
Multi-dimensional feature and data mining
Georgiou, T.

Citation
Georgiou, T. (2021, September 29). Multi-dimensional feature and data
mining. Retrieved from https://hdl.handle.net/1887/3214119

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3214119

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3214119

Multi-dimensional feature and data mining

Theodoros Georgiou

Cover Design: Andreas Noussas

Copyright ©by 2021 Theodoros Georgiou. All rights reserved.

ISBN: 978-90-9035132-2

The research leading to this thesis was funded by the the research program DAMIOSO
(Data Mining on High Volume Simulation Output) with project number 628.006.002,
which is partly financed by the Netherlands Organization for Scientific Research (NWO)
and partly by Honda Research Institute-Europe (GmbH).

Multi-dimensional Feature and
Data Mining

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof. dr. ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op woensdag 29 september 2021

klokke 13.45

door

Theodoros Georgiou

geboren te Athene, Griekenland
in 1989

Promotiecommissie

Promotors: Prof. dr. T.H.W. Bäck
Prof. dr. M.S.K. Lew

Overige leden: Prof. dr. B. Sendhoff Technical University Darmstadt
Prof. dr. Z. Zhang Binghamton University
Prof. dr. A. Plaat
Prof. dr. K.J. Batenburg
Prof. dr. ir. N. Mentens
Dr. M. Baratchi

Acknowledgements

I started my doctoral journey in 2016 at Leiden University. During that time I have
been blessed with wonderful colleagues and supervisors that have helped me both
professionally and personally.

I want to start by thanking my promotors. They have helped me from the begin-
ning until the end, by giving me the opportunity to pursue my PhD and guided me in
the steps of scientific research.

I want to thank my fellow students in the Natural Computing group, the Media Lab
as well as other colleagues from the university with which we had many constructive
discussions both regarding our work as well as personal matters. I hope we will con-
tinue to collaborate and support each other in the future.

I want to thank all the people, at the Honda Research institute - Europe for their
support and advice. I want to give special thanks to Sebastian Schmitt and Markus
Olhofer fore their time and valuable discussions.

Special thanks to Andreas Noussas for his great work with my cover and Jan van
Rijn for his help with the Dutch translation of the summary.

I want to thank all of my friends for their support during this time without whom
I might have not gone through this journey.

ii Acknowledgements

I also want to give special thanks to Orla Rodgers for her help and support during
the last stretch, essential for the completion of this thesis.

Finally, I want to give my gratitude to my family. Their support, not only these years
but throughout my life, put me in the position to be able and both start and finish this
chapter of my life. Without you I wouldn’t have come this far.

Contents

Acknowledgements i

1 Introduction 1
1.1 Background . 1

1.1.1 Feature extraction of CFD simulation output 2
1.1.2 Computer vision . 3

1.2 Research questions . 4
1.3 Dissertation outline . 6
1.4 Dissertation contributions . 7
1.5 Other work by the author . 7

2 Deep learning and traditional approaches for high dimensional data 9
2.1 Introduction . 10
2.2 Deep learning . 11

2.2.1 Basic deep learning methods 12
2.2.2 Deep learning for high dimensional data 20

2.3 Traditional methods . 23
2.3.1 Object surface features . 24
2.3.2 Volume features . 29
2.3.3 Spatio-temporal features . 31

2.4 Datasets and benchmarks . 38
2.4.1 Object understanding . 39
2.4.2 Scene understanding . 40

iv Acknowledgements

2.4.3 Video understanding . 43

2.4.4 Other datasets . 46

2.5 Research areas . 47

2.5.1 Object classification and recognition 47

2.5.2 Semantic segmentation . 50

2.5.3 Object detection . 53

2.5.4 Human action classification . 57

2.5.5 Other areas . 62

2.6 Discussion . 64

2.6.1 Major challenges . 65

2.6.2 Future work . 66

2.7 Conclusions . 66

3 Deep learning for computational fluid dynamics simulation output 69

3.1 Introduction . 70

3.1.1 Computational fluid dynamics simulations 70

3.1.2 Convolutional neural networks 71

3.2 Related work . 72

3.2.1 Flow field pattern recognition 72

3.2.2 Convolutional neural networks for CFD simulation output . . . 73

3.3 Dataset collection . 73

3.3.1 Example creation . 73

3.3.2 Training tasks . 75

3.4 Network architecture and training details 76

3.4.1 General network architecture 76

3.4.2 Prediction networks . 81

3.4.3 Activation functions . 81

3.4.4 Training details . 81

3.4.5 Multi task training . 82

3.5 Experiments . 84

3.5.1 Activation functions . 85

3.5.2 Input handling schemes . 86

3.5.3 Reconstruction . 87

3.5.4 Fusion stage . 88

3.5.5 Comparison to a k-NN regressor 88

3.6 Conclusion . 89

Acknowledgements v

4 Comparing deep learning and hand crafted features for simulation data 91
4.1 Introduction . 92
4.2 Related work . 93
4.3 Hand crafted features . 94
4.4 Deep learning approaches . 96

4.4.1 Methodology . 96
4.4.2 Implementation and training details 98

4.5 Dataset . 98
4.6 Experiments . 99
4.7 Conclusion . 105

5 Clifford convolution inspired orientation equivariant CNNs 109
5.1 Introduction . 110
5.2 Related work . 111
5.3 Clifford convolutions and calculation of rotation angles 112
5.4 Layer construction . 113

5.4.1 Forward pass computations . 113
5.4.2 Back propagation . 115

5.5 Experiments . 117
5.5.1 Datasets and ground truth . 117
5.5.2 Networks . 118
5.5.3 MNIST-rot . 119
5.5.4 Enriched MNIST-rot . 121
5.5.5 Vehicle Orientation . 124
5.5.6 Computational complexity . 126

5.6 Conclusion and future work . 127

6 Norm Loss: Regularizing artificial neural networks 129
6.1 Introduction . 130
6.2 Related work . 131
6.3 Preliminaries . 133
6.4 Proposed method . 134

6.4.1 Connection to weight decay . 135
6.4.2 Computational cost . 136

6.5 Experiments . 136
6.5.1 Regularization factor . 137
6.5.2 Batch size . 138
6.5.3 CIFAR-10 . 139
6.5.4 CIFAR-100 . 141
6.5.5 ImageNet . 142

vi Acknowledgements

6.6 Conclusions . 143

7 Conclusions 145
7.1 Conclusions . 145
7.2 Limitations . 146
7.3 Future work . 148

APPENDICIES 149
A Clifford Convolution gradients calculations 149
B Table of abbreviations . 154

Bibliography 161

Summary 205

Samenvatting 207

About the author 209

1
Introduction

1.1 Background

Computer vision is a very broad field with numerous applications in scientific, med-
ical and ”everyday life” domains. Human understanding of the world through visual
queues extends to three as well as four dimensions, e.g. understanding an action
such as falling, hugging etc. In recent years people have been generating and con-
suming a plethora of multimedia content which has higher dimensionality than the
classic two dimensional image, i.e. three and four dimensions. This usage has given
rise to many exciting and important applications, such as autonomous vehicles and
automated medical 3D & 4D image analysis. These applications both have potentially
high impact in our society, but also introduce complex challenges, making the process
of such high dimensional data the leading edge of modern computer vision.

In the meantime, the increasing computational capacity of modern hardware, has
led to an unprecedented capability of simulating complex fluid dynamics systems,
i.e. computational fluid dynamics (CFD) simulations, such as the air around objects,
the mix and tumble of air and gas in an internal combustion engine et cetera. These
simulations can produce an enormous amount of data, in multiple dimensions, e.g. 4,
and many modalities, i.e. a plethora of information for every physical location. The
increasing availability of such data has given rise to new applications. For example,
is it possible to retrieve engineering designs from a large database based on the flow
similarities? Is it possible to utilize these large flow fields to automatically optimize
the designs? Such applications might help engineers and scientists understand better
the correlation of design principles to the flow and the flow patterns to performance.

For the purpose of machine learning and more specifically computer vision, CFD
simulation output shares many similarities to visual data. They both represent the real

2 Acknowledgements

world in a similar manner. The physical (2-4D) space is separated by a grid, and each
individual cell is assigned values representing the real world. In the case of images,
these values are the RGB colors, for depth images they are (usually) the distance
to the sensor and in the case of CFD simulation output properties of the flow, such
as the velocity vector, pressure etc. This similarity between the representation of the
data deems possible the adaptation of computer vision techniques to processing CFD
simulation output, as it is a much more mature research field.

