Multi-dimensional feature and data mining
Georgiou, T.

Citation
Georgiou, T. (2021, September 29). Multi-dimensional feature and data
mining. Retrieved from https://hdl.handle.net/1887/3214119

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3214119

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3214119

Norm Loss: Regularizing artificial
neural networks

Convolutional neural network training can suffer from diverse issues like exploding
or vanishing gradients, scaling-based weight space symmetry and covariant-shift. In
order to address these issues, researchers develop weight regularization methods
and activation normalization methods. In this chapter, a weight soft-regularization
method is proposed based on the Oblique manifold. The proposed method uses a loss
function which pushes each weight vector to have a norm close to one, i.e., the weight
matrix is smoothly steered toward the so-called Oblique manifold. It is evaluated on
the very popular CIFAR-10, CIFAR-100 and ImageNet 2012 datasets using two state
of the art architectures, namely the ResNet and wide-ResNet. This regularization ap-
proach introduces negligible computational overhead and the results show that it is
competitive to the state of the art and in some cases superior to it. Additionally, the
results are less sensitive to hyperparameter settings such as batch size and regulariz-
ation factor.

130 Acknowledgements

6.1 Introduction

Convolutional neural networks, and deep learning in general, have received a lot of
attention in the past few years [184, 127, 437, 111, 368] and have been applied in
many research areas, such as image understanding [111, 368], natural language pro-
cessing [431, 300] and game solving [248]. The research in these models has been
motivated by the success of deep learning in image classification with AlexNet [184]
and later by much deeper models such as VGG [338], ResNet [127] and wide-ResNet
[437]. In order to understand these models and enhance their performance, a lot
of research has been carried out and in many directions [111, 368], including data
preprocessing strategies [59, 214], activation normalization [394, 418], weight reg-
ularization [17, 147], activation functions [381], and overall network architectures
[127, 437, 119]. This chapter focuses on weight regularization methods and a new
soft regularization loss function, the norm loss, is proposed.

Weight regularization has been a wide research topic. The main issues of deep
learning training procedures are the exploding/vanishing gradients, as well as the
scaling-based weight space symmetry and covariant-shift [153, 148, 17]. In order
to alleviate one or more of the aforementioned issues, researchers are developing
methods that restrict the search space of possible weight vectors.

One of the first approaches, and most popular, is the weight decay [184], which
adds a penalty to the Euclidean norm of the weight vector. In the past few years
a number of approaches and theories have emerged, regarding weight regulariza-
tion, such as weight normalization [311, 148] and weight orthogonalization [149, 17,
147]. The most popular goal for regularization methods has been weight orthogon-
alization. The reason is that orthogonal weights have very nice properties in relation
to deep network training [17, 48, 147]. For example, orthogonal weights can ob-
tain dynamical symmetry [147] which accelerates convergence. Nonetheless, it is not
always possible to have orthogonal weights, due to the fact that in many DNN archi-
tectures, the weight matrices are over-complete. Moreover, hard-orthogonalization
can restrict the learning capacity of a network [17]. As an oversimplified, intuitive
example of learning capacity restriction we show the schematic visualization of the
weights of two 3 x 3, one-channel kernels in Figure 6.1. A combination of (a) with
a ReLU activation function would result in upper edge detection, while the combin-
ation of (b) with a ReLU activation function would result in lower edge detection.
The inner product of these filters is -1 and thus it would not be possible to have both
kernels in a layer restricted to orthogonal weight matrices. Thus, it is possible that in
some cases weight orthogonalization can be too restrictive, hurting the final perform-
ance. In order to overcome this limitation some authors, like [17], reduce the effect
of regularization after some point during training, or drop it completely.

Acknowledgements 131

(a) (b)

Figure 6.1: Schematic visualization of the weights of two example 3 x 3 one-channel
kernels. White (dark) values indicate high (low) numbers. The weight matrix in ex-
ample (b) is a 180°rotated version of (a).

