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7 | The Vector Speckle Grid
Instantaneous incoherent speckle grid for high-precision

astrometry and photometry in high-contrast imaging

Adapted from
S.P. Bos

Astronomy & Astrophysics, 638, A118 (2020)

Photometric and astrometric monitoring of directly imaged exoplanets will deliver
unique insights into their rotational periods, the distribution of cloud structures, weather,
and orbital parameters. As the host star is occulted by the coronagraph, a speckle grid
(SG) is introduced to serve as astrometric and photometric reference. Speckle grids are
implemented as diffractive pupil-plane optics that generate artificial speckles at known
location and brightness. Their performance is limited by the underlying speckle halo
caused by evolving uncorrected wavefront errors. The speckle halo will interfere with the
coherent SGs, affecting their photometric and astrometric precision. Our aim is to show
that by imposing opposite amplitude or phase modulation on the opposite polarization
states, a SG can be instantaneously incoherent with the underlying halo, greatly increasing
the precision. We refer to these as vector speckle grids (VSGs). We derive analytically the
mechanism by which the incoherency arises and explore the performance gain in idealised
simulations under various atmospheric conditions. We show that the VSG is completely
incoherent for unpolarized light and that the fundamental limiting factor is the cross-talk
between the speckles in the grid. In simulation, we find that for short-exposure images
the VSG reaches a ∼0.3-0.8% photometric error and ∼3− 10 · 10−3 λ/D astrometric error,
which is a performance increase of a factor ∼20 and ∼5, respectively. Furthermore, we
outline how VSGs could be implemented using liquid-crystal technology to impose the
geometric phase on the circular polarization states. The VSG is a promising new method
for generating a photometric and astrometric reference SG that has a greatly increased
astrometric and photometric precision.
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7.1 Introduction

Temporally monitoring directly imaged exoplanets will deliver unique insight into their
rotational periods, and the distribution and dynamics of cloud structures (Kostov & Apai,
2012). For example, HST observations showed that 2M1207b has photometric variations
at the 0.78-1.36% level, which allowed for the first measurement of the rotation period of
a directly imaged exoplanet (Zhou et al., 2016). Furthermore, high precision astrometric
monitoring of exoplanets will help determine their orbital dynamics. This was demon-
strated by Wang et al. (2016), where the authors showed that β Pic b does not transit its
host star, but that its Hill sphere does.

Ground-based high-contrast imaging (HCI) systems, such as SPHERE (Beuzit et al.,
2019), GPI (Macintosh et al., 2014), and SCExAO (Jovanovic et al., 2015b), deploy
extreme adaptive optics (AO) systems to measure and correct for the turbulence in the
Earth’s atmosphere. The direct photometric and astrometric reference, that is the host
star, is occulted by a coronagraph to reveal the faint companions. This makes it hard to
disentangle exoplanet brightness variations, due to their intrinsic rotation, from seeing
and transmission changes in the Earth’s atmosphere. To circumvent this problem, Marois
et al. (2006) and Sivaramakrishnan & Oppenheimer (2006) simultaneously came up with
diffractive methods to generate artificial speckle grids (SGs) that could serve as photo-
metric and astrometric references. These are implemented as static masks that introduce
phase or amplitude modulations in the pupil plane, and are installed before the focal-plane
mask of the coronagraph. The artificial speckles are designed to fall on specific off-axis
focal-plane positions and will therefore not be occulted by the coronagraph. For example,
GPI implemented a square grid that acts as an amplitude grating and reports a ∼7% pho-
tometric stability (Wang et al., 2014), and SPHERE uses a static deformable mirror (DM)
modulation with a ∼4% photometric stability (Langlois et al. 2013; Apai et al. 2016).
The limiting factor of these SGs is their coherency with the time-varying speckle back-
ground, which results in interference that dynamically distorts the shape and brightness of
the SGs, which in turn ultimately limits their photometric and astrometric precision. The
background speckles are for example generated by uncorrected wavefront errors due to
fitting, bandwidth, or calibration errors in the AO system (Sivaramakrishnan et al. 2002;
Macintosh et al. (2005)), or evolving non-common path errors (Soummer et al., 2007).
These background speckles have been found to decorrelate, that is, they become inco-
herent over timescales from seconds to minutes and hours (Fitzgerald & Graham 2006;
Hinkley et al. 2007; Martinez et al. (2012); Martinez et al. (2013); Milli et al. 2016), and
therefore affect the stability of the SGs during the entire observation.

