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Endothelial cells and angiogenesis 

The endothelial cells (ECs) constitute the inner layer of the blood vessels, where they function 

not only as supportive tubular structures for the distribution of blood, containing nutrients and 

oxygen, and the removal of waste products in the whole body, but also as a barrier for blood 

coagulation [1]. ECs and hematopoietic cells originate from mesodermal precursors during 

embryonic development, as shown in Figure 1 [2]. In brief, splanchnopleuric mesoderm 

transforms into mesenchymal cells that can differentiate into hemangioblasts. The 

hemangioblasts can further differentiate into hematopoietic cells or ECs [3]. Through the de 

novo differentiation of ECs and further morphogenesis of the vascular plexus different types 

of vascular structures can be formed, including arteries, veins, and capillaries [4]. The ECs are 

involved in and regulate many physiological processes, like immune responses and 

angiogenesis [5, 6]. Importantly, a large variety of hormones, paracrine and endocrine 

cytokines, metabolites (and also therapeutic drugs) are circulating in the blood, and may 

thereby exert effects on ECs. The EC function is therefore critical for tissue homeostasis and 

its dysfunction may trigger pathologic states. 

 

Figure 1. The origin of ECs. 

 

Angiogenesis, the process by which new blood vessels are formed from preexisting vessels, is 

a phenomenon that is of key importance during embryogenesis [7]. In adults, angiogenesis is 

mostly quiescent, except in some particular cases, for example, during wound healing and the 

formation of the corpus luteum and endometrium of the reproductive system in females [8]. In 

some pathological processes, such as tumor growth and metastasis, cardiovascular diseases and 

ocular disorders, the process of angiogenesis is disrupted [9-11]. Manipulating angiogenesis, 

for example, to promote it in conditions in which there is a need of vascularization, and to 
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inhibit it when there is an excess of irregular vessels, is of key therapeutic interest for vessel 

related diseases. ECs line the lumen of the blood vessels, and their behavior and response to 

the microenvironment strongly determines the angiogenic process. Vessel ECs receive multiple 

angiogenic signals, and signaling that is initiated upon binding of vascular endothelial growth 

factor (VEGF) to its receptor plays a key role; the endothelial tip cells start to sprout and 

thereafter guide the talk cells to extend to establish cord and lumen [12]. The formed lumen is 

the basic structure for further vessel network. Following the proliferation, migration and 

differentiation of ECs, the vascular loops are formed and the new vessels are established 

(Figure 2).  

The interaction of ECs with pericytes and smooth muscle cells, generally known as mural cells, 

is also critical for the vessel architecture [13, 14]. On the one hand, mural cells secrete 

diffusible factors, including fibroblast growth factor (FGF-2) and hepatocyte growth factor 

(HGF), to activate ECs and facilitate angiogenesis [15]. The latent transforming growth factor 

(TGF)-β form can be activated after these mural cells contact with ECs, thereby affecting cell 

differentiation and angiogenesis [16]. On the other hand, the extracellular matrix produced by 

these mural cells provides a scaffold to maintain the elasticity and stability of the newly formed 

lumen.  

 

Figure 2. The role of angiogenic factors in angiogenesis. Pro-angiogenic factors, such as VEGF, 

activate signal transduction in ECs leading to the migration of tip cells. The tip cells sprout and drive 

the movement of the ECs forefront. Subsequently, the proliferating stalk cells elongate the sprouts and 

form a new lumen.   

 

TGF-β signaling in ECs 

The TGF-β is the prototypic cytokine of a large family of structurally and functionally related 

proteins that exert a large plethora of functions on many different cell types. Mis-regulation of 
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TGF-β family signaling has been implicated in multitude of human diseases, including fibrosis, 

cancer and cardiovascular diseases  [17, 18]. TGF-β family proteins include TGF-βs (i.e. TGF-

β1, -β2, -β3), activins and BMPs, among others. Whereas TGF-βs interact with TGF-β type I 

and type II receptors and induce the phosphorylation of receptor regulated (R-)SMAD2/3, 

BMPs induce heteromeric complexes with BMP type II and type I receptors of which the latter 

are also termed activin receptor-like kinase (ALK)1/2/3/6 to mediate the phosphorylation of R-

SMAD1/5/8. These R-SMADs form heteromeric complexes with SMAD4, which act as 

transcription factor complexes to regulate target gene expression. By controlling gene 

expression, TGF-β family members exert important responses in ECs and thereby affect EC 

proliferation, migration, sprouting and/or differentiation. By doing so, they regulate EC 

function and angiogenesis (Figure 3 and Figure 4) [19-21].  The different effects of the TGF-β 

family members on ECs, like also on other cell types, are highly dependent on the cellular 

context, particular TGF-β isoform or ligand that is used in the assay, concentration of ligand 

and EC subtype [22, 23]. As a result, different and even opposite effects of TGF-β family 

members on EC responses in vitro have been reported [24].  