1.1.1 Feature extraction of CFD simulation output

There exist a plethora of feature extraction methods for flow fields, the vast majority
of which are focused on visualization. Good overviews of the flow field feature visu-
alization are [83, 229, 293, 360, 273, 390]. The steps towards feature visualization
can be divided into feature definition, decomposition, extraction and visualization.
All of these steps can be categorized into two main categories, steady and unsteady
(i.e. time dependent) flow field. According to our research, most of unsteady flow
feature visualization focuses on tracking steady flow features in time. There are a
few exceptions to this rule, such as the path lines, which are specific unsteady flow
features.

There are two main categories of steady flow features, local and global features.
Local features have specific local behavior and are mathematically defined. Although
this is the case, there are many algorithms that try to extract them, all with their lim-
itations and advantages. These features are defined around points in the flow where
the flow “vanishes”, i.e. the magnitude of the vectors of the vector field becomes zero.
These features can be categorized according to the behavior of the flow around the
“vanishing” point. The categorization was introduced by Helman and Hesselink in
1989 for 2D [155] and 1991 for 3D [156]. The field of extracting and visualizing
these features was created in the same work and called Vector Field Topology (VFT).
VFT is now one of the most established ways of visualizing and analyzing flow field
behavior.

Global features, unlike local usually have vague definitions and their detection de-
pends on the specific implementation and application. Some examples are the vortex,
flow separation and shock waves. For example, a vortex refers to the swirling motion
of a fluid around a specific point [229]. An example definition of the vortex is given
by Robinson [294]:

“A vortex exists when instantaneous streamlines mapped onto a plane normal to the
vortex core exhibit a roughly circular or spiral pattern, when viewed from a reference
frame moving with the center of the vortex core.”

Acknowledgements 3

This swirling motion is understood through visual observations and is hard to be
mathematically defined. For example how much ”swirliness” is enough to categorize
a vortex? How are the boundaries of the vortex defined? These issues make the de-
tection of such features difficult and the implementation usually varies according to
the needs of the application.

The limitations described above make the use of flow visualization defined flow
field features very hard to use for the purpose of machine learning, where the known
algorithms need specific definitions to operate.

1.1.2 Computer vision

Computer vision has been pushing the limits of automated image understanding for
decades. The main focus of it is to extract high-level information from visual content
such as images, with applications varying from image classification [184] and object
detection [100], to scene understanding [334], localization and mapping [351, 352]
and many more. Throughout the years, the approaches followed by computer vis-
ion researchers have changed significantly. Popular approaches have been global fea-
tures and description of images such as textures, and color histograms [357, 120].
These features were very computationally efficient which was very attractive for the
computational capacity of hardware at that time. As years progressed though, these
approaches showed their limits as they are very sensitive to occlusion and clutter.
Moreover, local information such as object shapes are disregarded making the dis-
tinction between similar objects (e.g. red car vs red motorbike) infeasible.

To deal with such issues, local features are introduced. These approaches follow
several steps. First detection of more informative points and regions in an image,
then description of such areas and finally feature matching, or aggregation for global
description. Some popular examples of local features are the SIFT [225, 226], SURF
[19], FREAK [7] and the ORB [299]. These features encode local information, such
as histograms of image gradients in a neighborhood, or pixel differences for different
point patterns in a neighborhood. These features have enabled applications such as
object or scene matching, using algorithms such as the RANSAC. Meanwhile, using
feature aggregation to create image global descriptions has enabled applications such
as image classification, and content based image retrieval [341].

In recent years the focus has moved to artificial neural networks (ANN) and more
specifically deep learning and convolutional neural networks (CNN). Deep learn-
ing models boosted the performance of computer vision systems by a large margin
[184, 368]. The modern availability of large scale datasets as well as the high com-
putational capabilities of modern GPUs has rendered the training of huge models

4 Acknowledgements

feasible. Deep learning models are hierarchical models that, in contrast to the more
traditional local features description, learn representations solely from the data that
they are trained on. Very important stepping stones, that made the success of these
models possible is early research done on optimization algorithms, such as the gradi-
ent descent and back-propagation [301, 202]. The back-propagation algorithm en-
ables the propagation of error from one layer to the next (or previous, hence “back”)
in hierarchical models and thus updating the parameters of these layers. Later, the
introduction of convolutional layers made possible the reusability of parameters, min-
imizing the total number of free parameters and thus making that training of huge
models possible [199, 201]. Today, deep neural networks are the most popular ap-
proach for high performance tasks, varying from object classification [445], image
retrieval [74], scene semantic segmentation [111] and even generating new content
like style transfer approaches [221] and swapping faces [181].

With the increase of available higher dimensional content, such as video [340],
RGB-D images [344] and CAD models [419], the need to extract high-semantical
information from them became prevalent. As we will see in Chapter 2, the same
trends with the approaches applied on two dimensional images, are followed on the
higher dimensions.

The vast amount of research done in extracting high level information from a data
source so similar to CFD simulation output motivates us to explore the adaptation of
the core ideas to the high dimensionality of CFD simulation output.

1.2 Research questions

In this thesis we focus on high dimensional computer vision (i.e. higher than the two
dimensional image), and more specifically on extracting meaningful features from
CFD simulations output. To achieve our goal, we focus on the following research
questions:

RQ1: How are computer vision approaches being generalized to deal with
higher dimensionality problems?

Computer vision methodologies are not applied only on the traditional two dimen-
sional image. A lot of research areas and applications concentrate on higher than two
dimensional data, such as video processing or RGB-D images. These areas can may
seem to be disconnected from areas focusing on two dimensional data. We want to
investigate, to what extent methodologies are extended from the two dimensional
case to the higher dimensions, as well as common practices and pitfalls these higher

Acknowledgements 5

dimensionality methodologies share.

RQ2: Can deep learning techniques represent flow fields, in a meaningful man-
ner?

Deep learning techniques are the focus of modern computer vision. As the dimension-
ality of the datasets increases, the complexity of the patterns needed to be identified
is increasing as well. From our previous research question we already got a glimpse
of how deep learning approaches are able to handle the increase of the number of
dimensions. Nonetheless, the output of CFD simulations has one of the highest di-
mensionalities we have seen so far. Our question then becomes, how can we best
apply deep learning approaches in such complicated data towards maximizing per-
formance?

RQ3: Can local feature based approaches represent flow fields in a meaning-
ful way?

Deep learning approaches, although very powerful, require a vast amount of data
to be trained on. Most hand crafted local feature based approaches though were pro-
posed and evolved before the modern huge datasets were available. One of the main
differences to deep learning is that the low level features, or encodings are not learned
from the data as with deep learning, but are predefined by scientists. Thus, in the-
ory, one only requires enough data to learn high level correlations. Meanwhile, CFD
simulation complexity can vary. As the simulation complexity increases, the amount
of time required to produce the simulation output increases as well. In some applic-
ations, like the flow in a cylinder of a internal combustion engine, it can even take
a month to compute on high core count clusters. Thus, acquiring many examples of
such high complexity simulations to train deep neural networks is infeasible. There-
fore, we want to investigate whether the, more traditional, hand crafted features are
capable of representing the flow fields in a meaningful manner and how they compare
to deep learning approaches, especially when the number of training data is limited.

RQ4: Can we take advantage of the vector field representation to construct a
more efficient convolutional operator?

A large part of the CFD simulation output is the velocity vector field. Convolutional
neural networks perform scalar convolutions regardless of the input. Can we take
advantage of the fact that the input to the convolution is a vector field? What extra
information can be extracted? Can we utilize any extra information in a deep learning

6 Acknowledgements

framework?

RQ5: How can we better regularize deep neural networks, to reduce overfit-
ting and increase the convergence speed?

There is a variety of limiting factors on the performance of artificial neural networks.
Many of them are related to optimization inefficiencies. Some examples are the cov-
ariant shift, the exploding and vanishing gradients as well as the scaling-based weight
space symmetry. All existing approaches have their limitations. Usually, while trying
to solve an issue we are introducing another. For example, by applying orthogonal-
ization, the learning capacity of each layer is limited. Therefore we are interested
in investigating whether we can efficiently regularize the weight learning such that
performance is maximized.

