz,−µ)

)
〈jz〉En(kz,−µ)

]
=

1

2
lim
µ→0

1

2µ

∫
dkz ∆Itotal

z (µ, kz) = lim
µ→0

1

µ
∆Itotal

z (µ), (4.37)

Joff-shell =
1

2
lim
µ→0

1

2µ

∑
n

∫
dkz
2π

f
(
En(kz, µ = 0)

)[
〈jz〉En(kz,µ) (4.38)

− 〈jz〉En(kz,−µ)

]
=

1

2
lim
µ→0

1

2µ

∫
dkz ∆Ioff-shell

z (µ, kz) = lim
µ→0

1

µ
∆Ioff-shell

z (µ).

(4.39)

We computed the values of the expressions on the right-hand-side at
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4.A Details of the numerical calculation

finite µ. The kz-integral was estimated from 256 values of kz, equally
spaced in the [−π, π] interval. For the sum over transverse modes n we
averaged over 4 values of both kx and ky. To smoothen the integrand
we took a small nonzero temperature T = 0.01 in the Fermi function —
much smaller than the energy of the first Landau level (which was & 0.2
for the parameters we considered). In Fig. 4.7 we present the results prior
to integration over kz, for two different values of Az. For µ = 0.05 the
finite differences have converged to the derivative – see Fig. 4.8.
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5 Deconfinement of Majorana
vortex modes produces a
superconducting Landau
level

5.1 Introduction

Deconfinement transitions in physics refer to transitions into a phase
where particles can exist as delocalized states, rather than only as bound
states. Unlike thermodynamic phase transitions, the deconfinement tran-
sition is not associated with a spontaneously broken symmetry but with
a change in the momentum space topology of the ground state [85]. A
prominent example in superconductors is the appearance of a Fermi sur-
face for Bogoliubov quasiparticles when a superconductor becomes gapless
[86–89]. Such a Bogoliubov Fermi surface has been observed recently [15].

Motivated by these developments we consider here the deconfinement
transition for Majorana zero-modes in the vortex core of a topological
superconductor. We will demonstrate, analytically and by numerical sim-
ulations, that the delocalized phase at zero chemical potential remains
a highly degenerate zero-energy level — a superconducting counterpart
of the Majorana Landau level in a Kitaev spin liquid [90, 91]. Unlike
a conventional electronic Landau level, the Majorana Landau level has
a non-uniform density profile: quantum interference of the electron and
hole components creates spatial oscillations with a wave vector set by the
Cooper pair momentum that drives the deconfinement transition.

The system of Ref. 15 is shown in Fig. 5.1. It is a thin layer of topological
insulator deposited on a bulk superconductor, such that the proximity
effect induces a pairing gap ∆0 in the surface states. A superflow with
Cooper pair momentum K lowers the excitation energy for quasiparticles
with velocity v by the Doppler shift v·K, closing the gap when vK exceeds
∆0. Following Fu and Kane [14], we add a perpendicular magnetic field
B to confine a Majorana zero-mode to the core of each h/2e vortex that
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Figure 5.1: Schematic of the Fu-Kane heterostructure [14], a topological in-
sulator with induced superconductivity (gap ∆0) in a perpendicular magnetic
field B. Vortices (red) bind midgap states known as Majorana zero-modes. Here
we study the deconfinement transition in response to an in-plane supercurrent
(blue arrows, momentum K). When vK > ∆0 the zero-modes delocalize into a
Majorana Landau level.

penetrates the superconductor. We seek to characterize the deconfined
phase that emerges when vK > ∆0.

5.2 Confined phase

To set the stage we first investigate the confined phase for vK < ∆0. Elec-
trons on the two-dimensional (2D) surface of a 3D topological insulator
have the Dirac Hamiltonian vk · σ − µ, with µ the chemical potential, v
the energy-independent Fermi velocity, k = (kx, ky) the momentum oper-
ator in the x–y surface plane, and σ = (σx, σy) two Pauli spin matrices.
(The 2 × 2 unit matrix σ0 is implicit when the Hamiltonian contains a
scalar term.) Application of a perpendicular magnetic field B (in the
z-direction), adds an in-plane vector potential A = (Ax, Ay) to the mo-
mentum, k 7→ k− eA. The electron charge is +e and for ease of notation
we will set v and ~ both equal to unity in most equations.

The superconducting substrate induces a pair potential ∆ = ∆0e
iφ.

The phase field φ(r) winds by ±2π around each vortex, at position Rn,
as expressed by

∇×∇φ(r) = ±2πẑ
∑
nδ(r −Rn), ∇2φ = 0. (5.1)
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5.2 Confined phase

The pair potential couples electrons and holes in the 4× 4 Bogoliubov-De
Gennes (BdG) Hamiltonian

H =

(
Kσx + (k − eA) · σ ∆0e

iφ

∆0e
−iφ Kσx − (k + eA) · σ

)
, (5.2)

at zero chemical potential, including a superflow momentum fieldK ≥ 0 in
the x-direction1. The superflow can be a screening current in response to
a magnetic field in the y-direction [15], or it can result from an externally
imposed flux bias or current bias. The Zeeman energy from an in-plane
magnetic field has an equivalent effect [87] (although it was estimated to
be negligible relative to the orbital effect of the field in the experiment
[15]).

For vK < ∆0 a pair of Majorana zero-modes will appear in each vortex
core, one at the top surface and one at the bottom surface. We consider
these separately2. Setting ∆(r) = ∆0(r)e±iθ, in polar coordinates (r, θ)
for a ±2π phase vortex at the origin, we need to solve the zero-mode
equation H±Ψ± = 0 with

H± =

(
Kσx − (i∇+ eA) · σ ∆0(r)e±iθ

∆0(r)e∓iθ Kσx + (i∇− eA) · σ

)
. (5.3)

The pair potential amplitude ∆0(r) increases from 0 at r = 0 to a value
∆0 > 0 when r becomes larger than the superconducting coherence length
ξ0 = ~v/∆0.

When K = 0 this is a familiar calculation [92], which is readily gen-
eralized to K > 0. The Majorana zero-mode has a definite chirality C,
meaning that its four-component wave function Ψ± is an eigenstate of the
chirality operator Λ = diag (1,−1,−1, 1) with eigenvalue C = ±1. One

1The term Kσx in the BdG Hamiltonian (5.2) is equivalent, upon a gauge transfor-
mation, to a gradient Kx in φ.

2The overlap of states on the top and bottom surfaces of the topological insulator
thin film shifts the Majorana Landau away from E = 0 by the hybridization gap,
while keeping the spatial structure of the wave functions intact. We include this
effect in the calculations in App. 5.A.
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 5.2: Intensity profile |Ψ(x, y)|2 of a Majorana zero-mode in the vortex
lattice4. The left panel shows the confined phase (K < ∆0), the right panel
the deconfined phase (K > ∆0). The dotted square indicates the unit cell
containing a pair of h/2e vortices. These plots are for Majorana fermions of
positive chirality, for negative chirality the density profile is inverted y 7→ −y.

has Ψ+ = (iψ+, 0, 0, ψ+), Ψ− = (0, iψ−, ψ−, 0) with3

ψ±(r) = e∓Kye∓χ(r) exp

(
−
∫ r

0

∆0(r′) dr′
)
, (5.4a)

χ(r) =
e

2π

∫
dr′B(r′) ln |r − r′|. (5.4b)

The factor e∓χ(r) is a power law for large r, so the zero-mode is confined
exponentially to the vortex core as long as K < ∆0. When K > ∆0 the
solution (5.4) is no longer normalizable, it diverges exponentially along
the y-axis. This signals a transition into a deconfined phase, which we
consider next.

3To understand how the solution (5.4) relates to the K = 0 solution in Ref. [92],
note the (non-unitary) transformation eKyΛH±eKyΛ = H± + Kσx, with Λ =
diag (1,−1,−1, 1). The spinor Ψ± is an eigenstate of Λ with eigenvalue ±1, so if
H±Ψ± = 0 for K = 0, then H±e±KyΨ± = 0 for K 6= 0.

4The data in Fig. 5.2 is obtained from the tight-binding Hamiltonian (5.14) of the
topological insulator layer. The parameters are ∆0 = 20 ~v/d0, d0 = 302 a0, B =
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5.3 Deconfined phase

5.3 Deconfined phase

In Fig. 5.2 we show results from a numerical simulation of the decon-
finement transition for the model Hamiltonian described below. The left
panel shows zero-modes confined to a pair of vortex cores for K < ∆0,
the right panel shows the deconfined state for K > ∆0. The decay
|Ψ| ∝ e−Kye−∆0r in the confined phase is anisotropic, with a decay rate
∆0 along the x-axis and two different decay rates ∆0 ± K in the ±y-
direction. The direction into which the zero-mode decays more slowly is
set by the chirality5: Fig. 5.2 shows C = +1 with a slow decay in the −y
direction, for C = −1 the slow decay is in the +y direction.

In the deconfined phase the zero-mode density profile has a pronounced
periodic modulation in the x-direction, parallel to the superflow, with
bifuration points at the vortex cores. This striped pattern is unexpected
for a Landau level. We present an analytical description.

Chiral symmetry protected Majorana Landau level — The chiral sym-
metry of the Hamiltonian (5.2) plays a key role in our analysis of the
Majorana Landau level, similar to the role it plays for Landau level quan-
tization in graphene [49, 50] and in a Weyl superconductor [57]. Chiral
symmetry means that H at µ = 0 anticommutes with Λ. The Hamiltonian
then becomes block-off-diagonal in the basis of eigenstates of Λ,

U†HU =

(
0 Ξ

Ξ† 0

)
, U =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

, (5.5a)

Ξ =

(
k− − eA− +K ∆0e

iφ

∆0e
−iφ −k+ − eA+ +K

)
, (5.5b)

where we have abbreviated k± = kx ± iky, A± = Ax ± iAy.
A zero-mode is either a wave function (u, 0) of positive chirality with

Ξ†u = 0, or a wave function (0, u) of negative chirality with Ξu = 0. The
difference between the number of normalizable eigenstates of either chi-
rality is called the index of the Hamiltonian. It is topologically protected,
meaning insensitive to perturbations [16].

h/ed2
0, µ = 0, M0 = 0, M1 = 0.2 a0. The vortex pair in a unit cell is at the positions

(x, y) = (d0/4)(1, 1) and (d0/4)(3, 3). The superflow momentum K equals 0.8 ∆0/v
in the left panel and 2 ∆0/v in the right panel.

