Multi-dimensional feature and data mining
Georgiou, T.

Citation
Georgiou, T. (2021, September 29). Multi-dimensional feature and data
mining. Retrieved from https://hdl.handle.net/1887/3214119

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3214119

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3214119

Comparing deep learning and hand
crafted features for simulation data

Computational Fluid Dynamics (CFD) simulations are a very important tool for many
industrial applications, such as aerodynamic optimization of engineering designs like
cars shapes, airplanes parts etc. The output of such simulations is usually very com-
plex and hard to interpret for realistic three-dimensional real-world applications.
Automated data analysis methods are warranted but a non-trivial obstacle is given by
the very large dimensionality of the data. Deep learning techniques usually require
very large datasets to be properly trained on. As we saw in the previous chapter, creat-
ing a big scale dataset of CFD simulation requires a lot of time, even for a toy example
as the steady flow simulation of the air around a passenger car. On the other hand
hand-crafted feature based approaches from computer vision have already defined
the low level features and thus might require less data. In this chapter we propose
an adaptation of the classical hand crafted features known from computer vision to
address the same problem and compare a large variety of descriptors and detectors.
Moreover, we adjust the deep learning approaches of the previous chapter to the data
used in this chapter and propose a new one. Finally, we compile a large dataset of 2D
simulations of the flow field around airfoils with which we tested and compared ap-
proaches. Our results show that both deep learning-based methods and hand crafted
feature based approaches, are well-capable to accurately describe the content of the
CFD simulation output.

92 Acknowledgements

4.1 Introduction

Computational Fluid Dynamics (CFD) simulations provide a relatively fast way to
evaluate and optimize the performance of different engineering designs. For example,
estimations for drag and lift forces of moving objects such as cars or airplanes, as well
as tumble motion patterns in internal combustions engines can readily be extracted.
The availability of such simulations as well as their high complexity, which renders
them difficult to analyze, motivate the development of methods that can analyze them
automatically. For example, in the previous chapter we developed and applied deep
learning techniques in order to analyze the simulation while taking into account all
the information produced by the simulation. Most existing feature extraction tech-
niques, developed for CFD simulations focus on visualization and not machine learn-
ing [273, 405]. Deep learning techniques require exhaustive datasets with a very large
number of data samples to produce reliable and generalizable performance. On the
other hand, CFD simulations are computationally very expensive and large datasets
are therefore hard to produce. Additionally, each data sample is substantially bigger,
compared to typical input of deep learning pipelines, such as images and videos, due
to the high dimensionality and the high spatio-temporal resolutions typical for en-
gineering applications. These contradicting issues set the stage for the challenging
research field considered in this work where deep learning methods are applied to
CFD simulation data.

Hand crafted features are a well known topic in computer vision. A big variety
of features has been proposed along with methods that utilize them for numerous
applications. One of the most well known is the SIFT detector and descriptor [226].
After its success, a number of different descriptors and detectors were proposed, in
order to improve performance, to be more efficient, or both. A very well known one
is the SURF [19] descriptor and detector as well as a number of different binary
descriptors, such as ORB [299], BRIEF[41], BRISK [205] and FREAK [7]. In this
chapter we utilize those features in the context of CFD simulation output. To the best
of our knowledge we are the first to do so.

In recent years, deep learning approaches are outperforming the more traditional
approach of feature extraction and description in most applications. Nonetheless, for
some applications hand crafted features are better suited, for example when hard-
ware availability is limited. Since running complex CFD simulations takes a very long
time, e.g. the simulation of a combustion process in an engine can take more than
a month to compute, handcrafted features, which do not rely on a data-heavy train-
ing procedure, might still be a viable option. In order to validate that hypothesis we
test a number of different detectors and descriptors on their ability to represent dif-
ferent flow fields and to discriminate between them. Moreover, we implement and

Acknowledgements 93

test several deep learning approaches, adjusted from Chapter 3, and compare them
to the aforementioned hand crafted features. Finally, a new dataset consisting of 16K
2D flow fields of the air around airfoils is compiled and utilized as the benchmark
platform.