In this chapter, weight regularization is addressed by imposing a normalization
constraint and propose a new soft-regularization method pushing the weight matrix
into the Oblique manifold [2, 148]. To that end a new loss function is proposed, the
norm loss. Its performance is evaluated on state of the art networks on standard re-
search benchmarks, i.e., CIFAR-10, CIFAR-100 [183] and ImageNet 2012 [302]. The
experimental results show that networks trained with the norm loss achieve compar-
able to the state of the art performance and in some cases superior to it, while having
negligible computational overhead. To the best of our knowledge we are the first to
propose this regularization loss function.

The rest of this chapter is organized as follows. In Section 6.2 the related research
to norm loss is presented, in Section 6.3 describes the theory on which the proposed
approach is based and in Section 6.4 the proposed method is formulated. In Section
6.5 the experimental procedure as well as the experimental results are presented and
finally the conclusions are discussed in Section 6.6.

6.2 Related work

There are many methods that try and alleviate the scaling-based weight space sym-
metry and the exploding gradients problems. Most of them can be classified into one
of two groups, namely hard-regularization and soft-regularization [147]. A very well
known approach is the inclusion of the weight decay loss to the total loss which im-
poses a penalty to the magnitude of the weight vectors [184]. It can be considered
as a soft-regularization method, since it applies a small change to the weights or the
gradients (depending on the implementation) in every step. Although this method
does address the exploding gradients issue, it does not address the scaling-based

132 Acknowledgements

weight space symmetry problem. Most methods try to normalize the weights, i.e.
force them to have unit norm, make them orthogonal, i.e., WI'W = I %)\, where
A is a small scaling factor, or both, i.e., W'W = I. Another work proposed to use
the norm of the CNN Jacobian as a training to regularize the models [343], while
[430] proposed spectral norm regularization, which penalizes the high spectral norm
of weight matrices.

Hard-regularization methods specify hard limits for the weights. For example,
[311] divide the weight vector with its norm (W* = Hw—u), before applying them
to the input, ensuring that the applied weights are normalized. This method is com-
putationally expensive since the normalization happens on the fly. A later work [148]
ensures that the weights are normalized by normalizing the weight vector every T’
iterations, i.e., instead of normalizing on the fly they change the original weight vec-
tor. This method is more computationally efficient than the previous one and exper-
iments show that it also produces higher performing networks. Moreover, it is the
most similar to the norm loss approach as it is targeting the same goal but with a soft
constraint. Instead of abruptly changing the weights to force unit norm, a term is ad-
ded to the loss function (instead of the weight decay) to smoothly guide the weights
towards unit norm.

Other regularization methods try to force the weights to be orthogonal to each
other, i.e., W'W = I [149, 147]. Some works [389, 17, 422, 15] apply soft regu-
larization methods by utilizing the standard Frobenius norm and define a term in the
training loss function which requires the Gram matrix of the weight matrix to be close
to identity, i.e.:

L=)\W'W 1| (6.1)

Although this is an efficient method, when considering over-complete weight vectors
it can only be a rough approximation [17]. In order to overcome this issue, [17]
proposed and tested a number of different regularization terms, all focused around
weight orthogonalization. The norm loss is similar to the aforementioned, in the sense
that a loose regularization term is applied on the loss function. Norm loss is a bit
softer regularization since it only loosely constrains the norm of the weight vectors
and does not force them to be orthogonal. Although orthogonal weights have many
nice properties, they also restrict the learning capacity of the weights [147].

One of the first works that implemented weight orthogonalization with hard regu-
larization, did so for only fully connected layers [122]. They defined the generalized
back propagation algorithm and compute gradients on the Stiefel manifold. Though
this procedure requires the form of Riemannian gradient and a retraction mechanism,
which are computationally intensive. In a later work [267] extended this approach
to convolutional layers as well. [149], [147] propose re-parameterization techniques
in order to overcome the limitations of a retraction mechanism. [149] uses eigen

Acknowledgements 133

decomposition to calculate the transformation, whilst [147] used the Newtonian it-
eration (ONI), which is shown to be more stable and more computationally efficient.
The last method also allows for weights to be orthogonal but not normalized, i.e.
WTW = Ix \. The approach proposed in this chapter provides a softer regular-
ization than all aforementioned, with the exception of weight decay, whilst having
negligible computational overhead over the “vanilla” weight decay.

