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Deep learning for computational fluid
dynamics simulation output

Computational Fluid Dynamics (CFD) simulations are able to produce complex and
large outputs that accurately describe the physical properties of fluids and gases in
various domains, such as air flow around a car, or the multi-phase flow inside an in-
ternal combustion engine. The simulation results, i.e. the flow fields, are often too
complex to be analyzed directly. With the increasing number of simulations as well
as their complexity, there is a need of automated processes that can analyze these
complex outputs. In this chapter, inspired by the success of convolutional neural net-
works (CNNs) in Computer Vision, CNNs are applied for the first time on CFD output.
We show their capabilities in capturing and processing flow patterns. Furthermore, a
novel CNN architecture is designed tailored to the data produced by CFD simulations,
as well as two conventional architectures. A new dataset of turbulent flow is proposed
and constructed, within the application domain of steady flow around passenger cars.
The approaches developed are evaluated and compared on the aforementioned data-
set, on different tasks that depend on flow patterns. Finally, the CNN approaches are
compared to a baseline k-nearest neighbor approach, tuned to be comparable to the
state of the art.
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3.1 Introduction

3.1.1 Computational fluid dynamics simulations

Compared to physical experiments, CFD simulations provide a cheap way to test, ana-
lyze, and optimize complex engineering designs, such as minimizing the drag force
applied by the air on a moving object such as a car or an airplane. Such simulations
are also used in medical applications, for example simulating the flow in the arter-
ies and calculating the sheer stress can help discover potential threats to our health
[442]. These benefits and issues motivate methods that can explore all the informa-
tion given by the simulation and can help the automated optimization of engineering
systems, as well as help us understand complex phenomena around us.

Computational Fluid Dynamics (CFD) simulations produce very complex and in-
formation rich outputs. They usually produce results on 3D or 4D (3D + time) space
with many physical properties per point (pressure, velocity, turbulent kinetic energy,
etc.). Such outputs are difficult to analyze directly in detail and to interpret and derive
conclusions from [105]. In order to analyze these results, data reduction and feature
extraction methods that extract specific properties of the flow and present them in a
visually understandable way need to be employed [97]. With these methods an en-
gineer can look only at specific features and properties at a time making it difficult
to analyze the information as a whole. Moreover, this method of analyzing simula-
tion outputs requires a lot of manual labor per simulation. Thus there is a need for
an automated way to extract information from, and analyze, CFD simulation outputs
that is capable of exploiting all the information available.

This chapter focuses on investigating the potential of deep learning, and more
specifically convolutional neural networks (CNNs), on learning patterns of the flow
fields by taking into account all given information (the velocity field, pressure field,
turbulent kinetic energy and turbulent viscosity). Moreover, the network’s ability to
provide a lower dimensional yet discriminative representation is evaluated. The state
of the art representation of flow fields is the Vector Field Topology (VFT) introduced
by Helman and Hesselink [130]. This method suffers from interpolation errors and is
not always able to capture all information [405]. More specifically, VFT, as the name
suggests, focuses on vector fields and as a result only processes the velocity field while
it completely neglects other information available. Moreover, the features used for this
representation are hand crafted. This is especially problematic since it is a very hard
task to define general features which can be applied to many different application
domains without limiting the detectable physical features or loosing discriminative
ability.
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3.1.2 Convolutional neural networks

In recent years, deep learning approaches have outperformed the hand-crafted ap-
proaches by a large margin in a variety of computer vision tasks like image classi-
fication [184], semantic segmentation [224], 3D object detection [240] and many
more (see Section 2.5). They have demonstrated to successfully capture semantic in-
formation and exploit complex patterns, without being limited by the imagination of
the scientist that designs them. This constitutes a major advantage of deep learning
over hand-crafted features, which are also exploited in the domain of fluid flows in
Chapter 4. However, they are limited by the complexity and diversity of the examples
they have been trained on [280].

A key component of the success of these methods is the availability of large scale,
fully annotated and diverse image and video labeled datasets, like ImageNet [302].
The application of deep learning techniques to fluid flows is a little more problem-
atic as compared to image or video datasets. Realistic CFD simulations which try to
simulate viscous effects and turbulence need hours or even days to compute on high
performance compute clusters. Additionally, there exists a multitude of configuration
options such as design parameters specifying the geometry, the spacial and temporal
grid on which the flow is going to be solved, the number of solver iterations to con-
verge the flow field and many more. Thus producing a large and diverse dataset on
which a deep learning approach might be trained is a very long process that requires a
lot of resources, both computing infrastructure and human labor. Such complex CFD
simulations also have the tendency to sometimes not converge at all. This introduces
either the need to supervise each simulation during dataset creation in order to detect
failed simulations, or if they are not detected, the dataset will contain a considerable
amount of noise, i.e., unconverged and thus unrealistic flow fields. Moreover, such
CFD simulations produce large and high dimensional results usually composed of
millions of grid points, making each data example very big in size and thus difficult to
use in a deep learning approach, which relies on GPU memory for their computations.