The rest of the chapter is organized as following. Section 4.2 discusses the relevant
work to this paper, Section 4.3 describes the hand crafted features tested, as well as
the implementation details. Section 4.4 discusses the deep learning techniques used,
Section 4.5 describes the dataset and benchmark developed for the purpose of this
comparison. In Section 4.6 we report and comment on our experimental results and
finally, in Section 4.7 the conclusions of this study are drawn.

4.2 Related work

Most existing approaches for feature extraction on CFD simulations focus on visual-
ization [273, 405]. Moreover, they focus specifically on the vector field and neglect
other information, such as pressure and turbulent viscosity. The only work we are
aware of that applied hand crafted features for machine learning on CFD simulation
output, collects a number of streamlines, i.e., theoretical particle path in a vector field,
with which they described each example [105].

Hand crafted features from computer vision, such as SIFT [226], SURF [19] and
ORB [299], have been studied in much detail and applied to a plethora of applications
[317, 220]. Nonetheless, there is no work that applies them on CFD simulation out-
put data. There have been many comparisons between the detectors and descriptors
[317, 220, 268, 307, 209], but since there have been no applications of them on CFD
simulation output, there is also no performance comparison.

In recent years, deep learning has become a mainstream approach for processing
a number of different data types [368, 111] and especially data types that show some
spatial or temporal relationship within each example, making the convolution a very
effective operator. Since each example on the CFD simulation output can show both
spatial and temporal relationships, deep learning and more specifically deep convolu-
tional neural networks are an obvious choice for applying machine learning. As such
there have been several applications of D-CNNs on CFD data [108, 218, 371, 416].
Most of these, though, focus on either predicting the flow itself [108, 416], and thus
substituting the simulation or substituting parts of the simulation with a deep learning
predictor [218]. The work in [371] (Chapter 3) is the first that applies deep learning
on the output of CFD simulations in order to extract features from it, and thus the
most relevant to this chapter. In this work some of the methods introduced in Chapter
3 are adapted to the 2D case. The work of [233] proposed a deep learning architec-

94 Acknowledgements

ture for processing vector fields. A large part of the output of the CFD simulation is the
velocity vector field. Thus a combination of it with the approaches in Chapter 3 is also
tested. Finally, a comparison between the deep learning and traditional approaches,
based on hand crafted features, is performed.

4.3 Hand crafted features

Hand crafted feature detection and description is a very well studied subject in com-
puter vision [317, 220, 268, 307, 209]. These features have been utilized for many ap-
plications, such as image classification [260], image retrieval [341], object detection
[100] and scene semantic segmentation. Depending on the application the utilization
strategy may vary. For example, when used for object detection separate descriptors
are matched and aligned [226]. In applications such as image classification or image
retrieval, it is more useful to create a global description of the image. A common
approach towards a global image description is to create the so called Bag of Words
(BoW) model [341]. For the purpose of this comparison a global description of the
flow is created aiming to predict the drag and lift forces applied on an airfoil.

In the literature a multitude of approaches exists, both for detecting and describ-
ing visual features. Moreover there have been numerous studies that compare them
for many applications. In order to limit the search the most popular and best per-
forming detectors and descriptors are chosen, according to the studies found [317,
220, 268, 307, 209]. CFD simulation output is very peculiar in comparison to nat-
ural imagery. Each example consists of multiple data modalities and the values of
each modality usually change smoothly. Thus, detectors created for natural images
with many corners and abrupt changes do not detect many points. This raises some
issues since some detector-descriptor combinations completely fail to find any fea-
tures for some examples. In these cases it would be completely impossible to create
a global description. Thus, these detectors are neglected from this study. Moreover,
extracting features from a regular grid instead of detected keypoints is considered,
as this strategy has proven to be superior in several applications that require global
image description [260, 398]. The combinations tested, as well as whether they were
successful in producing a global description for all examples are given in Tab. 4.1. Be-
sides these detectors and descriptors the CenSure [6], Harris-Laplace [246] detectors
as well as the BRIEF [41] and FREAK [7] descriptors were tested, but we did not man-
age to get comparable results with any combination and thus they are not included
this comparison. The focus of this chapter has moved to the 2D case since there exist
big libraries with many implementations of hand crafted features in comparison to
the 3D case, making this an easier benchmark to see if these methods are suited for

