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APPENDICIES

A Clifford Convolution gradients calculations

Bellow are all the calculations of all the equations used for the back-propagation
algorithm. For all formulas, for the sake of simplicity we use the following notation:

pw : weight position, (i, j, cin, cout)

po : output position, (i′, j′, cout)

pin : input position, (i′′, j′′, cin)

(1)

During the backward pass, every arrow in Figure 5.2 should return the respective de-
rivatives. We start the computations from step C5 and work our way to step C1.

C5:
The final output ~Olpo is given by:

~Olpo = (Ol0,po , O
l
1,po) = (Olpo · cos (φpo), O

l
po · sin (φpo)) (2)

Following the chain rule:

∂E

∂Olpo
=

∂E

∂Ol0,po

∂Ol0,po
∂Olpo

+
∂E

∂Ol1,po

∂Ol1,po
∂Olpo

⇒

∂E

∂Olpo
= δl,C5

0,po
· cos (φpo) + δl,C5

1,po
· sin (φpo)

(3)
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∂E

∂φlpo
=

∂E

∂Ol0,po

∂Ol0,po
∂φlpo

+
∂E

∂Ol1,po

∂Ol1,po
∂φlpo

⇒

∂E

∂φlpo
= −δl,C5

0,po
·Ol0,po · sin (φpo) + δl,C5

1,po
·Ol1,po · cos (φpo)

(4)

C4:

Olpo =
∑
i

∑
j

∑
cin

~W l
φ popw · ~O

l−1
pin =

∑
i

∑
j

∑
cin

∑
k

W l
φ popw,k ·O

l−1
pin,k

(5)

where k indexes the x and y coordinates of the vectors.

∂E

∂W l
φ popw,k

=
∂E

∂Olpo

∂Olpo
∂W l

φ popw,k

(6)

Since for every output pixel we calculate a different angle (φlpo), there is a different
set of weights associated with every output pixel, ~W l

φ po
.

∂E

∂W l
φ popw,k

=
∂E

∂Olpo

∂Olpo
∂W l

φ popw,k

=
∑
po∈Pφ

δl,C4
po ·O

l−1
pin,k

(7)

∂E

∂Ol−1pin,k

=
∑
i

∑
j

∑
cout

∂E

∂Olpo

∂Olpo
∂Ol−1pin,k

=
∑
i

∑
j

∑
cout

δl4po ·W
l
φ popw,k (8)

where the φ in W l
φ popw,k

refers to the predefined angles (∈ [0, 2π)) used for the spe-
cific output position.

C3:

~W l
φ po = rotation( ~̇W l

po , φ
l
po) (9)

As mentioned above, there is a seperate set of weights for every output pixel. The
gradients from all sets of weights are calculated and then added to the orginal weight
vector. For simplicity the index of po on the weight vectors is omited. From equation
9 we see that there are two sets of gradients need to be computed, ∂E

∂ ~̇W l
and ∂E

∂φlpo
.

Since ~W l
φ are the rotated ~̇W l, we set:

∂E

∂ ~̇W l
= rotation(

∂E

∂ ~W l
φ

,−φlpo) (10)
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For the second set we have:

∂E

∂φlpo
=
∑
i

∑
j

∑
cin

∂E

∂ ~W l
φ pw

∂ ~W l
φ pw

∂φlpo
=
∑
i

∑
j

∑
cin

δl,C3

~Wφ pw

·
∂ ~W l

φ pw

∂φlpo
(11)

We have two options for calculating
∂ ~W l

φ pw

∂φlpo
. The first is to differentiate the bilinear

interpolation (at least at the points that it is differentiable), or use the precalculated
rotated weights. Let θ be the quantized calculated angle φ. Then:

∂ ~W l
θ pw

∂φlpo
=

~W l
θ+1 pw

− ~W l
θ−1 pw

2 2π
B

(12)

where B is the number of predefined orientations. Have in mind that the rotation
above ( ~W l

θ+1 pw
) considers only plane rotation after acquiring the in-place vector ro-

tation ~̇Wφ.

C2:
On all equations related to C2, like C3, the indexes po on weight vectors are omitted.

~̇W l
φ pw = ~W l

pw ·

(
cosφlpo sinφlpo
− sinφlpo cosφlpo

)
⇔

{
~̇W l
φ 0,pw

= ~W l
0,pw cosφlpo − ~W l

1,pw sinφlpo
~̇W l
φ 1,pw

= ~W l
0,pw sinφlpo +

~W l
1,pw cosφlpo

(13)
As with C3, there are two set of gradients to be calculated, specifically ∂E

∂ ~W l
pw

and ∂E
∂φlpo

where the first represents two sets, one for each direction of the vectors in ~W l.

