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Introduction

1.1 Background

Computer vision is a very broad field with numerous applications in scientific, med-
ical and ”everyday life” domains. Human understanding of the world through visual
queues extends to three as well as four dimensions, e.g. understanding an action
such as falling, hugging etc. In recent years people have been generating and con-
suming a plethora of multimedia content which has higher dimensionality than the
classic two dimensional image, i.e. three and four dimensions. This usage has given
rise to many exciting and important applications, such as autonomous vehicles and
automated medical 3D & 4D image analysis. These applications both have potentially
high impact in our society, but also introduce complex challenges, making the process
of such high dimensional data the leading edge of modern computer vision.

In the meantime, the increasing computational capacity of modern hardware, has
led to an unprecedented capability of simulating complex fluid dynamics systems,
i.e. computational fluid dynamics (CFD) simulations, such as the air around objects,
the mix and tumble of air and gas in an internal combustion engine et cetera. These
simulations can produce an enormous amount of data, in multiple dimensions, e.g. 4,
and many modalities, i.e. a plethora of information for every physical location. The
increasing availability of such data has given rise to new applications. For example,
is it possible to retrieve engineering designs from a large database based on the flow
similarities? Is it possible to utilize these large flow fields to automatically optimize
the designs? Such applications might help engineers and scientists understand better
the correlation of design principles to the flow and the flow patterns to performance.

For the purpose of machine learning and more specifically computer vision, CFD
simulation output shares many similarities to visual data. They both represent the real
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world in a similar manner. The physical (2-4D) space is separated by a grid, and each
individual cell is assigned values representing the real world. In the case of images,
these values are the RGB colors, for depth images they are (usually) the distance
to the sensor and in the case of CFD simulation output properties of the flow, such
as the velocity vector, pressure etc. This similarity between the representation of the
data deems possible the adaptation of computer vision techniques to processing CFD
simulation output, as it is a much more mature research field.

1.1.1 Feature extraction of CFD simulation output

There exist a plethora of feature extraction methods for flow fields, the vast majority
of which are focused on visualization. Good overviews of the flow field feature visu-
alization are [83, 229, 293, 360, 273, 390]. The steps towards feature visualization
can be divided into feature definition, decomposition, extraction and visualization.
All of these steps can be categorized into two main categories, steady and unsteady
(i.e. time dependent) flow field. According to our research, most of unsteady flow
feature visualization focuses on tracking steady flow features in time. There are a
few exceptions to this rule, such as the path lines, which are specific unsteady flow
features.

There are two main categories of steady flow features, local and global features.
Local features have specific local behavior and are mathematically defined. Although
this is the case, there are many algorithms that try to extract them, all with their lim-
itations and advantages. These features are defined around points in the flow where
the flow “vanishes”, i.e. the magnitude of the vectors of the vector field becomes zero.
These features can be categorized according to the behavior of the flow around the
“vanishing” point. The categorization was introduced by Helman and Hesselink in
1989 for 2D [155] and 1991 for 3D [156]. The field of extracting and visualizing
these features was created in the same work and called Vector Field Topology (VFT).
VFT is now one of the most established ways of visualizing and analyzing flow field
behavior.

Global features, unlike local usually have vague definitions and their detection de-
pends on the specific implementation and application. Some examples are the vortex,
flow separation and shock waves. For example, a vortex refers to the swirling motion
of a fluid around a specific point [229]. An example definition of the vortex is given
by Robinson [294]:

‘A vortex exists when instantaneous streamlines mapped onto a plane normal to the
vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference
frame moving with the center of the vortex core.”
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This swirling motion is understood through visual observations and is hard to be
mathematically defined. For example how much ”swirliness” is enough to categorize
a vortex? How are the boundaries of the vortex defined? These issues make the de-
tection of such features difficult and the implementation usually varies according to
the needs of the application.

The limitations described above make the use of flow visualization defined flow
field features very hard to use for the purpose of machine learning, where the known
algorithms need specific definitions to operate.