Acknowledgements 95

Table 4.1: Combination of detectors and descriptors tested. "SD” signifies that the
combination is used with the single dictionary approach, ”MD” signifies that the com-
bination is used with the multiple dictionaries approach, ”x” signifies that the com-
bination didn’t manage to produce results and ”-” signifies that the combination was
not tested.

SIFT [226] SURF [19] ORB [299] AGAST [232]

SIFT [226] x,MD - - SD,MD
SURF [19] - SD,MD - SD,MD
ORB [299] - - SD,MD SD,MD
BRISK [205] - - - SD,x

describing CFD simulation output.

One of the peculiarities of CFD data, compared with traditional imagery, is the
number of modalities. Overall there are five modalities, i.e. two for the velocity vec-
tor field and three for pressure, turbulent viscosity and a viscosity related field from
the turbulence modeling, i.e. 7 from SpalartAllmaras RAS model [264]. According
to this study [187, 334, 368] (see Chapter 2), the most common approach for com-
bining information from multiple modalities is to process each modality separately,
e.g. create a dictionary for each modality and concatenate the per-modality repres-
entation to construct the final representation [187] or perform classification based
on each modality and then average the results [334]. In this study a slightly different
approach is also explored. Features from all modalities are extracted and the common
features are filtered out by discarding the ones that have intersection over union ratio
above 0.9. Then, for each detected feature, a description for each modality is created
and concatenated to produce the final description. Finally, one common dictionary is
constructed from the concatenated features. In order to differentiate between the dif-
ferent strategies, the common approach is called "Multiple Dictionaries” (MD) and the
second one ”Single Dictionary” (SD). Dense feature extraction is also tested, which is
denoted as "DE”.

After acquiring the global description of each example, a Random Forest (RF)
regressor is trained to predict the drag and lift forces. We utilize the OpenCV [32] im-
plementations of the detectors and descriptors from the Python API. The dictionaries
for real valued descriptors are built using an approximate /K -Means clustering, whilst
for binary descriptors the K-Majority algorithm is used with Hamming distance as the
distance metric. The approximation of K-Means, pre-computes all the pairwise dis-
tances of data points and sets as cluster center the closest point to the actual cluster
center. Thus, the distances of all points to all centers do not need to be computed in

96 Acknowledgements

each step since they are already available. We utilize the scikit-learn package’s [272]
implementation of the RF with default parameters, while the clustering algorithms
are implemented from scratch, using the Python-numpy library.

4.4 Deep learning approaches

4.4.1 Methodology

As mentioned in Section 4.2, deep learning has already been applied to the same sub-
ject. In Chapter 3 three different strategies were proposed and tested for processing
the multi-modal data produced by the simulations. Based on the results, the Velocity
Coherent (VC) and Direction Specific (DS) approaches were picked and adjusted, for
the 2D case, as the baseline models. Specifically, both approaches use one network
with one input channel to process the scalar fields (applied to each one separately).
The VC approach utilizes a network with two input channels to process the velocity
vector field whilst the DS uses two networks with one input channel, one for each
direction of the velocity. These input processing networks are comprised by four con-
volutional layers. Their output is concatenated and then passed to another CNN for
further processing. The structure ends with three fully connected layers the last of
which is performing the drag and lift regression. Besides reducing the dimensionality
to two, skip connections are also added every two layers, since it proved to increase
the performance of the networks.

