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Clifford convolution inspired
orientation equivariant CNNs

Convolutional Neural Networks (CNNs) such as VGG [338], ResNet [127] and Dense-
Net [146], are very powerful models for processing image and sensor data. However,
a notable drawback for their application in many domains is their sensitivity to ro-
tations of the input data. In order to alleviate this issue several methods have been
proposed. Most of these implement orientation pooling through max-pooling as a core
aspect to achieve rotational invariance or equivariance. However, such operations are
very computationally intensive since all the activations have to be computed for many
different orientations. In this chapter, we take advantage of vector field representation
to repeatably calculate the angle of the kernel with the input pattern. This is achieved
by generalizing the basic convolutional kernels to realize Clifford convolutions. With
this architecture, rotation angles can be calculated without computing activations for
all orientations. Since the rotation angle is computed from the Clifford kernels and
the input alone, this information can be utilized in the learning process through back-
propagation. The proposed method is evaluated on the rotated MNIST [200, 197]
on classification performance (rotation invariance) and orientation prediction (rota-
tion equivariance). We show that this method improves the equivariance property of
networks over max-pooling, preserving or even improving classification performance
while having lower computational cost.
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5.1 Introduction

Convolutional Neural Networks (CNNs) are very powerful models that can extract
high level information from their input, such as the contents of an image [302]. State
of the art networks, such as AlexNet [184], NiN [216], VGG nets [338], ResNet [127],
and DenseNet [146], achieve this by combining a hierarchy of feature extractors, i.e.,
convolutional layers, to complex and deep architectures. A limitation of the convolu-
tion operation is that it is not rotation equivariant, and thus the output signal changes
if input signal is rotated. As a result, if a network needs to identify the same pattern
at different orientations it would require multiple kernels.

There are multiple potential benefits in a rotational invariant or equivariant con-
volution operator as proposed in this work. The number of trainable parameters might
be reduced [409, 408] since no additional kernels are required for detecting rotated
patterns. Due to the resulting models being simpler, they will also be less prone to
overfitting and have lower memory footprints. Additionally, in some cases it is es-
sential to extract the orientation of the detected patterns, such as for aerial imagery
[233] and robotic grasp detection [204].

From the research literature on rotational equivariance, four main groups can be
identified. One is to rotate the input in multiple orientations and then pool the top
most activations from the different orientations [189]. The second rotates the kernels
from all layers and forwards the activations of different orientations throughout the
network, and then pools the activations from different orientations at the latest layer
[449]. The third group of methods is similar to the second group, with the differ-
ence that orientation pooling happens at all layers and all positions of the feature
maps [233]. Thus the orientation information is still propagated, whilst the number
of trainable parameters and the information flow does not explode. The last method
is inspired by the group convolutional networks [55] and convolves in the orientation
dimension as well. This combined with an initial input of convolutions through all
rotations and orientation pooling in the last layer results in one of the highest per-
forming methods to date. Nonetheless, since all equivariant layers are convolving in
the orientation dimension as well, it is a very computationally intensive approach.
All four methods increase the memory footprint of the networks and incur additional
computational cost.

In this work, we take advantage of vector field representation to calculate the
angle between two vector fields, i.e., the kernel and input signal. This is achieved by
using convolutional kernels which utilize operations from Clifford Algebra [316, 75].
This enables the detection of rotated patterns without significant memory and com-
putational overhead, but also allows for the extraction of the rotation angles of the
detected patterns. The orientation angles are calculated from the kernels and the
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layer input alone, and thus can contribute to the learning process through back-
propagation. Even though the extractable rotation angles are in principle continuous,
we employ rotation quantization in order to reduce complexity. However, we recon-
struct (approximate) continuous angles by employing a correction mechanism. Our
experiments show that our method increases the rotation equivariance of the mod-
els over max-pooling based networks. At the same time it manages to maintain and
in some cases improve the classification performance while being less memory and
computationally intensive.

5.2 Related work

An early approach to rotation equivariant CNNs is the Spatial Transform Networks
(STN) [157]. A specific module is proposed which transforms the network input be-
fore it is passed to the prediction network. Although this method does not suffer from
the extra memory footprint and computational demand of computing feature maps
for all orientations, the invariance is not intrinsic but rather learned by the network,
and thus restricted by the training data. TI-pooling [189] rotates the input multiple
times and processes it with Siamese networks. After the first fully connected (FC)
layer, they perform orientation pooling and thus the next FC layer takes as input
rotation equivariant features.