Jovanovic et al. (2015a) presented a method that circumvents this problem. Their so-
lution is a high-speed, temporal modulation that switches (¡ 1 ms) the phase of the SG
between zero and π (e.g. by translating the mask). Due to the modulation, the interfer-
ence averages out and the SG effectively becomes incoherent. This has been implemented
at SCExAO using DM modulation and is reported to increase the stability by a factor of
between approximately two and three (Jovanovic et al., 2015a). However, a dynamic,
high-speed component cannot always be integrated and is not always desired in a HCI
system. For an implementation by DM modulation, the SG can only be placed within the
control radius of the AO, and the incoherency relies on the quality of the DM calibration.
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Here, we propose the vector speckle grid (VSG). This is a SG solution that instanta-
neously generates incoherency by imposing opposite amplitude or phase modulation on
the opposite polarization states in the pupil plane. The opposite polarization states will
both generate SGs at the same focal-plane positions, but with opposite phase. Therefore,
the two polarization states will interfere differently with the background speckle halo, but
such that in total intensity the interference terms cancel. The VSG can be implemented
as one static, liquid crystal optic that can be easily calibrated before observations. Fur-
thermore, the speckles can be positioned anywhere in the focal plane and thus outside the
scientifically interesting AO control region.

In section 7.2 we derive the theory behind the VSG. In section 7.3 we perform ide-
alised simulations to quantify the performance increase and investigate the effect of par-
tially polarized light. In section 7.4 we discuss how the VSGs could be implemented.
Lastly, in section 7.5, we discuss the results and present our conclusions.

7.2 Theory

7.2.1 Vector phase speckle grid

Here we derive how the incoherency of VSGs arises, and focus on the vector phase speckle
grid (VPSG) first. The derivation of the vector amplitude speckle grid (VASG) is pre-
sented in subsection 7.2.2. All variables used in this section are also defined in Table 7.1.
We assume that the stellar point spread function (PSF) is only aberrated by phase aber-
rations for simplicity. However, VSGs are still incoherent when there are also amplitude
aberrations present. Here, we assume a one-dimensional pupil-plane electric field Ep(x):

Ep(x) = A(x)eiθ(x), (7.1)

with A(x) being the amplitude of the electric field, which is described as the rectangular
function, θ(x) the phase aberration distorting the PSF, and i =

√
−1 the unit imaginary

number. The coordinate x denotes the position in the pupil and is omitted from here on.
We describe starlight with a degree of polarization p, as two orthogonal polarization states
(either linear or circular) using Jones calculus:

E1 =
1
√

2

(√
1 + p
0

)
, E2 =

1
√

2

(
0√

1 − p

)
. (7.2)

The VPSG is implemented by a cosine wave (with spatial frequency b) on the pupil phase,
with opposite amplitude a for the two opposite polarization states. As we see below
in the derivation, b determines the focal-plane position of the artificial speckles and a
their relative brightness to the PSF core. The opposite amplitude eventually leads to the
incoherency of the VSG.