1.3 Dissertation outline

This dissertation is structured according to the research questions defined in Section
1.2. In Chapter 2 a wide literature study is conducted on how high dimensional data
is used in computer vision. Moreover, the approaches are clustered according to (i)
the data they are applied to, (ii) whether they are deep learning approaches or tra-
ditional hand crafted feature based approaches and (iii) what kind of increase of
dimensionality they are tackling, i.e. increase of physical dimensions or increase of
amount of information per physical point. Finally, we identify the most popular data-
sets and benchmarks concentrating on higher than two dimensional data and describe
the most studied research areas and discuss the respective state of the art approaches.

In Chapter 3 we construct a large scale 3D CFD simulation dataset, which focuses
on the air flow around a passenger car. Using this dataset as a benchmark, a num-
ber of deep learning approaches, tailored to the specific high dimensional data are
proposed and evaluated, tackling RQ2. Chapter 4 then tackles RQ3, evaluating hand
crafted based approaches and comparing them to deep learning approaches. Since
in computer vision there is a much larger variety and more generic two dimensional
feature detectors and descriptors, whilst two dimensional data require less computa-
tional time, we decided to first evaluate using two dimensional data and potentially
move to three. Thus, we constructed another dataset which consists of 2D flows of air
around an airfoil.

In Chapter 5 we investigate whether its possible to take advantage of vector field
representation to gain more information than the response of scalar convolution.
We define a new operator that takes advantage of the vector field representation

Acknowledgements 7

and show that its applicable to more standard computer vision problems as well. In
Chapter 6 we proposed a new weight regularization method that tackles some of the
issues mentioned in RQ5 and test it on popular benchmarks and architectures. Finally,
in Chapter 7 the conclusions of this dissertation are presented and potential future
directions discussed.

1.4 Dissertation contributions

The main contributions of the author of this dissertation are the following:

Theodoros Georgiou, Yu Liu, Wei Chen, and Michael Lew. A survey of traditional
and deep learning-based feature descriptors for high dimensional data in computer
vision. International Journal of Multimedia Information Retrieval (IJMIR), pages 1–36,
2019

Theodoros Georgiou, Sebastian Schmitt, Markus Olhofer, Yu Liu, Thomas Bäck, and
Michael Lew. Learning fluid flows. In International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE, 2018

Theodoros Georgiou, Sebastian Schmitt, Nan Pu, Wei Chen, Thomas Bäck, and Mi-
chael Lew. Comparison of deep learning and hand crafted features for mining simula-
tion data. In Proceedings of the International Conference on Pattern Recognition (ICPR).
IEEE

Theodoros Georgiou, Sebastian Schmitt, Thomas Bäck, and Michael Lew. Orient-
ational equivariant neural networks using clifford convolutions
(Submitted for publication at Neurocomputing, Elsevier)

Theodoros Georgiou, Sebastian Schmitt, Wei Chen, Thomas Bäck, and Michael Lew.
Norm loss: An efficient yet effective regularization method for deep neural networks.
In Proceedings of the International Conference on Pattern Recognition (ICPR). IEEE

1.5 Other work by the author

Yu Liu, Yanming Guo, Theodoros Georgiou, and Michael Lew. Fusion that matters:
convolutional fusion networks for visual recognition. Multimedia Tools and Applica-
tions, 77:1–28, 2018

8 Acknowledgements

Umut Özaydın, Theodoros Georgiou, and Michael Lew. A comparison of cnn and
classic features for image retrieval. In International Conference on Content-Based Mul-
timedia Indexing (CBMI), pages 1–4, 2019

Yanming Guo, Yu Liu, Theodoros Georgiou, and Michael Lew. A review of semantic
segmentation using deep neural networks. International Journal of Multimedia In-
formation Retrieval (IJMIR), 7:87–93, 2018

Nan Pu, Theodoros Georgiou, Erwin M Bakker, and Michael Lew. Learning a domain-
invariant embedding for unsupervised person re-identification. In International Joint
Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019

2
Deep learning and traditional

approaches for high dimensional data

Higher dimensional data such as video and 3D are the leading edge of multimedia
retrieval and computer vision research. In this chapter, a comprehensive overview of
the state of the art of higher dimensional features from deep learning and also tra-
ditional approaches is given. Moreover, key insights into current research areas and
challenges that arise are discussed. Current approaches are frequently using 3D in-
formation from the sensor or are using 3D in modeling and understanding the 3D
world. With the growth of prevalent application areas such as 3D games, self-driving
automobiles, health monitoring and sports activity training, a wide variety of new
sensors have allowed researchers to develop feature description models beyond 2D.
Although higher dimensional data enhance the performance of methods on numerous
tasks, they can also introduce new challenges and problems. The higher dimension-
ality of the data often leads to more complicated structures which present additional
problems in both extracting meaningful content and in adapting it for current ma-
chine learning algorithms. Due to the major importance of the evaluation process, we
also present an overview of the current datasets and benchmarks. Finally, we make
remarks on potential future directions, some of which are tackled in this thesis.

10 Acknowledgements

2.1 Introduction

With the current growth of computing systems and technologies, three and four di-
mensional data, such as 3D images and videos, are becoming a commodity in multi-
media systems. Understanding and utilizing this data is the leading edge of modern
computer vision. In this chapter we present a comprehensive study (including a cat-
egorization) of these high dimensional data types, as well as the methods developed
to process them, accompanied with their strengths and weaknesses. Finally, we collect
and give an overview of the main areas that utilize such representations.

One of the first steps towards developing, testing and applying methods on high
dimensional data is the acquisition of complicated datasets, for instance datasets con-
sisting of 3D models [419, 45], three dimensional medical images and videos (MRI,
Ultrasound etc.) [54, 143], large 2D and 3D video datasets for action recognition
[235, 324] and more. Different datasets are used for different data mining tasks. For
example, object retrieval, movie retrieval and action classification tasks are performed
on video data such as movies, YouTube clips et cetera. Clustering and classification
tasks are performed on medical images for computer aided diagnostics and surgery.
Object classification and detection, as well as scene semantic segmentation are usu-
ally applied on RGB-D images and videos retrieved by sensors such as the Microsoft
Kinect [444].

We perform two types of categorization. The first is dataset and application driven
and the second is method driven. Although these datasets find applications in differ-
ent fields there are some similarities between the methods used. For example, deep
learning techniques are used for 2.5D and 3D object classification (either retrieved
from depth maps or designed models), action classification, video retrieval as well
as medical applications, for instance landmark detection and tracing in ultrasound
video. Histograms of different metrics (e.g. gradients, optical flow or surface nor-
mals) are used as features that describe the content of the data.

One of the recent breakthroughs has been the development of new deep learning
architectures which could overcome (to some extent) the well known vanishing gradi-
ent problem in training. In the case of neural networks, they changed the landscape
from typically using a few layers to using hundreds of layers. These methods typically
learn the features based on large datasets directly from the raw data and have the
least supervision. The other main approach from the literature is the continuation
of advances in traditional or ”hand crafted” and ”shallow learning” based features.
Features extracted from 2D optical information, e.g. natural images, in computer vis-
ion have had a major impact in computer vision and human-computer interaction
across many applications [247, 225, 19, 373, 322, 299, 7, 447] and many of the
higher dimensional methods were inspired or adapted from the 2D versions. These

Acknowledgements 11

approaches usually require significantly more supervision but also can be effective
when large training datasets are not accessible.

High dimensional computer vision, with the definition given in this thesis (i.e.
higher than 2D), is a very broad field that contains many different research areas,
data types and methods. There have been surveys on specific areas within high di-
mensional computer vision. For example, when it comes to the static world, some
of surveys focus on specific research areas such as 3D object detection [112, 306],
semantic segmentation [111, 432, 96], object retrieval [79, 362] or Human Action
Recognition [274, 168, 132]. Others focus on methodologies such as interest point
detectors and descriptors [36, 378, 195], spatio-temporal salient point detectors and
descriptors [210] or deep learning [152]. Finally some surveys focus on datasets and
benchmarks of a specific research area, such as human action recognition [124]. This
chapter differs from these since the focus is on the generalization of methodologies
with the increase of dimensionality, regardless of the research area or the type of data.
The most relevant work to this was done by Ioannidou et al. [152] where they focus
on computer vision on static 3D data. There are two main differences with this work,
(i) they focus only on deep learning methods and (ii) they focus only on 3D repres-
entation of the static world which means that they neglect the temporal dimension,
which is a significant focus of this chapter.

2.2 Deep learning

Deep learning techniques refer to a cluster of machine learning methods that con-
struct a multi-layered representation of the input data. The transformation of the
data in each layer is typically trained through algorithms similar to back-propagation.
There are several deep learning methods. In this section we will give a summary of
the methods that have been used with high dimensional data. The main examples are
the Convolutional Neural Networks (CNNs), the Recurrent Neural Networks (RNNs),
Auto-Encoders (AE) and Restricted Boltzmann Machines (RBMs). For a detailed over-
view of deep learning in computer vision the reader is referred to [110] and for a
general deep learning overview to [102].