Another group of works rotate the feature maps in every layer and propagate
all the information to the next layers. At a final stage the orientation and spatial
information are pooled together. The Orientation Response Networks (ORN) [449]
additionally define the orientation alignment layer, a SIFT like alignment applied
before the orientation pooling. The same principle is also applied in the RI-LBC [443].

The Rotation Equivariant Networks (RotEqNet) [233] calculate the response at
each layer and position for a number of rotated kernels, which represent vector fields.
Then, the most dominant orientation per location and output channel is computed
via max-pooling, and the result is represented by a new vector field with the response
of the convolution as the magnitude at the respective angle. The approach presented
here is similar in the sense that the activations are also vector fields, and that different
orientations in all positions and channels throughout the network are accounted for.

Another approach to rotation equivariance is the group convolution [55], which
define operation groups, e.g. rotation, and perform convolution on all the operations
in the group. The result are filters that have equivariant response to all operations in
the group. The main difference with the above is that all rotations are being processed
and the equivalent information propagated in the network instead of performing ori-
entation pooling and propagating only a fraction of the information. This approach
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is utilized by the steerable filter CNNs defined by [409]. These networks make use
of the group convolutions in combination with steerable filters to produce rotation
equivariant nets. At the last convolution layer they perform orientation pooling and
finally three fully connected layers perform the classification. The work of Weiler et al.
[408] created a more general formulation regarding and re-implement existing archi-
tectures, such as the steerable CNNs [409] and propose new architectures based on
their finding and existing operators. With a combination of cyclic equivariant group
with a cyclic and flip group (only in the first few layers) they achieve state of the art
performance in the MNIST-rot dataset. It should be noted that most of the networks
in this cluster of methods, i.e., utilizing group convolutions, only perform orientation
pooling before the fully connected layers and thus process much more information
than most methods.

The aforementioned methods perform orientation pooling in various variants,
where to the best of our knowledge the best performing methods incorporate max-
pooling for orientation pooling. In this paper we propose a method which specific-
ally tackles the orientation estimation and therefore we compare to max-pooling
as the state of the art orientation pooling mechanism in our experiments. Addi-
tional techniques which would influence the performance, such as the steerable filters
[409], could be combined with our approach. In order to evaluate our claim we re-
implement the RotEqNet [233], as well as group convolutional CNNs with steerable
filters [409, 408] using the proposed Clifford convolution inspired layer for orienta-
tion pooling.

Clifford convolution has been previously used for pattern recognition on 3D vector
fields [75]. Patterns, such as vortices, were identified using predefined kernels, that
represent those patterns, i.e., hand crafted feature extraction was done. As far as the
authors know, this is the first time Clifford algebra has been used in the area of deep
learning where multiple layers of filters (so called features) are learned.

5.3 Clifford convolutions and calculation of rotation
angles

One central aspect of Clifford Algebras is the definition of general products between
vectors and their geometric interpretation. Most relevant for this work is the ability
to estimate the angle between two vector fields by performing two convolutions [75],

tangsy = 002D rtan 0020 d)
< convg(i, 4) ' convg (i, 7)

; (5.1
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where
cin Fn Fu
convo (i, j') = Z Z Z Wi’jvci ’ 6%—%+i,j/—%+j,a
Ci 7 7
cin Fn Fu
convs (i, j') = Z Z Z(WO%%Q ' O1,¢f—%+i,jb%ﬂ+g‘,a — Wi Oo,y—%ﬂ,j'—%wrj,a)
Ci 7 7

(5.2)

where Oy ji .,, Wi j.., € R? are multi-channel 2D signal and kernel vector fields with
discrete coordinates (i’,j') € [(0,0), (On,Oy)] and (4,5) € [(0,0), (Fy, Fy)], where
On, Oy, Fy, F,, are the image (O) and filter (") height and width respectively:

Oirjres = (Qo,ir,jrei s Oirje;) (5.3)

The original formulation considers continuous vector fields and integrations instead
of summations [75]. Depending on the instantiation of O and W, as well as the angle
between them, the computation might be inaccurate. In order minimize this error,
we calculate the angles for four orientations of the kernels for successive angles of
5. The kernel orientation that produced the smallest angle is considered the most
accurate, and thus we calculate the final angle from this choice. Experimentally we
found that choosing the orientation that produced the highest value of convg results
in more accurate networks and thus it is chosen for all our experiments.