Moreover, as mentioned in Section 4.2, a third approach is defined based on the
RotEgNet, proposed by Marcos et. al.[233]. In their work, they propose an architec-
ture tailored for vectorized data. This approach is utilized by using the RotEqNet as
a substitute of the velocity processing network of the VC and DS approaches. The
output of each layer is a vector field for each filter, resulting in double number of
channels compared to a plain CNN with the same number of filters. Moreover, since
the input consists of vector field feature maps, the number of trainable parameters
is given by: Fj, - F, - 2 - ¢; - ¢,, Where Fy, F, are the filter height and width respect-
ively and ¢;, ¢, the input and output number of channels. The three different input
pipelines are shown in Fig. 4.1, top. After the processing of each modality, the fea-
ture maps are concatenated and further processed by a common CNN of five layers.
Finally, three fully connected layers perform the regression. Notice that in the case of
RotEgNet the number of filters is halved. This is a consequence of the vectorization
of the activations where for each filter there are two output channels, the magnitude
and the angle of the vector.

97

Acknowledgements

‘sdew aunjeay Indur a1 Jo PIPIM pue Y319y I I8 MY A[DANDIASII SII[Y
ndino pue Indur a3 a1e I9AB[Yo 2A0qR SsIqUINU YL, "NdS~g S JO 9sed a3 uI 10 (9) ‘(q) I9YILD SI NdA UL "2InIdYdIe
a19[dwod sy, (p) A391e1s JI9NbHI0Y 91 10J Y10MmIau NJA 9Ul (9) A331e11s DA 29Ul 10J (NAA) YIOMISN 3UIssad01d I0ID9A
9UL (q) "SP[eY Ie[eds [[e IoJ paieys ‘(NdS) SP[RY Ie[eds oyl 3urssadoid YIomiau 3yl S (B) 2In3daiydie NND :T°+ 2In31

J9Ae pa1dauuo) AJin4 - UOIjRUSIRIUO) BINjead @

Buljood xep |enyeds . Buijood abeieny |eneds . 19Ae7 p|al4 10309/ juelieAlnby uoliejoy . 19Ae| |[euoi3njoAu0D .

uoJ3dadiad Jake| Z e pue NND UOWWOD B ‘U0Ijeua}edU0d aIn3edy ‘(NdA) H10MIBN Buissad01d 10309
‘(NdS) NND Buissa0.d p|ay Jejeds,g ‘syiomiau Indul 924y3 Jo BUI3ISUOD ‘91N3D8IYDIY [BIBUSD |[e43AQ (P)

NdA

f
f
f
i

CXTIS TISGXTIS ZISX8TTxMsY 871IX8C1 8CTIX8CT 8CZIXY9 79X¥9 r9Xxa

8xg 8x9 9X9 9XT

8X8 8Xy Xy vXT 9TX9T 9TX8 8X8 8X¢

(NdA) 319Nb310Y (0) (NdA) 3uaJayoD A3120j3A () (NdS) NND buissad0.d pial4 Jejeds (e)

98 Acknowledgements

4.4.2 Implementation and training details

For all strategies, the input processing networks are four layers deep and the network
applied after the feature concatenation consists of five convolutional layers. Spatial
average pooling operations are performed every two convolutional layers in the input
processing networks, whilst spatial max-pooling is performed every two convolutional
layers in the network after the feature concatenation. All convolutional kernels have
spatial dimensions 5 x 5 and are followed by batch normalization [154] and a leaky
ReLU activation function [230] where o« = 0.1. The number of nodes per layer is given
in Fig. 4.1. The prediction network consists of a max-pooling operation, followed by
three fully connected layers, with 512, 512 and 2 nodes respectively. The third fully
connected layer is tasked to predict the drag and lift forces. All networks are trained
with Adam optimizer [175], with the default parameters and a batch size of 200,
for 36K iterations. The implementation is done using Tensorflow 1.13.1 [1] and all
experiments ran on NVIDIA GTX 1080Ti graphics cards.