5The anisotropic decay of the Majorana zero-mode in the left panel of Fig. 5.2 can
be understood as the effect of the Magnus force which the superflow momentum
K = Kx̂ exerts on the axial spin S = Cẑ of the Majorana fermions (as determined
by their chirality C = ±1). The direction of slow decay of the zero-mode is given
by the cross product K × S.
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

Vortices are strong scatterers [33], completely obscuring the Landau
level quantization in a nontopological superconductor [1]. Here chiral
symmetry ensures that the vortices cannot broaden the zeroth Landau
level.

Helmholtz equation for the Majorana Landau level — Let us focus on
the Landau level of positive chirality, described by the equation Ξ†u = 0.
This 2×2 matrix differential equation can be simplified by the substitution

u(r) = e−Ky−q(r)e
1
2 iφ(r)σz ũ(r), (5.6)

with ∂xq = − 1
2∂yφ+ eAy, ∂yq = 1

2∂xφ− eAx, (5.7)

⇒
(
−i∂x + ∂y ∆0

∆0 i∂x + ∂y

)
ũ = 0. (5.8)

The fields A, φ, and K no longer appear explicitly in the differential equa-
tion (5.8) for ũ, but they still determine the solution by the requirements
of normalizability and single-valuedness of the zero-mode u.

Outside of the vortex core the spatial dependence of the pair potential
amplitude ∆0 may be neglected and one further simplification is possible:
Substitution of ũ = (f, g) gives g = ∆−1

0 (i∂x − ∂y)f and a scalar second-
order differential equation for f ,

∇2f = ∆2
0f. (5.9)

In the context of classical wave equations this is the Helmholtz equation
with imaginary wave vector.

Eq. (5.6) requires that ũ and hence f have an exponential envelope eKy

in the y-direction. The Helmholtz equation (5.9) then ties that to a plane
wave ∝ e±iQx in the x-direction, with wave vector Q =

√
K2 −∆2

0. This
already explains the striped pattern in the numerical simulations of Fig.
5.2. For a more detailed comparison we proceed to a full solution of the
Helmholtz equation.

Analytical solution of the Majorana Landau level wave function — The
solutions of Eq. (5.9) for f are constrained by the requirements of nor-
malizability and single-valuedness of u. To determine the normalizability
constraint we use that the field q(r) defined in Eq. (5.7) has the integral
representation6

q(r) =
1

2Φ0

∫
dr′B(r′) ln |r − r′| − 1

2

∑
n

ln |r −Rn|. (5.10)

6The integral equation (5.10) for q(r) follows from the definition (5.7), which implies
that ∇2q(r) = ẑ · ∇ × (eA − 1

2
∇φ) = eB − π

∑
n δ(r −Rn). The Green function

of this 2D Poisson equation is (2π)−1 ln |r − r′|. Also note that Φ0 ≡ π/e in units
where ~ ≡ 1.

96



5.3 Deconfined phase

We consider N vortices (each of +2π vorticity) in a region S enclosing
a flux Φ = NΦ0, with Φ0 = h/2e the superconducting flux quantum7.
If we set B → 0 outside of S, the field q(r) → 1

2 (Φ/Φ0 − N ) ln r = 0
for r → ∞. In view of Eq. (5.6), normalizability requires that e−Kyf is
square integrable for r → ∞. Near a vortex core e−qf ∝ |r − Rn|1/2f
must be square integrable8.

Concerning the single-valuedness, the factor eiφ/2 in Eq. (5.6) intro-
duces a branch cut at each vortex position Rn, across which the function
f should change sign — to ensure a single-valued u. This is a local con-
straint: branch cuts can be connected pairwise, hence there is no sign
change in f on a contour encircling a vortex pair.

We have obtained an exact analytical solution9 of the Helmholtz equa-
tion in the limit that the separation of a vortex pair goes to zero. We
place the two vortices at the origin of a disc of radius R, enclosing a flux
h/e, with zero magnetic field outside of the disc. The envelope function

then equals e−q(r) = rmine
−r2min/2R

2

, with rmin = min(r,R).
The two independent solutions are given by ũ = (f1, f0) and ũ′ = σxũ

∗,
with

fn = 2ine−inθKn(∆0r)−
∫ Q

−Q
dpCn(p)eixp+y

√
∆2

0+p2 ,

Cn(p) = ∆−n0 (∆2
0 + p2)−1/2

(
p−

√
∆2

0 + p2
)n
. (5.11)

The vortex pair is at the origin, with x + iy = reiθ, and Kn is a Bessel
function.

The corresponding zero-modes follow from Eq. (5.6),

u = e−q(r)e−Ky(eiθf1, e
−iθf0), u′ = σxu

∗. (5.12)

For small r the zero-modes tend to a constant (the factor 1/r from K1 is
canceled by the factor r from e−q). The large-r asymptotics follows upon
an expansion of the integrand around the extremal points ±Q, giving

fn → (−1)n
eKy

∆n
0

(
(K +Q)ne−iQx

iKx−Qy − (K −Q)neiQx

iKx+Qy

)
. (5.13)

7We assume there is an even number of vortices in S. If the number of vortices is
odd, a zero-energy edge state along the perimeter of S will ensure that the total
number of Majorana zero-modes remains even.

8This normalization requirement at the vortex core ties the chirality of the Majorana
zero-modes to the sign of the vorticity. If we would have chosen −2π vortices
the field q(r) would tend to + 1

2
ln |r − Rn| near a vortex core, and the product

e−qf ∝ |r −Rn|−1/2f would not have been square integrable.
9Details of the solution of the Helmholtz equation are given in Apps. 5.B and 5.C.
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 5.3: Dispersion relation of the topological superconductor, calculated
from the model Hamiltonian (5.14) for zero magnetic field (black dashed lines,
chemical potential µ = 0) and in the presence of the magnetic vortex lattice
(colored flat bands at charge ±qeffe, for two values of µ). For both data sets
K = 2∆0 = 20 ~v/d0.

The zero-modes decay as e−Kyfn ∝ 1/r for r � R, which needs to be
regularized for a square-integrable wave function [93, 94]10. In a chain
of vortices (spacing b), the superposition of the solution (5.13) decays
exponentially in the direction perpendicular to the chain9. The decay
length is λ = bK/Q or λ = bQ/K for a chain oriented along the x-axis or
y-axis, respectively.

5.4 Numerical simulation

For a numerical study of the deconfinement transition we represent the
topological insulator layer by the low-energy Hamiltonian [95, 96]

H0(k) = (v/a0)
∑
j=x,yσj sin kja0 + σzM(k)− µ,

M(k) = M0 − (M1/a
2
0)
∑
j=x,y(1− cos kja0),

(5.14)

in the basis Ψ = 2−1/2(ψ↑upper +ψ↑lower, ψ↓upper−ψ↓lower) of spin-up and
spin-down states on the upper and lower surfaces 11. The atomic lattice

10The 1/r decay of the deconfined Majorana zero-mode implies a density of states
peak which decays slowly ∝ 1/ lnL as a function of the system size L. There is
a formal similarity here with the zero-modes originating from vacancies in a 2D
bipartite lattice [93, 94].

11In the basis Ψ = (ψ↑upper, ψ↓upper, ψ↑lower, ψ↓lower) the 4 × 4 Hamiltonian of
the topological insulator layer is H0 = t0

∑
j=x,yτzσj sin kja0 + τxσ0M(k) − µ,
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5.4 Numerical simulation

Figure 5.4: Left panel: Numerically calculated intensity profile |Ψ(x, y)|2 of
the zeroth Landau level in a vortex lattice with a pair of h/2e vortices at the
center of the unit cell (K = 2∆0 = 40 ~v/d0, µ = 0). Right panel: Analytical
result from the solution of the Helmholtz equation (5.9) for a single h/e vortex12.

constant is a0, the Fermi velocity is v, and µ is the chemical potential.
Hybridization of the states on the two surfaces introduces the mass term
M(k). We set M0 = 0, to avoid the opening of a gap2 at k = 0, but
retain a nonzero M1 = 0.2 a0v in order to eliminate the fermion doubling
at a0k = (π, π).

In the corresponding BdG Hamiltonian the electron block H0(k−eA+
K) is coupled to the hole block −H0(k + eA −K) by the s-wave pair
potential ∆0e

iφ, which we take the same for both layers. We assume a
strong type-II superconductor, for which we can take a uniform magnetic
field B and uniform pair potential amplitude ∆0. The +2π vortices are
positioned on a square lattice (lattice constant d0 = 302 a0) with two
vortices per unit cell.

The spectrum is calculated using the Kwant tight-binding code [52]13.

with Pauli matrix τz acting on the layer index. A unitary transformation block-
diagonalizes the Hamiltonian. One of the 2 × 2 blocks is given in Eq. (5.14), the
other block has M replaced by −M .

12The comparison between numerics and analytics in Fig. 5.4 involves no adjustable
parameters. To compare the same state in the degenerate zeroth Landau level we
choose the state with left-right reflection symmetry. There are two of these, the
other is compared in App. 5.E.

13Details of the method of numerical simulation, with supporting data, are given in
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

In Fig. 5.3 we show the dispersionless Landau levels, both for chemical
potential µ = 0 and for nonzero µ. The zeroth Landau level has energy
E0 = ±qeffµ, with qeffe the charge expectation value. For the model
Hamiltonian (5.2) we have14 qeff = Q/K =

√
1−∆2

0/K
2. The numerics

at K = 2∆0 gives a value 0.85, within 2% of
√

3/4 = 0.866. The first Lan-
dau level is expected at energy E1 = EL± qeffµ with EL =

√
4πqeff ~v/d0,

again in very good agreement with the numerics. Notice that the flatness
of the dispersion persists at nonzero µ — even though the topological
protection due to chiral symmetry15 is only rigorously effective at µ = 0.