Deep learning approaches can be split into two main categories, supervised and
unsupervised methods. Supervised methods define an error function which depends
on the task the method needs to solve and change the model parameters according to
that error function. These kind of methods provide an end-to-end learning scheme,
meaning that the model is learning to perform the task from the raw data. Unsuper-
vised methods usually define an error function to be minimized which depends on the
reconstruction ability of the model. Together with the reconstruction error, depend-

12 Acknowledgements

ing on the method, an auxiliary error function might be defined which forces some
characteristics to the learned representation. For example sparse auto-encoders try to
force the learned representation to be sparse, which helps the overall learning pro-
cedure and provides a more discriminative representation. The most commonly used
deep learning method is Convolutional Neural Networks (CNNs). In the rest of this
section we give a brief introduction to the basic deep learning methods and provide
an in depth analysis on their generalization from the image domain to the higher
dimensional domains.

2.2.1 Basic deep learning methods

2.2.1.1 Convolutional neural networks (CNN)

Convolutional Neural Networks (CNNs) consist of multiple layers of convolutions,
pooling layers and activation functions. Usually each layer will have a number of dif-
ferent convolutional kernels, a non-linear activation function and, maybe, a pooling
mechanism to lower the dimensionality of the output data. An example of such a layer
is shown in Figure 2.1. These networks were initially applied on handwritten digit re-
cognition [199] but got the attention they have today after the introduction of LeNet
[200] and more so after Krizhevsky et al.’s [184] work in 2012, where they won the
ImageNet 2012 image classification competition with a deep-CNN. This recent suc-
cess of CNNs highly depends on the increased processing power of modern GPUs as
well as the availability of large scale and diverse datasets which made training models
with millions of trainable parameters possible.

One of the main drawbacks of deep convolutional neural networks is that they
tend to overfit the data. Moreover, they suffer from vanishing and exploding gradi-
ents. Resolving these issues have motivated a lot of research in various directions.
More specifically, different elements of CNNs are studied and proposed, e.g. activation
functions or normalization layers, training strategies and the generic network archi-
tecture, for example the inception networks [358]. Most of this research is based on
image recognition as the established benchmark due to the availability of large scale
annotated datasets such as the ImageNet [302] and the Microsoft COCO [217]. Non-
etheless, many of these methods have been generalized and adapted to be applicable
to 2.5D and 3D data, such as videos, and RGB-D images.

2.2.1.1.1 Activation functions. One of the main components of the successful
AlexNet [184] on the ImageNet 2012 challenge is the Rectified Linear Unit [159, 253]
activation function. The output of the function is max (0, y), where y is the output of
a node in the network. The main advantages of this layer is the sparsity it provides to

Acknowledgements 13

Input

Image

Kernel

Output

feature map

Max Pooling

Operation

Convolution Activation

Function

Activated

feature map

Pooled

feature map

Figure 2.1: Basic CNN block. A single layer is shown which applies a kernel on an
input filter followed by an activation function and a max-pooling operation.

the output as well as reduction of the vanishing gradients problem, compared to the
more traditional hyperbolic tan and the sigmoid functions [101].

In the past years, many researchers have proposed new activation functions in
order to improve the quality of neural networks. Some examples are the leaky ReLU
(LReLU) [230], which instead of having always zero as output of negative inputs has a
small response proportional to the input, i.e. α∗y, the Parametric Rectified Linear Unit
(PReLU) [126], which learns the parameter α of LReLU, the Exponential Linear Unit
(ELU) [53] and its trainable counterpart Parametric ELU (PELU) [381], and many
more [5, 103, 163, 176]. For a more detailed overview of activation functions the
reader is referred to [381].

2.2.1.1.2 Normalization. Experimental results suggest that when networks have
normalized inputs, with zero mean and standard deviation of one, they tend to con-
verge much faster [184]. In order to take advantage of this finding it is a common
practice to rescale and normalize the input images [184, 338, 146]. Besides the input
normalization, many researchers try to also normalize the input of individual layers,

14 Acknowledgements

C
o
n
v
+

B
N

+
R

e
L
U

C C C C

C

x Out

Res Block

: Convolution : Convolution followed by batch normalization and ReLU activation

: Element wise addition : Feature map concatenation

C
o
n
v
.
la

y
e
r

C
o
n
v
.
la

y
e
r

Conv. layer

x

ReLU
Out

ReLU

:Input :Output

Dense Block

C
o
n
v
+

B
N

+
R

e
L
U

C
o
n
v
+

B
N

+
R

e
L
U

C
o
n
v
+

B
N

+
R

e
L
U

x
Out

Conv+BN+ReLU

Figure 2.2: On the left is the ResBlock, the building block of ResNet [127]. After
two convolution operations the input is added to the output in order to produce the
residual learning function H(x) = F (x) + x. On the right is the building block of
Dense Net [146]. The layer l gets as an input the output of all layers [l − 4, l − 1].

in order to alleviate the covariate shift affect [331]. The traditional method of ac-
tivation normalization is the Local Response Normalization [159, 184]. The most es-
tablished work though is the later batch normalization technique [153]. In this work
the output of each layer is rescaled and centered according to the batch-statistics of
activations. The success of this method gave rise to more research in this direction
like [12, 382, 311, 418, 394, 150]. For a detailed overview and comparison of these
methods the reader is referred to [287, 418, 394].

2.2.1.1.3 Network structure. In an attempt to increase their performance, a large
group of works have also explored different architectures of the internal structure of
CNNs. After the work of Krizhevsky et al. [184], researchers tried to understand how
different parameters effected the quality of the networks. Here we will give a small
overview of the main milestone works since then.

One of the first important works was the one of Simonyan and Zisserman [338]
who proposed the VGG nets. In their work they showed that with small convolutional
kernels (3x3), deeper networks could be trained. They introduced 11, 13, 16 and
19 weighted layered networks. One main constraint on the possible depth of neural
networks is the vanishing gradients problem. In an attempt to alleviate this issue,
HighWay networks [349] and residual networks (ResNet) [127] make use of “skip”
or “shortcut” connections in order to pass information from one layer to one or several
layers ahead (Figure 2.2). Huang et al. [146] generalized this idea even further, with

Acknowledgements 15

their DenseNet, by giving as input to the l-th layer all previous l − 1 layers. The
building blocks of ResNet, Res Block, and DenseNet, Dense Block, are shown in Figure
2.2.

Besides skip connections, which helped deeper networks to be trained, different
methods to increase the quality of networks have also been studied. Lin et al. [216]
proposed the Network in Network (NiN) architecture. In their work they substituted
the linear convolutional nodes with small Multi-Layer Perceptrons (MLP), giving to
the network the ability to learn non linear mappings in a layer. Lee et al. [203] pro-
posed the Deeply Supervised Nets (DSN) which use secondary supervision signals
directly to hidden layers of the network. Liu et al. [222] explore a different approach,
where the final decision, either classification or any other task, is made not only by the
information in the last layer but also from deeper layers. They do so with their Con-
volutional Fusion Network (CFN), in which Locally Connected (LC) layers are used
to fuse lower level information from deeper layers with the high level information of
the top layer and make a more informative decision.

2.2.1.2 Recurrent neural networks (RNN)

Recurrent neural networks are a special class of artificial neural networks. A basic
RNN module is composed by a feed forward node computing a “hidden state”, a
recurrent connection, which connects the hidden unit to the next time step input, and
an output unit, as seen in Figure 2.3 . This recurrent connection gives the network the
ability to make predictions not only according to the current input but also historic
inputs that comprise a sequence of data.

xt Outt

U V

W

ht

xt: Input Outt: Output ht: hidden state

U,V,W: Weighted connections

Figure 2.3: Basic module of an RNN pro-
cessing time step t.

Although this architecture was suc-
cessful, in problems with a large number
of time steps it could no longer main-
tain high performance. That happens
due to the vanishing gradient problem in
back propagation through time (BPTT),
a most widely used training procedure
of RNN. In order to counter these limita-
tions a new architecture, the long short-
term memory node (LSTM), was pro-
posed by Hochreiter and Schmidhuber
[141]. It contains several gates that con-
trol the flow of information and allow
the network to store long term information, if needed. Such an architecture has been
used for many tasks that deal with sequential data, such as language modeling [439]

16 Acknowledgements

and translation [228], action classification in videos [70], speech synthesis [84] and
more.