To illustrate the angle measurement, we construct a random 50-channel 2D vector
field O ona3x3 grid. Each magnitude is randomly drawn from a uniform distribution
in [0,1) and each angle in [0, 2). To construct example filters, we rotate O randomly
and add Gaussian noise, Wij = rotatei/j/_ﬂj(Oqi/j/, o) + éij. Both the grid positions
and the 2D vectors are rotated by a random angle ¢. We denote the rotated kernel W
by angle ¢ as W¢.

We generate 10,000 such random vector fields and filters and calculate the angle
of the original fields (O) to the rotated fields (W) with and without the addition
of noise. Figure 5.1 shows the distribution of the difference between the calculated
angle and the real angle used for the rotation. Even with the addition of noise, the
average absolute difference is less than 102 radians.

5.4 Layer construction

5.4.1 Forward pass computations

The rotation equivariant processing layer proposed in this work can be decomposed
into five steps [C}, C5] which is schematically shown in Figure 5.2. For the sake of
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Figure 5.1: Distribution of the difference, in radians, between the rotation angle and
the calculated one. (a) The difference without Gaussian noise added to the rotated
signal. (b) The difference with Gaussian noise where 1 = 0 and ¢ is 10 percent of the
maximum possible value of the signal.

Figure 5.2: Computational pipeline of a filter W' in layer I. C;_5 define the different
operations. Input to the pipeline is a kernel of dimensions (F},, F,,, ¢;,) and a window
of the input with the same size with the kernel. For that combination, an angle ¢' is
computed which is used to rotate the kernel. The rotated kernel is used to compute
the scalar convolution which is then transformed to a vector.

simplicity we define the following shorthand indices:

Dy : Weight position, (i, 7, Cin, Cout)
P, : output position, (7', 5, cout) (5.4)
pin : input position, (i",5", cin)

For clarity, we note that if certain indices of a Tensor are not displayed, then the
complete dimensionality is considered.

The first step (C1) calculates the angle gzbfuo between the input to this layer O'~!
and a kernel Wclm for all output positions and all output channels c¢,,;. In the second
and third step the rotated kernels W(é », are calculated (C3 3), for all output positions
and channels, where the first step Cs only rotates in the 2D vector space for each

channel and grid location (indicated by 1), and in the third step C; the rotation is
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also performed with respect to the grid indices (¢, j) using bi-linear interpolation, i.e.,
plane rotation. Without loss of generality we can consider both steps as one operation.
The step Cy performs a scalar convolution of the rotated kernels and the input. The
scalar convolution result Oi,o and the angle ¢§,O used to compute it are considered as
vectors in the polar coordinate system which are then transformed to the Cartesian
representation at step Cs.

In large networks, calculating rotated kernels, Wq@ »,» for all positions and chan-
nels is very inefficient. Thus, we precompute the rotation of the kernels for B angles,
by = b%’r (b =0,...,B—1). At each output point we calculate an angle qb;fjo using
formulas 5.1 and 5.2 and then select the precomputed kernel with the closest angle
to qﬁé,o. If the input pattern is significantly different from the kernels, the computed
angle might still be very large. We set a maximum threshold for the angle, in which
case the output Oéu is set to zero. The final pipeline can be seen in Figure 5.3. In
order to reconstruct continuous angles ¢ and the respective scalar convolution result
Oy from the quantized angles ¢;, we make the assumption that for a small angle
and the output of the scalar convolution at the most appropriate angle ¢, O,, the
convolution can be approximated as Og4,. = Oy cose. In our case this becomes:

0
O¢>b = O¢ COS € = O¢ = ﬁ, (5.5)

where ¢, and €, = ¢ — ¢, are the closest quantized angle and the difference to the
continuous angle. We also considered calculating the Taylor expansion to calculate
the response in the real angle ¢ given the response at angle ¢;. For every order of the
Taylor expansion an extra convolution operation has to be computed, which adds a
lot to the final computational complexity. Thus we only implement a first order Taylor
expansion:

(¢
5 ()
Oy = O, + 75—+ (6 — ) (5.6)
In our experiments, the correction in Equation 5.5 produced significantly better res-
ults than the first order Taylor expansion approximation 5.6. Given that it is also less
computationally intensive, we use this correction for all our experiments.