6.3 Preliminaries

Given a set of corresponding sets {X,Y}, where every z; € X has a unique cor-
responding value, or ground-truth label, y; € Y, a neural network f should predict
the value y; for the corresponding input z; with a set of model parameters W. For a
given set of model parameters, the neural network output, i.e., the predicted values
Ui = f(x;, W), does not match the desired output y,. If E is the discrepancy between
the Y and the predicted values Y, the aim of the network training process is to find
a set of parameters W that minimize £(Y,Y). This is done with the help of a dif-
ferentiable loss function L(Y,Y). The training process is carried out by changing by
a small factor the set of parameters W in the direction that minimizes L(-). For an
example z;,y; or a set of examples {X, Y} the direction is given by the gradients of
L, and the weights W are updated as follows:

oL
Wi =W — nﬁ (6.2)

where 7 < 1 denotes the learning rate.

Remark: Since the Oblique manifold defines matrices with normalized rows, the
weight matrix is constructed as a row-matrix of the individual weight vectors of each
filter, W € R™*? where p is the dimensionality of each weight vector of a filter, while
n is the number of filters. This corresponds to the transpose of the weight matrix typ-
ically used in the orthogonality related literature [17].

As shown by [148], the Hessian matrix can be ill-conditioned due to the scaling-
based weight space symmetry. In an effort to avoid this issue they propose to optim-
ize the network parameters using the Riemannian optimization [3] over the Oblique
manifold. The Oblique manifold BO(n, p) defines a subset of R™*P, where for every
W € BO(n,p):

ddiag WW7T) =T (6.3)

where ddiag(-) is a function that sets all elements of an input array except the diagonal
to zero. The above formulation restricts all rows of the matrix W to have a norm of

134 Acknowledgements

one. Notice that imposing the requirement of equation 6.3 is less restricting than the
usual orthogonalization requirement WW? = I, since it only enforces a unit norm
but does not enforce the weight vectors to be orthogonal to each other.

Given a set of weights w of a single neuron, i.e., w € R'*?, where ww’ = 1, the
Riemannian gradients are given by the following equation [148]:

oL IL 7 OL

avfaw‘(w aw)w €4
where the norm of the gradients is bound [148]:

[owl = 5w) > ©9

From equation 6.5 and experimental evidence they conclude that g—VLV is the domin-

ant factor of the derivative in equation 6.4 and thus propose to apply the Euclidean
gradient (equation 6.2) and then project the weights back to the Oblique manifold by
normalizing them:

W

Wnew — (6‘6)

[wll

6.4 Proposed method

Inspired by the insights of using the Riemannian gradients described in the previous
section, we propose to use a similar normalization for neural network training. How-
ever, the hard change in the weights after normalization can cause disturbance in the
training process since they abruptly shift the weights from the direction of the original
gradients. This can be a problem with large learning rates or large projection period
T, where T is the number of training steps between each projection operation [148].
In order to overcome this issue we propose a soft regularization method that instead
of abruptly changing the weights, slowly guides them towards the Oblique manifold,
i.e., to have unit norm. We implement that by introducing a normalization loss, or

norm loss (nl): ,

Co Ci Fp Fy
Lu=> (1= S w2, . (6.7)
co=1 c;i=11i=1 j=1

where F,, Fy, C;, C, are the filter (or weight vector) width, height, number of input
and number of output channels respectively. The loss is penalizing the weight vector
of each neuron if its Euclidean norm is different from one. The final loss function then
becomes:

Liotat = Liarget + Ani - Ling (6.8)

Acknowledgements 135

where A,; a small factor that determines how strong the regularization will be and
Li4rget is the loss function defined by the task to be solved, e.g., triplet loss function,
cross entropy loss etc.