∂E

∂ ~W l
pw

= (
∂E

∂W l
0,pw

,
∂E

∂W l
1,pw

) (14)

For the two components we get:

∂E

∂W l
0,pw

= (
∂E

∂Ẇ l
φ 0,pw

∂Ẇ l
φ 0,pw

∂W l
0,pw

+
∂E

∂Ẇ l
φ 1,pw

∂Ẇ l
φ 1,pw

∂W l
0,pw

)

= (
∂E

∂Ẇ l
φ 0,pw

cosφlpo +
∂E

∂Ẇ l
φ 1,pw

sinφlpo)

∂E

∂W l
1,pw

= (
∂E

∂Ẇ l
φ 0,pw

∂Ẇ l
φ 0,pw

∂W l
1,pw

+
∂E

∂Ẇ l
φ 1,pw

∂Ẇ l
φ 1,pw

∂W l
1,pw

)

= (− ∂E

∂Ẇ l
φ 0,pw

sinφlpo +
∂E

∂Ẇ l
φ 1,pw

cosφlpo)

(15)
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(14), (15)→ ∂E

∂ ~W l
pw

=
∂E

∂ ~̇W l
φ pw

·

(
cos (−φlpo) sin (−φlpo)
− sin (−φlpo) cos (−φlpo)

)

= ~δl,C2

φ pw
·

(
cos (−φlpo) sin (−φlpo)
− sin (−φlpo) cos (−φlpo)

) (16)

∂E

∂φlpo
=
∑
i

∑
j

∑
cin

(
∂E

∂Ẇ l
0,pw

∂Ẇ l
0,pw

∂φlpo
+

∂E

∂Ẇ l
1,pw

∂Ẇ l
1,pw

∂φlpo
) (17)

∂Ẇ l
0,pw

∂φlpo
= −W l

0,pw sinφlpo −W
l
1,pw cosφlpo = −Ẇ

l
1,pw

∂Ẇ l
1,pw

∂φlpo
=W l

0,pw cosφlpo −W
l
1,pw sinφlpo = Ẇ l

0,pw

(18)

(17), (18)→ ∂E

∂φlpo
=
∑
i

∑
j

∑
cin

(
∂E

∂Ẇ l
0,pw

(−Ẇ l
1,pw) +

∂E

∂Ẇ l
1,pw

Ẇ l
0,pw)

=
∑
i

∑
j

∑
cin

(δl,C2

0,pw
(−Ẇ l

1,pw) + δl,C2

1,pw
Ẇ l

0,pw)
(19)

In our implementation C2 and C3 are considered as one operation. Moreover, we

keep in memory the rotated weights ~Wφ and not ~̇
φW . Fortunately, we can approximate

the gradients as of the separate operations as following:

~W l
φ = vector field rotation( ~W l, φlpo) (20)

Similarly with C3:

∂E

∂ ~W l
= vector field rotation(

∂E

∂ ~W l
φ

,−φlpo) (21)

∂ ~W l
θ pw

∂φlpo
=

~W l
θ+1 pw

− ~W l
θ−1 pw

2 2π
B

(22)

Unlike C3, here the rotated ~W l
θ+1 pw

are the complete vector field rotation with
angle θ + 1 from the original ~W .
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C1:
Let:

tanlpo =
conv

lpo
0

conv
lpo
2

(23)

then:
(5.2), (5.1)→ φlpo = arctan (

conv2
conv0

) = arctan (tanlpo) (24)

∂E

∂tanlpo
=

∂E

∂φlpo

∂φlpo
∂tanlpo

=
∂E

∂φlpo

1

1 + (tanlpo)
2

(25)

∂E

∂conv0
=

∂E

∂tanlpo

∂tanlpo
∂conv0

=
∂E

∂tanlpo
(− conv2
conv20

)25⇒

∂E

∂conv0
=

∂E

∂φlpo

1

1 + (tanlpo)
2
(− conv2
conv20

) = − ∂E

∂φlpo

conv2
conv20 + conv22

(26)

∂E

∂conv2
=

∂E

∂tanlpo

∂tanlpo
∂conv2

=
∂E

∂tanlpo

1

conv0
25
⇒

∂E

∂conv2
=

∂E

∂φlpo

1

1 + (tanlpo)
2

1

conv0
=

∂E

∂φlpo

conv0
conv20 + conv22

(27)