4.5 Dataset

The aim of this chapter is to compare the performance of deep learning based and
more traditional hand crafted feature based approaches, for mining CFD simulation
output. Due to the much larger variety of hand crafted features for 2D imagery, as well
as the high computational demand of deep learning methods on high dimensional
data, the 2D simulation domain is picked as the setting for this benchmark, since
it exhibits many of the characteristics that exist in the 3D domain, such as a large
number of modalities and a velocity vector field, that satisfy, to a certain extent, the
Navier-stokes equations.

To the best of our knowledge there is no 2D dataset that can be utilized as the
benchmark. Consequently, a new dataset is proposed. The focus is on the standard
airfoil example. In order to create a large dataset with as big variety as possible, a
similar approach to [371] (Chapter 3) is followed. First, a baseline airfoil shape (Fig.
4.2) is defined and random deformations are applied to it. Then, given intake air
from the left of the simulation domain, the air around the airfoil is simulated using
Reynolds-Average Simulator (RAS) implemented in OpenFOAM-v5 [264]. The output
of the simulation consists of the velocity vector field, the pressure field, turbulent
viscosity, and the drag and lift forces applied on the airfoil. Overall 2K shapes are
created and simulations are done for 8 different angles of attack per shape, resulting
in 16K simulations. 15K are chosen for training at random and the remaining 1K are
using as a test set.

The aim of this work is to perform data mining and pattern recognition on the flow

Acknowledgements 99

"

(a) (b)

Figure 4.2: Example airfoil shapes. (a) Baseline model. (b) Randomly deformed
shape.

fields. Thus, we want to discard any information that relates to the shape of the airfoil.
Consequently, a window behind the airfoil is cropped (see Fig. 4.3) and the flow field
in this region is extracted for further processing. The simulation is performed on an
unstructured mesh. In order to bring the data to a format that hand crafted features
and CNNs can be easily applied to, the values are interpolated on a regular grid with
resolution 192 x 128. Finally, to evaluate whether the defined methods are able to
extract meaningful information, they aim is to predict the drag and lift forces applied
on the airfoil. The dataset is publicly available on Zenodo 1.

4.6 Experiments

In order to asses whether the features are capable of encoding relevant information,
they are used to predict drag and lift force coefficients of each airfoil. We then com-
pare the predicted values with the actual simulation results and quantify the perform-
ance using the root-mean squared error (RMSE) as metric.

The first experiment aims at identifying the optimal number of clusters which are
used to construct the dictionaries. Dictionary sizes of 512, 1024 and 2048 are tested
for the SD approaches. The results are summarized in Table 4.2.

For the MD approach, the number of clusters for each modality needs to be defined.
Most of the detectors detected extremely low number of points for some of the mod-
alities, e.g. pressure, and thus large dictionary sizes are infeasible. As a result the
dictionary sizes for the two velocity directions as well as pressure are set to 32 and

Thttps://zenodo.org/record/4077323# .X4Qel3VfhhE

100 Acknowledgements

— 1.3e+01

— 10

U Magnitude

— 0.0e+00

Figure 4.3: Example simulation. The square behind the airfoil is the window used as
an example for our pipeline.

Table 4.2: Regression performance of the SD approach with varying dictionary sizes,
measured by RMSE. The best performing method per column is highlighted with
italics, and the overall best for each evaluation measure (Drag or Lift) is highlighted
with bold.