In Fig. 5.4 we compare numerical and analytical results for the case that
the two h/2e vortices are both placed at the center of the unit cell. The
agreement is quite satisfactory, given the different geometries (a vortex
lattice in the numerics, a single h/e vortex in the analytics).

5.5 Striped local density of states

The striped pattern of the Majorana Landau level is observable by tun-
neling spectroscopy, which measures the local density of states

ρ(r) =
∑
k

[
|ψe(r)|2f ′(E0 − eV ) + |ψh(r)|2f ′(E0 + eV )

]
, (5.15)

averaged over the 2D magnetic Brillouin zone,
∑
k = (2π)−2

∫
dkxdky,

weighted by the derivative of the Fermi function. If E0 is much larger
than temperature, the sign of the bias voltage V determines whether the
electron component ψe or the hole component ψh contributes, so these
can be measured separately.

As shown in Fig. 5.5, the oscillations are most pronounced for the hole
component when µ > 0 (or equivalently the electron component when
µ < 0). This asymmetry in the tunneling current for V = ±E0 is an
additional experimental signature of the effect.

App. 5.A.
14The renormalized charge qeff in the Majorana Landau level is calculated in App. 5.D.

That calculation also gives the renormalized Fermi velocity veff =
√
vxvy =

√
qeff v

that appears in the Landau level energy EL.
15The chiral symmetry at µ = 0 is broken by the mass term M(k) in the Hamiltonian

(5.14). This residual chiral symmetry breaking is visible in Fig. 5.3 as a very small
splitting of the µ = 0 Landau levels (green flat bands).
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5.6 Conclusion

Figure 5.5: Electron and hole contributions to the local density of states in
the zeroth Landau level, along a line parallel to the x-axis which passes close
through a vortex core at x = y = 3d0/4. The curves are plots of

∑
k |ψe,h(x, y)|2

normalized to unit peak height at the vortex core. The parameters are K =
2∆0 = 40 ~v/d0, µ = 0.5 ~v/d0. The expected oscillation period of π~/Q =
0.091 d0 is indicated.

5.6 Conclusion

Concerning the experimental feasibility, we note that the gap closing
due to a superflow has already been observed [15], and Majorana vor-
tex lattices in a perpendicular field of 250 mT have been detected by
scanning probes in several experiments [97] — so by combining these two
ingredients the Majorana Landau level should become accessible. The
main additional requirement is that the Fermi level is sufficiently small,
µ < min(EL,∆0) ' 1 meV at 250 mT, to benefit from the protection af-
forded by chiral symmetry. Experiments [98] where µ was tuned through
the charge neutrality point give confidence that this is feasible.

The striped interference pattern in the local density of states, with wave
number Q =

√
K2 − (∆0/~v)2 (' 2π/0.2µm for K = 2∆0/~v at typical

values of ∆0 = 1 meV and v = 105 m/s) should be accessible by scanning
probe spectroscopy. Surface defects would themselves introduce Friedel
oscillations in the density of states, but the highly directional pattern that
is the hallmark of the Majorana Landau level would stand out.

The Majorana Landau level provides a realization of a flat band with
extended wave functions, in which interaction effects are expected to be
enhanced due to the quenching of kinetic energy. Interacting Majorana
fermions in a Fu-Kane superconductor have been studied by placing vor-
tices in close proximity inside a quantum dot [99]. The deconfinement
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

transition provides a means to open up the system and obtain a fully 2D
flat band with widely separated vortices. An intriguing topic for further
research is to investigate how the exchange of vortices operates on this
highly degenerate manifold.
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Appendices

5.A Details of the numerical simulation

5.A.1 Tight-binding model

The model Hamiltonian we consider is

H± =

(
H±(k − eA+K) ∆0e

iφ

∆0e
−iφ −H±(k + eA−K)

)
, (5.16a)

H±(k) = ±(v/a0)σx sin a0kx ± (v/a0)σy sin a0ky

± σzM(k)− µ, (5.16b)

M(k) = M0 − (M1/a
2
0)(2− cos a0kx − cos a0ky). (5.16c)

The Hamiltonian acts on a spinor with the four components

Ψ±(k) =
1√
2


[ψ↑upper ± ψ↑lower](k)
[ψ↓upper ∓ ψ↓lower](k)

−i[ψ↓upper ± ψ↓lower]
∗(−k)

i[ψ↑upper ∓ ψ↑lower]
∗(−k)

, (5.17)

for spin-up and spin-down electrons on the upper and lower surface of the
topological insulator layer. The first two elements of the spinor Ψ refer
to electrons and the last two elements to holes. These are coupled by the
s-wave pair potential ∆0, which we take the same on both surfaces. The
particle-hole symmetry relation is

H±(k) = −σxνyH∗∓(−k)σxνy, (5.18)

where the σα and τα Pauli matrices act on the spin and electron-hole
degree of freedom, respectively.

For the mass term M(k) we take M0 = 0, M1 = 0.2 a0v, such that H0

has a single gapless Dirac point at k = 0. Near this Dirac point the upper
and lower surface are uncoupled, so the eigenstate can equivalently be
written in the single-surface basis (ψ↑, ψ↓,−iψ∗↓ , iψ∗↑). The effect of a gap
opening due to a nonzero M0 is examined at the end of this Appendix.
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

The Hamiltonian is discretized on a square lattice (lattice constant a0)
with nearest neighbor hopping (hopping energy v/a0). The magnetic
field B is uniform in the z-direction, vector potential A = −Byx̂. The
superflow momentum is K = Kx̂. The amplitude ∆0 of the pair potential
is taken as a constant, the phase φ(x, y) winds by 2π around each vortex.

We take a square vortex lattice, with lattice constant d0 = Na0. The
flux through each magnetic unit cell is h/e, so it contains a pair of
h/2e vortices. The integer N determines the magnetic field via B =
(Na0)−2h/e. The vortices are placed on the diagonal of the magnetic
unit cell, at the positions (x, y) = (Na0/4)(1, 1) and (Na0/4)(3, 3). By
taking for N twice an odd integer, we ensure that the singularity in the
phase field at the vortex core does not coincide with a lattice point. The
phase field is discretized along the lines set out in App. B of Ref. 57.
The eigenvalues and eigenfunctions of H are calculated using the Kwant
tight-binding code [52].

5.A.2 Additional numerical results

Here we collect some additional results to those shown in the main text.
In the confined phase vK < ∆0 we show in Fig. 5.6 the anisotropic decay
rates of the Majorana zero-modes bound to a vortex core, as in the left
panel of Fig. 5.2. The localization length (∆0/v−K)−1 of the zero-modes
diverges at the transition.

Fig. 5.7 shows how at the deconfinement transition the quasi-continuum
of excited states in the vortex core is reorganized into a sequence of Landau
levels. The critical exponents for the gap closing are different on the two
sides of the transition. In the confined phase the gap to the first excited
state scales with the inverse localization length, so ∝ (∆0/v − K)1. In
the deconfined phase the gap scales with the Landau level separation
EL ∝ √qeff , so ∝ (K −∆0/v)1/4.

In the deconfined phase vK > ∆0 we show in Fig. 5.8 the Landau levels
in the vortex lattice (complementing Fig. 5.3). Fig. 5.9 shows the local
density of states in the zeroth Landau level. This shows the variation
over the entire unit cell of the vortex lattice, to complement the line cut
through a vortex core shown in Fig. 5.5 of the main text.

5.A.3 Effect of overlap of top and bottom surface
states

A nonzero mass term ±M0σzνz in the Hamiltonian (5.16) opens up a
hybridization gap in the Dirac cone. Since the Majorana Landau level is
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5.B Solution of the Helmholtz equation for the Majorana Landau level

Figure 5.6: Decay rate of the Majorana mode confined to a vortex core. The
data from the numerical simulation (colored points, ∆0 = 20 v/d0) closely fol-
lows the analytical prediction |Ψ| ∝ e−Kye−(∆0/v)r (dashed lines).

an eigenstate of the chirality operator Λ = σzνz, the effect of this term
is to displace the flat band away from E = 0 by an amount M0. In Fig.
5.10 we show numerical results that demonstrate this. Provided that M0

remains smaller than the Landau level separation EL, we do not expect
the overlap of top and bottom surface states to prevent the detection of
the Majorana Landau level. This is helpful because the overlap will favor
a strong proximity effect on both surfaces.

5.B Solution of the Helmholtz equation for
the Majorana Landau level

The general solution of the 2D Helmholtz equation ∇2f = ∆2
0f that gov-

erns the Majorana Landau level is a superposition of waves eipx±y
√
p2+∆2

0 .
Which superposition we need is determined by the requirement that
e−Ky−q(r)f(x, y) is square integrable in the x–y plane, with K > ∆0 > 0.
We denote Q =

√
K2 −∆2

0. For ease of notation we will set ∆0 ≡ 1 in
this appendix.
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 5.7: Excitation spectrum as a function of the superflow momentum
(parameters as in Fig. 5.2). For K < ∆0/v the states are confined to vortex
cores and form a quasi-continuum, for K > ∆0/v they are extended states
arranged into a sequence of Landau levels (distinguished by different colors, the
Majorana zero-modes are the light-green dots). The deconfinement transition
at K = ∆0/v is accompanied by a near closing of the gap to the first excited
state. The dashed curves show the expected gap scaling ∝ (∆0/v − K) and
∝ (K −∆0/v)1/4 on the two sides of the transition.

We construct a class of solutions for the case

q(r) = εr −N ln min(r, 1), N = 1, 2, . . . , (5.19)

corresponding to 2N vortices, each of vorticity +2π, at the origin. The
positive infinitesimal ε > 0 is introduced to regularize integrals at r →∞.
The restriction to an even number of overlapping vortices means that the
branch cut which connects vortices pairwise can be ignored. (We have not
succeeded in finding an analytical solution that incorporates the branch
cut, but of course in the numerics this is not a limitation.)