Such problems seem to make the direct application of deep learning approaches to
CFD output data almost impossible. In this chapter we try to tackle these problems by
using a partially automated way to create and simulate new designs, which enforces
convergence with as little supervision as possible. Tasks for the CNN are designed,
that should force the CNN to identify patterns of the flow field while learning to
complete multiple tasks to a given accuracy. Each data sample to be processed is
build up from many points in space (3D), where the velocity vector and three scalar
fields (pressure, turbulent kinetic energy, and turbulent viscosity) are associated with
each point. In order to avoid even larger resource demand, we are simulating viscous
but incompressible flow where the density is assumed to be constant. The extension
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to compressible flow or more general flows, like multi-phase flow, is conceptually
straight forward, as the additional fields just need to be added as input variables. A
number of CNN architectures are designed, tailored and optimized for this kind of
data and we evaluate their strengths and weaknesses. Since it is not trivial to find
tasks that will depend on any possible patterns that might appear, a supervised CNN
trained on them will learn to recognize only the patterns specific to the given task.
In order to force the CNNs to learn a more general representation they are forced
to learn more than one task at the same time while also trying to reconstruct the
input. We compare our results with a k-nearest neighbor approach, using optimum
conditions, in order to make it competitive.

The rest of this chapter is structured as following: In Section 3.2 the related work
in the field of flow field feature extraction and convolutional neural networks is out-
lined, Section 3.3 describes the dataset constructed as well as the tasks defined with
it. In Section 3.4 the proposed methods are described and in Section 3.5 the experi-
ments are shown. Finally, the conclusions from the experiments are drawn in Section
3.6.

3.2 Related work

3.2.1 Flow field pattern recognition

The analysis of steady flows has been researched for many years. Many interesting
and useful features of steady flow fields exist, even though they are not always very
well defined. There are two categories of features for steady flow fields, local and
global features. Local features are features that have specific local behavior of the
flow and they mostly can be mathematically defined precisely. Some examples of
local features are the critical points of a vector field [130]. These features are used
by Vector Field Topology (VFT) in order to produce a visually comprehensible repres-
entation of the flow, as introduced by Helman and Hesselink [130]. There are many
algorithms that try to extract them, all having their limitations and advantages. Global
features usually do not have a single definition and the algorithms extracting them
need a lot of manual processing and fine tuning in order to produce a desired res-
ult [275]. For example, such features are vortices, shock waves, and flow separation.
A good overview of flow field feature extraction and visualization can be found in
[275, 196, 405].

Although the above mentioned methods deal with the same data as we do they
have some core differences. VFT only takes into account the vector fields, which in
fluid flows means the velocity and completely neglects the rest of the data. The major-
ity of global flow features can not be automatically extracted in a reliable way, since
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they require manual tuning for each application and data example. As such they are
inefficient for a large scale automated machine learning approach, which is the target
of this work.

3.2.2 Convolutional neural networks for CFD simulation output

Previous approaches have applied CNNs to the CFD simulation domain. In those stud-
ies, the target was to either speed up the simulation itself or predict the simulation
output from the input design. This is in contrast to the current approach, where we
try to learn from the simulation output. For example, [108] tries to predict the out-
put of Lattice Boltzmann Method Simulation of laminar flow, which is much faster to
compute and much simpler than the currently used turbulent viscous flow. [218] use
neural networks to predict the Reynolds stress anisotropy tensor in order to get a more
accurate approximation in less time, leading to more accurate and faster simulations.

To the best of our knowledge this is the first work that tries to apply CNNs on the
output of simulations.

3.3 Dataset collection

In order for a network to be able to learn flow patterns, a big and diverse dataset is
needed. Moreover there is a need of tasks that depend on flow patterns so a network
can be forced to learn general flow features in order to solve the task.