Detector Descriptor Drag (*1e-3) Lift (*1e-2)

512 1024 2048 ‘ 512 1024 2048
SURF SURF 10.17 9.37 9.57 56 559 6.02
ORB ORB 7.88 8.22 7.77 | 4.74 4.1 3.87
AGAST SIFT 8 783 7.51 | 525 472 4.88
AGAST SURF 10.06 9.89 1049 | 7.73 7.39 8.64
AGAST ORB 793 7.86 7.84 58 556 5.69
AGAST BRISK 8.67 8.42 895 | 795 742 7.32

Acknowledgements 101

Table 4.3: Regression performance of the MD approach with varying dictionary sizes,
measured by RMSE. The best performing method per column is highlighted with
italics, and the overall best for each evaluation measure (Drag or Lift) is highlighted
with bold.

Detector Descriptor Drag (*1e-3) Lift (*1e-2)
32-512 64-1024 | 32-512 64-1024
SIFT SIFT 19.55 16.59 15.16 14.11
SURF SURF 11.67 9.52 7.97 9.56
ORB ORB 8.52 8.84 4.6 4.52
AGAST SIFT 7.22 7.68 6.68 7.3
AGAST SURF 9.99 9.92 11.98 10.24
AGAST ORB 9.76 9.26 7.15 6.93

64. For the rest of the modalities dictionary sizes of 512 and 1024 are tested. The
results are given in Table 4.3.

Looking at Tables 4.2 and 4.3 one can identify a few trends. Overall, the ORB-
ORB combination produces the best performance for predicting the lift force while
being a close second on the lift prediction performance. The AGAST-SIFT combination
similarly has the highest performance in predicting drag forces and a close second on
predicting lift forces. Regarding the modality aggregation strategy, for most detector-
descriptor combinations, the SD approach outperformed the MD approach, with the
only exceptions being the AGAST-SIFT on drag prediction and the AGAST-ORB on lift
prediction.

For dense sampling we extract features in 4 different scales, i.e., {12, 16, 24, 32}
pixels. The step size for each scale is the same number of pixels as the size of the scale.
Regarding modality aggregation both approaches are evaluated, i.e., SD and MD. Due
to time limitations only the, according to our previous experiments, best performing
descriptors were used, namely ORB and SIFT. For the MD approach dictionary sizes
of {256, 512} were tested, for each modality, resulting in a 1280 and 2560 global
description sizes, respectively. For the SD approach the same dictionary sizes with the
detector approach were used. The results can be seen in Tables 4.4 and 4.5.

The results show that dense sampling outperforms the detection mechanism in
terms of global description in most cases, similar to what is found for other computer
vision tasks. This is not the case only for the ORB descriptor in the context of drag
prediction. Moreover, in contrast to the use of detectors, the MD approach performs
better than the SD approach. The dense description approach increased the quality of
the results for the SIFT by a significant margin, rendering it the highest performing

102 Acknowledgements

Table 4.4: Regression performance, measured by RMSE, of the DE-SD approach with
varying dictionary sizes and modality aggregation strategies.

Descriptor Drag (-107%) Lift (-1072)

512 1024 2048 ‘ 512 1024 2048
ORB 10.46 9.22 9.26 | 3.34 3.58 3.94
SIFT 7.03 8.08 6.59|268 311 265

Table 4.5: Regression performance, measured by RMSE, of the DE-MD approach with
varying dictionary sizes and modality aggregation strategies.

Descriptor ~ Drag (-1072) Lift (-10~2)
256 512 | 256 512

ORB 21.14 38.78 | 10.74 16.63
SIFT 6.28 9.09 | 233 287

method for both tasks. In contrast, the performance increase is not found with the
ORB descriptor, where the performance even dropped by a significant margin.

Table 4.6 shows the performance achieved by the deep learning approaches. Com-
paring Tables 4.5 and 4.6, deep learning approaches outperform hand crafted feature
approaches in all benchmarks. Particularly, all deep learning approaches perform bet-
ter than the DE-SIFT-MD, i.e., the best hand crafted feature based approach, for both
drag and lift prediction. For a more thorough comparison relevant in practice, it needs
to be stated that hand crafted feature approaches have less computational complex-
ity. The DE-SIFT-MD approach with dictionary sizes of 256 per modality takes 7.5k
seconds to extract features from the training set, cluster them and train the random

Table 4.6: Regression performance, measured by RMSE, of the deep learning ap-
proaches.