The superposition of elementary solutions eipx±y
√
p2+1 that cancels the

106



5.B Solution of the Helmholtz equation for the Majorana Landau level

–X X

MY

Γ

Figure 5.8: Dispersion relation in zero magnetic field (black dashed lines) and
in the presence of the magnetic vortex lattice (green solid lines, the right panel
shows the magnetic Brillouin zone). Both band structures are for µ = 0, and
the same parameters as in Fig. 5.3. The red dots indicate the Dirac points
at k = (±Q, 0) in zero magnetic field. The Landau levels are at ±

√
nEL,

n = 0, 1, 2, with EL =
√

4πqeff ~v/d0.

exponential growth factor e−Ky has the general form

f =


∫
|p|>Q dpC(p)eipx+y

√
p2+1 if y < 0,

−
∫
|p|<Q dpC(p)eipx+y

√
p2+1

+
∫
dpD(p)eipx−y

√
p2+1 if y > 0.

(5.20)

(We can use the symbol C twice without loss of generality because the
integration ranges do not overlap.)

The solution should be continuously differentiable at r 6= 0, which is
satisfied if f(x, y) and ∂yf(x, y) are continuous functions of y at y = 0, x 6=
0. The continuity requirement is that the Fourier transform

∫
· · · eipxdp

of C(p) equals the Fourier transform of D(p) for x 6= 0, which means
that C(p) and D(p) differ by a polynomial L(p) of p. [Recall that the
Fourier transform of a polynomial is given by derivatives of δ(x).] Simi-

larly, the requirement of a continuous derivative is that
√
p2 + 1C(p) and

−
√
p2 + 1D(p) differ by a polynomial T (p). The unique solution of these
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 5.9: Local density of states in the unit cell of the vortex lattice, at
the energy E0 > 0 of the zeroth Landau level pushed above the Fermi level
by a chemical potential µ > 0. The color scale plot shows

∑
k |ψe,h(x, y)|2,

summed over the magnetic Brillouin zone, normalized to unit maximum value.
The white dotted line indicates the cut shown in Fig. 5.5 of the main text, at
the same parameters. The electron contribution to the local density of states
(right panel) and the hole contribution (left panel) can be measured separately
by tunnel spectroscopy at voltages V = E0 and V = −E0, respectively.

two requirements is

C(p) =
1
2T (p)√
p2 + 1

− 1
2L(p),

D(p) =
1
2T (p)√
p2 + 1

+ 1
2L(p).

(5.21)

We are free to choose a convenient basis for the polynomials T (p) and
L(p), we will choose one for which the integral over D(p) has a closed-form
expression. The basis polynomials Tn(p) and Ln(p), n = 0, 1, 2, . . . are

Tn(p) =
(
p+

√
p2 + 1

)n
+
(
p−

√
p2 + 1

)n
,

Ln(p) =

(
p+

√
p2 + 1

)n
√
p2 + 1

−

(
p−

√
p2 + 1

)n
√
p2 + 1

.

(5.22)
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5.B Solution of the Helmholtz equation for the Majorana Landau level

Figure 5.10: Same as Fig. 5.8, but now for a nonzero mass term M0, to show
how the hybridization gap shifts the zeroth Landau level away from E = 0. The
plot shows the spectrum of the Hamiltonian H+ in Eq. (5.16), the spectrum
of H− has the zeroth Landau level shifted to −M0 (so that the full spectrum
is particle-hole symmetric). The parameters are K = 2∆0 = 20 ~v/d0, d0 =
102 a0, M0 = 0.02/a0, M1 = 0.2 a0.

This choice of basis is related to a basis of Chebyshev polynomials Tn, via
the identities

Tn(p) = 2(−i)nTn(ip),

Ln(p) = 2(−i)n−1
n−1∑
m=0

T2m−n+1(ip).
(5.23)

Note that

T−n(p) = (−1)nTn(p), L−n(p) = −(−1)nL−n(p). (5.24)

A complete basis for the pairs of polynomials T (p), L(p) is therefore given
by the two sets {Tn, Ln} ∪ {Tn,−Ln} with n = 0, 1, 2, . . ., or equivalently
by the single set {Tn, Ln} with n = 0,±1,±2, . . .. The corresponding
basis of the functions C(p) and D(p) in Eq. (5.21) is

Cn(p) =
1
2Tn(p)√
p2 + 1

− 1
2Ln(p) =

(
p−

√
p2 + 1

)n
√
p2 + 1

,

Dn(p) =
1
2Tn(p)√
p2 + 1

+ 1
2Ln(p) =

(
p+

√
p2 + 1

)n
√
p2 + 1

,

(5.25)
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

with n = 0,±1,±2, . . ..
We next use the Bessel function identities16

Kn(r) =

{
1

2in e
inθ
∫∞
−∞ dpDn(p)eipx−y

√
p2+1 if y ≥ 0,

1
2in e

inθ
∫∞
−∞ dpCn(p)eipx+y

√
p2+1 if y ≤ 0,

(5.26)

where r =
√
x2 + y2 and eiθ = (x+ iy)/r, to write the solution (5.20) in

the form

fn(x, y) =−
∫ Q

−Q
dp

(
p−

√
p2 + 1

)n
√
p2 + 1

eixp+y
√
p2+1

+ 2ine−inθKn(r), (5.27)

which is Eq. (5.11) in the main text (upon restoring the units of ∆0).
The function fn is the first component of the spinor ũ = (f, g), the

second component is

gn = (i∂x − ∂y)fn = fn−1. (5.28)

We now obtained an infinite countable set of solutions ũn = (fn, fn−1),
n = 0,±1,±2, . . . of the Helmholtz equation, such that e−Kye−εrũn is
square integrable at infinity. The condition that rN ũ is square integrable
at the origin (containing 2N overlapping vortices) selects a finite subset.
For r → 0 we have fn ' r−|n| if n 6= 0 and f0 ' ln r. Normalizability
requires that both |n| ≤ N and |n− 1| ≤ N , hence there are 2N allowed
values of n ∈ {−N + 1,−N + 2, . . .N − 1,N}.

All of this was for zero-modes Ψ = (f, g, 0, 0) of positive chirality, in a
lattice of +2π vortices. Alternatively, we can consider zero-modes Ψ =
(0, 0, f, g) of negative chirality in a lattice of −2π vortices. The differential
equations for f and g remain the same, but now the exponential factor
that needs to be canceled is eKy rather than e−Ky. The sign change gives
the negative chirality solution

fn(x, y) = −
∫ Q

−Q
dp

(
p−

√
p2 + 1

)n
√
p2 + 1

eixp−y
√
p2+1

+ 2ineinθKn(r), (5.29a)

gn = (i∂x − ∂y)fn = −fn+1. (5.29b)

The 2N zero-modes are now labeled by the index n ∈ {−N ,−N +
1, . . .N − 2,N − 1}.
16The identities (5.26) follow from the integral representation Kn(r) =

1
2

(r/2)n
∫∞
0 t−n−1 exp(−t− 1

4
r2/t) dt, upon the substitution p = 1

2
(t− 1/t).
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5.C Chain of vortices

5.C Chain of vortices

The regularization at infinity by the ε term in Eq. (5.19) is not needed if
we have a periodic lattice of vortices. We demonstrate this by considering
a linear chain of vortices at positions R`, spaced by b at an angle ϑ ∈
[0, π/2] with the x-axis. We take a linear superposition of the solutions
e−Kyfn(r −R`) from Eq. (5.27), with complex weights,

Fn(r) =

∞∑
`=−∞

ei`κe`Kb sinϑe−Kyfn(r −R`). (5.30)

We do not include the envelope e−q, because it tends to unity for large r
if we set ε ≡ 0. The Bloch phase κ is arbitrary.

We substitute the large-r expansion (5.13),

Fn → (−1)n
∞∑

`=−∞

ei`κ
(

(K +Q)ne−iQ(x−`b cosϑ)

iK(x− `b cosϑ)−Q(y − `b sinϑ)

− (K −Q)neiQ(x−`b cosϑ)

iK(x− `b cosϑ) +Q(y − `b sinϑ)

)
. (5.31)

We seek the decay of Fn in the direction perpendicular to the chain, so
for large |ρ| when (x, y) = (−ρ sinϑ, ρ cosϑ).

We thus need to evaluate an infinite sum of the form17

S(α, z) =

∞∑
`=−∞

ei`α

z + `
, α ∈ (0, 2π), z ∈ C\Z, (5.32a)

S(α, z) =
2πi

eiαz − ei(α−2π)z
. (5.32b)

In the limit |Im z| → ∞ this tends to

S(α, z)→
{
−2πie−(2π−α)Im z if Im z →∞,
2πieαIm z if Im z → −∞. (5.33)

Substitution of Eq. (5.32) into Eq. (5.31) gives, for x = −ρ sin θ, y =
ρ cos θ,

Fn →
(−1)n(K +Q)neiQρ sinϑ

Qb sinϑ− iKb cosϑ
S(α+, z−)

+
(−1)n(K −Q)ne−iQρ sinϑ

Qb sinϑ+ iKb cosϑ
S(α−, z+), (5.34)

17For a derivation of Eq. (5.32b), and its relation to the Lerch zeta function, see
https://mathoverflow.net/q/379157/11260
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where we abbreviated

α± = κ±Qb cosϑ mod 2π,

z± =
ρ

b

1
2 sin 2ϑ± iKQ
K2 − sin2 ϑ

.
(5.35)

Provided that α± 6= 0 mod 2π, the decay is exponential: |Fn| '
e−c|ρ|/λ, with (reinserting the units of ∆0)

λ = b
K2 −∆2

0 sin2 ϑ

K
√
K2 −∆2

0

(5.36)

and c a coefficient of order unity that depends on the sign of ρ,

c =

{
min(α+, 2π − α−) if ρ > 0,

min(α−, 2π − α+) if ρ < 0.
(5.37)

For a chain oriented along the x-axis or y-axis we have λ equal to bK/Q
or bQ/K, respectively.