1.1.2 Computer vision

Computer vision has been pushing the limits of automated image understanding for
decades. The main focus of it is to extract high-level information from visual content
such as images, with applications varying from image classification [184] and object
detection [100], to scene understanding [334], localization and mapping [351, 352]
and many more. Throughout the years, the approaches followed by computer vis-
ion researchers have changed significantly. Popular approaches have been global fea-
tures and description of images such as textures, and color histograms [357, 120].
These features were very computationally efficient which was very attractive for the
computational capacity of hardware at that time. As years progressed though, these
approaches showed their limits as they are very sensitive to occlusion and clutter.
Moreover, local information such as object shapes are disregarded making the dis-
tinction between similar objects (e.g. red car vs red motorbike) infeasible.

To deal with such issues, local features are introduced. These approaches follow
several steps. First detection of more informative points and regions in an image,
then description of such areas and finally feature matching, or aggregation for global
description. Some popular examples of local features are the SIFT [225, 226], SURF
[19], FREAK [7] and the ORB [299]. These features encode local information, such
as histograms of image gradients in a neighborhood, or pixel differences for different
point patterns in a neighborhood. These features have enabled applications such as
object or scene matching, using algorithms such as the RANSAC. Meanwhile, using
feature aggregation to create image global descriptions has enabled applications such
as image classification, and content based image retrieval [341].

In recent years the focus has moved to artificial neural networks (ANN) and more
specifically deep learning and convolutional neural networks (CNN). Deep learn-
ing models boosted the performance of computer vision systems by a large margin
[184, 368]. The modern availability of large scale datasets as well as the high com-
putational capabilities of modern GPUs has rendered the training of huge models
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feasible. Deep learning models are hierarchical models that, in contrast to the more
traditional local features description, learn representations solely from the data that
they are trained on. Very important stepping stones, that made the success of these
models possible is early research done on optimization algorithms, such as the gradi-
ent descent and back-propagation [301, 202]. The back-propagation algorithm en-
ables the propagation of error from one layer to the next (or previous, hence “back”)
in hierarchical models and thus updating the parameters of these layers. Later, the
introduction of convolutional layers made possible the reusability of parameters, min-
imizing the total number of free parameters and thus making that training of huge
models possible [199, 201]. Today, deep neural networks are the most popular ap-
proach for high performance tasks, varying from object classification [445], image
retrieval [74], scene semantic segmentation [111] and even generating new content
like style transfer approaches [221] and swapping faces [181].

With the increase of available higher dimensional content, such as video [340],
RGB-D images [344] and CAD models [419], the need to extract high-semantical
information from them became prevalent. As we will see in Chapter 2, the same
trends with the approaches applied on two dimensional images, are followed on the
higher dimensions.

The vast amount of research done in extracting high level information from a data
source so similar to CFD simulation output motivates us to explore the adaptation of
the core ideas to the high dimensionality of CFD simulation output.

1.2 Research questions

In this thesis we focus on high dimensional computer vision (i.e. higher than the two
dimensional image), and more specifically on extracting meaningful features from
CFD simulations output. To achieve our goal, we focus on the following research
questions:

RQ1: How are computer vision approaches being generalized to deal with
higher dimensionality problems?

Computer vision methodologies are not applied only on the traditional two dimen-
sional image. A lot of research areas and applications concentrate on higher than two
dimensional data, such as video processing or RGB-D images. These areas can may
seem to be disconnected from areas focusing on two dimensional data. We want to
investigate, to what extent methodologies are extended from the two dimensional
case to the higher dimensions, as well as common practices and pitfalls these higher
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dimensionality methodologies share.

RQ2: Can deep learning techniques represent flow fields, in a meaningful man-
ner?

Deep learning techniques are the focus of modern computer vision. As the dimension-
ality of the datasets increases, the complexity of the patterns needed to be identified
is increasing as well. From our previous research question we already got a glimpse
of how deep learning approaches are able to handle the increase of the number of
dimensions. Nonetheless, the output of CFD simulations has one of the highest di-
mensionalities we have seen so far. Our question then becomes, how can we best
apply deep learning approaches in such complicated data towards maximizing per-
formance?

RQ3: Can local feature based approaches represent flow fields in a meaning-
ful way?