Ep =
Aeiθ

√
2

( √
1 + p · eai cos(2πbx)√
1 − p · e−ai cos(2πbx)

)
. (7.3)
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We assume the Fraunhofer approximation and calculate the focal-plane electric field E f

by taking the Fourier transform (F {·}) of Ep:

E f = F {Ep}( fx) (7.4)

=
F {A} ∗ F {eiθ}

√
2

∗

( √
1 + p · F {eai cos(2πbx)}√
1 − p · F {e−ai cos(2πbx)}

)
, (7.5)

where ∗ is the convolution operator, and fx the coordinate in the focal plane, which is
omitted as well. As we chose A(x) to be the rectangular function in Equation 7.1, its
Fourier transform is:

F {A}( fx) = sin( fx)/ fx (7.6)
= sinc( fx). (7.7)

We do not explicitly calculate F {eiθ} and assume that:

F {eiθ} = α + iβ. (7.8)

Writing e±ai cos(2πbx) as a series expansion, we find that:

E f =
sinc( fx) ∗ (α + iβ)

√
2

∗

( √
1 + p[1 +

∑∞
n=1

(i)nan

n! F {cosn(2πbx)}]√
1 − p[1 +

∑∞
n=1

(i)n(−a)n

n! F {cosn(2πbx)}]

)
. (7.9)

Equation 7.9 shows that the VPSG creates an infinite number of speckles with decreasing
brightness. For now, we assume that a � 1 radian and expand Equation 7.9 to first order
(n = 1). Working out the terms in Equation 7.9, we find:

E f =
α + iβ
√

2
∗

(√
1 + p[sinc( fx) + ai

2 (sinc( fx − b) + sinc( fx + b))]√
1 − p[sinc( fx) − ai

2 (sinc( fx − b) + sinc( fx + b))]

)
. (7.10)

Rearranging in the real and imaginary terms, and computing the focal-plane intensity
(I f = E f · E∗f ) results in:

I f = ∆2 + Λ2︸   ︷︷   ︸
PSF

+
a2

4
(Γ2 + Ω2)︸         ︷︷         ︸

speckle grid

+ ap(∆Γ + ΛΩ).︸            ︷︷            ︸
cross-talk of PSF with speckle grid

(7.11)

Greek symbols are used here to simplify the notation and denote the following terms:

∆ = sinc( fx) ∗ α (7.12)
Γ = [sinc( fx − b) + sinc( fx + b)] ∗ β (7.13)
Λ = sinc( fx) ∗ β (7.14)
Ω = [sinc( fx − b) + sinc( fx + b)] ∗ α. (7.15)

Equation 7.11 shows that the focal-plane intensity can be divided into three terms: the
stellar PSF, the speckle grid, and the cross-talk between the speckle grid and the PSF. We
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find that the relative intensity of the speckle grid is given by Is = a2/4. The performance
of regular SGs is limited by the cross-talk term. For the VPSG, when p = 0 (i.e. with
unpolarized light), the cross-talk term is eliminated and Equation 7.11 reduces to:

I f = ∆2 + Λ2 +
a2

4
(Γ2 + Ω2), (7.16)

effectively making the VPSG incoherent with the PSF.
The remaining cross-talk that degrades the photometric and astrometric performance

is the interference between the speckles themselves:

Γ2 + Ω2 = (sinc( fx − b) ∗ α)2 + (sinc( fx − b) ∗ β)2︸                                             ︷︷                                             ︸
speckle 1

+

(sinc( fx + b) ∗ α)2 + (sinc( fx + b) ∗ β)2︸                                             ︷︷                                             ︸
speckle 2

+

2(sinc( fx − b) ∗ α · sinc( fx + b) ∗ α︸                                        ︷︷                                        ︸
cross-talk between speckles

+

sinc( fx − b) ∗ β · sinc( fx + b) ∗ β)).︸                                        ︷︷                                        ︸
cross-talk between speckles

(7.17)

We have not found a method to mitigate this effect, and consider this cross-talk to be
the fundamental limiting factor of the VSG. Its effect can be reduced by minimizing the
number of speckles in the VSG and increasing their separation. This can be understood
as follows: the distortion of an artificial speckle is determined by the relative strength
of the combined electric field of the other artificial speckles (the distorting electric field)
at its location, relative to its own electric field strength. If the distorting electric field
becomes stronger, the cross-talk terms in Equation 7.17 become more important and the
artificial speckle is more distorted. If there are fewer artificial speckles in the VSG, the
distorting electric field becomes weaker. Furthermore, as the electric field an artificial
speckles scales with f −1

x (Equation 7.6), placing the artificial speckles further apart also
reduces the distorting electric field.