5.D Renormalized charge in the Majorana
Landau level

The charge expectation value of the deconfined zero-mode can be calcu-
lated by means of the block diagonalization approach of Ref. 57. Starting
from the BdG Hamiltonian (5.2) we first make the gauge transformation

H 7→ U†HU with U =

(
eiφ 0
0 1

)
, resulting in

H =

(
(k + a+ q) · σ − µ ∆0

∆0 −(k + a− q) · σ + µ

)
,

a = 1
2∇φ, q = 1

2∇φ− eA+Kx̂. (5.38)

We have included the chemical potential µ.
For K > ∆0 in zero magnetic field there are gapless Dirac points at

k = (kx, ky) = (K̃, 0) with

K̃ = ±κK, κ =
√

1−∆2
0/K

2. (5.39)

To focus on the effect of a magnetic field on states near K̃ we set kx =
K̃ + δkx and consider δkx small.
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A unitary transformation H 7→ V †HV with

V =

(
σ0 cos(α/2) σx sin(α/2)
−σx sin(α/2) σ0 cos(α/2)

)
, (5.40)

tanα = −∆0/K̃, cosα = −(1 + ∆2
0/K̃

2)−1/2 = −κ,

approximately block-diagonalizes the Hamiltonian; the 2× 2 off-diagonal
blocks contribute to the spectrum in second order in δkx, a, q, and µ.
The 2×2 block along the diagonal that describes the hole-like states near
k = (κK, 0) is given by

H+ = κµ− (κδkx + κax − qx)σx + (ky + ay − κqy)σy, (5.41)

while the electron-like states near k = (−κK, 0) are described by

H− = −κµ+ (κδkx + κax + qx)σx − (ky + ay + κqy)σy. (5.42)

The block diagonalization removes any interference between the elec-
tron and hole blocks, so this approximation cannot describe the striped
density of states of Fig. 5.2 — for that we need the Helmholtz equa-
tion considered in the main text. Because the charge operator Q̂ =
−e∂H±/∂µ = ∓κe commutes with H±, the expectation value is given
simply by

〈Q̂〉 = ∓κe⇒ qeff = κ. (5.43)

The Fermi velocity in the x-direction is renormalized by the same factor,
vx = κv, while vy is unaffected. This affects the Landau level energy
EL =

√
4π ~veff/d0 of the anisotropic Dirac cone, via veff =

√
vxvy =

√
κv.

5.E Comparison of numerics and analytics

In order to compare the analytic solution (5.11) of the Helmholtz equation
with the numerical results from the tight-binding Hamiltonian (5.14) we
proceed as follows. For the analytic solution we take a single pair of
vortices located at r = 0, in a uniform magnetic field with total flux h/e
in a large disc centered at the origin. There are then two independent
zero-modes u, u′ given by Eq. (5.12) with q(r) = − ln r.

For the numerical calculation we consider an infinite lattice of vortices,
with pairs of vortices positioned at points Rn = d0n, n ∈ Z2, in a
uniform magnetic field B = (h/e)d−2

0 , vector potential A = −B(y, 0).
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5 Deconfinement of Majorana vortex modes produces a superconducting LL

Figure 5.11: Comparison between numerical and analytical intensity profiles
|Ψ(x, y)|2, normalized to unit maximal value, for one of the two reflection-
symmetric states in the zeroth Landau level. The parameter values are the
same as in Fig. 5.4, which compared the other state.

The Hamiltonian commutes with the magnetic translation operator

Tn =

(
eihnyx/d0 0

0 e−ihnyx/d0

)
Tn ,

TnrT
†
n = r + d0n .

(5.44)

(The 2 × 2 matrix acts on the electron-hole degree of freedom.) The
eigenvalue eik·n of the eigenstates defines the magnetic momentum k ∈
[0, 2π)2. At each value of k there are two independent zero-modes.

To make sure we are comparing the same state in the degenerate man-
ifold we consider the operator product

Px =

(
0 e

1
2 iφ(r)

e−
1
2 iφ(r) 0

)
σxPx

(
e−

1
2 iφ(r) 0

0 e
1
2 iφ(r)

)
, (5.45)

with eigenvalues ±1, which is a symmetry respected both by the analytic
and by the numerical calculation. The operator Px is the mirror symmetry
operator in the x-direction,

PxxP
†
x = −x , PxyP

†
x = y . (5.46)
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The magnetic momentum transforms under Px as kx 7→ −kx, ky 7→ ky.
For the comparison we set k = 0, which is invariant under the action

of Px. Then we can take the two zero-modes obtained numerically to be
eigenstates of Px, and compare them with the corresponding eigenstates
obtained analytically. Those are

u±(r) = u(r)± u′(r) , (5.47)

which, in view of the fact that

fn(−x, y) = f∗n(x, y) (5.48)

are eigenfunctions of Px with eigenvalues ±1. Figs. 5.4 and 5.11 compare
the modulus squared of the +1 and −1 eigenstates of Px respectively, with
quite satisfactory correspondence.
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6 Generalized eigenproblem
without fermion doubling for
Dirac fermions on a lattice

6.1 Introduction

Three-dimensional topological insulators are Nature’s way of working around
the Nielsen-Ninomiya no-go theorem [100], which forbids the existence of
a single species of massless Dirac fermions on a lattice. The fermion dou-
bling required by the theorem is present in a topological insulator slab,
but the two species of Dirac fermions are spatially separated on oppo-
site surfaces [101, 102]. On each surface the two-dimensional (2D) Dirac
Hamiltonian

HD = ~vFk · σ = −i~vF

(
σx

∂

∂x
+ σy

∂

∂y

)
(6.1)

emerges as the effective low-energy Hamiltonian, with a single Dirac cone
at k = (kx, ky) = 0.

Since it is computationally expensive to work with a three-dimensional
(3D) lattice, one would like to be able to discretize the 2D Dirac Hamilto-
nian, without introducing a second Dirac cone. We can draw inspiration
from lattice gauge theory, where a variety of strategies have been devel-
oped to avoid fermion doubling [103, 104]. The condensed matter context
introduces its own complications, notably the lack of translational invari-
ance and breaking of chiral symmetry by disorder and boundaries.

In Ref. 105 it was shown how the transfer matrix of the Dirac equation
in a disorder potential can be discretized without fermion doubling. This
allows for efficient calculation of the conductance and other transport
properties in an open system [106–108]. Here we apply the same approach
to the Hamiltonian of a closed system, in order to study the spectral
statistics.

The Nielsen-Ninomiya theorem forbids a local discretization of the eigen-
value problemHDψ = Eψ without fermion doubling and without breaking
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the chiral symmetry relation

σzHD = −HDσz. (6.2)

One way to circumvent the no-go theorem, is to abandon the locality
by introducing long-range hoppings in the discretized Dirac Hamiltonian
[109]. Here we follow an alternative route, following Stacey [110], which
is to work with a generalized eigenvalue problem

Hψ = EPψ, (6.3)

with local tight-binding operators H and P on both sides of the equation.
Going beyond Ref. 110, we transform the operators H and P such that
they remain, respectively, Hermitian and positive definite in the absence
of translational invariance. This favors a stable and efficient numerical
solution, and moreover guarantees that the resulting spectrum is real, not
only in the continuum limit but at any grid size.

A key feature of our approach, compared with the more familiar ap-
proaches of Wilson fermions [111] and Susskind fermions [112], is that both
the chiral symmetry (6.2) is preserved and the symplectic time-reversal
symmetry1

σyH
∗
Dσy = HD. (6.4)

This also implies the conservation of the product of the chiral and sym-
plectic symmetries, which is a particle-hole symmetry,

σxH
∗
Dσx = −HD. (6.5)

To demonstrate the capabilities of our approach we calculate the spectral
statistics of a disordered system and show how the numerics distinguishes
broken versus preserved chiral or symplectic symmetry in each of the four
symmetry classes of random-matrix theory [113].

The outline of the chapter is as follows: In the next section we formulate
the generalized eigenproblem, first following Stacey [110] for a translation-
ally invariant system, and then including disorder. The symmetrization
that produces a Hermitian H and positive definite P is introduced in Sec.
6.3. The locality of the discretization scheme is demonstrated by the con-
struction of a locally conserved current in Sec. 6.4. By applying different

1 The complex conjugation operation K in the symmetry relations (6.4) and (6.5)
is taken in the position basis. In momentum representation the relations read
σyH∗(−k)σy = H(k) and σxH∗(−k)σx = −H(k). Both symplectic and particle-
hole symmetries are anti-unitary symmetries, with operators T = iσyK and C =
σxK that square to −1 and +1, respectively.
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types of disorder, in scalar potential, vector potential, or mass, we can ac-
cess the different symmetry classes and obtain the characteristic spectral
statistics for each, as we show in Sec. 6.5. We conclude in Sec. 6.6.

6.2 Construction of the generalized
eigenproblem

6.2.1 Staggered discretization

If we discretize the Dirac Hamiltonian (6.1) on a lattice (lattice constant
a), the replacement of the momentum k by a−1 sin ka produces a second
Dirac cone at the edge of the Brillouin zone (k = π/a). To place our work
into context, we summarize methods to remove this spurious low-energy
excitation.

If one is willing to abandon the locality of the Hamiltonian, one can
eliminate the fermion doubling by a discretization of the spatial derivative
that involves all lattice points, df/dx 7→ ∑

n(−1)nn−1f(x − na). The
resulting dispersion remains strictly linear in the first Brillouin zone. This
discretization scheme goes by the name of slac fermions [109] in the high-
energy physics literature. It has recently been implemented in a condensed
matter context [114].

An alternative line of approach preserves the locality at the expense of
a symmetry breaking. The simplest way is to couple the top and bottom
surfaces of the topological insulator slab [95, 115]. The coupling adds
a momentum dependent mass term µσz(1 − cos ka) which gaps out the
second cone, while breaking both chiral symmetry and symplectic sym-
metry2. This is the Wilson fermion regularization of lattice gauge theory
[111, 116]. The product of chiral and symplectic symmetry is preserved by
Wilson fermions, which may be sufficient for some applications [117, 118].