Inspired from the success of the LSTM method, researchers proposed many vari-
ations. Some are generic, and can be applied to any problem that simple LSTM is
applied while others are application specific.

To the best of our knowledge, the first generic extension of LSTM was proposed
in the work of Gers et al. [99]. They noticed that none of the gates have direct con-
nections to the memory cell they are supposed to control. In order to alleviate that
limitation they proposed “peephole” connections from the memory cell to the input
of each gate. Cho et al. [51] proposed an extension, the Gated Recurrent Unit (GRU),
that simplified the architecture and reduced the number of trainable parameters by
combining the forget and input gates. Laurent et al. [198] and Cooijmans et al. [56]
proposed batch normalized LSTM. Although [198] batch normalized only the input of
the node, Cooijmans et al. [56] did so also in the hidden unit. Zhao et al. [446] pro-
posed a combination of several of the above extensions. Specifically, they proposed a
bidirectional [319] GRU unit, combined with batch normalization. They fed the net-
work with human joints and action labels for 3D video action recognition. For a more
thorough review regarding LSTM and its variants, the reader is referred to [106].

As mentioned above, some extensions of the LSTM are application specific. For
example, Shahroudy et al. [324] proposed the Part-Aware LSTM (PA-LSTM), an ar-
chitecture tailored for skeleton based data. Instead of having one memory cell for
the whole skeleton, as is a common approach, they introduced one memory cell per
joint of the skeleton, each with its own input, forget and output gates. Liu et al. [219]
proposed the spatio-temporal LSTM unit with trust gates (ST-LSTM) for 3D human ac-
tion recognition. This unit extends the recurrent learning with memory to the spatial
domain as well.

2.2.1.3 Restricted Boltzmann machine (RBM)

The Restricted Boltzmann Machine (RBM) was first introduced by Hinton [140] in
1986. It is a two-layer, undirected, bipartite and undirected model (Figure 2.4). It
comprises of a set of visible units, which are either binary or real valued, and a set
of binary hidden nodes. A configuration with visible vector v and hidden vector h is
assigned an energy given by:

E(v,h) = −
∑

i∈visible

αivi −
∑

j∈hidden

bjhj −
∑
ij

vihiwij , (2.1)

Acknowledgements 17

Visible Units Hidden Units

Figure 2.4: RBM architecture. Notice that the connections are undirected.

where αi, bj , wij are the network parameters. Given this energy the network assigns
to every pair (v, h) a probability:

P (v,h) =
1

Z
e−E(v,h) (2.2)

where Z is the partition function and is given by summing over all possible pairs of
visible and hidden vectors. Since there are no direct connections between the hidden
or visible units, we can easily obtain an unbiased pair (v, h). Given the visible vector
v the hidden unit hj is assigned to one with probability:

P (hj = 1|v) = σ(bj +
∑
i

viwij), (2.3)

where σ(·) is the logistic sigmoid function. Similarly given a hidden vector h the
probability of a visible unit vi to be assigned to one is given by:

P (vi = 1|h) = σ(αi +
∑
j

hjwij), (2.4)

Starting from the training data, the network parameters are tuned in order to max-
imize the likelihood of the visible and hidden vectors pair (v,h).

RBMs are only two layer deep models and thus are restricted in the complexity of
the data they can represent. In order to alleviate this issue a number of deeper models

18 Acknowledgements

built on RBMs are designed. The most well known models derived from RBMs are the
Deep Belief Networks (DBN) [138], Deep Boltzmann Machines (DBM) [310] and the
Deep Energy Models (DEM) [255]. They are all multi-layer probabilistic models that
perform non-linear transformation to the data.

DBNs are trained in a greedy layer wise manner, where each layer is trained as an
RBM. After the training is done the weights are fixed and the next layer is trained. The
final model keeps only the top-down connections of the layers except the top two that
remain undirected. Finally, in order to avoid the poor local minimum of the greedy
learning, the weights are fine tuned with the up-down algorithm. In case of classific-
ation the labels are given to the last layer as binary input. Unlike DBNs, DBMs have
undirected weights in all layers. Initially the weights are also trained in a greedy fash-
ion, like a DBN. Since it is very computationally expensive to estimate and maximize
the likelihood directly, Salakhutdinov and Larochelle [310] proposed an approxim-
ative algorithm which maximizes the lower bound of the log-likelihood [308, 309].
Finally, DEM, the most recent deep model based on RBMs, is a fully connected feed
forward network with an RBM on top [255]. The non-stochastic nature of the hidden
layers renders it possible to have an efficient training of the whole model simultan-
eously. For a more comprehensive review of these models the reader is referred to
[110].

2.2.1.4 Auto-encoders (AE)

Auto-encoders are a collection of neural network methods based on unsupervised
learning. They were first introduced by Bourlard and Kamp [31] in 1988, as auto-
association networks. The main idea is to reduce the dimensionality of the data with
a fully connected layer and then try to recover the input from the reduced represent-
ation. In the case where the network is able to reconstruct the input, the intermediate
low-dimensional representation should contain most of the information of the ori-
ginal data (Figure 2.5). Since a single layer network is able to perform only linear
transformations, it is not sufficient for performing high dimensionality reduction of
complicated data. Thus Hinton and Salakhutdinov [139] proposed a multiple layer
version, called auto-encoder (AE). It utilizes several layers to transform or “encode”
the data. In some cases, if there is large error in the first layers, these models only
learn the average of the training data. In order to alleviate this issue, [139] proposed
to pre-train the network so the initial parameters are already close to a good solution.
Since then many variants of AEs have been proposed.

One of the first variations of AEs is the Sparse auto-encoder. The basic idea behind
it is to transform the data on an over-complete representation of higher dimensional-
ity than the original. The benefits of such a transformation is that (i) there is a high

Acknowledgements 19

Input Units Hidden Units (Reconstructed Input Units)
Output Units

Figure 2.5: Auto-association network. Notice that the output units are reconstructed
input units.

probability that in the new representation the data will be linearly separable and (ii)
it can provide a simple interpretation of the input data in terms of a small number of
parts by extracting the structure hidden in the data [276].

Vincent et al. [386, 387] suggested that a good transformation should provide
similar representation for two similar data points. In an effort to force the model to
be more robust in small variations of the data they proposed the Denoising AE (DAE),
which tried to reconstruct the original data given slightly modified data as input.
Rifai et al. [291] proposed a different method to achieve robustness to small input
variations, the Contractive AE. They do so by penalizing the sensitivity of encoded
representation with respect to the input data point.

Masci et al. [236], inspired by the success of CNNs, proposed a combination of AE
with CNNs the Convolutional AE (CAE), and applied it on image datasets, MNITST
and CIFAR10. The architecture comprises of several stacked convolutional layers. The
model is used as a pre-train mechanism for a CNN which is then trained in a super-
vised manner for object classification.

20 Acknowledgements

2.2.2 Deep learning for high dimensional data

In this section we describe the main deep learning approaches applied on high dimen-
sional data and provide a categorization of them. Specifically, we cluster the methods
according to the type of generalization performed.

Most of the deep learning methods applied on higher than two dimensional data
are generalized from lower dimensional counterparts, e.g. CNNs, CAEs, etc.. The
methods can be divided into two categories, namely increase of physical dimensions
and increase of modalities. There are also several models that are developed for high
dimensional data and were not generalized from lower dimensions, such as the Point-
Net [279]. It is important to note that all of the deep learning methods developed for
2D (images) and the generalization to 3D as well are either CNNs or a variation of
them, like CAE.

2.2.2.1 Increase of physical dimensions

In this section we describe the methods that were based on generalizing an existing
approach to higher dimensions. Although this seems straightforward, due to the curse
of dimensionality, as well as the large demand of memory and computational power
of deep learning approaches, the extension from two to three dimensional data is not
trivial. When considering the static world, i.e., time is not involved in some way, two
main concepts exist: the straightforward extension to three dimensional kernels and
the projection of data to fewer dimensions coupled with the use of an assembly of
lower dimensional models, usually pre-trained on a large dataset, like the ImageNet
2012 [302].