Approach Drag (-1073) Lift (-:1072)

VC 5.32 2.18
DS 5.53 2.25
RotEgNet 5.22 2.2

VC-RF 2.83 0.92

Acknowledgements 103

Table 4.7: Regression performance, measured by R?, of the three best performing
approaches. The best performing method is highlighted with bold.

Approach Drag Lift
DE-SIFT-MD 0.965 0.987
vC 0.917 0.949
VC-RF 0.981 0.994

forest on two Intel(R) Xeon(R) CPU E5-2699. At the same time the VC approach takes
around 11.1K seconds to be trained on the same machine running on an NVIDIA GTX
1080Ti. Applying these approaches to large scale CFD simulations, with 4 physical
dimensions and multiple modalities, where the data complexity is much larger, the
high computational demand of deep learning approaches might render them infeas-
ible, making the hand crafted feature based approaches an appealing alternative.

For a further comparison between the features produced by deep learning and the
hand crafted features, we extract the output of the last fully connected layer of our
best network (VC) and train a RF regressor. The result is given in the last row of Table
4.6, depicted as VC-RF. It is apparent that the use of CNNs as feature extractor and a
random forest regressor to perform the given task achieves much higher performance
than the equivalent neural network solution, or the use of hand crafted feature based
description with an RF regressor.

In order to get a more informative image of the performance of the evaluated
methods, the R? values for the three top performing methods, i.e., the DE-SIFT-MD,
the VC and the VC-RF are also calculated and shown in Table 4.7. Moreover, the sorted
absolute errors, per test example, are plotted for both lift and drag forces in Figure
4.4. There is a qualitative difference between the performance of the VC and the DE-
SIFT-MD approaches. The VC approach has much lower R? values whilst it achieves
lower RMSE. This can be explained by the two figures. Although overall the DE-SIFT-
MD approach has lower absolute errors, the error of the extreme cases become much
more severe than in the case of the VC approach. Depending on the behavior one
needs from a system, a different approach would be preferable. Finally, in both drag
and lift prediction, the VC-RF approach manages to produce much better results in
all measures tested, RMSE, R? as well as overall better absolute error curves.

One of the motivations of this work was to assess the usability of hand-crafted
features for CFD simulation output and compare them to deep learning solutions for
situations with small training datasets. In order to evaluate this, the best performing
configurations, from both deep learning and hand-crafted features are trained with

Acknowledgements

104

0.05

DE-SIFT-MD
0.04 /\nu

VC-RF
0.03 1
0.02
0.01 1
0.00 1

mmo amo mmo mmo HDWQ
@

Figure 4.4: Sorted absolute drag (a) and lift (b) regression error per test example. The Y-axis is the absolute error, whilst the

0.16 4

0.14 4

0.12 4

0.10 4

0.08 4

0.06 4

0.04 -

0.02 -

DE-SIFT-MD

VC
VC-RF

0.00 -

T
200

X-axis is the index of the test examples (after sorting based on the absolute error).

T
400

(b)

T
600

T
800

T
1000

Acknowledgements 105

Table 4.8: Drag regression performance, measured by RMSE, of the DE-SIFT-MD and
VC with varying training set sizes.

1K 2K 4K 8K 14K

VC 11.7 839 6.81 6.05 5.32
DE-SIFI-MD 21.26 19.26 14.56 12.19 6.27

Table 4.9: Lift regression performance, measured by RMSE, of the DE-SIFT-MD and
VC with varying training set sizes.