It is possible to maintain the chiral symmetry by discretizing the Dirac
Hamiltonian on a pair of staggered grids. Much of the lattice gauge theory
literature is based on the Susskind discretization [112], which applies a
different grid to each of the two components of the spinor wave function
ψ. On a 2D lattice it reduces the number of Dirac cones in the Brillouin

2Breaking of the symplectic symmetry (6.4) does not necessarily imply breaking of
time-reversal symmetry. While a mass term µσz(1− cos ka) due to the coupling of
top and bottom surfaces in a topological insulator slab breaks symplectic symme-
try, time-reversal symmetry is preserved, because the time-reversal operation also
changes the sign of µ.
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

Figure 6.1: A pair of staggered grids (lattice constant a, lattice vectors ex, ey)
used in the Stacey discretization of the 2D Dirac equation. The wave function
and its spatial derivatives are evaluated at the open lattice points, in terms of
the values on the four neighboring closed lattice points. The basis states 〈n|
and |n〉 on the two lattices are indicated.

zone from 4 to 2. Chiral symmetry is preserved, but symplectic symmetry
is broken by the Susskind discretization (see App. 6.A).

Hammer, Pötz, and Arnold [119, 120] have developed an ingenious
single-cone discretization method for the time-dependent Dirac equation.
As in the Susskind discretization, different grids are used for each of
the spinor components, but these are staggered not only in space but
also in time. While this method is well suited for dynamical simulations
[121, 122], it is not easily adapted to energy-resolved spectral studies.

An altogether different approach, introduced by Stacey [110, 123], is to
evade the fermion-doubling no-go theorem by the replacement of the con-
ventional eigenvalue problem HDψ = Eψ by a generalized eigenproblem
Uψ = EΦψ. There is now no obstruction to having a local U and Φ and
also preserving chiral and symplectic symmetry.

The Stacey discretization of the transfer matrix was implemented in
Ref. 105. In what follows we show how to apply it to the Hamiltonian, to
solve the time-independent Dirac equation on a 2D lattice. In the next
subsection we first summarize the results of Ref. 110 for a translationally
invariant system, and then will present the modifications needed to apply
the method in the presence of a disorder potential.

6.2.2 Translationally invariant system

We seek to discretize the Dirac equation HDψ = Eψ on a 2D square
lattice (lattice constant a). We denote the discretized wave function by
ψn, with n = (nx, ny) ∈ Z2 labeling the lattice points at nxex + nyey.
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6.2 Construction of the generalized eigenproblem

For ease of notation we will henceforth set vF, ~, and a to unity.
Staggered discretization a la Stacey means that the wave function and

its spatial derivatives are evaluated on a displaced lattice with sites at
the center of the unit cells of the original lattice (see Fig. 6.1). The
discretization rules are:

∂ψ

∂x
7→ 1

2 (ψn+ex + ψn+ex+ey − ψn − ψn+ey ), (6.6a)

∂ψ

∂y
7→ 1

2 (ψn+ey + ψn+ex+ey − ψn − ψn+ex), (6.6b)

ψ 7→ 1
4 (ψn + ψn+ex + ψn+ey + ψn+ex+ey ). (6.6c)

In distinction to Susskind staggering, the same discretization applies to
each spinor component.

In momentum representation, ψ(k) =
∑
n ψne

−ik·n, the discretized
Dirac equation reads

U(k)ψ(k) = EΦ(k)ψ(k), (6.7)

with the k-dependent operators

U = − 1
2 iσx(eikx − 1)(eiky + 1)− 1

2 iσy(eikx + 1)(eiky − 1),

Φ = 1
4 (eikx + 1)(eiky + 1).

(6.8)

The dispersion relation

E(k) = ±2
√

tan2(kx/2) + tan2(ky/2) (6.9)

has a single Dirac point at k = 0. The Dirac point at the edge of the
Brillouin zone has been converted into a pole by the Stacey discretization.

6.2.3 Including a disorder potential

We break translational invariance by including in the Dirac equation a
spatially dependent scalar potential V σ0, vector potential Axσx + Ayσz,
and mass Mσz,

(−i∇+ eA) · σψ + (V σ0 +Mσz)ψ = Eψ. (6.10)

The electron charge e is set to unity in what follows. The Pauli matrices
σ = (σx, σy) and σz act on the spin degree of freedom, with σ0 the 2× 2
unit matrix.
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

symmetry symplectic chiral particle-hole class
V 6= 0 6= M × × × A
V 6= 0 = M,A X × × AII
A 6= 0 = V,M × X × AIII
M 6= 0 = V,A × × X D

Table 6.1: The four symmetry classes realized by single-cone Dirac fermions
[113]. The table lists the broken (×) and preserved (X) symmetries of the Dirac
Hamiltonian, in the presence of a scalar potential V , vector potential A, and
mass M . Class A applies if at least two of the three V,M,A are nonzero.

On the surface of a topological insulator the mass term represents a
perpendicular magnetization. Alternatively, we can consider a 2D topo-
logical superconductor with chiral p-wave pair potential, described by the
Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG =

(
k2

2m
+ V − EF

)
σz + v∆(k · σ). (6.11)

The Pauli matrices now act on the electron-hole degree of freedom, elec-
trons and holes are coupled by the pair potential ∝ v∆. Since this coupling
is linear in momentum k, the quadratic kinetic energy k2/2m can be ne-
glected near k = 0. The difference V −EF of electrostatic potential V and
Fermi energy EF then plays the role of the mass term M in Eq. (6.10).

The low-energy physics of the problem is governed by three symmetry
relations, the chiral symmetry (6.2), the symplectic symmetry (6.4), and
the particle-hole symmetry (6.5). Chiral symmetry is preserved by A and
broken by V or M . Symplectic symmetry is preserved by V and broken
by M or A. If at least two of the three potentials V,M,A are nonzero
all symmetries of the Dirac Hamiltonian are broken. Finally, if V = 0,
A = 0 while M 6= 0 the particle-hole symmetry (6.5) remains. Table 6.1
summarizes the symmetry classification [113].

The inclusion of the vector potential requires a separate consideration,
in order to preserve gauge invariance. We delay that to Sec. 6.4, at first
we only include V and M .

To incorporate the spatially dependent terms in the discretization scheme
we write the operators U and Φ in the position basis. In view of the iden-
tity

eikα =
∑
n

|n〉〈n|eikα =
∑
n

|n〉〈n+ eα|, (6.12)
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6.3 Symmetrization of the generalized eigenproblem

we have

U = − 1
2 iσxΩ+− − 1

2 iσyΩ−+, Φ = 1
4Ω++, (6.13)

Ωss′ =
∑
n

(
ss′|n〉〈n|+ s|n〉〈n+ ex|+ s′|n〉〈n+ ey|+ |n〉〈n+ ex + ey|

)
.

(6.14)

For later use we also define the factorization Φ = ΦxΦy, with commuting
operators Φx,Φy given by

Φα = 1
2 (eikα + 1) = 1

2

∑
n

(
|n〉〈n|+ |n〉〈n+ eα|

)
. (6.15)

In these equations the ket states |n〉 refer to sites on the displaced
lattice (open lattice points in Fig. 6.1), while the bra states 〈n| refer to
sites on the original lattice (closed lattice points). The inner product is
defined such that the two sets of eigenstates of position are orthonormal,
〈n′|n〉 = δn,n′ .

We define the potential and mass operators,

V =
∑
n

Vn|n〉〈n|, M =
∑
n

Mn|n〉〈n|, (6.16)

where Vn and Mn denote the value at the open lattice point n. With this
notation we have the discretized Dirac equation

Uψ + (V σ0 +Mσz)Φψ = EΦψ. (6.17)

The product V Φψ multiplies the value of V on an open lattice point with
the average of the values of ψ on the four adjacent closed lattice points,
and similarly for MΦψ.

Eq. (6.17) is a generalized eigenvalue problem, with operators on both
sides of the equation. Neither operator is Hermitian. This is problematic
in a numerical implementation, and we will show in the next section how
to resolve that difficulty.

6.3 Symmetrization of the generalized
eigenproblem

We wish to rewrite Eq. (6.17) in the form Hψ = EPψ, with Hermitian H
and Hermitian positive definite P. Such a symmetrization of the general-
ized eigenvalue problem allows for a stable and efficient numerical solution
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

[124, 125]3. Moreover, it guarantees real eigenvalues E and eigenvectors
ψE that satisfy the orthogonality relation 〈ψE |P|ψ′E〉 = 0 if E 6= E′.

We multiply both sides of Eq. (6.17) by Φ† and note that

Φ†U = 1
2σx(1 + cos ky) sin kx + 1

2σy(1 + cos kx) sin ky (6.18)

is a Hermitian operator. In position basis, this reads

Φ†U = −iD · σ, D = (Dx, Dy), (6.19a)

Dx = 1
8

∑
n

(
2|n〉〈n+ ex|+ |n〉〈n+ ex + ey|+ |n〉〈n+ ex − ey|

)
−H.c,

(6.19b)

Dy = 1
8

∑
n

(
2|n〉〈n+ ey|+ |n〉〈n+ ex + ey|+ |n〉〈n+ ey − ex|

)
−H.c.

(6.19c)

We thus arrive at the generalized eigenproblem

Hψ = EPψ, P = Φ†Φ,

H = −iD · σ + Φ†(V σ0 +Mσz)Φ,
(6.20)

with Hermitian H and positive semi-definite P. Moreover, P is positive
definite provided that Φ has no zero-modes, which is the case if the edges of
the Brillouin zone (kx or ky equal to ±π) are excluded from the spectrum.
To ensure that, we can choose an odd number Nx, Ny of lattice points with
periodic boundary conditions in the x- and y-directions (or alternatively,
even Nx, Ny with antiperiodicity).

By way of illustration, we work out the expectation value

〈ψ|Φ†V σ0Φ|ψ〉 =
∑
n

Vn| 14 (ψn + ψn+ex + ψn+ey + ψn+ex+ey )|2, (6.21)

so the value of the potential on an open lattice point is multiplied by the
norm squared of the average of the wave function amplitudes on the four
adjacent closed lattice points.