5.4.2 Back propagation

Implementing the back propagation algorithm is straight forward for the operations
C4 and C5, whereas some explanation is needed for operations C; and C; 3 (for
simplicity, we group C, and Cs, without effecting the derivations.) At operations Cs 3
the output is:

Vr/j) P = vector,field,rotation(Wclout, qbl ) (5.7)
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Figure 5.3: Implementation Workflow. In parentheses are the shapes of the respective tensors, where b is the batch size,
h,w, ¢; the size of the input, ¢, the number of channels and F}, F,, the kernel height and width respectively. Finally, B is
the number of bins used for the precomputed rotated kernels.



Acknowledgements 117

where V_Vl , is the complete vector field kernel of shape (Fh, F,,2 % 07) For the back

propagatlon two sets of gradients need to be computed, awl and ¢l . Since W¢ .
is the rotated W/, we get:

E E E

?,7 = vector_field_rotation( 0 =@l ), o

oWl . Po’7 Ol
= (5.8)

ORI
!
j  Cin W¢ PoPw 6¢po

To avoid confusion we note that Vf/dl) »op,, Tefers to the rotated weights for the output
position p, indexed by p,,. The last term in Equations 5.8 above can be estimated with
the precomputed kernel weight sets for the quantized angle ¢, as:

17l 1l 1l
anbb W¢r+1 W¢b—1

= T (5.9
¢! 222
To back propagate the gradient through step C;, where qbl = arctan (¢o2), we
need to calculate two sets of gradients:
oEF  0F convg oF oF convy (5.10)
dconvy 8¢l convd + conv?’ dconvy 8@%0 convd + conv? '

Equations 5.10 introduce numeric instabilities when both convg and conv, are
very close to zero, and even undefined when exactly zero. As a remedy, we set a
small threshold for convy and convy, below which we turn off the feature map at the
specific location. The derivatives of convy and conv, can easily be calculated from
their definitions in Eq. 5.2. The analytical derivations can be found in the Appendix
A.

5.5 Experiments

5.5.1 Datasets and ground truth

In order to evaluate our method, we perform experiments on rotation invariance and
rotation equivariance. With that goal in mind we utilize the MNIST-rot [200, 197]
dataset and a car orientation dataset [131]. Moreover, we construct our own ver-
sion of the MNIST-rot, as explained in Section 5.5.4, to help us evaluate the rotation
equivariance property of the methods tested.

For the RotEqNet [233] networks and their Clifford convolution counterparts we
extract the gradients of the color from a 3 x 3 window and utilize them as input, in
order to have a vector field as input.
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5.5.2 Networks

For our experiments we utilize two network architectures, i.e. the SEFCNN [409,
408] and the RotEqNet [233]. The SFCNN represent the state of the art in rota-
tion equivariance and equivariance, utilizing group convolutions whilst the RotEqNet
remains one of highest performing approaches and its much less computationally in-
tensive than the group convolution approach.

Each layer of the RotEqNet performs convolutions in a number of predefined ori-
entations of the kernels and then forwards the maximum response. Furthermore, it
utilizes the orientation information to create a vector field as an output, i.e., the mag-
nitude of each vector is the maximum response and the angle is the rotation angle of
the orientation that produced that maximum response. Every convolutional layer is
followed by batch normalization and a ReLU activation function (both applied on the
magnitudes of the vectors). We also experimented with batch normalization with only
rescaling, as proposed by the authors [233], but in our experiments the full batch nor-
malization proved to produce better results. After a number of layers global pooling
is applied and the resulted information is processed by a number of fully connected
layers which perform classification.

The Clifford convolution (cc) inspired counterparts of the RotEgNet follow the
same architecture with a few differences. Instead of full batch normalization we ap-
ply only rescaling (as with the cc networks it proved to result in higher performance)
and the addition of a second normalization which makes the average norm of a square
window, with size equal to the next layer’s kernel size, to be one (Equation 5.11). This
is needed in the cc networks due to the threshold introduced at the end of Section
5.4.2. With varying input norm the effect of the threshold changes. For fair compar-
ison we did also try to add them at the original RotEqNet and found that it marginally
improves the performance and thus utilized it in all our experiments.

~ ot | FLF]
-1\ _ _ w” h -1
norm(0'~") = o Ao = 705;102_1 O~ 2 (5.11)

For the SFCNN we follow the proposed hyperparameter settings proposed in
[408] and reproduced their results. The first layer outputs the response of the net-
works for the predefined orientations (sixteen orientations). The rest of the convo-
lutional layers besides the standard spatial 2D convolution, convolve in the angular
dimension as well and output responses for all orientations. Before their three fully
connected layers they perform both spatial and orientation pooling by applying max-
pooling.