Deep learning approaches, although very powerful, require a vast amount of data
to be trained on. Most hand crafted local feature based approaches though were pro-
posed and evolved before the modern huge datasets were available. One of the main
differences to deep learning is that the low level features, or encodings are not learned
from the data as with deep learning, but are predefined by scientists. Thus, in the-
ory, one only requires enough data to learn high level correlations. Meanwhile, CFD
simulation complexity can vary. As the simulation complexity increases, the amount
of time required to produce the simulation output increases as well. In some applic-
ations, like the flow in a cylinder of a internal combustion engine, it can even take
a month to compute on high core count clusters. Thus, acquiring many examples of
such high complexity simulations to train deep neural networks is infeasible. There-
fore, we want to investigate whether the, more traditional, hand crafted features are
capable of representing the flow fields in a meaningful manner and how they compare
to deep learning approaches, especially when the number of training data is limited.

RQ4: Can we take advantage of the vector field representation to construct a
more efficient convolutional operator?

A large part of the CFD simulation output is the velocity vector field. Convolutional
neural networks perform scalar convolutions regardless of the input. Can we take
advantage of the fact that the input to the convolution is a vector field? What extra
information can be extracted? Can we utilize any extra information in a deep learning
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framework?

RQS5: How can we better regularize deep neural networks, to reduce overfit-
ting and increase the convergence speed?

There is a variety of limiting factors on the performance of artificial neural networks.
Many of them are related to optimization inefficiencies. Some examples are the cov-
ariant shift, the exploding and vanishing gradients as well as the scaling-based weight
space symmetry. All existing approaches have their limitations. Usually, while trying
to solve an issue we are introducing another. For example, by applying orthogonal-
ization, the learning capacity of each layer is limited. Therefore we are interested
in investigating whether we can efficiently regularize the weight learning such that
performance is maximized.

1.3 Dissertation outline

This dissertation is structured according to the research questions defined in Section
1.2. In Chapter 2 a wide literature study is conducted on how high dimensional data
is used in computer vision. Moreover, the approaches are clustered according to (i)
the data they are applied to, (ii) whether they are deep learning approaches or tra-
ditional hand crafted feature based approaches and (iii) what kind of increase of
dimensionality they are tackling, i.e. increase of physical dimensions or increase of
amount of information per physical point. Finally, we identify the most popular data-
sets and benchmarks concentrating on higher than two dimensional data and describe
the most studied research areas and discuss the respective state of the art approaches.

In Chapter 3 we construct a large scale 3D CFD simulation dataset, which focuses
on the air flow around a passenger car. Using this dataset as a benchmark, a num-
ber of deep learning approaches, tailored to the specific high dimensional data are
proposed and evaluated, tackling RQ2. Chapter 4 then tackles RQ3, evaluating hand
crafted based approaches and comparing them to deep learning approaches. Since
in computer vision there is a much larger variety and more generic two dimensional
feature detectors and descriptors, whilst two dimensional data require less computa-
tional time, we decided to first evaluate using two dimensional data and potentially
move to three. Thus, we constructed another dataset which consists of 2D flows of air
around an airfoil.

In Chapter 5 we investigate whether its possible to take advantage of vector field
representation to gain more information than the response of scalar convolution.
We define a new operator that takes advantage of the vector field representation
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and show that its applicable to more standard computer vision problems as well. In
Chapter 6 we proposed a new weight regularization method that tackles some of the
issues mentioned in RQ5 and test it on popular benchmarks and architectures. Finally,
in Chapter 7 the conclusions of this dissertation are presented and potential future
directions discussed.

1.4 Dissertation contributions

The main contributions of the author of this dissertation are the following:

Theodoros Georgiou, Yu Liu, Wei Chen, and Michael Lew. A survey of traditional
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2019

Theodoros Georgiou, Sebastian Schmitt, Markus Olhofer, Yu Liu, Thomas Béck, and
Michael Lew. Learning fluid flows. In International Joint Conference on Neural Net-
works (IJCNN), pages 1-8. IEEE, 2018

Theodoros Georgiou, Sebastian Schmitt, Nan Pu, Wei Chen, Thomas Béck, and Mi-
chael Lew. Comparison of deep learning and hand crafted features for mining simula-
tion data. In Proceedings of the International Conference on Pattern Recognition (ICPR).
IEEE

Theodoros Georgiou, Sebastian Schmitt, Thomas Back, and Michael Lew. Orient-
ational equivariant neural networks using clifford convolutions
(Submitted for publication at Neurocomputing, Elsevier)
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