Eq. (6.20) is local in the sense that the operators H and P only couple
nearby lattice sites. It can be converted into a conventional eigenvalue
problem H̃ψ̃ = Eψ̃ with ψ̃ = Φψ and H̃ a nonlocal effective Hamiltonian:

H̃ = (Φ†)−1HΦ−1 = UΦ−1 + σ0V +Mσz. (6.22)

3Both H and P should be Hermitian and one of these operators should be positive
semi-definite to guarantee real eigenvalues of Hψ = EPψ. Hermiticity alone is not
sufficient, see the counterexample H = σx, P = σz with eigenvalues E = ±i.
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6.4 Locally conserved particle current

In the translationally invariant case, the effective Hamiltonian reduces
simply to

H̃ = 2σx tan(kx/2) + 2σy tan(ky/2). (6.23)

Both chiral symmetry and symplectic symmetry are preserved on the
lattice if present in the continuum description: σzH̃ = −H̃σz when
V = 0 = M , and σyH̃∗σy = H̃ when M = 0.

6.4 Locally conserved particle current

In real space the effective Hamiltonian (6.22) produces infinitely long-
range hoppings, as in the slac fermion discretization [109, 114]. The
transformation to the generalized eigenproblem (6.20) restores the locality
of the hoppings. One might wonder whether there is a physical content
to this mathematical statement. Yes there is, as we show in this section
the Stacey discretization allows for the construction of a locally conserved
particle current.

We define the particle number

〈ψ̃|ψ̃〉 = 〈ψ|Φ†Φ|ψ〉, (6.24)

corresponding to the density operator

ρ(n) = Φ†|n〉〈n|Φ. (6.25)

With reference to the two staggered grids in Fig. 6.1, the particle density
on an open lattice point n is given by the norm squared of the average of
the wave function on the four adjacent closed lattice points,

〈ψ|ρ(n)|ψ〉 = | 14 (ψn + ψn+ex + ψn+ey + ψn+ex+ey )|2. (6.26)

The current density operator is given by

jα(n) = (Φ†α)−1σαρ(n)Φ−1
α , (6.27)

or equivalently,

jx(n) = σx
∑
n

Φ†y|n〉〈n|Φy,

jy(n) = σy
∑
n

Φ†x|n〉〈n|Φx,
(6.28)

125



6 Generalized eigenproblem without fermion doubling for DF on a lattice

in terms of the operators Φx,Φy defined in Eq. (6.15). The current density
in the state ψ then takes the form

〈ψ|jx(n)|ψ〉 = 1
4 (ψn + ψn+ey )†σx(ψn + ψn+ey ),

〈ψ|jy(n)|ψ〉 = 1
4 (ψn + ψn+ex)†σy(ψn + ψn+ex).

(6.29)

The current density at an open lattice point is evaluated by averaging
the wave function at the two nearby closed lattice points connected by an
edge perpendicular to the current flow.

The local conservation law

− ∂

∂t
〈ψ|ρ(n)|ψ〉 =

∑
α=x,y

〈ψ|jα(n+ eα)− jα(n)|ψ〉 (6.30)

is derived in App. 6.B.
Knowledge of the current operator allows us to introduce the vector

potential operator A =
∑
nAn|n〉〈n| such that

lim
A→0

∂H
∂An

= j(n). (6.31)

This is satisfied if

H = − iD · σ + Φ†
(
V σ0 +Mσz

)
Φ + Φ†yσxAxΦy + Φ†xσyAyΦx +O(A2).

(6.32)

In App. 6.C we check that the Hamiltonian (6.32) is gauge invariant to
first order in A. Higher order terms are nonlocal and we will not include
them.

6.5 Spectral statistics

We have solved the generalized eigenproblem

Hψ = EPψ, P = Φ†Φ,

H = −iD · σ + Φ†
(
V σ0 +Mσz

)
Φ + Φ†yσxAxΦy + Φ†xσyAyΦx

(6.33)

on a square lattice of size Nx ×Ny. Antiperiodic boundary conditions in
the x- and y-direction account for the π Berry phase accumulated by the
spin when it makes one full rotation. The dimensions Nx, Ny are even to
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6.5 Spectral statistics

Figure 6.2: Histograms: Spacing distributions computed from the discretized
Dirac Hamiltonian (6.33), with different types of disorder corresponding to the
four symmetry classes in Table 6.1. The red dashed line is the prediction (6.34)
from random-matrix theory in the presence of symplectic symmetry (β = 4)
and in its absence (β = 2).

ensure a positive definite Φ (no zero-mode in the spectrum). The spec-
trum was calculated for 5 · 104 realizations of a random disorder, chosen
independently on each site from a uniform distribution in the interval
(−δ, δ).

To access the four symmetry classes from Table 6.1 we took

• Ax, Ay ≡ 0 and random V,M with δ = 15/
√

2 for class A;

• M,Ax, Ay ≡ 0 and random V with δ = 15 for class AII;

• V,M ≡ 0 and random Ax, Ay with δ = 1
4

√
2 for class AIII;

• V,Ax, Ay ≡ 0 and random M with δ = 15 for class D.

The relatively weak disorder in class AIII was chosen in view of the lin-
earization in the vector potential. For that case we took Nx = Ny = 150,
in the other symmetry classes with stronger disorder we took Nx = Ny =
100.

Symmetry class D is insulating for weak disorder in the mass M ∈
(−δ, δ), it undergoes a metal-insulator transition at δc = 3.44 [106]. This
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

Figure 6.3: Density of states in the four symmetry classes, calculated numer-
ically from the discretized Dirac Hamiltonian (blue solid lines) and compared
with the RMT prediction (6.35) (red dashed lines). Chiral symmetry introduces
a linear dip (class AIII), while particle-hole symmetry introduces a quadratic
peak (class D).

is the thermal metal phase of a topological superconductor [126]. The
thermal metal can be reached by vortex disorder, as in the network model
studied in Ref. 127, or it can be reached by electrostatic disorder in the
BdG Hamiltonian (6.11), as in the tight-binding models studied in Refs.
106, 128. Here we follow the latter approach, taking δ = 15 much larger
than δc, so that we are deep in the metallic regime.

In Fig. 6.2 we show the probability distribution of the level spacing δE
in the bulk of the spectrum, far from E = 0, where the average spacing
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6.6 Conclusion

〈E〉 is energy independent. We compare with the Wigner surmise from
random-matrix theory (RMT) [129],

P (s) =

{
32
π2 s

2e−4s2/π in class A, AIII, D,
218

(9π)3 s
4e−64s2/9π in class AII,

(6.34)

with s = δE/〈δE〉. The characteristic difference between the two distri-
butions is the decay ∝ sβ for small spacings, with β = 4 in the presence
of symplectic symmetry, while β = 2 in its absence. (The case β = 1 of
RMT is not realized in a spin-full system.)

In Fig. 6.3 we make a similar comparison for the density of states near
E = 0. In class A and AII the ensemble averaged density of states ρ(E)
is flat in a broad energy range around E = 0. Chiral symmetry in class
AIII introduces a linear dip in the density of states, while particle-hole
symmetry in class D introduces a quadratic peak. The RMT predictions
are [130]

ρ(E) =
1

〈δE〉 ×
{

1
2π

2|ε|
[
J2

0 (πε) + J2
1 (πε)

]
in class AIII,

1 + (2πε)−1 sin(2πε) in class D,
(6.35)

with ε = E/〈δE〉. The mean level spacing 〈δE〉 is computed away from
E = 0.

The good agreement between the numerical results from the disordered
Dirac equation and the RMT predictions, evident in Figs. 6.2 and 6.3, is
reached without any adjustable parameter.

6.6 Conclusion

In conclusion, we have developed and implemented a lattice fermion Hamil-
tonian that, unlike the familiar Wilson fermion and Susskind fermion
Hamiltonians [111, 112], preserves both chiral symmetry and symplec-
tic symmetry while avoiding fermion doubling. Our approach is a sym-
metrized version of Stacey’s generalized eigenvalue problem [110], which
allows for the construction of a locally conserved particle current. To
demonstrate the universal applicability of the lattice fermion Hamiltonian
we have shown how it can reproduce the characteristic spectral statistics
for each of the four symmetry classes of Dirac fermions. We believe this
to be the first demonstration of a single-cone discretization scheme with
that capability.
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Appendices

6.A Susskind discretization breaks
symplectic symmetry

The staggered discretization of the 2D Dirac equation a la Susskind [112]
produces a conventional eigenvalue problem, with a local Hamiltonian.
There is a single Dirac cone in 1D but there are 2 Dirac cones in 2D.
Chiral symmetry is preserved, but symplectic symmetry is broken. To
contrast this with the symplectic-symmetry-preserving single-cone Stacey
discretization used in the main text, we give a brief description of the
Susskind discretization, first in 1D and then in 2D.

In 1D the staggering refers to the prescription that the derivative of the
A component of the spinor ψ = (ψA, ψB) is calculated at x = n + 1/2,
while the derivative of the B component is calculated at x = n − 1/2.
Hence the term kxσx in the Dirac Hamiltonian is substituted by

kxσxψ 7→ −i
(
ψB(n)− ψB(n− 1)
ψA(n+ 1)− ψA(n)

)
⇒ HD 7→ −i

(
0 1− e−∂x

e∂x − 1 0

)
. (6.36)

The exponential e∂x , with ∂x = ∂/∂x, is the translation operator: e∂xψ(x) =
ψ(x+ 1).

In momentum representation, ∂x 7→ ikx, the discretized Hamiltonian
reads

H = σx sin kx + σy(1− cos kx). (6.37)

The corresponding dispersion relation

E(kx) = ±
√

2− 2 cos kx (6.38)

has a single Dirac cone at kx = 0 in the Brillouin zone −π < kx ≤ π.
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

The 2D generalization is

HD 7→ − 1
2 i

(
0 (1− e−∂x)(1 + e∂y )

(e∂x − 1)(1 + e−∂y ) 0

)
− 1

2 i

(
0 −i(1− e∂y )(1 + e−∂x)

i(e−∂y − 1)(1 + e∂x) 0

)
= 1

2

(
σx + σy)(sin(kx − ky)− cos kx + cos ky

)
+ 1

2 (σx − σy)
(
cos(kx − ky) + sin kx + sin ky − 1

)
. (6.39)

The resulting dispersion relation,

E(kx, ky) = ±
√

2− 2 cos kx cos ky, (6.40)

vanishes at k = (0, 0) and k = (π, π). (This is the dispersion studied in
Ref. 131.) Without staggering there would also have been Dirac cones at
k = (0, π) and (π, 0), so the number of Dirac cones in the Brillouin zone
has been halved by the Susskind discretization.