The first approach to extend the 2D convolutional deep learning techniques to the
3D case is the work of Chang et al. [45] on ShapeNets. They implemented a con-
volutional DBN with three dimensional kernels with which they learned a 3D shape
representation from CAD models. The three dimensional convolutional kernels (and
pooling) have also been combined with other models, such as the feed forward CNNs
[323], CAEs [35] and GANs [417]. Moreover, they have been utilized in many fields
such as 3D medical Images [69], Computational Fluid Dynamics (CFD) Simulations
[371], 3D objects [240] and Videos [160]. The main drawback of these approaches
is the high computational and memory demand of the resulting models, which limit
both their size and the input resolution they can support. Although this is the case
they are able to exploit relationships in all three dimensions, unlike the 2D methods.

The second cluster is the reduction of the data dimensionality to two, in order
to be able to construct complicated models as well as take advantage of pre-trained
ones. The reduction from three to two dimensions depends on the type of data in
question. For example, when CAD models or 3D objects are concerned, the projection

Acknowledgements 21

to two dimensions is done from an outside perspective, i.e. “taking photos” of the
object from different angles [353]. Shi et al. [327] proposed an alternative repres-
entation of the 3D models. Specifically they proposed a projection of the 3D shape on
a cylinder around the object. The height of the cylinder is equal to the height of the
object, making their representation invariant to scaling. Three dimensional medical
images contain information in three dimensional space, in which case the outside per-
spective misses all information relevant to most applications. Thus, the data are not
projected but rather processed in a slice-by-slice manner [69]. In the case of videos
three strategies for lowering the dimensionality have been proposed. In the first one
each frame can be considered separately [70, 380]. The second considers frames as
extra channels [87, 337, 169, 403]. This is usually done when passing to the net-
works the optical flow for several frames. Another approach is to try and compress
the information of several frames into one. The work of Bilen et al. [23] is in that
direction. They propose the Dynamic Image. More specifically, they adapt the method
of Fernando et al. [88] that combines features from multiple frames to the pixel level.
The result is an image which contains movement information, similar to a blurred
one.

Due to the lower dimensionality of the transformed input data, it is possible to
construct very complicated and large models. Moreover, a common approach is to
use and fine-tune pre-trained models on very large and diverse datasets such as the
ImageNet 2012 [302]. Although this is the case, as mentioned in the previous section,
these methods lose the ability to explore the correlations in the data in all available
dimensions.

2.2.2.2 Increase of modalities

The second type of generalization refers to the increase of the available modalities
of the data. To be more precise, although the physical dimensions of the data remain
the same, for example from 2D image to 2D image or 2D+time to 2D+time, the
information given per point increases. Some examples are the RGB-D data, optical
flow added to the videos and more. Depending on the nature of the extra information,
the resulting representation might result in a partial space-dimensionality increase.
For example, the RGB-D data do not increase the dimensions to three. Nonetheless,
the extra information is the distance to the sensor, which provides some information
about the extra third physical dimension.

When dealing with this type of dimensionality increase, researchers proposed vari-
ous strategies to incorporate the extra information. In this work we identified four
different strategies.

The most simple and naive approach is to consider the extra information as an

22 Acknowledgements

CNN

Decision

Making

Input

F

Decision

Making

Input

CNN1

CNN2

F

Decision

Making

Input

CNN2

F

CNN1

CNN3

Early Fusion Middle Fusion Late Fusion

F : Fusion o representation, can be simple concatenation, element wise addition or any other fusion method

Figure 2.6: Three naive approaches of fusing information from different modalities.
Left shows the early fusion, which fuses before any processing. Middle shows mid-
fusion and on the right is the late fusion approach.

extra channel and process with the same data dimensionality as before. This is very
common when dealing with RGB-D data [58, 391].

In the second category belong approaches that process the different types of in-
formation separately and fuse the extracted features by concatenating the feature
maps [224, 117]. The extreme case that the fusion happens before any processing
layers is the aforementioned first category. Some methods fuse the representations
in a mid-stage [371, 43, 169] and some in a late stage [337, 87, 403], as shown in
Figure 2.6.

In the third category belong methods that do not apply a naive fusion of the differ-
ent representations, such as concatenation. Many works propose more sophisticated
strategies for fusing the different modalities. For example, Wang et al. [401] try to
specifically learn modality specific and common features during training. As a result
the total complexity of the model reduces. Moreover, one modality might be missing
some of the common features due to noise, such as occlusion, clutter or illumination.
In such a case the quality of the representation will not drop since the other modality
will provide the necessary information. The sharing of the features happen between
the convolutional and deconvolutional layers with fully connected layers. In order to
force the networks to learn common and modality unique features, the similarity and
dissimilarity of the features, respectively, is added to the global loss function. The sim-
ilarity and dissimilarity of the features is measured using multiple kernel maximum
mean discrepancy (MK-MMD) [401]. Another example is the work of Hazirbas et al.
[125], where they make the assumption that one of the modalities is the main source
of information and the rest are complementary. They assign one CNN to each modal-
ity and then, at several levels of the CNN’s hierarchy they insert information from the
complementary branches to the main one. Deng et al. [64] followed a different ap-
proach. Instead of having two streams, they introduced a third stream, the interaction
stream, which is comprised be their newly defined GFU unit. By using this interaction
stream, the feature maps of all streams are updated at the interaction points. Park

Acknowledgements 23

et al. [271] proposed the multi-modal feature fusion module in order to combine
information from different modality-specific branches. Valada et al. [383] proposed
a fusion module (SSMA) that emphasizes areas and modality specific feature maps
according to the feature map contents, and thus leveraging common and modality
specific features.

Finally, some researchers defined data specific solutions. For example, the work of
Georgiou et al. [371] evaluates three different modality-processing strategies specific
for CFD simulation output, which consist of 4 different modalities over 6 channels of
information. Gupta et al. [117] propose a data transformation for the depth channel
in RGB-D data, called HHA. Mainly, they introduced two more channels. Although the
values of those channels are computed from the depth map itself, they are transform-
ations that are easily learnable, by convolutional kernels, namely height from ground
and surface angle to gravity vector.

The benefits of using this transformation are two-fold. First, the network gets
more relative information to its input, and second with the depth information trans-
formed to a three channel representation it is possible to use pre-trained networks on
ImageNet for this modality as well. Eitel et al. [78] proposed three more encodings
that transfer the depth data to a three channel representation and compared them to
each other and HHA. Their intuition was that since in object classification, all objects
have similar elevation not all channels of HHA are interesting. The projections they
proposed are (i) copy the depth values to all channels, (ii) transform to the surface
normal vector field and (iii) apply jet colormap of depth values to RGB, ranging from
red (near), through green to blue (far). They argue that since the networks are pre-
trained on RGB data, transforming depth to RGB might result in a more stable fine
tuning of the networks. The last method showed the best results on object classifica-
tion. Nonetheless, they do not perform a comparison in the case where the elevation
makes a difference and thus there is no objective comparison between their method
and HHA. For a visual comparison of the four different schemes, the reader is referred
to [78].

2.3 Traditional methods

Traditional methods vary a lot depending on the application and the type of data
they are applied on. For example, when dealing with semantic segmentation the most
common, non-deep, approach is to apply a graph model like a Conditional Random
Field (CRF) [334, 174, 65, 352]. On the other hand a large group of works utilize
template matching approaches [135, 137, 113, 292] in order to tackle object de-
tection. Although there is a large diversity on the applied methods, there are some

24 Acknowledgements

common practices between most of them. The data are not processed in their raw
format, but they are transfered in a feature space in which they are represented and
then processed by any machine learning pipeline.

Building from the very successful work of feature representation of images in
many applications of computer vision, a lot of methods are developed that gener-
alize them to be applicable to higher dimensional data as well. The main idea is to
describe the content of an image using a number of points or neighborhoods instead
of the whole image. The type of description can vary, from raw values to histograms of
gradients and point wise comparisons. In order to get a good content description and
not background description, researchers develop specialized detectors which detect
points according to several characteristics. This very well known pipeline is extended
and applied to higher dimensional data.

The most common types of higher dimensional data that people are dealing with
are objects represented by surfaces and/or color, volumetric representation of the
world, videos or sequences of images, or in the extreme scenario four dimensional
data, a three dimensional representation evolving in time. A large group of works
try to generalize the interest point detectors and descriptors of images to the data
available. Because of the different nature of different data types the definition and
development of features change accordingly. The main categories of such features are
surface features, volumetric features and spatio-temporal features.