From Equation 5.2 we see that conv0 is the conventional convolutional operation,
meaning that the derivatives are the standard derivatives used in all CNN works. For
conv2 we have:

∂E

∂W l
0,pw

=
∑
i′

∑
j′

∂E

∂conv2

∂conv2
∂W l

0,pw

=
∑
i′

∑
j′

∂E

∂conv2
Ol−11,pin

∂E

∂W l
1,pw

=
∑
i′

∑
j′

∂E

∂conv2

∂conv2
∂W l

1,pw

=
∑
i′

∑
j′

∂E

∂conv2
(−Ol−10,pin

)

(28)

Similarly:

∂E

∂Ol−10,pin

=
∑
i

∑
j

∂E

∂conv2

∂conv2

∂Ol−10,pin

=
∑
i

∑
j

∂E

∂conv2
(−W l

1,pw)

∂E

∂Ol−11,pin

=
∑
i

∑
j

∂E

∂conv2

∂conv2

∂Ol−11,pin

=
∑
i

∑
j

∂E

∂conv2
W l

0,pw

(29)

For each output pixel a separate weight vector was calculated and thus different
gradients as well, i.e.,

(
∂E

∂ ~W

)
po

. The final result is given by adding the
(
∂E

∂ ~W

)
po

for all
po.
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B Table of abbreviations

Abbreviation Explanation

2D two dimensions/dimensional
3D three dimensions/dimensional
3DBRIEF 3D BRIEF
3DLBP 3D LBP
3DORB 3D ORB
3DSC 3D SC
4D four dimensions/dimensional
Adam adaptive moment estimation
AE auto-encoder
AGAST adaptive and generic accelerated segment test
AlexNet Alex Network
AMT Amazon mechanical turk
ANN artificial neural network
APC Amazon picking challenge
API application programming interface
avacc meanIU
B3DO Berkley 3D Objects
BN batch normalization
BoF bag of features
BoW bag of words
BPTT back propagation through time
BRAND binary robust appearance and normal descriptor
BRIEF binary robust independent elementary features
BRISK binary robust invariant scale keypoint
BRoPH binary rotational projection histogram
C3D convolutional 3D
CAD computer-aided design
CAE convolutional AE
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Abbreviation Explanation

CBCT cone beam computed tomography
cc Clifford convolution
CFD computational fluid dynamics
CFN convolutional fusion network
Charades-STA Charades sentence temporal annotations
CHMM coupled HMM
CIFAR Canadian institute for advanced research
CL convolutional layer
clacc classification accuracy
CNN convolutional neural network
COCO common objects in context
convGRBM convolutional GRBM
CPU central processing unit
CRF conditional random field
CT computerized tomography
DAE denoising AE
DB database
DBM deep Boltzmann machines
DBN deep belief network
D-CNN deep CNN
DE dense sampling
DEM deep energy model
DenseNet dense network
DiDeMo distinct describable moments
DL deep learning
DNN deep neural network
DoG difference of Gaussians
DoF degrees of freedom
DS direction specific
DSN deeply supervised nets
DSTIP depth STIP
ED elevation descriptor
ELU exponential linear unit
EMK efficient match kernel
EVD eigenvalue decomposition
FAST features from accelerated segment test
FC fully connected
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Abbreviation Explanation

FCN fully convolutional networks
FCVID Fudan-Columbia video dataset
FMS full modality specific
FPFH fast PFH
FREAK fast retina keypoint
fus-CNN fusion CNN
fwavacc frequency weighted average accuracy
GAH geometric attribute histograms
GAN generative adversarial network
GFU gated fusion unit
GNN graph neural network
GPU graphics processing unit
GRBM gated RBM
GRU gated recurrent unit
GT ground truth
HAR human action recognition
Harris3D Harris 3D
HBN half layers batch normalized
HCRF hidden CRF

HHA
horizontal disparity, height above ground, angle the pixels local

surface normal makes with the inferred gravity direction
HKDE hierarchical KDE
HKS heat kernel signature
HMC hidden Markov chain
HMDB51 human motion database
HMM hidden Markov model
HMP hierarchical matching pursuit
HOF histogram of flow
HOG histogram of oriented gradients
HON histogram of surface normals
HON4D HON 4D
HOPC histogram of principal components
HSMM hidden semi-Markov model
I3D inflated 3D CNN
IDT improved dense trajectories
IP interest point
KDE kernel descriptor