6.4.1 Connection to weight decay

The weight decay is similar to norm loss since it introduces a small penalty on the
magnitude of the weights. The loss function for the weight decay is given by:

Co C; Fp Fy

Lua=3 335wl (6.9)

co=1c;=11i=1 j=1

There are two main differences. Firstly, weight decay penalizes the absolute mag-
nitude of the weight vector while norm loss penalizes the deviation to having unit
norm. This means that in the case where the norm is smaller than one, our method
will try to increase it, whilst the weight decay will continue pushing to decrease it.
This makes a difference in situations where some components are rarely being util-
ized (e.g., due to nonlinearities such as the ReLU) in which case the main loss chan-
ging these components is the weight decay loss, resulting in very small weights that
might never recover. The second difference is that it applies to all components of a
layer uniformly, whilst the norm loss differentiates between the vectors of each output
channel. This can be seen by the derivatives of each method. The derivatives for each
component of the weight matrix are given by:

8Lwd

Oije;c,

= 2wijcico (610)
From Equation 6.7 it is easy to derive the gradients of the norm loss:

2

c, Ci Fnp Fy

L= (1= 4 22 D2 v,
co=1 ci=11i=1 j=1

2
C, C; Fy F
aLnl a i h w)
Owije, Owije, tI€ico
tIC€iCo HeiCo |\ co=1 ci=11i=1 j=1

(6.11)

2
Fy,

a Ci Fp
1- § : § : wzz’cc =
awijcico JCiCo

ci=1i=1 j=1

C F}L w 8 C Fh w

20 1= 22D whew, dwgee \ 17 D20 e,

c;i=11i=1 j=1 ci=11i=1 j=1

136 Acknowledgements

The norm of a weight matrix of a kernel with index ¢, is:

Ci; Fn Fy

lwe, |l = | DD wd.. (6.12)

ci=11i=1 j=1

From equations 6.11, 6.12:

oL 1 B G B Fu
nl 2
sert =20 o) (-5) o | 2 S e | =
ijcico co ijeico \ 21 i1 j=1 (6.13)
0L, 1
Tl 91— we,|) [~) 2wijere, =
o =2 ||wo|>(2”%”) Wijere,
0L, 1
= 2Wiiee | 1— 6.14
Tiseres w(||wco||> (6.14)

Comparing equations 6.10 and 6.14 we can see that effectively norm loss can be seen
as an extension of the weight decay where the weight decay factor and its sign are
regulated during training by the norm of the weight vector. This is explicitly visible
from the overall update rule (combining equations 6.2, 6.8, 6.14):

1 Liar
W =w A2 (1— — | w— nm (6.15)
[[we, | ow

6.4.2 Computational cost

For a convolutional layer with C, filters of shape Fj, x F,, x C;, the computational
cost of weight decay is two operations per weight, thus 2 - C, - F}, - F,, - C;. For
the norm loss itis 3-C, - (Fy, - Fy - C;) + Co +2 - C, - Fy, - Fy,, - C;. The overhead
thenis3-C, - (F}, - Fy, - C;) + C,. The computational cost of a convolutional layer is
6-m-C,-C;-Fy-Fy-Ip,-I,, where m, I, I, are the number of images in a mini batch,
and the input (to the layer) image height and width respectively. The computational
overhead of the norm loss is orders of magnitude smaller than the computational cost
of a convolutional layer with weight decay, for usual network and image input sizes.

6.5 Experiments

We evaluate our method on three well known benchmarks, i.e., CIFAR-10, CIFAR-100
and ImageNet2012. CIFAR-10 consists of 50K training and 10K test 32 x 32 natural
images, divided into 10 classes. CIFAR-100 also consists of 50K training and 10K test
natural images with the same resolution, but in this dataset they are divided into

Acknowledgements 137

= —— weight decay
g norm loss
o 301
]
0
|_
20+ ———
1-10°1 1-1072 1-1073 5-107%

reguralization factor

Figure 6.2: Test error of WRN-28-10 on CIFAR-100 with weight decay and norm loss
for different regularization factors.