3.3.1 Example creation

One of the contributions of this work is the creation of a large dataset of turbulent
flow fields within the application domain of steady flow around passenger cars. In
order for CNNs to be trained a diverse and big dataset is needed. Given the complex-
ity and time needed to calculate such simulations this process is not trivial. Starting
from a set of given car shapes, an automatized shape deformation setup is employed,
which utilized free form deformations [243, 333] to generate variations of the starting
shapes. The computational CFD grid is then created for each deformed shape in a way
which adjusts itself to the specific geometry, in order to have a sufficient resolution
where necessary while keeping the grid coarse where complexity is not needed. This
is achieved by using the snappyHexMesh meshing tool from the OpenFOAM package
[264]. The flow field is obtained by running the simpleFoam solver where the bound-
ary conditions are specified by a constant inflow velocity magnitude 44.5 coming
from the front with a very small angle.
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Original Shape Example deformation 1

Figure 3.1: Example deformations of a passenger car, for four different deformation

scales.

For this first study two base models for passenger cars are used. The deformed
shapes are obtained by defining a number of control points on the car surface which
are moved randomly, stretching the shape as they move. In order to avoid very sharp
edges on the deformed shape the deformations are smoothed out where neighboring
control points can not have arbitrary large distance. Example deformations for four
different deformation scales are shown in Figure 3.1.

Each simulation provides many different attributes of the flow in every location of
the mesh used to calculate it. These are the velocity (3 components) Ui ), turbulent
viscosity (v;), turbulent kinetic energy (k) and pressure (p). For every simulation
some metrics are also calculated from the flow, more specifically the forces and torque
applied to the passengers car due to pressure difference as well as due to friction.

Each base car is deformed with eight different deformation scales. For each scale
1,024 random deformations are performed, resulting in 16,384 examples. Even though
our pipeline is designed to increase the chances of the simulation to converge, some
shapes are still deformed in a way that the simulation could not converge. These
examples are discarded, resulting in 14,238 usable examples. These are split into
training and test sets. The split is done randomly, by picking 498 examples for the
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test set. The remaining ones constitute the training set.

Most of the simulation domain contains almost uniform air flow, which is not
interesting for this application. Thus a box behind the car is cropped where most
of the flow patterns appear. The cropping procedure is done in a randomized way
and each crop is used as a separate example enlarging the dataset even further. The
flow field is calculated on a mesh of irregular tetrahedrals. In order to make them
optimal for being input to CNNs, the flow is interpolated on a fixed uniform grid. We
tried three different grid scales, namely 96x64x32, 192x128x64 and 384x256x128
voxels. Due to the process and memory limitations of currently available GPUs, the
only feasible resolution is 96x64x32. Regarding the flow physics, this constitutes a
very coarse representation of the flow field where most of the small scale details have
been averaged out. However, the large scale structures are still preserved and due to
the nature of fluid flow, where strong correlations exist between large and small scale
structures, we hope to be able to capture relevant flow features. Additionally, in the
future with increasing computational power much finer resolutions might be possible.
The velocity field is mapped on three channels, one for each direction (%, y, z), and
the scalar fields take one channel each, resulting in six channels overall.

3.3.2 Training tasks

Convolutional neural networks have demonstrated high capacity of learning semantic-
ally meaningful representations in many computer vision tasks. One of the key com-
ponents needed to achieve that is the availability of large and diverse datasets, ac-
companied with tasks that depend on these semantics, which steer the training of the
networks. In order to exploit the capabilities of CNNs in identifying meaningful pat-
terns in flow fields, without knowing in advance which these are, tasks that depend
on the properties of the flow are needed for having an efficient training procedure.
For the networks described in this chapter we considered three tasks, namely force
regression, flow prediction and flow reconstruction.

3.3.2.1 Force regression

Calculating the forces which act on a geometry due to the flow is a pretty straight
forward task and easily computable from the flow around that geometry. Nonethe-
less, when considering a flow of a specific direction, the patterns that appear after the
geometry in the direction of the flow are an indication of the forces that are applied
on the geometry. For example, at the back of a very tall car there would be big vor-
tices which increase the drag force on the car. On the contrary, if the car is short these
vortices would be much smaller and possibly not even there. Additionally, areas of
reversed flow behind the car also crucially depend on the exact car shape and create



76 Acknowledgements

more patterns that also reflect the forces acting on the car. This relationship of down-
stream patterns of the flow and the forces on the shape is exploited in order to force
the network to identify relevant flow features. The network is only presented the flow
behind the car and it should learn to predict the forces as well as the torque acting on
the car.