The cc counterpart utilizes the input layer and group convolutions as with the
max-pooling version. The difference lies in the orientation pooling layer in which we
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Table 5.1: Number of channels per layer. CL. denotes Convolutional Layer, FC are
Fully Connected and Out is the classification layer. With (/2) we denote layers that
are followed by 2x2 spatial pooling. (-) denotes layers for which the kernel size is the
same as the input and do not use padding, producing output size 1x1.

CL1 CL2(/2) CL3 CL4(/2) CL5 CL6(-) FC FC Out

kernel size 9 7 7 7 7 5 - - -
rotEqNet [233] 16 32 36 36 64 96 96 96 10
SFCNN [409] 24 32 36 36 64 96 96 96 10
Dqg5C16™ [408] 24 32 36 36 64 96 96 96 10

utilize the cc approach.

All the above networks have fully connected layers performing the classification
and thus rendering the whole network as rotation invariant and not rotation equivari-
ant. In order to test rotation equivariant networks, we consider the fully connected
layers as convolutional layers with kernel size 1 x 1 and thus we are able to utilize the
orientation equivariant operators above. The output of the network outputs classific-
ation probabilities (after a soft max activation) as well as a prediction angle, either
produced by the argmax for max-pooling or by the cc operator. In the case of the cc
operator, the produced angle is a function of the weights and the input and thus can
be used for extra supervision, by utilizing the ground truth angle of the examples.
The resulted networks approximate end-to-end orientation equivariant behavior.

For our experiments we implemented our forward pass and back propagation steps
for using the "new op” module of Tensorflow [1], both for CPU and GPU computa-
tions. Our source code has been tested with Tensorflow versions 1.12 and 1.13, with
CUDA version 10.0. All experiments were done on nVidia Geforce GTX 1080Ti and
RTX 2080Ti GPUs.

5.5.3 MNIST-rot

For all our experiments, we use the number of layers as well as number and sizes of
kernels as in [409, 408, 233]. All the relevant parameters can be seen in Table 5.1.
For reference we also show the parameters and performance of the D;45C16 [408]
network since, to the best of our knowledge, it has the highest performance on the
rotated MNIST dataset. It should be noted that it is very similar to the SFCNN,
utilizing group convolutions. The main difference is that it performs convolution over
the flip operation as well for the first few layers.
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Table 5.2: Classification accuracy of the networks on the rotated MNIST dataset. * de-
notes results reported in the respective papers. Values in parentheses denote average
performance over 5 runs and outside the parenthesis is the maximum performance
achieved. In case there is no value in parenthesis the presented value is the perform-
ance of the only run.

op Acc. our Ir scheduler Acc. [408] Ir scheduler

RotEqNet [233] mp 98.954 (98.918) 99.064 (99.031)
RotEqNet cc 99.088 (99.071) 99.004 (98.974)
SFCNN [409] mp 99.358 (99.308) 99.320 (99.294)
SFCNN [409] cc 99.318 99.238 (99.166)
RotEqNet* [233] mp - - (98.99)
SFCNN* [409] mp - - (99.286)
D165C16" [408] mp - - (99.318)

For all networks we trained using the Adam optimizer [175] with learning rate
10~ and a mini-batch size of 128. We drop the learning rate to 10~° at 30 epochs
and train for 320 epochs overall. We also train with the scheduler defined in [409]
for fairness. The angle threshold defined in Section 5.4.1 is set to 7, as it proved to
increase the performance. The threshold due to gradient instabilities, described in
Section 5.4.2, is set to 1073.

Following the practice in literature [233, 409, 408] we set the number of orient-
ations to B = 16. For both Clifford and max-pooling based networks. We found out
that training with 16 bins and testing with 32 slightly increases the performance,
while keeping the training times lower. For the SFCN N this is not possible since
increasing the number of bins B changes the shape of the weight matrices as well.
The results can be seen in Table 5.2.