2.3.1 Object surface features

Many people have tried to derive heuristics and encodings of 3D shapes and objects
that help to process them in an efficient way. The first approaches date back to 1984
with the work of B. Horn, Extended Gaussian Images [144]. Since then numerous
approaches and features have been developed. The main common objective is to have
a low dimensional yet discriminative description of three dimensional objects and
shapes. There are many ways one can separate these methods according to their
characteristics. A common distinction is global and local features. Global features
describe the whole object whilst local ones describe a small neighborhood around a
point on the object. The final description of the object is comprised by a collection of
such local descriptions.

2.3.1.1 Global features

Global features usually try to aggregate low-level structural and geometric statistics
of the complete objects like point pair distances, surface normals and curvature. Their
advantage is the very low dimensional representation they offer in comparison with
local descriptors that make object retrieval much faster. Unfortunately they require

Acknowledgements 25

the whole object to be available and fully separated from the environment [114].
Thus they are very limited in real world scenarios where objects are partially occluded
and usually blended in their environment. Some examples of global methods are the
Extended Gaussian Images [144], shape distributions [266], the light field descriptor
(LFD) [46], the spatial structure circular descriptor (SSCD) [93] and the elevation
descriptor (ED) [329]. For a more comprehensive review of global features the reader
is referred to [93, 329, 114].

2.3.1.2 Local features

Local features describe some properties of the local neighborhood of an object’s sur-
face points. In order to describe a complete object, a set of these local descriptors
have to be used. Depending on the needs of an application a different scheme of ac-
cumulating these local features is used. For example, for object recognition the local
features of an object in the repository are added to a feature library. These features
are searched for candidate correspondences with the features of a scene, which vote
for specific objects and poses [112]. Bronstein et al. [37] incorporated the well estab-
lished “Bag of Features” model of computer vision to 3D shape retrieval, in which the
local features are translated to “visual words”, or in this case “shape words”, in or-
der to obtain a global compact description of the full object. When tackling the scene
semantic segmentation task, these features are considered as the data primitives in
order to construct geometric unary potentials that are considered in an CRF pipeline
[334, 335].

As mentioned above, local descriptors encode information of a neighborhood
around a point. In order to exclude points that do not carry enough information,
feature detectors are introduced. These detectors usually find points whose neighbor-
hoods exhibit large variance of some property, e.g. fast and multiple changes of the
surface normals. Given a detector, a set of “highly informative” points is detected.
Then, one can extract local descriptors only for those points and describe an object or
scene only using these points neighborhoods. Since most real world applications deal
with varying scales of objects, as well as a variety of occlusions and deformations,
feature detectors and descriptors must be invariant to scaling, rigid and non-rigid
deformations as well as illumination changes. Moreover, they need to be repeatable,
and unique. A very comprehensive study on surface detectors and descriptors has
been published in [112]. In this work we will give a brief overview of the available
detectors and descriptors.

2.3.1.2.1 Detectors. Interest point, salient or keypoint detectors are a classic first
step to object description, since they define which points of the surface are the most

26 Acknowledgements

important for describing the object. A generic and popular division of detectors de-
pends on whether they are scale invariant or not [378, 112]. Although scale invari-
ance is an important feature, not all detectors have that ability. Some of them take
the scale or neighborhood size, in which they will detect keypoints, as an input. Con-
sequently, detectors are classified as fixed-scale or adaptive-scale keypoint detectors.

Most fixed-scale keypoint detectors have two common steps [378]. They first com-
pute a quality measurement across all points. Then, the points are checked for sali-
ency by checking whether they are local maxima of the quality measurement. As an
example we describe the detector defined by Mokhtarian et al. [249]. A point is de-
clared as interest point if its curvature is larger than the curvature of every 1-ring
neighbor, where the k-ring neighbors are defined as the neighbors that have k edges
distance. On the other hand, adaptive-scale detectors, inspired by the works of image
detectors, first construct a scale-space and then search for local maxima of a defined
function along the scale-space [378]. For example, Zaharescu et al. [438] build a
scale-space by applying Gaussian filters directly on the 3D mesh and detect points
as the extrema of the DoG space. For an extensive review of keypoint detectors the
reader is referred to [378, 112].

2.3.1.2.2 Descriptors. Local surface descriptors can be subdivided according to
different factors. For example, they can be subdivided according to the invariance
properties, i.e., invariant to rigid or non-rigid transformations, invariant to scaling
etc. The most common division for surface features is according to their encoding,
i.e., histograms, point signatures and transformations [112, 376], which we will fol-
low in this work as well.

Histograms are a broadly used type of feature description, not only in describ-
ing 3D surface features but also in image and video analysis. Histograms accumulate
different measurements of the neighborhood of a point and use that as a feature. His-
tograms have been very popular due to their simplicity combined with high descript-
ive capabilities. Three dimensional surface histogram descriptors can be subdivided
to spatial distribution histograms (SDH), geometric attribute histograms (GAH) and
oriented gradient histograms (OGH) [112].

SDH accumulate in histograms the spatial relationship, e.g. pair point distances,
of points in a neighborhood. One of the first examples of SDH descriptors is the spin
images (SI) [166, 164]. The spin image is a two dimensional histogram. First, all the
neighboring points are transfered to a cylindrical coordinate system starting from the
interest point. The points are expressed with the radial distance α and the elevation
distance β. The 2D histogram accumulates the number of points existing in a square
of the α−β plane. Other examples include the extensions of the SI, Scale Invariant SI

Acknowledgements 27

(SISI) [63] and Tri-SI [114, 109], the generalization of shape context (SC) [22], 3DSC
[91], and the Rotational Projection Statistics (RoPS) [113]. More recent examples are
the TOLDI [426], RSM [283], BRoPH [450] and the MVD [107].

GAH accumulate geometric properties of the neighborhood of a point, e.g. angle
between surface normals. Some examples are the Local Surface Patch (LSP) [47], the
THRIFT [90], the point feature histogram (PFH) [305], its fast counterpart the fast
point feature histogram (FPFH) [304] and the Signature of Histograms of Orientation
(SHOT) [376].

OGH accumulate gradients of various metrics of the surface. This kind of descrip-
tors are closely related and inspired from image descriptors like SURF [19] and SIFT
[225, 226]. Some examples are the 2.5D SIFT [223], the meshSIFT [231], the mesh-
HOG [438], 3DLBP [238], 3DBRIEF [238] and 3DORB [238].

Yang et al. [425] proposed a descriptor (LFSH) which combines SDH and GAH.
Specificaly, they use histograms of a depth map, point distribution and deviation angle
between normals.

Signatures describe the local neighborhood of a point by encoding one or more
geometric measures computed individually at each point of a subset of the neighbor-
hood [376, 112]. Some examples of signature descriptors are the Exponential Map
[259] and the Binary Robust Appearance and Normal Descriptor (BRAND) [67], a
binary descriptor that encodes geometrical and intensity information from a local
patch. This is achieved by fusing intensity variations with surface normal displace-
ment.

Transforms. These descriptors perform a transformation of the surface to a dif-
ferent domain and describe the neighborhood according to the characteristics of the
surface on that domain. For example, Rustamov [303] performed a Laplace-Beltrami
transform whilst Knopp et al. [178] performed a Hough transform on a voxelized
representation of the surface. Other examples of transform descriptors are the Heat
Kernel Signature (HKS) [355], its scale invariant variation (SI-HKS) [38] as well as
the more recent Wave Kernel Signature (WKS) [11].

A collection of the most important, according to this study, surface features is
shown in Table 2.1. The features are shown together with what, in our opinion, is
their most important contribution to the field.