3.3.2.2 Flow prediction

As it is well known from fluid dynamics, the patterns of a flow are interdependent.
The flow field at a specific point is in causal relation to a large part of the flow field
at distant locations, possibly even the whole flow volume (details of this depend on
the general flow conditions, see for example [60]). In an attempt to also exploit this
dependence of patterns of the flow we introduce the flow prediction task. Namely,
given a part of the flow, the network is asked to predict the downstream flow.

3.3.2.3 Reconstruction

Encoding and decoding data in order to extract features is a well known practice
in the computer vision community. Usual methods include deep auto-encoders or
Boltzmann machines [110]. In this work we also try to exploit the power of these
methods. In order to force the representation to be discriminative and meaningful,
the reconstruction is done in parallel with the other two tasks.

3.4 Network architecture and training details

3.4.1 General network architecture

Most of the existing work with applying CNNs on three dimensional data can be
divided into two main groups [280]: (i) Applying 3D convolutions [419, 240] and
(ii) projecting the input to one or multiple 2D representations and using of-the-shelf
state of the art networks pre-trained on ImageNet [353, 327]. To the best of our
knowledge (see Chapter 2), taking 2D projections outperforms the 3D convolution in
object classification and recognition tasks [280]. There are three main reasons for this
finding. First, the 3D representation of the objects does not take full advantage of the
extra dimension. Since the objects in 3D are usually represented by a occupancy grid
the only information given is whether a voxel belongs to the object or not. Secondly,
the 2D projections can take advantage of very deep networks trained on the very big
ImageNet dataset. A comparably large dataset is not available for 3D data. Thirdly,
the 2D projections of objects are very closely related to images of objects which is the
content of ImageNet and making use of networks trained on it is ideal for 3D objects.
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The examples in this case are very rich in 3D information, since all values change
in all three directions with various gradients. Taking 2D projections or slices would
largely decrease the information content of the network input. On top of that, al-
though we would be able to use state of the art very deep architectures, the data
would have very different structures and statistics as compared to images from ob-
jects. This would render most of a 2D network layers irrelevant since they are trained
to the task of recognizing objects. For the above reasons a 3D approach is followed
rather than a 2D projections. Nonetheless, this is just an assumption and thus it needs
to be verified with experiments.

As mentioned in Section 3.3.1, the input data has six channels: three from the
vector field ((7) and the remaining three from the pressure field (p), turbulent kinetic
energy (k) and turbulent viscosity (v;). These constitute different modalities for the
data. The goal of this work is to design a system which is able to analyze a flow field
without disregarding any information. Thus, all channels are used as an input. For
images it is common practice for a network to process all channels with the same
feature maps. Due to the curse of dimensionality, when scaling to three dimensional
problems, it becomes very restrictive in the size of networks that can be trained, both
in terms of memory and computational complexity. A solution to this problem applied
in many methods that solve tasks with high dimensional input is to split the input and
feed each channel to a separate network and finally fuse the models to make the final
prediction. This strategy is followed in order to be able to construct deeper networks.
We consider three different schemes of splitting the input.

One option for organizing the inputs is to consider each of the six channels separ-
ately. However, this results in a very high number of free parameters for the network
to be trained. In order to reduce the number of parameters, the following approach
seems reasonable. Since three of the channels contain scalar fields (pressure, turbu-
lent viscosity, turbulent kinetic energy) we expect similar low level features for them
such as edges and ridges. In an attempt to take advantage of that, one option is to
processes all three scalar fields with the same network which has only one input chan-
nel, i.e., the networks processing the scalar fields share the same weights. In contrast
to that, the three channels of the velocity field are expected to show a different type
of interdependency than the scalar fields since they constitute a coherent vector field.
We envisage that processing these channels together can be beneficial and thus we
consider another option which processes the velocity with one network which has
three input channels.

The above described options facilitate four different schemes for organizing the
input from which the following three are considered for further experiments: The
baseline network is defined with sharing weights networks for processing the scalar
fields and one network with three input channels for processing the velocity field. We
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Table 3.1: Number of feature maps per layer for different schemes, as well as the
”Common layers” of the five and six layer networks. (/2) denotes a max-pooling layer
after the denoted layer. "Common layers” refers to the part of the network after the
fusion of the feature maps (see Figure 3.3).