Acknowledgements 157

Abbreviation Explanation

kd-tree k dimensional tree
KITTI ? (not mentioned in the work that proposes it [98])
KLT Kanade Lucas-Tomasi
k-NN k nearest neighbors
kSVM kernel SVM
KTH Royal institute of technology, Stockholm
LBP local binary pattern
LeNet LeCun network
LFD light field descriptor
LFSH local feature statistics histogram
LiDAR light detection and ranging
LINE linearizing the memory
LINEMOD multimodal LINE
linSVM linear SVM
LN locally connected
LRCN long-term recurrent CNN
LReLU leaky ReLU
LRF local reference frame
LSP local surface patch
LSTM long short-term memory node
LSTM-CF LSTM context fusion
LTC long temporal convolutional network
LTP local trinary pattern
MAE mean absolute error
MD multiple dictionary
meanIU mean intersection over union
MK-MMD multiple kernel maximum mean discrepancy
MLP multi-layer perceptron
MMF multi modal feature fusion
MNIST modified national institute of standards and technology
MO-AniProbing multi orientation anisotropic probing
mp max pooling
MR magnetic resonance
MRF Markov random field
MRI magnetic resonance imaging
MVCNN multi view CNN
MVD multi-view depth
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Abbreviation Explanation

NaN not a number
NBN no BN
NiN network in network
nl norm loss
NN nearest neighbor
NNDR nearest neighbor distance ratio
NYU New York University
NYUv2 NYU version 2
OGH oriented gradient histograms
OLM orthogonal linear module
ONI orthogonalization using Newton’s iteration
op orientation pooling
ORB oriented FAST and rotated BRIEF
ORION orientation boosted voxel net
ORN orientation response network
PA-LSTM part-aware LSTM
PBWN projection based weight normalization
PCA principal component analysis
PELU parametric ELU
PFH point feature histogram
pixacc pixel accuracy
PPF point pair feature
PReLU parametric ReLU
PSB Princeton shape benchmark
PSG polygonal surface geometry
RA reference angle
RANSAC random sample consensus
RAS Reynolds-averaged simulation
RBM restricted Boltzmann machine
R-CNN regions with CNN features
RDF randomized decision forest
RDF-Net RGB-D fusion network
ReLU rectified linear unit
ResBlock residual block
ResNet residual network
RF random forest
RFB residual fusion block
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Abbreviation Explanation

RGB Red-Green-Blue
RGB-D Red-Green-Blue-Depth
RI-LBC rotation invariant local binary convolution
RMSE root mean square error
RNN recurrent neural network
Rohr3D Karl Rohr 3D
RoSP rotational projection statistics
RotEqNet rotation equivariant vector field network
RQ research question
RSM rotational silhouette map
SC shape context
SD single dictionary
SDH spatial distribution histograms
SF sparse fusion
SFCNN steerable filter CNN
SfM structure from motion
SGD stochastic gradient descent
SHOT signature of histograms of orientation
SHREC shape retrieval contest
SI spin image
SIFT scale invariant feature transform
SI-HKS SI HKS
SISI scale invariant SI
SLAM simultaneous localization and mapping
SP superpixel
SPN scalar field processing network
SRIP spectral restricted isometry property
SSCD spatial structure circular descriptor
SSD sum of squared differences
SSMA self-supervised model adaptation
SSVM structural SVM
std standard deviation
STIP spatio-temporal interest point
ST-LSTM spatio-temporal LSTM
STN spatial transform networks
SUN scene understanding
SUN-CG ? (not mentioned in the work that proposes it [346])



160 Acknowledgements

Abbreviation Explanation

SURF speeded up robust features
SVD singular value decomposition
SVM support vector machine
SYNTHIA synthetic collection of imagery and annotations
TACoS textually annotated cooking scenes
TDD trajectory pooled deep convolutional descriptors
THRIFT ? (not mentioned in the work that proposes it [90])
TI transformation invariant
TOLDI triple orthogonal local depth images
Tri-SI Tri-Spin-Image
UCF university of central Florida
UMAM unified model of appearance and motion
US ultrasound
VC velocity coherent
V-FAST video FAST
VFT vector field topology
VGG ? (not mentioned in the work that proposes it [338])
VPN vector processing network
VRN Voxeption ResNet
wd weight decay
WKS wave kernel signature
WN weight normalization
WRN wide ResNet
YCB Yale-CMU-Berkeley
YFCC100M Yahoo Flickr creative commons 100 million
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