We should note that as it is apparent that the learning rate scheduler of [408] is
not favorable to the Clifford convolution (cc) inspired operator, since using our sched-
uler increases the performance of the networks. When replacing the max-pooling op-
eration with the cc operator, the accuracy of the RotEqNet model increases by a
small margin. When applied on the SFCNN the result remains approximately the
same (with our learning rate scheduler). As a benefit, our method has much less
computational intensity discussed in Section 5.5.6.
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5.5.4 Enriched MNIST-rot

As a second test, we wanted to also predict the angles of the digits. Unfortunately
the original MNIST-rot dataset does not provide the angles with which each image is
rotated and thus it is not possible to evaluate the performance of the networks. Thus,
we create our own MNIST-rot in the same way that is described in the original work
[200, 1971, with the only difference that we use cubic spline interpolation instead of
bilinear interpolation for rotation. Moreover, we save the angle used to rotate each
digit.

The networks in the previous section can not predict any angles and thus we
adjust them. We change the fully connected layers (even the output) to convolutional,
with kernel size 1x1. Then we perform the same orientation prediction as with the
rest convolutional layers, i.e., max-pooling with argmax or the one proposed here
(Equations 5.1, 5.2). Similarly, for the SF'C' N N networks we remove the orientation
pooling layer after the last convolution, transform the two fully connected layers to
group convolutional layers with filter size 1x1 and make the output layer orientation
equivariant with either argmax or Clifford convolution to predict the angles (like the
RotEqNet).

Our method is the only one that can utilize angle information as a supervisory
signal (without big adjustments on the network). Thus we implement two setups.
In the first setup the networks are trained only with class labels and the angle is
left unsupervised. For the second setup the angle information is also utilized during
training. The networks that utilize the max-pooling with argmax can not utilize angle
information. Thus we include a second output branch (in parallel to the first) which
is tasked to predict the sinus and cosine of the angle. This second branch consists of
two layers. We follow the approach of [233], where a hand crafted fully connected

layer of the form [[cos(0),cos(1 - 2%),cos(2 - 27),- -+, cos((B — 1) - 22)], [sin(0), sin(1 -

21y, sin(2 - 27), -+ ,sin((B — 1) - 27)]] takes as input the responses of all orientations
of the previous layer. A final fully connected layer predicts the sinus and cosine of
the angle. An interesting remark is that this method utilizes a secondary network
that predicts the angle, increasing the complexity of the network and its trainable
parameters. Meanwhile, the Clifford convolution approach calculates the angle from
the existing weight vectors and their respective input. It is also important to note that
the unsupervised setup does not utilize this new branch and the predicted angle is

the result of the argmax function.

During test, we expect that the networks that utilized the angle information while
training will be able and predict the correct orientation of the input. In the case of
unsupervised angles, we expect the output of the network to be rotation equivariant.
Thus, there should be a steady offset between the angles predicted by the network



122 Acknowledgements

and the ground truth angles. In order to test the angle prediction performance, we
compute the average angle difference between predicted and ground truth angles on
the training set. We use that offset to “correct” the predicted test angles and measure
the difference to the ground truth.

To measure the performance on angle prediction, the absolute value (€ [0, 7)) of
the difference between the predicted angles and the ground truth angles is averaged
out. The results of the unsupervised angle experiment can be seen in Table 5.3a and
those of the supervised angle experiment in Table 5.3b. For a fair comparison we also
train the networks from the previous section, i.e., not equivariant fully connected
layers with this version of the MNIST-rot (four first rows of Table 5.3a).

From the first four rows of Table 5.3a, we see that the methods have similar per-
formance on the proposed MNIST-rot with the original one in Table 5.2. It is import-
ant to note that all experiments here use our learning rate scheduler instead of the
one used in [408]. Regarding classification accuracy, the fully convolutional and end-
to-end rotation equivariant networks seem to have similar performance to the non-
fully convolutional counterparts. Regarding the angle prediction (unsupervised in this
case), the inclusion of the cc operator increases the performance of the Rot EqNet by
a significant margin. This is not the case though with the SFCNN. There the unsu-
pervised angle prediction becomes worse than the performance of the max-pooling.
In a closer inspection we found out that this is a result of the vector field construction
we used for the SFC N N, where most of the vectors end up being parallel due to the
fact that the group convolutional layers approximate very well rotation equivariant
behavior.

When the angle information is used to supervise the networks, it is apparent
that the cc operator improves the angle prediction performance over the introduced
branch used for the networks utilizing the max-pooling operator. Regarding classific-
ation performance we see a similar trend to our previous two experiments.