 

Figure 3. The role of TGF-β signaling in ECs. The TGF-β and BMP pathways are activated upon 

binding of the extracellular ligands to the cell surface TGF-β/BMP receptors, thereby phosphorylating 

TGF-β/BMP type I receptors. The activation of TGF-β/BMP type I receptors induces the 

phosphorylation of SMAD2/3 and SMAD1/5/8. Together with SMAD4, the phosphorylated SMAD2/3 

and SMAD1/5/8 are translocated into the nucleus to regulate gene expression, including genes of which 

the encoded proteins mediate EC proliferation, migration, sprouting and differentiation. 

 

TGF-β can trigger the differentiation of ECs into mesenchymal cells, through a process termed 

endothelial to mesenchymal transition (EndMT), which is comprehensively introduced in 
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Chapter 2 (Figure 4) [25, 26]. During EndMT, ECs lose their endothelial properties and 

differentiate into a mesenchymal cell type; this process is characterized by cell morphological 

variations and changes in endothelial and mesenchymal marker gene/protein expression [27, 

28]. Emerging evidence demonstrates that EndMT is critical for cardiovascular system 

development in early embryonic stages. Recapitulating this process in adult ECs may be of 

advantage for tissue engineering. EndMT also contributes to the occurrence and progression of 

several diseases, such as fibrotic diseases and cancer [29]. The effects of TGF-β family proteins 

in EndMT is not understood in depth and more detailed insights from the underlying 

mechanisms may provide benefit for the precise control of tissue regeneration and therapeutic 

targeting of EndMT associated diseases.  

 

 

Figure 4. The activation of certain signaling pathways, for example TGF-β signaling, influences EC 

proliferation, migration, invasion, sprouting, differentiation (especially endothelial to mesenchymal 

transition (EndMT)) and EC associated angiogenic processes.  

 

TGF-β signaling in angiogenesis  

Angiogenesis is a complex multistep process, which is determined by the balance between the 

levels of angiogenic inducers relative to levels of inhibitors to which the ECs are exposed. The 

“angiogenic switch” refers to the shift from vascular quiescence to activation of angiogenic 

programs [30, 31]. These pro-angiogenic and anti-angiogenic factors can be produced by ECs 

themselves, neighboring cells and also can be systemic factors. If the balance is in favor of 

angiogenesis stimulators, then the ECs become activated and angiogenesis is induced [32]. The 

majority of the angiogenic inhibitors are polypeptide factors that inhibit the proliferation and 

migration of ECs, such as angiostatin and endostatin, while the pro-angiogenesis agents play 

an opposite function on ECs. Vascular endothelial growth factor (VEGF) is a major inducer of 
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angiogenesis, and exerts its effects by binding to vascular endothelial growth factor receptor 2 

(VEGFR2) to activate downstream signaling and thereby elicit endothelial responses [33, 34]. 

It has been shown that VEGF enhanced the ECs’ ability to divide, migrate and invade into 

collagen gels to form capillary-like tubules [35]. Besides VEGF, multiple growth factors are 

involved in the activation of angiogenesis, including FGF2, HGF, angiopoietin 1 (Ang1) [36-

40].  

The role of TGF-β family ligands in angiogenesis can be either stimulation or inhibition. 