Chiral symmetry is preserved, HD still anticommutes with σz in its
discretized form (6.39). But symplectic symmetry is broken: σyH

∗σy 6= H
after discretization. To ensure symplectic symmetry each Pauli matrix
should be multiplied by an odd function of k, while Eq. (6.39) contains a
mixture of odd and even functions of k.

6.B Derivation of the local conservation law
for the particle current

To derive Eq. (6.30) we first note the identity

∂

∂t
〈ψ|O|ψ〉 = i〈ψ|Φ†[H̃, Õ]Φ|ψ〉, (6.41)

which holds for any operator O, with Õ = (Φ†)−1OΦ−1. The nonlocal
effective Hamiltonian H̃ is defined in Eq. (6.22).

We take for O the density operator (6.25), so ρ̃(n) = |n〉〈n|. This
projector commutes with the operators V and M in H̃, what remains is
the commutator with UΦ−1:

− ∂

∂t
〈ψ|ρ(n)|ψ〉 = −i〈ψ|Φ†

[
UΦ−1, |n〉〈n|

]
Φ|ψ〉

= i〈ψ|Φ†|n〉〈n|U |ψ〉 − i〈ψ|Φ†UΦ−1|n〉〈n|Φ|ψ〉
= i〈ψ|Φ†|n〉〈n|U |ψ〉+ H.c. (6.42)
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6.C Gauge invariant vector potential

In the last equality we used that Φ†U = U†Φ.

In terms of the current operator (6.27) we have

iΦ†|n〉〈n|U = 1
2

∑
α=x,y

(e−ikα + 1)jα(n)(eikα − 1)

⇒ iΦ†|n〉〈n|U + H.c =
∑
α=x,y

(
e−ikαjα(n)eikα − jα(n)

)
=
∑
α=x,y

(
jα(n+ eα)− jα(n)

)
. (6.43)

Substitution into Eq. (6.42) gives the conservation law (6.30).

6.C Gauge invariant vector potential

To include the vector potential A(r) in a gauge invariant way in the
discretized Dirac equation, we follow the procedure of minimal coupling:
We first discretize without a vector potential, then perform a U(1) gauge
transformation on the lattice, and finally replace the gradient of the phase
field by the vector potential.

We define the gauge field operator

eiθ =
∑
n

eiθn |n〉〈n|, (6.44)

with θn the value of the phase θ(r) at site n on the displaced lattice
(open points in Fig. 6.1). With this field we perform the U(1) gauge
transformation

H̃ 7→ eiθH̃e−iθ,
⇒ H 7→ Φ†eiθ(Φ†)−1HΦ−1e−iθΦ

= Φ†eiθUΦ−1e−iθΦ + Φ†(V σ0 +Mσz)Φ. (6.45)

In the last equation we have used that eiθ commutes with V and M .

To proceed we apply the identity

e−ikαeiθeikαe−iθ = eiδαθ,

δαθ =
∑
n

(
θ(n+ eα)− θ(n)

)
|n〉〈n| (6.46)
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6 Generalized eigenproblem without fermion doubling for DF on a lattice

to the operator product

eiθUΦ−1e−iθ = −2i
∑
α=x,y

σα
eiθeikαe−iθ − 1

eiθeikαe−iθ + 1

= −2i
∑
α=x,y

σα
eikαeiδαθ − 1

eikαeiδαθ + 1
. (6.47)

The gauge transformed Hamiltonian thus takes the form

H = Φ†
(
−2i

∑
α=x,y

σα
eikαeiδαθ − 1

eikαeiδαθ + 1
+ V σ0 +Mσz

)
Φ. (6.48)

The vector potential is then introduced by the Peierls substitution

θ(n+ eα)− θ(n) =

∫ n+eα

n

A(r) · dl, (6.49)

where the line integral of the vector potential is taken along a lattice
bond. With this prescription the substitution can also be applied to vector
potentials that do not derive from a gauge field.

The Hamiltonian (6.48) is Hermitian but nonlocal. If the phase field
varies slowly on the scale of the lattice spacing, the nonlocality can be
eliminated by expanding

eiδαθ ≈ 1 + iδαθ ≡ 1 + iAα, A =
∑
n

An|n〉〈n|. (6.50)

Continuing the expansion to first order in Aα, we have

eikαeiδαθ − 1

eikαeiδαθ + 1
= (eikα − 1)(eikα + 1)−1

+ 2(e−ikα + 1)−1iAα(eikα + 1)−1 +O(A2
α). (6.51)

Substitution into Eq. (6.48) gives the Hamiltonian (6.32) to first order in
the vector potential.
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Samenvatting

Landau-niveaus zijn quantumtoestanden die ontstaan uit de periodieke cy-
clotronbeweging in een magnetisch veld van geladen deeltjes, zoals elektro-
nen. De Landau-niveaus zijn verantwoordelijk voor bijzondere verschijn-
selen in de vaste stof, zoals het quantum-Hall-effect in twee-dimensionale
halfgeleiders en het chirale magnetische effect in Weyl halfmetalen. Deze
verschijnselen zijn interessant omdat zij een topologische oorsprong hebben.

Al zo’n dertig jaar geleden vroegen onderzoekers van het kaliber van
Anderson, Schrieffer en Gorkov zich af of Landau-niveaux zouden kun-
nen optreden in supergeleiders, in het bijzonder in de hoge-temperatuur
supergeleiders. Een supergeleider probeert het magnetisch veld buiten te
dringen (het zogenaamde Meissner-effect), maar in de hoge-temperatuur
supergeleiders kan het magneetveld toch binnendringen via wervelingen
(“vortices”). Deze onderzoekslijn heeft niets opgeleverd, omdat al snel
bleek dat die wervelingen de elektronen sterk verstrooien en de Landau-
niveaux compleet tenietdoen.

De belangrijkste bijdrage van dit proefschrift is de ontdekking dat de
Landau-niveaux wel stabiel blijven als de geladen deeltjes een zogenaamde
chirale symmetrie bezitten. De chirale symmetrie beschermt de Landau-
niveaux voor de verstoring door de wervelingen. Omdat de bescherming
een gevolg is van een wiskundige stelling uit de topologie (het Atiyah-
Singer indextheorema), spreken we van een topologische bescherming.

We onderzoeken twee type deeltjes met chirale symmetrie, die voorkomen
in een Weyl supergeleider (hoofdstuk 2) en in een Fu-Kane supergeleider
(hoofdstuk 5). In beide gevallen gaat het om massaloze deeltjes, in de
Weyl supergeleider bewegen ze zich in drie dimensies, in de Fu-Kane su-
pergeleider slechts in twee dimensies (namelijk aan het oppervlak van een
topologische isolator).

De aanwezigheid van Landau-niveaus geeft aanleiding tot supergelei-
dende analogiën van het quantum-Hall-effect en het chirale magnetische
effect, zoals we beschrijven in hoofdstukken 3 en 4. Een onverwachte ont-
dekking is dat er een elektrische stroom kan optreden die parallel loopt
aan het magnetische veld, met een waarde die gekwantiseerd is. Deze
stroom ontstaat zonder dat er een elektrisch veld aan te pas komt, het is
een puur evenwichtsverschijnsel. Dit is een markante tegenstelling met het
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bekende chirale magnetische effect, wat alleen buiten evenwicht optreedt.
In hoofdstuk 6 nemen we een zijspoor, door een meer technisch prob-

leem op te lossen: de computersimulatie van massaloze deeltjes (Dirac
fermionen) op een rooster. We ontwikkelen een methode om het welbe-
kende verdubbelingsprobleem te omzeilen (het probleem dat de discreti-
satie van een differentiaalvergelijking op een rooster een verdubbeling van
de massaloze deeltjes veroorzaakt). De methode maakt het mogelijk om
de massaloze deeltjes die in de overige hoofdstukken van het proefschrift
optreden op een computer te simuleren.
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Landau levels are quantum states originating from the periodic cyclotron
motion of charged particles, in particular electrons, in the magnetic field.
They occur in a multitude of materials, leading to phenomena such as the
quantum Hall effect in two-dimensional systems, and the chiral magnetic
effect in Weyl semimetals. These effects are of interest, as they constitute
a manifestation of topology in condensed matter systems.

Some thirty years ago, the physicists Anderson, Schrieffer and Gor’kov
proposed that Landau levels could appear in superconductors, in partic-
ular in the high-temperature superconductors. A superconductor tries
to expel the magnetic field (the so-called Meissner effect), but in high-
temperature superconductors the field can still penetrate in the form of
vortices. This proposal led nowhere, because it was soon understood that
the vortices will strongly scatter the electrons, thereby fully destroying
the Landau levels.

The main contribution of this thesis is the discovery that the Landau
levels do remain stable if the charged particles have a so-called chiral sym-
metry. The chiral symmetry protects the Landau levels from the scatter-
ing by vortices. Because the protection is a consequence of a mathematical
theorem in topology (the Atiyah-Singer index theorem), one speaks of a
topological protection.

We investigate two types of particles with chiral symmetry, which ap-
pear in a Weyl superconductor (chapter 2) and in a Fu-Kane supercon-
ductor (chapter 5). In both systems these are massless particles, in the
Weyl superconductor they move in three dimensions, in the Fu-Kane su-
perconductor in two dimensions (on the surface of a topological insulator).

The presence of Landau levels gives rise to superconducting counter-
parts of the quantum Hall effect and the chiral magnetic effect, as we
describe in chapters 3 and 4. An unexpected finding is the appearance of
an electrical current parallel to the magnetic field, with a quantized mag-
nitude. This current exists in the absence of any electric field, it is purely
an equilibrium effect. All of this is marked contrast with the known chiral
magnetic effect, which only exists out of equilibrium.

Chapter 6 diverges from the topics discussed above, by solving a more
technical problem: the computer simulation of massless particles (Dirac
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fermions) on a lattice. We develop a method to avoid the well known
fermion doubling problem (the problem that the discretization of a differ-
ential equation on a lattice causes a doubling of the massless particles).
This method makes it possible to simulate on a computer the massless
particles studied in the other chapters of the thesis.
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