Scalar Layer 1  Scalar Layer 2 (/2) Vector Layer 1 Vector Layer 2 (/2)

FMS 16*3 32*%3 64 128
DS 16 32 21%3 42*3
ve 16 32 64 128
ver 16 32 21 42
Common Layers Layer 3 Layer 4 (/2) Layer 5 Layer 6
All above 128 128 64 -
Ve 128 128 64 (/2) 64

refer to this network as Velocity Coherent (VC). The second network differs from the
baseline VC network by using three independent networks for processing the scalar
fields, one for each scalar field, while it still retains one network with three input
channels for processing the velocity field. We refer to this network as Full Modality
Specific network (FMS). Finally, the third network differs from the VC on how it
processes the velocity field, for which it utilizes three separate networks, one for each
direction of the velocity (but still has sharing weights networks for processing the
scalar fields). This network is referred to as Direction Specific (DS) network. These
three networks are visualized in Figure 3.2.

In all convolutional layers, the kernel is of size 3x3x3. Each layer is followed by
batch normalization [154] and the ReLU activation function.

Independent of which scheme is used, the rest of the architecture follows the same
principles. After a few convolutional and pooling layers, the resulting feature maps are
fused together by concatenating them. The fused representation is further processed
by more convolutional and pooling layers. The depth on which the fusion happens
is a parameter to be experimented with. Overall, two different network depths are
tested in the encoding stage which have either five or six layers. Finally, the resulting
feature representation is passed to different output networks which perform one of
the tasks defined above.

As an example, the work flow for the VC network is shown in Figure 3.3. The
number of feature maps of the five and six layer networks as well as each different
scheme are shown in Table 3.1.
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Figure 3.3: General Architecture of the velocity coherent (VC) Network. The network takes as an input the Velocity field (0),
turbulent kinetic energy (k), pressure (p) and turbulent viscosity (). It performs three tasks simultaneously namely, input
reconstruction, flow prediction and force regression.
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3.4.2 Prediction networks

The output networks take as input the encoded representation (flow features) and
are trained to perform one specific task. The force regression task is performed by
a three layer multi-layer perceptron (MLP) network that has six outputs, three force
components and three torque components. The last layer is not passed through an
activation function, but the output is forced to be the actual prediction. The flow pre-
diction and reconstruction networks consist of convolutional and up-sampling layers.
The reconstruction network is mirroring the encoding network in terms of number
of feature maps per layer, but it does not split into multiple networks as happens in
the input. The flow prediction network consists of five convolutional layers. The up-
sampling layers are setup to give the output the desired shape. Since the values that
the flow prediction and reconstruction networks are predicting are in the range [-1,
1], the activation function of their last layer is set to the hyperbolic tangent.

3.4.3 Activation functions

As activation functions several different options are considered: ReLU, ReLU with
batch normalization [154], ELU [53] and PReLU [126] activation functions. In total
five different setups are tried: (i) all layers have ReLU activations, (ii) half the layers
have ReLU and the other half ReL.U with batch normalization, (iii) all layers use ReLU
with batch normalization, (iv) all layers use ELU activation functions and (v) all layers
use PReLU activation functions.

Unfortunately our implementation of the PReLU activation function was too me-
mory intensive which, in combination with the high dimensionality of the data, was
impossible to train. For the rest of the activation functions we used tensorflow’s native
implementations. The networks using the ELU activation function where not able to
converge. In most cases the activations diverged resulting in NaN loss values after
approximately half the training steps. Thus the only activation schemes for which
training finished successfully are the ReLU, referred to as No Batch Normalization
(NBN), ReLU with batch normalization, referred to as Batch Normalization (BN) and
half the layers batch normalized (HBN).

3.4.4 Training details

As mentioned in Section 3.3.1 each separate data sample is a 3D volume of 96x64x32
voxels with six channels in each voxel. In order to introduce translation invariance,
the common practice is followed where random crops are extracted from the volume
and considered as the separate example. When training on the force regression task,
the size of each random crop is 80x56x32. When training on the flow prediction the
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Figure 3.4: Input and ground truth crops for the flow prediction task. The white box
is the initial example, the black box is the input and the red is the ground truth.

dimensions of the input crop are 24x56x32, while adjacent 12x56x32 downstream
voxels are taken as the output ground truth, as seen in Figure 3.4. An example slice
of the input as well as the prediction and the ground truth can be seen in Figure 3.5.
The input of the reconstruction task depends on the auxiliary task. In case that both
flow prediction and force regression tasks are used, both possible crops (24x56x32
and 80x56x32) are used.

When considering the larger crops used for force regression training or reconstruc-
tion, the batch size is set to 4. When the small crop is used as input, the batch size
is set to 16. The weight decay of the layers is set to 10~*. We are training using the
Adam optimizer [175], with learning rate 1074, 5; = 0.9, 82 = 0.999 and e = 10~5.
In all cases we train for a total of 5 - 10° iterations.