We expanded Equation 7.9 to first order and ignored higher order terms; we discuss
their effects here. The higher order terms can be divided into two groups: the odd orders
(n = odd) and the even orders (n = even). The amplitude of the higher order terms is given
by (a)n. For the odd orders, n is odd, and therefore, when a flips its sign (a → −a), the
higher orders also have a sign flip. Which means that all the odd orders become incoherent
as the cross-talk term between the PSF and the speckle grid cancels when p = 0. For the
even orders (n = even), a sign flip of a does not result in a sign flip of (a)n. This means
that none of the even orders are incoherent as the cross-talk term does not cancel. As the
even orders fall at other spatial locations and are much fainter than the first order speckles,
the impact of the coherent even orders is minimal.

7.2.2 Vector amplitude speckle grid
Here we derive how the incoherency of the VASG arises. This derivation is very similar
to what is presented in subsection 7.2.1 and starts with the same assumptions. The VASG
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is implemented by a sine wave (with spatial frequency b) on the pupil amplitude, with
opposite amplitude a for the two opposite polarization states:

Ep =
Aeiθ

√
2

(√
1 + p[1 + a sin(2πbx)]√
1 − p[1 − a sin(2πbx)]

)
. (7.18)

We calculate the focal-plane electric field E f by taking the Fourier transform (F {·}) of
Ep:

E f = F {Ep} (7.19)

=
F {A} ∗ F {eiθ}

√
2

∗

(√
1 + p[1 + aF {sin(2πbx)}]√
1 − p[1 − aF {sin(2πbx)}]

)
. (7.20)

Using Equation 7.8 and working out the Fourier transforms of the terms in Equation 7.20,
we find:

E f =
α + iβ
√

2
∗

(√
1 + p[sinc( fx) + ai

2 (sinc( fx − b) − sinc( fx + b))]√
1 − p[sinc( fx) − ai

2 (sinc( fx − b) − sinc( fx + b))]

)
. (7.21)

Rearranging this in its real and imaginary terms, and computing the focal-plane intensity
(I f = E f · E∗f ) results in:

I f = ∆2 + Λ2︸   ︷︷   ︸
PSF

+
a2

4
(Γ2 + Ω2)︸         ︷︷         ︸

speckle grid

+ ap(∆Γ + ΛΩ).︸            ︷︷            ︸
cross-talk of PSF with speckle grid

(7.22)

As in subsection 7.2.1, the Greek symbols denote the following terms:

∆ = sinc( fx) ∗ α (7.23)
Γ = [sinc( fx − b) − sinc( fx + b)] ∗ β (7.24)
Λ = sinc( fx) ∗ β (7.25)
Ω = [sinc( fx − b) − sinc( fx + b)] ∗ α (7.26)

In Equation 7.22 we find again that the relative intensity of the speckle grid is given by
Is = a2/4, and that the VASG becomes incoherent when p = 0. As with the VPSG, the
remaining cross-talk that degrades the photometric and astrometric performance is the
interference between the speckles themselves. We also note that this implementation with
a sine wave modulation of the VASG does not generate any higher order speckles. A
VASG implementation comparable to the GPI amplitude grating (Wang et al., 2014) will
introduce higher order speckles in a similar manner to the VPSG.

7.3 Simulations

7.3.1 Performance quantification
To validate the VSG concept and quantify the performance increase that VSGs could
bring compared to regular SGs, we performed idealised numerical simulations. These



7

212 Simulations

Table 7.2: Parameters in the simulations presented in section 7.3.