100 classes. For both CIFAR-10 and CIFAR-100 we evaluate using classification error
on the designated test sets. The ImageNet 2012 is a large scale image recognition
dataset. The train set consists of 1.281 million natural images of arbitrary resolution
and aspect ratio. The images are divided into 1000 classes. The validation set consists
of 50K images, i.e., 50 images per class. We evaluate our method on the validation
set top 1 and top 5 error rates, as is common practice in the field.

We utilize two different state of the art architectures, namely the ResNet [127]
and the wide ResNet (WRN) [437], since they are usual test cases for weight regu-
larization methods [148, 149, 147, 17]. Both ResNet and WRN have been defined for
many different sizes with different learning capacity. Unfortunately, training such big
networks is very computationally expensive and thus we choose only one architecture
per model. For all our three benchmarks we utilize the cross-entropy loss function as
our target loss function (Ligrget)-

The norm loss approach is compared with state of the art approaches, like weight
decay (wd), weight normalization (WN)[311], projection based weight normaliza-
tion (PBWN)[148], orthogonalization with Newton iteration (ONI)[147], orthogonal
linear module (OLM)[149].

6.5.1 Regularization factor

With the first experiment we evaluate the effect of the regularization factor \,,; on the
training. As a benchmark we use the CIFAR-100 dataset. We train for four different
values of \,; and plot our results in Figure 6.2. It is apparent that the effect of \,,; on
the training is much smaller than that of \,4 in the case of weight decay. We believe
that this results from the regularization of the \,,; factor discussed before (equation
6.15).

Figure 6.3 shows the evolution of the train cross entropy (per batch) during train-

138 Acknowledgements

weight decay

norm loss

smoothed weight decay
—— smoothed norm loss

n

w

N

=

Train cross entropy (per batch)

0 40 80 120 160 200 240 280
Train epoch

Figure 6.3: Evolution of cross entropy during training on CIFAR-100 for weight decay
and norm loss. The regularization factor for both runs is 5e-4. The shaded lines are
the true lines, whilst the non-shaded are smoothed version of the original (averaged
over 19 steps) for more comprehensive visualization.

ing, for the case of A = 5-10~%. We can see that with the norm loss, the networks are
being trained faster than with weight decay, even in the case where the weight decay
training has marginally higher accuracy in the end of training (see Figure 6.2).

6.5.2 Batch size

The next experiment is to test the training behavior for different batch sizes. We train
networks with both weight decay and our method for batch sizes {8, 16, 32, 64,128}
on CIFAR-100. The performance of the trained networks on the test set can be seen in
Figure 6.4. We can see that the norm loss has more steady behavior than the weight
decay. We can still see some dependence on the batch size, which is expected since
our networks utilize batch normalization. Moreover, although for most batch sizes

Acknowledgements 139

. 221 —— weight decay

g norm loss

v

2 20

(0]

|_ —__________———0-
8 16 32 64 128

batch size

Figure 6.4: Test error of WRN-28-10 on CIFAR-100 with weight decay and norm loss
for different batch sizes.

tested the networks trained with norm loss show better performance, only for batch
size 128 the opposite is true. Finally, we can see that the highest overall performance
for both methods is achieved by the networks trained with batch size 64.

6.5.3 CIFAR-10

On this dataset we train on the ResNet110 and WRN-28-10. As is common practice
[127, 437] we train the networks using SGD with momentum of 0.9 and a batch size
of 128. The initial learning rate is set to 0.1. We follow a learning schedule close to
the one used in [437]. When training the WRN, we drop the learning rate by a factor
of 5 at epochs 53, 107, 230 and we train for a total of 300 epochs. For the ResNet we
train for 164 epochs and reduce the learning rate at epochs 82 and 123. We follow
the standard preprocessing for training as in [127, 437, 171, i.e., padding each train
example by four pixels and getting a random 32 x 32 crop. Both train and test sets are
mean and std normalized [437]. We train five times and report the mean as well as
the best run. For both networks, the regularization factor \,; is set to 0.01 while the
weight decay factor)\, is set to 10~* for the ResNet and 5 - 10~ for the WRN, as in
the original papers [127, 437]. The results can be seen in Table 6.1.