As an extra experiment, we train the networks on only straight digits (from the
original MNIST) and measure their performance on the test set of our MNIST-rot.
For training we pick randomly 12K digits from the original MNIST (the same for
all networks) and train with the learning rate scheduler proposed in this work. The
results can be seen in Table 5.4. It is obvious that since the extra branch introduced for
the previous experiment explicitly learns to predict the angles and is not inherently
rotation equivariant, it does not generalize to unseen angles and its performance
is very poor. On the other hand the cc operator manages to maintain high angle
prediction performance.
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Table 5.3: Classification accuracy and angle prediction performance of the networks
on the enriched rotated MNIST dataset. “(Full)” donates networks that are equivari-
ant end-to-end, i.e., they output angle of prediction. The first column denotes the
method, the second the orientation pooling (op) method, while the third and forth
columns the classification accuracy and average absolute angle difference (in radi-
ans) respectively. Values in parentheses denote average performance over 5 runs and
outside the parenthesis is the maximum performance achieved. In case there is no
value in parentheses the presented value is the performance of the only run. In case
of two values separated by a ‘/’, the first value is the model that achieved maximum
classification accuracy while the second is the model that achieved minimum average
absolute angle difference.

op Accuracy Angle Prediction
RotEqNet [233] mp 99.06 (98.99) -
RotEqNet cc 99.14 (99.12) -
SFCNN [409] mp 99.36 (99.32) -
SFCNN [409] cc 99.28 -
RotEqNet (Full) [233] mp 99.05/98.92 (98.99) 0.4441/0.3711 (0.4301)
RotEqNet (Full) cc  99.15/99.08 (99.09) 0.2970/0.2756 (0.3059)
RotEqNet (0.5 dropout, Full)  cc  99.14/99.11 (99.10) 0.2720/0.2579 (0.2696)
SFCNN (Full) mp 99.37 (99.36) 0.1798 (0.1843)
SFCNN (Full) cc 99.29 (99.27) 0.1985 (0.2227)

(a) Unsupervised angles.

op Accuracy Angle Prediction
RotEqNet (Full) [233] mp 98.93/98.88 (98.84) 0.1156/0.1140 (0.1200)
RotEgNet (Full) cc 99.15 (99.10) 0.0985 (0.1005)
RotEqNet (0.5 dropout, Full)  cc 99.29 (99.24) 0.1095 (0.1110)
SFCNN (Full) mp 99.38/99.35 (99.34) 0.0688/0.0659 (0.0694)
SFCNN (Full) cc 99.33/99.28 (99.26) 0.0608,/0.0580 (0.0620)

(b) Supervised angles.
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Table 5.4: Classification accuracy and angle prediction performance of the networks
on the our rotated MNIST dataset, with supervised angles trained on 12K digits of
the original MNIST dataset. “(Full)” donates networks that are equivariant end-to-
end, i.e., they output angle of prediction. The first column denotes the method, the
second the orientation pooling (op) method, while the third and forth columns the
classification accuracy and average absolute angle difference (in radians) respectively.

op Accuracy Angle Prediction

RotEqNet (Full) [233] mp 98.33 1.5693
RotEqNet (0.5 dropout, Full) cc 98.41 0.1892
SFCNN (Full) mp 99.12 0.3183
SFCNN (Full) cc 98.99 0.1727
P
) .

(d)

(a)

Figure 5.4: Example images from the vehicle orientation dataset. (a) and (b) are
positive examples (include vehicles), (c) and (d) are negative examples.

5.5.5 Vehicle Orientation

As mentioned above we also utilize the vehicle orientation dataset from [131]. This
dataset consists of 15 aerial images with labeled vehicles and their orientations. In
order to include non trivial negative examples, i.e., crops with no vehicle in them, we
add specific crops from these images that do not include vehicles. We automatically
extract negative patches that are challenging by utilizing the results of the detector of
[129]. We pick the patches that have high scores, i.e., high confidence for vehicle de-
tection, but have very small or no overlap to positive crops. We use the same number
of negative examples are there are positive in the train set and no negative examples
in the test set. To further enrich the dataset, we extract patches of resolution 76 x 76
randomly rotate them and crop the center 48 x 48 pixels to be used as input to the
networks. With this dataset we train on both vehicle detection by patch classification
and orientation estimation. Some pictures from our dataset can be seen in Figure 5.4.
The network structures can be seen in Table 5.5 and the results in Table 5.6.

Our results show that in the case of the car vehicle detection and orientation
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Table 5.5: Number of channels per layer. CL denotes Convolutional Layer, FC are
Fully Connected and Out is the classification layer. With (/2) we denote layers that
are followed by 2x2 spatial pooling. (-) denotes layers for which the kernel size is the
same as the input and do not use padding, producing output size 1x1.