For all training tasks the L, distance between the predictions and the ground
truth is used as the error function with the addition of the weight decay. In the case of
the force regression that is calculated over the forces and torque that the network is
predicting while on the flow prediction and reconstruction tasks it is calculated over
all voxels and channels.

3.4.5 Multi task training

In the current approach of learning 3D flow field features we are faced with the
problem, that the size of the dataset is not sufficient for training a deep convolutional
network from scratch. When dealing with such tasks for which there are not enough
data to properly train a neural network, it is common practice to use networks pre-
trained on larger and more diverse data of the same type (i.e., for an image task



83

Acknowledgements

"9A1IB33U ST 9N[q pue 2ANISOd ST pal
9IURIDJIP 019Z ST AMYAA *(UOLDIPald SNUIW YINIL, PUNOIH) SIS Yana punoid indino a3 pue uondipaid mofy sy usamiaq
9DUSISJIP Y3 SMOYS MOI 1SB[ AU [, A[oAndadsal ina) punoid pue Indino y10m31au 931 woj 321[s a[durexs ue piryl pue puodas
o1 Isiym Indur Yiomiau oY) wogy NI o[dwexs ue smoys molx doi oy ], ysel uondipaid mofj jo 921s sjdwexy :G'¢ 2In3ig

ot 0z 0 ot 0z 0 o 0z 0 ov (14 0 ov (14 0 ot 0z 0
og

0z

abew| aduaiaylg
ot

8

0z
YIniL punoig
T

0

uondIpaId

ndu|




84 Acknowledgements

one would use a network pre-trained on the Imagenet dataset). When a network is
trained on a small dataset and on one task, the features learned during its training are
tailored for this specific task and more importantly, there is a big chance of overfitting
the data. In such a case, most of the layers, if not all, will learn only the patterns
important for the specific task which might not capture all interesting information of
the input and are not so easily transferable to new tasks and examples. In an attempt
to force the networks to learn a more general, yet discriminative, representation we
try to train the core CNN on multiple tasks at the same time.

Networks are trained simultaneously on all three tasks we have defined. In one
step, the network processes two examples, or mini batches, one which is passed to
the flow prediction part and one which is passed to the force prediction part. Both
examples are also passed to the reconstruction part. The individual errors, together
with the weight decay factor are added to the final global error, as shown in equation
3.1,

Eglobal = L2,force regr. + L2,flow pred. + L2,recon,1 + L2,Tecon.2 + wd 3 (31)

where Lo denotes the Euclidean distance between the network predictions and
the ground truth.

During training, the gradients are computed on the global error and we maintain
all parameters of the individual task training, i.e., the batch size for the flow predic-
tion examples is 16, for force regression the batch size is four, etc.

3.5 Experiments

We conducted several numerical experiments and evaluated the results based on the
mean absolute error (MAE) between predictions and ground truth. In case of flow
prediction and reconstruction the numbers presented are the average over all possible
examples (all possible crops of all test set examples), all voxels and all channels. In
the case of force prediction, our evaluation measurement is calculated as an averaged
relative MAE,

>, |prediction; ; — GT |

1
E er formance — ; 3.2
"o perf 6N z]: max(GT;) — min(GT)) (3.2)

where i denotes a test example and j a predicted value. prediction, ; and GT; ;
are the prediction value and ground truth of the network for example i and predicted
value j, respectively. maz(GT';) and min(GT;) are the maximum and minimum pos-
sible values of the jth target value over all test examples. The above formula first
calculates the MAE for all test examples for each target value j. It is then transformed
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Table 3.2: Comparison of different activation function schemes in flow prediction task
and force regression tasks. The left column shows the performance error on force
regression using equation 3.2 whilst the right column shows the results on the flow
prediction task using the MAE.

Force Regression Error  Flow Prediction Error

VC_NBN 0.02689 0.00661
VC_HBN 0.03642 0.00446
VC_BN 0.03667 0.00347

to relative MAE by dividing with the range of possible values and finally averaged
over all six predicted values.

All our experiments are done on modern Nvidia GPUs, namely the Geforce GTX
980 Ti and Geforce Titan X (Maxwell). Our network implementations are done using
Google’s Tensorflow framework [1], with the Python interface.

3.5.1 Activation functions

As mentioned in Section 3.4.3, several activation functions were tested of which only
ReLU, referred to as No Batch Normalization (NBN), ReLU with batch normalization,
referred to as Batch Normalization (BN) and half the layers batch normalized (HBN)
produced useful results.

