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7
Conclusions

7.1 Conclusions

In this thesis, we explore the application of computer vision methods on high dimen-
sional data. With high dimensional data we define data that have more than two di-
mensions. More specifically, we explore whether computer vision inspired approaches
are capable of representing computational fluid dynamics simulation output.

In Chapter 2 we presented an extensive overview of the methodologies, data
sources and applications whose subject is high dimensional vision data. The aim of
this chapter is to find common practices between methodologies that, at a first glance,
seem disconnected but have in common the high dimensionality of the data they pro-
cess and thus answer research question 1: Overall we identified four common data
sources, namely 2D videos, RGB-D images and videos, and 3D models such as CAD
models or point clouds. Moreover, we identified common characteristics of methodo-
logies regardless the data they are applied on and we identified two main categories
of high dimensionality, high physical dimensions and large number of information
per physical location. Finally, we concluded that although hand crafted feature based
approaches are outperformed by deep learning based approaches, they can provide
complementary information and increase the overall performance of an approach.

In Chapter 3, we constructed a large scale dataset and proposed several approaches
for dealing with the high dimensionality of the data. This dataset is used as a bench-
mark to help us answer research question 2. The experiments conducted showed
that deep learning approaches are well capable of representing CFD simulation out-
put and moreover, how to better utilize our model resources, i.e., number of train-
able parameters, hardware computational capabilities and available memory. Our best
models are able to accurately, i.e., with about 3% accuracy, predict forces applied on
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a shape not visible to them, by leveraging flow data. Meanwhile, the encoded repres-
entation is enough to reconstruct the input in a large extent leading us to believe that
it still encodes most of the information of the original flow field.

In Chapter 4 we answered research question 3. We implemented hand crafted
feature based approaches and evaluated whether they are capable of representing
flow field data and how they compare to deep learning approaches. Overall we made
three tests, (i) which hand-crafted feature produces the most accurate results and
with what kind of sampling (i.e., dense or which detector), (ii) how does the per-
formance compare to deep learning approaches and (iii) which approach maintains its
performance better as the training set size reduces. The experimental results showed
interesting behavior. The dense sampling of SIFT [225, 226] features produced the
best performance out of all setups based on hand-crafted features tested. Interest-
ingly, although in terms of RMSE the SIFT approach was outperformed by the deep
learning approaches, it was able to outperform them in terms of R2. As we showed,
deep learning approaches and hand crafted feature based approaches show different
behavior. For most test examples, the SIFT based approach had smaller error than the
deep learning one, but it also produced much larger errors than the deep learning ap-
proaches at the extreme (bringing the RMSE high). This finding is strengthening the
observation that hand-crafted feature based approaches can provide complementary
information to the deep learning approaches.

In Chapter 5 we answered research question 4. By taking advantage of the vector
field representation we are able to extract angle information from the input and the
kernel of a convolutional layer and subsequently build rotation invariant and equivari-
ant convolutional layers and networks. Our experiments showed that this approach
produces similar classification performance to the state of the art, while having better
angle prediction with a much lower computational cost.

Finally, in Chapter 6 the norm loss was proposed, answering research question
5. The norm loss is a soft weight regularization method for deep neural networks and
it aims to keep the norm of the kernels of a convolutional layer close to one. The
experimental results suggest that networks that utilize the norm Loss during training
converge much faster than the equivalent that utilized weight decay. Moreover, in
most cases, networks trained with the norm loss exhibit state of the art performance.