Parameter Value
Outer scale 30 m at 500 nm
Seeing [0.6”, 1”, 1.4”] at 500 nm
Wind speed [4.4, 8.8, 13.2] m/s

Wavefront sensor Noiseless
Frame rate 2 kHz
Deformable mirror 40 × 40 actuators
Lag of AO 3 frames
Loop duration 1 s

Telescope diameter 8 m
Wavelength 1220 nm
Bandwidth Monochromatic

Coronagraph Vector Vortex Coronagraph
Lyot stop diameter 0.95 · Telescope diameter

Speckle intensity 5 · 10−3

Speckle positions [±25 λ/D, ±25 λ/D]
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Vector Phase Speckle Grid

Phase Speckle Grid Amplitude Speckle Grid

Vector Amplitude Speckle Grid

Figure 7.2: Zoom onto the reference speckles in the lower left corner of the panels in
Figure 7.1. The VSGs are clearly less distorted compared to the regular SGs. The images
show intensity normalized to the maximum of the star in logarithmic scale, and share the
same color bar (shown at the right).
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are performed in Python using the HCIPy package1 (Por et al., 2018), which supports
polarization propagation with Jones calculus necessary for simulating VSGs. It is notori-
ously hard to realistically simulate high-contrast imaging observations as not all speckle
noise sources are well understood (Guyon et al., 2019), thus making it hard to predict the
on-sky performance of the VSG. Therefore, we decided to limit the scope of the simula-
tions. We simulated a general HCI instrument with coronagraph and AO system at an 8
m class telescope with a clear aperture under various atmospheric conditions, and did not
include any other noise sources (e.g. detector and photon noise, evolving non-common
path aberrations). An overview of the simulation parameters is shown in Table 7.2. We
only considered monochromatic images as we leave broadband effects for future work.
The images are recorded at a wavelength of 1220 nm, which is at the centre of J-band, a
scientifically interesting band for photometric variations of exoplanets (Kostov & Apai,
2012). We considered three cases of atmospheric conditions, under which the current
generation of HCI instruments regularly operate:

1. Good conditions with a seeing of 0.6” and wind speed of 4.4 m/s.

2. Medium conditions with a seeing of 1” and wind speed of 8.8 m/s.

3. Poor conditions with a seeing of 1.4” and wind speed of 13.2 m/s.

These atmospheric conditions were simulated as an evolving turbulent wavefront assum-
ing the ”Frozen Flow” approximation with a von-karman power spectrum. The AO system
that measures and corrects the atmospheric conditions consists of a noiseless wavefront
sensor, and a deformable mirror with 40 × 40 actuators in a rectangular grid. The AO
system runs at 2 kHz and has a three-frame lag between measurement and correction.
The root mean square (rms) residual wavefront error after the AO system is respectively
44 nm, 70 nm, and 95 nm for the good, medium, and poor atmospheric conditions. Fol-
lowing the Maréchal approximation (Roberts et al., 2004), these residual wavefront errors
correspond to Strehl ratios of 95%, 88%, and 79%, respectively (calculated at λ = 1220
nm). With this setup we only consider the speckle noise from the free atmosphere. As the
decorrelation timescale for such speckles is on the order of ∼1 second (Macintosh et al.,
2005), we limited the duration of the simulation to 1 second. For longer simulations,
the background speckles would effectively become incoherent with the SGs. Focal-plane
images were recorded at 2 kHz. The coronagraph in this setup is the Vector Vortex Coron-
agraph (VVC; Mawet et al. 2005) with an accompanying Lyot stop with a 95% diameter.
The VVC is a focal-plane mask that removes starlight and operates on the vector state
of light. The reason for implementing the VVC in this simulation is twofold: first, for
a clear aperture, the performance of the VVC is close to that of the perfect coronagraph
(Cavarroc et al., 2006), and second, as the VVC also operates on the vector state of light,
we show that the performance of the VSG will not be affected by such optics. The SGs
are placed at [±25λ/D,±25λ/D], which is well beyond the control radius of the AO sys-
tem. The intensities of the SGs relative to the PSF core are 5 · 10−3, making them ∼150,
63, and 35 times brighter than the background speckle halo for the good, medium, and
poor atmospheric conditions, respectively. We compare the phase speckle grid (PSG) and