In order to compare them properly, all other parameters of the networks remain
the same for all schemes. In particular, the encoder part of the network follows the V'C
scheme and has five layers overall, two of which are before fusion and the last three
after fusion. The flow prediction and force regression networks are the ones defined in
Section 3.4.2. The HBN network uses batch normalization layers during the encoding
part whilst simple ReLU in their prediction parts. The results are summarized in Table
3.2,

The results show different trends as to which architecture is beneficial for flow pre-
diction as compared to force regression. Batch normalization seems to hurt the force
prediction performance of the networks. This is to be expected, since the forces that
are predicted are not normalized. Batch normalization is normalizing the activations
to [-1,1]. Thus when predicting the forces the scaling of the results is solely handled
by the last few layers in cases of HBN and BN. The performance variation from force
regression to flow prediction between the VC_NBN and VC_HBN architectures is much
larger than for VC_BN architecture. This suggests that the VC_BN architecture is more
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Table 3.3: Comparison of different schemes for handling the input on flow prediction
and force regression tasks. The left column shows the performance on force regression
using equation 3.2 whilst the right shows the results of flow prediction task using the
MAE.

Force Regression Flow Prediction

vC 0.03667 0.00347
DS 0.03959 0.00342
Ve 0.03859 0.00348
FMS 0.03715 0.00359
Ve 0.03863 0.00495

robust with respect to the specific task and we therefore conclude that quality of the
network using batch normalization layers is higher than the simple ReLUs. Thus, for
the rest of the experiments only BN networks are used.

3.5.2 Input handling schemes

In Section 3.4.1 three schemes were defined (FMS, DS and VC) for handling the
peculiar input data. We trained three networks which only differed by input layers
prior to the fusion of feature maps. In all other respects the networks are the same.
Two kinds of comparison are performed, one that keeps the number of feature maps
similar and one that keeps the number of trainable variables similar.

In our experiments the input networks to be analyzed are two layers deep. The
number of feature maps per layer in those networks are shown in Table 3.1.

The DS and VC networks have approximately the same number of feature maps.
The VC* network is defined using the same principles with the V'C but with fewer
feature maps (Table 3.1), in order to keep the number of trainable parameters similar
to the DS network. We also tried to increase the number of layers with the V C**
network. It is the same as the V'C network, in all respects, except that it has an extra
max-pooling and a convolutional layer with 64 feature maps before the prediction
networks. Table 3.3 summarizes the performances of the various networks.

The FFM S scheme has rather low performance on flow prediction and force re-
gression, strengthening the assumption that the scalar fields have similar low level
features. Thus, using different networks for each field does not provide much more
information while it increases the overall complexity as well as the number of train-
able variables. On the other hand, the DS scheme shows better performance than
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Table 3.4: Comparison of different training processes with reconstruction. The first
two columns show the results for the force regression and flow prediction tasks. The
two right most columns show the results of reconstruction using the MAE, for small
(24x56x32) and big (80x56x32) crops. For comparative purposes the performance of
the V'C network trained on a single task is also shown.

luation Task  Force Regression Flow Prediction Reconstruction

Input resolution

. 80x56x32 24x56x32 24x56x32  80x56x32
Training tasks
Flow - Reconstruction - 0.005799 0.00288 0.00428
Force - Reconstruction 0.15595 - 0.10367 0.06845
All tasks 0.043197 0.01624 0.0090997  0.01079
Single task 0.03642 0.00347 - -

the VC network at the flow prediction task, whilst the performance is lower for the
force prediction task. The same behavior is seen when DS is compared to the VC*
network.

The VC** has the lowest performance on both tasks, which leads us to the con-
clusion that increasing the number of layers hurts the performance of the networks
(VC** compared to V(). More experimentation is needed in order to properly eval-
uate the performance of the networks with increasing depth which is left for future
work.

3.5.3 Reconstruction

Three training processes are applied for input reconstruction. In the first two, the
network is trained on two tasks at the same time, namely reconstruction and flow
prediction or force regression, respectively. In the third the network is trained on all
three tasks at the same time. For all experiments the VC' network is used. When
training on two tasks (flow and reconstruction or force and reconstruction) only one
input size is used, defined by the prediction task. For better comparison the trained
networks are evaluated on both input sizes. When training on all tasks, the network
is trained on both input sizes at the same time. During training the total error is com-
puted by adding the errors of the individual tasks. In the case where the network is
trained on all three tasks, the overall error is given by equation 3.1. The performance
of the trained networks is shown in Table 3.4.