7.2 Limitations

Although the research presented here has revealed interesting information, it has
also shown many limitations of the approaches proposed and tested. As the main data
source for this thesis has been CFD simulation output we deem necessary to start with
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this application in mind. The major limiting factor in extracting meaningful informa-
tion from CFD simulation data, is its availability. CFD simulations can even produce
terabytes of data. Nonetheless, most information usually comes from the same ex-
ample. As a result, we have huge amounts of data, split into very few examples. This
is the opposite from the ideal situation, where many examples exist and thus correl-
ations can be found. The main reason for this limitation is the time required for CFD
simulations to converge. A complicated simulation might even take a month to con-
verge on a cluster with thousands cores. Moreover, there are many hyper parameters
as well as different algorithms for obtaining CFD simulation output. With many of
these parameters, such as the grid on which the flow field is computed, the result can
vary significantly. Having a model capable of representing simulations produced in a
different manner increases the complexity and amount of data required even further.

Regarding deep learning models, we can identify some limitations as well. A com-
mon approach to produce general high performing models is to augment the training
data. By applying slight augmentations on the data during training, effectively in-
creases the train data size by introducing new variations of the same subject, i.e.,
the content of the image. The resulting models become more robust to certain types
and amount of noise. If a flow field is augmented using the popular approaches such
as affine transformations, it will probably not be an approximation of a solution to
Navier-Stokes equations anymore and more importantly it will not maintain the same
label. Thus, one must be careful in how data is augmented. Moreover, many patterns
appear in small scales in the flow. For the models to fit in GPU memory the input
resolution has to be relatively low which may result in the disappearance of many
important characteristics. Nonetheless, large scale patterns, like vortices and reverse
flow still exist in the simulations examples that we utilized which made the training
of models possible.

In the last two chapters, new deep learning approaches are proposed. In Chapter 5
a new operator is proposed, that utilizes the vector field representation to measure the
angle between a convolutional kernel and an input signal. Utilizing this operator in
deep neural networks, although shows great potential, it has several limitations. The
most important one is that for most applications, the input is scalar, e.g. RGB images.
Moreover, due to the arctan function, during back propagation, numeric instabilities
can occur which forces the usage of thresholding and masking the output. In our
experience, depending on the application, the network size, the learning rates and
other parameters, the most effective value of this threshold changes. This introduces
another hyper parameter to the many existing in deep learning approaches. Moreover,
as we saw with the current implementation, utilizing this operator on GPUs increases
the computation time by a large margin, which may significantly reduce one of the
main advantages of the method - lower computational requirements.
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7.3 Future work

The Clifford convolution operator was implemented for two dimensional fields, as an
initial case study. Most CFD simulation outputs though, have three spatial dimensions.
Extending the operator to calculate solid angles might be very beneficial for minim-
izing the required number of free parameters in a deep learning model. Interestingly,
the potential benefit of calculating solid angles might be even higher than that of the
two dimensions, since the amount of convolutions needed for a max-pooling opera-
tion over solid angle increases exponentially with the number of dimensions.

This research is one of the early works on deep learning applied on CFD simulation
output. One of the main limitations is the large amount of time required to produce
simulations. Thus, a feasible approach in applying deep learning on more complicated
simulations is transferring models. To be more precise, a model could be trained on
a large scale CFD dataset that requires feasible amount of time to be created. Would
this model then be applicable, with minor adjustments i.e., fine tuning, on a small
dataset of complex and time consuming CFD simulations?

From a deep learning perspective, there are still many open questions. For ex-
ample, one question is how to better utilize the extra dimensions of higher than two
dimensional images. When a temporal dimension is included, it is not certain yet
which approach is more effective. Is there a certain approach to handling the tem-
poral dimension that suits better, or will it always depend on the application? For
the static world there are similar questions that are important to research if greater
performing or efficiency is required. For example, the projection to lower dimension-
ality, seems to be performing better than having three dimensional kernels for low
computational models. Increasing the capacity of networks with three dimensional
kernels, coupled with large and diverse datasets seems to perform better than the 2D
projections. In many applications the computational and memory budgets are limited.
It is still unclear at which point does a more complex network with high dimensional
kernels is a more appropriate choice. These are questions that are becoming more
relevant as computational demand of deep learning approaches seem to grow and
mobile applications seem to have increasing demand.