1https://hcipy.org

https://hcipy.org
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the amplitude speckle grid (ASG) to the VPSG and the VASG. We did not include any
temporally modulated SGs because, when assuming an instantaneous modulation, their
performance is equal to the VSG. The VPSG and VASG are implemented on the circular
polarization state. The simulations were performed with the same wavefronts for all the
SGs. We also performed the same simulations without a SG for accurate background es-
timation.

In Figure 7.1 we show images of the SGs at a random iteration in the simulation for
medium atmospheric conditions. The coronagraph and AO system removed the central
stellar light and generated the dark hole, which is clearly visible. The idealistic AO sys-
tem gives an optimistic contrast in the dark hole. Outside of the dark hole and control
region, the speckle background is clearly visible. This background is generated by resid-
ual wavefront errors and evolves during the simulation. It will strongly interfere with the
SGs, affecting their photometric and astrometric accuracy. The reference speckles of the
SG are located in the corners of the images (±25 λ/D, ±25 λ/D). The VPSG and VASG
are significantly less distorted and more similar to each other compared to the PSG and
ASG. This shows the effect of the incoherency of the VSG. Zooming in on the lower left
reference speckles as shown in Figure 7.2 demonstrates this as well.

To quantify the performance increase offered by the VSGs, we calculate the rms pho-
tometric error and the rms astrometric error. These are calculated on the individual frames,
and images that are averages of 5, 10, 50, and 100 frames to simulate longer exposure
times. The photometric performance is calculated by carrying out the following steps:

1. Measure the photometry of the SG with an aperture with a diameter of 2.44 λ/D.

2. Measure the background by aperture photometry in the simulation without SG at
the same positions.

3. Subtract the background estimate from the SG photometry.

4. Remove the general photometric fluctuations by dividing the SG photometry by the
mean photometry of the four speckles.

5. Calculate the rms photometry error per speckle.

6. Determine the final rms photometric error by calculating the mean of the four
speckles individual rms photometric errors.

The astrometric performance is calculated by carrying out the following steps:

1. Measure the position of the individual speckles by cross-correlation with an un-
aberrated PSF.

2. Calculate the distance between the speckles.

3. Calculate the rms of these distances over all images.

4. Calculate the mean rms astrometric error over all the distances, which gives the
final rms astrometric error.
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In Figure 7.3 we plot the photometric and astrometric performance of the SGs as a func-
tion of the number of averaged frames (bin factor) and for the different atmospheric con-
ditions. Figure 7.3 a shows that the VASG and the VPSG outperform the ASG and PSG
in photometric error by a factor of ∼10-20 (depending on the bin factor and atmospheric
conditions). The VASG and VPSG reach a ∼0.3-0.8% photometric error for individual
frames, which drops to ∼0.2% when the bin factor increases. The ASG and PSG on the
other hand start at ∼6-15% photometric error and decrease to ∼1.5-4%. Figure 7.3 b also
shows a performance increase for the astrometric performance. The VASG and VPSG
improve the astrometric error by a factor of ∼3-5 with respect to the ASG and PSG. At a
bin factor of one, the VSGs reach an astrometric error of ∼3 − 10 · 10−3 λ/D, and slightly
improve for a bin factor of 100. The ASG and PSG start at ∼1.5−6·10−2 λ/D and improve
to ∼7 − 16 · 10−3 λ/D. These results clearly demonstrate that VSGs greatly improve the
photometric and astrometric precision with respect to their non-vector counterparts.
For poorer seeing conditions, the performance of all SGs decreases. For the ASG and
PSG, this is due to the increased speckle background halo that interferes with the SG
(Equation 7.11), while for the VSGs this is due to the increased cross-talk between the
reference speckles (Equation 7.17). When the wind speed increases, the performance of
the SGs increases more rapidly with bin factor. This is because the decorrelation timescale
of background speckles scales with the inverse of the windspeed (Macintosh et al., 2005).
Therefore, for higher wind speeds, the interference between the background speckles and
SGs will decrease with increasing bin factor, improving their performance.