When training the ResNet110 training with norm loss outperforms all other regu-
larization methods we are aware of, that tested on the same network [147, 311, 148].
Norm loss also outperforms the reported accuracy of the SRIP regularization method
of [17]. Due to large difference with our and their baseline performance, we do not
consider it a valid comparison and thus their result is omitted from Table 6.1.

When training the WRN-28-10 we observe a big decrease in performance over
our benchmark. Figures 6.5, 6.6 show the training process of the WRN-28-10 on the
CIFAR-10 with weight decay and norm loss. We can see that even in this case, where
the final performance of weight decay is better, the network that utilizes the norm loss

140 Acknowledgements

Table 6.1: Performance of different methods on CIFAR-10 test set for the ResNet110
and WRN-28-10. In parentheses are the mean or median over some runs given by the
authors of the respective papers. Outside parentheses the best accuracy (if shown by
the authors). For methods denoted by *, the performance is given in the respective
papers.

model reg. method error
ResNet110 wd 6.32 (6.568)
ResNet110 [127]* wd 6.43 (6.61)
ResNet110 [311]* WN - (7.56)
ResNet110 [148]* PBWN -(6.27)
ResNet110 [147]* ONI - (6.56)
ResNet110 (Ours) nl 5.9 (5.996)
WRN-28-10 wd 3.9 (3.966)
WRN-28-10 [437]* wd - (3.89)
WRN-28-10 [149]* OLM -(3.73)
WRN-28-10 [149]* OLM-L1 - (3.82)
WRN-28-10 (Ours) nl 4.47 (4.662)

=
o

weight decay

norm loss

—— smoothed weight decay
smoothed norm loss

o
(o5

Train cross entropy (per batch)
o
o

0.4

0.2

0.0 . . . ‘ Mld— .
0 40 80 120 160 200 240 280

Train epoch

Figure 6.5: Evolution of cross entropy during training on CIFAR-10 for weight decay
and norm loss for the WRN-28-10. The shaded lines are the true lines, whilst the
non-shaded are smoothed version of the original (averaged over 19 steps) for more
comprehensive visualization.

Acknowledgements 141

0.9501
o 0.925
o
-
Y 0.900+
<
0 0.875]
= .
0.8501 —— weight decay
—— norm loss

0 30 60 90 120 150 180 210 240 270
Train epoch

Figure 6.6: Evolution of test accuracy during training on CIFAR-10 for weight decay
and norm loss for the WRN-28-10.

is converging much faster and shows more stable behavior. More experimentation is
needed to understand why in this specific scenario the final performance is worse than
the baseline. For example, a schema like the one used in [17] could be used, where
from a certain epoch on the regularization is minimized or even dropped completely.

In order to evaluate the computational overhead of our method, we report that
training the ResNet110 on CIFAR-10 with weight decay takes, on average, 4.56 hours
while training the same network with norm loss takes, on average, 4.79 hours. All
aforementioned experiments ran on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
and an NVIDIA GTX 1080Ti graphics card.

6.5.4 CIFAR-100

As with CIFAR-10, for this section we use the same hyper parameters as in [437], with
a slightly different learning rate schedule. We train the WRN using a batch size of 64
instead of 128, because it results in better performance even for the baseline method.
The regularization factor \,; was set to 10~2 and the \,4 to 5 - 10~%. We train for a
total of 448 epochs and reduce the learning rate by a factor of 5 in epochs 77, 153
and 307. We train the ResNet for 300 epochs and drop the learning rate at epochs
53, 107, 230. We train 5 times and report the accuracy of the mean and best run. The
results are shown in Table 6.2. We also trained with the learning rate scheduler used
for ResNet110 on CIFAR-10, i.e., 164 epochs and reduce the learning rate at epochs
82 and 123, but the aforementioned scheduler produced results for the baseline that

142 Acknowledgements

Table 6.2: Performance of different methods on CIFAR-100 test set for the ResNet110
and WRN-28-10. In parentheses are the mean or median over some runs given by the
authors of the respective papers. Outside parentheses the best accuracy (if shown by
the authors). For methods denoted by *, the performance is given in the respective
papers.