Evidence demonstrated the indispensable role of TGF-β in formation and remodeling of 

networks during embryonic angiogenesis. Knockdown of TGF-β1 in mice leads to embryonic 

lethality (E10.5) due to severe vascular defects and defective hematopoiesis [41]. Emerging 

reports demonstrate that TGF-β signaling mediated through TβRI (also terms activin receptor-

like kinase 5 (ALK5)) has anti-angiogenic properties. However, BMP and TGF-β signaling 

mediated through ALK1 activate ECs proliferation and migration, which are necessary for 

angiogenesis [42]. Thus, the vessel formation is dependent on the activation balance of the 

TGF-β signaling [20, 43, 44]. However, as more studies unveiled the opposite effects of BMP 

signaling mediated through ALK1/2/3 on ECs sprouting and angiogenesis, further 

investigation is required to dissect the specific effects of BMP signaling activation in ECs [45-

48].  

Angiogenesis inhibitors 

Anti-angiogenic agents have been used to treat vessel-related diseases, for example, neoplasia 

and cardiovascular disorders. Endogenous inhibitors of angiogenesis, such as angiostatin and 

endostatin, are produced by the cleavage of extracellular matrix (ECM) proteins, and 

antagonize ECs proliferation and migration responses to angiogenesis inducers. Other anti-

angiogenesis agents, including small molecules and antibodies, are designed by negative 

targeting of pro-angiogenic factors or their signaling. The U.S. Food and Drug Administration 

(FDA) has approved several anti-angiogenic drugs for clinical use and many of them are 

directed against VEGF signaling and used for cancer therapy [49]. For example, Bevacizumab, 

a monoclonal antibody that prevents VEGF-A from binding to its receptors, is a FDA approved 

anti-angiogenesis drug that is used in combination with standard chemotherapy for treatment 

of metastatic colorectal cancer [50]. Additional angiogenesis inhibitors have been developed 

in the past years, for example, ALK1 neutralizing antibodies and VEGFR kinase inhibitors. 

The angiogenesis inhibitors can not only antagonize blood vessel formation to block the supply 

of nutrients for cancer cells, but also enhance the normalization of immature tumor vessels to 

prevent cancer cells becoming more aggressive and provide more efficient delivery of 

chemotherapeutic agents [51-53]. Clinical studies have shown that the combination of 

chemotherapy/radiation therapy with anti-angiogenic drugs benefits cancer patients [54-57]. 

More recently, clinical trials evaluating the combination treatment of immune checkpoint 

inhibitors (ICIs) and anti-angiogenesis agents for cancer patients have shown improved anti-

cancer efficiency and prolonged overall survival [58-61]. However, anti-angiogenic drug 

resistance is easily acquired [62, 63]. Therefore, identifying more inhibitors against other 

signaling pathways, for example, BMP or other pro-angiogenic pathways, are needed to 

achieve more efficient targeting of angiogenesis process.  
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On the contrary, agents that can stimulate angiogenesis are beneficial in the treatment of the 

diseases/cases that lack of vessels, such as coronary artery disease (CAD), cardiac failure, 

tissue injury, etc. In conclusion, we anticipate that the precise control of angiogenesis using 

different agents will contribute to the treatment of vessel related diseases. 

Scope of the investigation  

In this thesis, I start with a general introduction in Chapter 1 to briefly present the relevance 

of EC behaviour in vascular morphogenesis and in angiogenesis. Moreover, I discuss how EC 

function is intricately regulated by positive and negative factors, and how their function can be 

manipulated for therapeutic gain in cancer and cardiovascular diseases. In Chapter 2, we 

discuss in detail the role of the TGF-β signaling pathway in EndMT and discuss the 

contribution of this process to disease development, as well as its potential applications in tissue 

engineering. In Chapter 3, we disclose detailed work protocols to investigate TGF-β-induced 

EndMT and how to assess the involvement of EndMT effectors using CRISPR/Cas9 gene 

editing. In Chapter 4, we investigated the function of EndMT transcription factors and 

elucidated their working mechanism. We found that the EndMT transcription factors (TFs) 

SNAIL and SLUG are critical for EndMT in murine endothelial cells and that the ID proteins 

counterbalance their function in EndMT. In Chapter 5, we provide a technical overview of 

embryonic zebrafish xenograft assays to investigate TGF-β family signaling in human breast 

cancer progression, including tumor cell intravasation/extravasation and tumor angiogenesis. 

In Chapter 6, we identify and investigate two novel BMP type I receptor macrocyclic kinase 

inhibitors with therapeutic potential to normalize angiogenesis in normal and tumour vessel 

formation in zebrafish. In Chapter 7, I summarize all the studies in the thesis and provide some 

future perspectives related to our results. 
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