1K 2K 4K 8K 14K

VC 4 3.05 271 23 218
DE-SIFT-MD 10.3 7.36 6.16 5.19 2.33

varying training set sizes and the same validation and test sets. The training set sizes
are {1K, 2K, 4K, 8K, 14K}. The performance for drag and lift forces are shown in
Tables 4.8 and 4.9 respectively. It is apparent, that even with small training set sizes
the deep learning approaches outperform the hand-crafted features. Surprisingly, the
difference between the performances becomes larger as the training set size reduces,
showing that deep learning approaches are more capable of maintaining relatively
good performance even with small training set sizes.

4.7 Conclusion

In this chapter the performance of hand crafted features such as SIFT [226], SURF
[19] and ORB [299] is evaluated on their ability to efficiently describe CFD simulation
output. Furthermore, they are compared to a number of deep learning approaches.
CFD simulation output can be very complex and large, compared to standard com-
puter vision application examples, such as 2D and 3D imagery. Moreover, creating
these examples can even take months making the generation of enough examples for
deep learning approaches infeasible. On the other hand, a complete working pipeline
based on hand crafted features might not require as many examples, since the basic
features are predefined and not learned from the data, an assumption that was, sur-
prisingly, falsified by the experimental results. Due to the large variety of detectors
and descriptors that exist in 2D, as well as the lower computational complexity of 2D
CFD simulations compared to 3D & 4D, a dataset of 2D CFD simulations is created

106 Acknowledgements

and used as our benchmark platform.

Overall 4 detectors and 6 descriptors are tested as well as dense sampling. More-
over, two different approaches for combining different data modalities are evaluated,
namely a multiple dictionary (MD) approach and a single dictionary (SD) approach.
Their difference lies in the concatenation step. Specifically, in the SD approach we
concatenate the low level features, before the dictionary construction, whilst in the
MD approach we concatenate the information after we create the dictionaries. Ac-
cording to our experiments, for the drag and lift prediction tasks, dense sampling
combined with SIFT descriptor produces the best results of all hand crafted feature
based approaches by a large margin. Moreover, we identify a contradiction. In most
cases, the SD approach outperforms the MD approach, but with dense sampling and
SIFT features, which is the best combination tested, we see the opposite behavior.

We also implemented and tested a number of deep learning approaches. They
are adapted approaches from data mining on 3D simulation data [371] (Chapter 3).
We also combine them with the work of Marcos et al. [233], which is designed for
vector fields. Deep learning methods outperformed the hand crafted feature based
approaches in the benchmarks tested. Moreover, our experiments showed that using
the neural networks as feature extractors whilst a random forest regressor to perform
the task produces higher performance than the pure deep CNN counterpart. Compar-
ing different regression characteristics, like R? and the absolute error curves, we see a
qualitative difference between the DE-SIFT-MD and the VC approaches. The DE-SIFT-
MD produces more accurate predictions on most test instances but also gets much
higher maximum error than the VC approach. Moreover, the R? performance of the
DE-SIFT-MD is higher than that of the VC, even thought the the RMSE of VC is lower
than that of DE-SIFT-MD. Thus, depending on the requirements of an application,
different method would be preferable.

We compared the deep learning methods to the hand crafted features in terms
of efficiency. As expected, the hand crafted feature approach is more efficient as it
managed to construct the global description of all examples as well as train the RF
regressor in 67% of the time it took to train the best performing CNN.

The 2D airfoil example is considered a very important benchmark for CFD sim-
ulations. Nonetheless, it is much simpler than many industrial application CFD sim-
ulations. As such, we are able to get a much higher number of examples for this
dataset. In order to get an intuition on how these methods would generalize to the
more realistic case with much smaller datasets, we perform an experiment and train
our models on much smaller training set sizes while testing on the same test set.
Our results show that deep learning approaches are much more capable of getting a
high performance with the drop of the training set size, than the hand-crafted feature
based approaches. We speculate that the reason behind this is the necessity of a large

Acknowledgements 107

number of descriptors required to build generalizable enough dictionaries.