model reg. method error
ResNet110 wd 27.9 (28.398)
ResNet110 [311]* WN - (28.38)
ResNet110 [148]* PBWN - (27.03)
ResNet110 (Ours) nl 26.24 (26.526)
WRN-28-10 wd 18.85 (19.138)
WRN-28-10 [437]* wd - (18.85)
WRN-28-10 [149]* OLM - (18.76)
WRN-28-10 [149]* OLM-L1 - (18.61)
WRN-28-10 (Ours) nl 18.57 (18.648)

match the literature and thus is reported on Table 6.2. For clarity we also report the
results using the CIFAR-10 scheduler: Average error for the weight decay is 28.094
with a best run of 27.56 whilst for the norm loss the average error is 25.878 with a
best run of 25.2. For all ResNet experiments, the regularization factor \,,; was set to
10~2 and the \,q4 to 1072

The norm loss manages to produce better performance than most methods for
both ResNet110 and WRN-28-10. Although in the case of CIFAR-10 we managed to
outperform the method developed in [17] (results were omitted from the tables due
to large difference of their and our baseline performance), in the case of CIFAR-100
their methods outperform our own. For the same reason as before their results are
omitted (25.42% vs 27.49% accuracy for the baseline ResNet110). It should be noted
that they used a different optimizer for their experiments, the Adam optimizer [175].

6.5.5 ImageNet

For the ImageNet dataset, we utilize the ResNet50 architecture to evaluate our method.
We use the same data augmentation and hyper parameters (for batch normalization,
dropout rates, etc.) as the implementation of [148] on GitHub!. We train using SGD
with Nesterov momentum of 0.9. The learning rate is initialized at 0.1 and divided
by 10 every 30 epochs. We train with a batch size of 128, whilst due to GPU memory

LThttps://github.com/huangleiBuaa/NormProjection

Acknowledgements 143

Table 6.3: Top-1 and Top-5 error rates of different methods on ImageNet validation
set for the ResNet50. For methods denoted by *, the performance is given in the
respective papers.

model reg. method Top-1 error Top-5 error
ResNet50 wd 25.29 7.86
ResNet50 [147]* wd 23.85 -
ResNet50 [147]* ONI 23.30 -
ResNet50 (Ours) nl 24.34 7.44

limitations, the batch normalization parameters are trained on half, i.e., 64 examples.
The regularization factor for both methods, i.e., \,;, Ayq is set to 10~%. The top-1 and
top-5 error rates? of the networks on the ImageNet 2012 validation set are shown in
Table 6.3.

The first two rows show the performance of the baseline method as reported in
literature [147] and our attempt at reproducing it. As it can be seen, there is a large
difference between the results as our error is much larger than the one reported
in literature. The origin of this is currently not clear to us and therefore a direct
comparison of performance numbers is not warranted. Nonetheless, we can observe
that for our implementations the norm loss approach improves both TOP-1 and TOP-5
performances substantially over weight decay.

6.6 Conclusions

In this chapter, a new soft-regularization method is proposed, that tries to guide the
weight vector towards the Oblique manifold. It accomplishes that by utilizing the
proposed norm-loss function as regularization during the neural network training.
We evaluate the norm loss on standard benchmarks, i.e., CIFAR-10, CIFAR-100
and ImageNet 2012 and compare the performance to the state of the art regulariza-
tion methods. The Norm loss approach accelerates the convergence speed of networks
and leads to a more robust, i.e., less sensitive training process with regard to the hy-
perparameters settings for the regularization factor and the batch size. While having
a negligible computational overhead over weight decay during training, and no extra
computational cost during inference, our method has comparable performance to the
state of the art and some cases even higher, while only for one setup norm loss is

2Top-1 error is 100 - classification accuracy. Top-5 error counts a correct classification if the ground truth
label is in the top-5 predictions of the network.

144 Acknowledgements

under performing, i.e., WRN-28-10 on CIFAR-10.