CL1 CL2(/2) CL3 CL4 CL5(-) Out

kernel size 9 7 7 5 7 -
rotEqNet [233] 4 8 8 8 16 2
SFCNN [409] 4 8 8 8 16 2

Table 5.6: Classification accuracy and angle prediction performance of the networks
on the vehicle orientation dataset, with supervised angles. The first column denotes
the method, the second the orientation pooling (op) method, while the third and
forth columns the classification accuracy and average absolute angle difference (in
radians) respectively. Values in parentheses denote average performance over 5 runs
and outside the parenthesis is the maximum performance achieved. In case of two
values separated by a ‘/’, the first value is the model that achieved maximum classific-
ation accuracy while the second the model that achieved minimum average absolute
angle difference.

op Accuracy Angle Prediction
RotEqNet [233] mp 87.08 (83.88) 0.5355 (0.5894)
RotEqNet cc  93.06/91.39 (91.39) 0.3694/0.3614 (0.4433)
SFCNN mp 94.02 (93.83) 0.4348 (0.4796)

SFCNN cc 96.41 (95.50) 0.3325 (0.4093)
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Table 5.7: Time required to process a mini-batch of size 200. “(Full)” donates net-
works that are equivariant end-to-end, i.e., they output angle of prediction. The first
column denotes the method, the second the orientation pooling (op) method, while
the third and forth columns the average time in seconds on a GPU and a CPU respect-
ively.

op GPU Time (s) CPU time (s)

RotEqNet (Full) [233] mp 0.1248 3.1202
RotEgqNet (Full) cc 0.4880 1.8781
SFCNN (Full) mp 0.2180 8.3354

prediction dataset the cc networks, both RotEqNet and SFCN N outperform their
max-pooling counterparts both in classification accuracy and angle estimation.

5.5.6 Computational complexity

The last experiment is designed to compare the time each network requires to process
data. For this test, we process with each network 100 batches of batch size 200 and
average the the time required to precess each batch. The results can be seen in Table
5.7. For each layer, the RotEqNet with max-pooling requires B convolutions to be
performed, a reduce_maz and argmazx function. In the current implementation, the
equivalent cc layer requires 9 convolutions and an arctan function, which overall is
much lower than the RotEqNet. The SFCNN on the other hand, not only requires
B convolutions, but the dimensionality of the filters and input is also B times larger
than the equivalent RotFEqNet. Thus, we expect the cc implementation to be much
faster on average than the other two approaches. Unfortunately, this is not always
the case. In particular, for GPU computations the cc operator is much slower than
the max-pooling counterpart. We believe that there are two main reasons for this
finding. The first is that the efficiency of our code is not on par with the native code
of Tensorflow. Moreover, when it comes to GPU computations, the architecture is
such that the constant change of the filter being used is penalized a lot due to intense
input/output overhead. This is not the case with CPU computations, where we can
observe the benefit of the cc approach. Nonetheless, the difference we observe is still
smaller than the one expected, leading us to the belief that with higher optimization
the cc method can have a big benefit in computational cost and processing time.
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5.6 Conclusion and future work

In this chapter, vector field representation is utilized and a new operator, based on
Clifford convolution, is proposed for measuring feature angles in images and con-
struct rotation equivariant CNNs. The angles are computed solely based on the ker-
nels and the input signal, enabling the use of this information during training through
back-propagation, which increases the accuracy of the resulting networks while being
memory and computationally more efficient. We compare our networks to the state of
the art rotation equivariant method, using orientation pooling through max-pooling.

The new operator is evaluated with two network architectures representative of
the state of the art on the rotated MNIST and a vehicle orientation dataset [131] in
rotation invariance, equivariance and time complexity. Our experiments show that our
method is competitive to the state of the art in classification accuracy, while gaining
higher accuracy in angle prediction and having a lower computational and memory
resource demand.

Our work clearly demonstrates the potential of the proposed method in achieving
orientation equivariant networks. However, more detailed insights are necessary. For
example, the influence of the filter size on the performance, or the robustness and
performance with increasing depth of networks has to be investigated. Applying our
method to other datasets will give valuable insights as well. A very promising route is
provided by the possibility to combine our Clifford convolution approach with other
state of the art architectures, such as the res-block [127] and dense-block [146].