In terms of reconstruction, the best results are achieved when training on recon-
struction and flow prediction. Since the network is only trained on the small input
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Table 3.5: Number of feature maps per layer for the late fusion network (V Cjase).

Scalar Layers Vector Layers Common Layers

Layer 1 16 64 -

Layer 2 (/2) 32 128 -

Layer 3 32 128 -

Layer 4 (/2) 16 64 -
Common Layer (#¥5) - - 64

crops, when reconstructing the big input crops the performance drops significantly
(the error is doubled). Still it is much better than any other tested training process.
Training on force regression and reconstruction produced the worst results. Training
on all tasks also performs worse than the flow - reconstruction training. An interesting
observation is that it still produces better results on force regression than the force -
reconstruction training.

3.5.4 Fusion stage

The next experiment evaluates how the performance of the network is effected by
the stage of the fusion. With that goal in mind a new network is defined, V Cj,;. with
the same principles as the V' C network. The new network fuses the activation maps
of the separate input handling networks after 4 convolutional layers and 2 pooling
layers, and only has one convolutional layer after the fusion, as shown in Table 3.5.

The performance of the network on the force regression and the flow prediction
tasks is summarized in Table 3.6. In both cases the V(4. network performs worse
than the VC network. As with the total depth of the networks, more experimentation
is needed to properly evaluate the effect of the fusion stage on the quality of the
networks and is left for future work.

3.5.5 Comparison to a k-NN regressor

As mentioned in Section 3.2.1, the state of the art in flow field feature extraction
and representation is VFT. Since VFT is meant for flow field visualization, it is not
trivial to directly compare the methods for machine learning applications, since a
method which uses VFT of performing the tasks still has to be developed. In order
to have a good comparison we perform the force regression task using simple k-NN
regression. The motivation behind it lies in the distance measurement. In literature
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Table 3.6: Comparison of VC and V.. networks on flow prediction and force
regression tasks. The left column shows the performance on force regression using
equation 3.2 whilst the right shows the results of flow prediction task using the MAE.

Force Regression Flow Prediction

vC 0.03667 0.00347
VCiate 0.04035 0.00366

there are a couple of ways to define flow field similarity [105, 66]. A naive way to
measure the similarity between flow fields is the L, distance. In the general case this
will produce very low quality comparison between flow fields since it is sensitive to
any translation and rotation. Nonetheless, given that the flow fields are aligned, the
L4 distance will not diverge much from other similarity, or distance, measurements.
In this case aligning the flow fields is a very easy task given the pipeline used to create
them. By always using a crop in the same position relative to the car, we ensure that
the flow fields are aligned. Moreover, for each comparison we move one of the fields
over the other and measure their distance for every position. The smallest number is
taken as the final distance. Given all these restrictions we consider the L, distance
a good approximation of the actual distance of the flows. Using this distance we
perform a k-NN regression with three different values of k.
From Table 3.7 it can be seen that the

VC method produces significantly bet- Table 3.7: Comparison of k-NN method
ter results than the £-NN method, with with VC network on force regression task.
less than half total error. It should be
noted that the networks are trained over

crops in random positions, relative to Method | Force Regression
the car, whilst the k-NN method only 1— NN 0.08655
considers a crop at the same position, 2NN 0.080499
resulting in no flexibility. 4— NN 0.082705
ve 0.03667

3.6 Conclusion

Motivated by the large amount of data
produced by CFD simulations, the need
for a machine learning pipeline capable of processing these amounts of data, and
the success of CNN in computer vision, we proposed several CNN strategies designed
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to handle the output of CFD simulations. We performed a qualitative comparison
between the networks and compared them to a k-NN approach. The experiments
showed the capabilities of the approach proposed, which outperformed the afore-
mentioned method and generally produced very promising results.

The networks were successfully trained to solve prediction tasks, such as pre-
dicting the forces and torque applied on a car, or the prediction of the flow field
downstream of the training volume. Additionally, the networks were capable of re-
constructing the input flow field in the training volume. A key aspect of the proposed
approach is that a network is trained simultaneously on different tasks thereby learn-
ing general features of flow fields which are independent of a specific task.

Moreover, a novel dataset was established accompanied with three tasks, as a
benchmarking platform for machine learning on steady flow fluids.

This chapter constitutes a first important step in the direction of large scale ma-
chine learning on CFD simulation output, which can be beneficial for several engin-
eering applications, meteorology or even for the medical domain.