7.3.2 Degree of polarization effects

As discussed in section 7.2, the incoherency of the VSGs depends on the degree of polar-
ization (p; Equation 7.2) of the light passing through the VSG (specifically the polariza-
tion state on which the VSG operates). As starlight is generally unpolarized to a very high
degree (e.g. the integrated p of the Sun is < 10−6; Kemp et al. 1987), we are mainly con-
cerned with polarization introduced by the telescope and instrument. For VLT/SPHERE,
the linear p has been measured to be on the order of a few percent (Van Holstein et al.,
2020) and the circular p is expected to be even lower. To study the effect of p, we repeat
the simulations of Figure 7.3 with the medium atmospheric conditions for the VSGs but
with increasing levels of p. The simulations are performed with the same wavefronts as
in Figure 7.3. Therefore, for p = 0, we expect exactly the same results, while for p = 1
the performance of the VSGs should reduce to that of the ASG and PSG. Figure 7.4 (a)
shows the photometric performance and Figure 7.4 (b) the astrometric performance. Both
figures indeed show that the performance of the VASG and VPSG degrade to that of the
ASG and PSG when p = 1, and are optimal for p = 0. They also show that up to a p
of 0.05 there is barely a performance degradation. The performance degrades close to
linearly as a function of p, which is what we expect from Equation 7.11.
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7.4 Implementation of vector speckle grid

Now that we have demonstrated that VSGs can drastically improve the photometric and
astrometric performance, we discuss how VSGs can be implemented in a HCI system. We
focus on the VPSG as we have not found a straightforward implementation of the VASG.

The most attractive solution for the implementation of the VPSG is the geometric
phase (Pancharatnam 1956; Berry 1987), which applies the required phase to the opposite
circular polarization states. The geometric phase is introduced when the fast-axis angle of
a half-wave retarder is spatially varying. The phase that is induced is twice the fast-axis
angle, and is opposite for the opposite circular polarization states. Due to its geometric
origin, the geometric phase is completely achromatic. However, the efficiency with which
the phase is transferred to the light depends on retardance offsets from half wave. Increas-
ing the retardance offset decreases the amount of light that acquires the desired phase.
The VPSGs simulated in section 7.3 are implemented by geometric phase.

Half-wave retarders with a spatially varying fast-axis angle can be constructed in var-
ious ways. For example, metamaterials have been used to induce geometric phase, but
their efficiency is generally low (Mueller et al., 2017). The most mature and promising is
liquid-crystal technology (Escuti et al., 2016). By a direct-write system, the desired fast-
axis angle can be printed into a liquid-crystal photo-alignment layer that that has been
deposited on a substrate (Miskiewicz & Escuti, 2014). To achromatise the half-wave re-
tarder, several layers of carefully designed, self-aligning birefringent liquid crystals can
be deposited on top of the initial layer (Komanduri et al., 2013). In astronomy, there have
already been several successful (broadband) implementations of this technology: in coro-
nagraphy (Mawet et al. 2009; Snik et al. 2012), polarimetry (Tinyanont et al. 2018; Snik
et al. 2019), wavefront sensing (Haffert 2016; Doelman et al. 2019), and interferometry
(Doelman et al., 2018).

The major drawback of liquid-crystal technology is when there are retardance offsets
from half-wave, as the efficiency with which the light accumulates the desired phase de-
creases. The light that does not acquire the desired phase will form an on-axis PSF, which
is regularly referred to as the leakage. In coronagraphy, the leakage severely limits the
coronagraphic performance of the liquid-crystal optic (Bos et al. 2018; Doelman et al.
2020). However, for the VSG the impact is much less severe, because the leakage will
overlap with the stellar PSF and therefore be occulted by the coronagraph. The relative
intensity of the VSG will be affected, but this effect will be relatively small as Is ∝ (1− L)
(Bos et al., 2019), with L the leakage strength. The leakage strength is generally on the
order of ∼ 2 · 10−2 (Doelman et al., 2017) for broadband devices.

7.5 Discussion and conclusion

Here, we show that by applying opposite modulation on opposite polarization states in
the pupil-plane amplitude or phase, a speckle grid in the focal plane is generated that can
be used as a photometric and astrometric reference. We refer to this as the Vector Speckle
Grid (VSG). In this implementation, the speckle grid will not interfere with the central
stellar PSF and will therefore be effectively incoherent. This greatly decreases the photo-
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metric and astrometric errors when the PSF is distorted by aberrations. Furthermore, we
identified that the remaining limiting factor is the cross-talk between the speckles in the
grid itself. This can be mitigated by increasing the separation between the speckles.

We performed simulations with various atmospheric conditions to quantify the per-
formance increase with respect to regular SGs. We find that for the conditions simulated,
the VSGs improve the photometric and astrometric errors by a factor of ∼20 and ∼5,
respectively, reaching a ∼0.3-0.8% photometric and a ∼3 − 10 · 10−3 λ/D astrometric
error on short exposure images. We note that the performance increase depends on the
brightness difference between the speckle and the residual speckle background. When
the brightness difference increases, the performance increase is more moderate. If the
speckles are dimmer, the performance increase is higher. We also investigated the effects
of partially polarized light on the performance of the VSGs. The simulations showed that
when the degree of polarization was below 5%, the performance was barely affected. The
polarization signal introduced by the telescope and instrument is on this level or less, and
therefore not relevant. We note that it is hard to predict what the on-sky performance
will be as it is notoriously difficult to capture all relevant effects in simulation (Guyon
et al., 2019). Therefore, these results are an indication of the performance increase that
the VSGs could bring. We also note that the performance of the ASG and PSG reported
in these simulations is better than what has been reported on-sky, while the duration of
the simulations is much shorter than the actual observations. This is because these sim-
ulations only consider the effects of AO-corrected atmospheric wavefront errors, while
observations are also affected by noise processes that generate background speckles with
much longer decorrelation timescales. The VSG would also be incoherent to these back-
ground speckle noise sources.

We identified that the most attractive implementation of VSGs would be a Vector
Phase Speckle Grid (VPSG) by the geometric phase. Liquid-crystal technology allows
for a broadband half-wave retarder with a varying fast-axis angle that will induce the
geometric phase on the light. This has the major advantage that the VPSG can be imple-
mented as a one pupil-plane optic.

Implementing the VPSG by liquid-crystal technology has the following advantages:
it achieves instantaneous incoherency, it is a static component and therefore easy to cali-
brate, the artificial speckles can be positioned anywhere in the focal plane, the geometric
phase is achromatic and therefore the speckles have a constant brightness with wave-
length. Another advantage, not discussed in this paper, is that the VPSG could be multi-
plexed with holograms for wavefront sensing (Wilby et al., 2017). The main disadvantage
of the VPSG is that the position of the speckles is fixed, making accurate background es-
timates more difficult, and decreasing the flexibility of speckle grid positioning.

To conclude, the VSG has proven to be a promising method for generating speckle
grids as photometric and astrometric references. We show that the VSG reaches a satis-
factory performance in simulation, and the next steps will be an investigation of broad-
band effects, a lab demonstration, and subsequent on-sky tests. The VSG could be part of
the future upgrades of SPHERE and GPI (Beuzit et al. 2018; Chilcote et al. 2018).
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