2.3.1.2.3 Rotation Invariance. A common goal for most descriptors is to achieve
rotational invariance. In order to achieve that they try to find a repeatable and unique
Reference Angle (RA) or local Reference Frame (LRF) to which the local patch or
neighborhood is rotated before they describe it [164]. The first approaches used the
surface normal as a reference vector in order to achieve rotation invariance. Although

28 Acknowledgements
M

ethod
Year

C
om

m
ents

SI
[166,164]

1998
M

ost
sited

surface
descriptor

PFH
[305]

2008
captures

m
ultiple

characteristics
FPFH

[304]
2009

im
proved

com
putationalefficiency

ofPFH
2.5D

SIFT
[223]

2009
SIFT

for
depth

im
ages

H
K

S
[355]

2009
invariant

to
non-rigid

transform
ations

m
esh-H

O
G

[438]
2009

extension
ofH

O
G

[62]
descriptor

for
triangular

m
eshes

3D
-SU

R
F

[178]
2010

extension
ofSU

R
F

[19]
descriptor

for
triangular

m
eshes

SI-H
K

S
[38]

2010
scale

invariant
extension

ofH
K

S
SH

O
T

[376]
2010

signatures
ofhistogram

s,balance
betw

een
descriptiveness

and
robustness

C
SH

O
T

[377]
2011

extension
ofSH

O
T

descriptor
to

incorporate
texture

inform
ation

W
K

S
[11]

2011
invariant

to
non-rigid

transform
ations,scale

invariant,outperform
s

H
K

S
TriSI

[109]
2013

rotation,scale
invariant

and
robust

extension
ofSI

descriptor
R

oPS
[113]

2013
unique

and
repeatable

LR
F,robust

to
noise

and
m

esh
resolution

3D
LB

P
[238]

2015
G

eneralization
ofLB

P
to

3
dim

ensions
3D

B
R

IEF
[238]

2015
G

eneralization
ofB

R
IEF

to
3

dim
ensions

3D
O

R
B

[238]
2015

G
eneralization

ofO
R

B
to

3
dim

ensions
LFSH

[425]
2016

com
bines

depth
m

ap,point
distribution

and
deviation

angle
betw

een
norm

als.
TO

LD
I

[426]
2017

robust
to

noise,resolution,clutter
and

occlusion
LR

F.M
ulti-view

depth
m

ap
descriptor

R
SM

[283]
2018

uses
m

ulti-view
silhouette

instead
ofdepth

m
ap.O

utperform
s

R
oPS

B
R

oPH
[450]

2018
binary

descriptor,com
bines

depth
m

ap
and

spatialdistribution.
M

V
D

[107]
2019

Extrem
ely

low
dim

ensional.Perform
s

sim
ilar

to
SotA

descriptors
in

O
bject

R
ecognition.

Table
2.1:

A
collection

of
surface

descriptors
w

ith
the

m
ost

influence
on

the
field,

according
to

our
study.

The
table

show
s

the
m

ostim
portantcontribution

ofthe
w

ork
to

the
field.For

a
m

ore
com

prehensive
study

ofsurface
descriptors

the
reader

is
referred

to
[112].

Acknowledgements 29

the surface normal is easy and fast to compute, it is very sensitive to noise. Other
methods use the Singular Value Decomposition (SVD) or Eigenvalue Decomposition
(EVD) [259, 448, 34]. Unfortunately these methods do not produce a unique LRF and
in order to tackle that multiple descriptors are extracted per point. A good overview
and comparison of these methods is given in [376]. Moreover, they propose their own
method which is more robust to noise and tackles the limitations mentioned above.
To do that it computes the EVD of a weighted N-nearest neighbor covariance matrix,
in combination with the sign swapping of [34].

2.3.2 Volume features

In some applications, the data of interest are not represented by surfaces, but by
volumes. Some examples include voxelized representation of the objects, as well as
3D images, mainly medical images, like 3D ultrasound, CT scans and MRI scans [50,
256]. In some cases, videos are considered as three dimensional data where the time
dimension is considered equivalent to the two spatial ones [321]. In order to describe
the content of these kind of data, scientists generalized one of the known Interest
Point detector and descriptor of 2D images to 3D, namely Lowe’s SIFT detector and
descriptor [225, 226].

Scovanner et al. [321] were one of the first that tried to generalize the SIFT
descriptor to the three dimensional case. Although they did extend the SIFT descriptor
they did not generalize the detector as well. The method picks random points in the
volume as salient points and then describes them in a similar fashion to the SIFT. Ori-
entation invariance is achieved by computing the dominant solid angle of the gradi-
ent and rotating the neighborhood around the point so that the solid angle is equal
to zero. Finally, the neighborhood is split into eight sub-regions and a gradient ori-
entation histogram is computed per region. The final descriptor is the concatenation
of these histograms, which results in a 2048-D vector. They tested their descriptor on
action recognition and showed that their method performs better than the regular
2D-SIFT.

At the same time, Cheung and Hamarneh [50] developed independently their
own generalization. In contrast to Scovanner et al.’s work [321], they generalized
both the descriptor and the detector. Moreover, instead of generalizing to the 3D
case, they generalized to the nD case making their method applicable to many more
datasets and applications. They use n − 1 directions, with β bins for each, resulting
in βn−1 bins in total. The gradients are computed using hyperspherical coordinates.
They tested their method on 3D MRI of the brain and 4D CT scans of a beating heart.

Allaire et al. [9] focused on the 3D case. They observed that the aforementioned
methods failed to account for the tilt that a neighborhood can have, resulting in the

30 Acknowledgements

Method Data Type Comments

Scovanner et al. [321] Video first 3D SIFT
Cheung and Hamarneh [50] 3D MRI & 4D CT detector & nD
Allaire et al. [9] 3D CT, MRI, CBCT detector & account for tilt
Ni et al. [256] 3D Ultrasound US noise filter and smoothing

Table 2.2: Extensions of the SIFT descriptor to 3D volumetric data.

need for an extra angle in order to have full orientation invariance. For detecting
points they extended Lowe’s method by computing the Difference of Gaussians (DoG)
in a manner similar to Lowe. The local minima/maxima of the DoG in the scale-space
are picked as interest points. After detection in the scale-space, feature points are
filtered and localized. The remaining points are described as follows. First, they find
the dominant solid angle and for each angle with magnitude above 80% of the max-
imum they calculate the tilt. As with the solid angle, every angle that has a magnitude
more than 80% of the maximum is considered as a different interest point. They eval-
uated their method on 3D registration and segmentation of clinical datasets such as
CT, MR and CBCT images.

Ni et al. [256] used a similar method to the one developed by Allaire et al. [9] and
adapted it for optimal description of ultrasound content, which is very noisy. They
used the same filtering techniques at the detection stage with different thresholds,
necessary due to the increased noise of ultrasound images. Besides the extension of
Lowe’s detector, they also applied the Rohr3D detector developed by [296]. It first
defines the cornerness as the determinant of the matrix C, given by equation 2.5.

C =

Ixx Ixy Ixz
Ixy Iyy Iyz
Ixz Iyz Izz

 (2.5)

where Iij are the second order intensity gradients of a voxel. The local maxima
of the cornerness are then detected as interest points. For description they do not use
all three angles defined by [9] but only the two constituting the solid angle, like in
[321]. They evaluate their method on 3D ultrasound (US) registration and compare
it to the original 3D SIFT of Scovanner et al. [321].

An overview of the aforementioned methods, together with the milestone of each
work, is given in Table 2.2.

Acknowledgements 31

2.3.3 Spatio-temporal features

As with images and three dimensional representation of objects, traditional approaches
that deal with videos follow the same regime. First, a number of points is defined as
interest points. These points are either detected through some saliency measurement,
which means that their neighborhood is considered as very informative, or they are
densely sampled, as in [171]. These points are then used to describe the whole se-
quence of frames (either 2D or 3D). There are many methods that try to detect and
describe these kind of interest points.

First traditional approaches dealing with time dependent data, like video, either
used a collection of 2D features, i.e., image features, to describe the clip or consider
time as an extra dimension equivalent to the spatial ones and thus represent the clip
as a 3D volume. As such, simple extensions of the image features to the 3D case are
used to describe the volume [321]. Although this method produced good results at
the time, the different nature of the time dimension as well as the large variance
in sampling frequencies by different sensors, i.e., frame rate, motivated scientists to
develop methods that describe spatio-temporal volumes whilst regarding time separ-
ately. These features are called spatio-temporal features. The new interest points are
known as space-time Interest Points (STIPs).

2.3.3.1 STIP detectors

The first STIP detector was proposed by Laptev [190]. It’s an extension of the Harris
corner [123], called Harris3D. The Harris3D operator considers different scales in the
space and time dimensions. To achieve that it convolves the video sequence f with a
Gaussian kernel g given by equation 2.6.

L(·;σ2
l , τ

2
l) = g(·;σ2

l , τ
2
l) ∗ f(·) (2.6)

where the spatio-temporal Gaussian kernel is given by:

g(·;σ2
l , τ

2
l) =

1√
(2π)3σ4

l τ
2
l

· exp
(
−(x2 + y2)

2σ2
l

− t2

2τ2l

)
(2.7)

where σ2
l , τ

2
l are the spatial and temporal variances respectively and x, y are the spa-

tial coordinates whilst t is the temporal one. Given a space and a temporal scale, a
corner or interest point is found by finding the local maxima of the corner function
given by equation 2.8.

H = det(µ)− k trace3(µ) (2.8)

where µ is the 3 by 3 second-moment matrix weighted by a Gaussian function, given
by equation 2.9. In a later work, Laptev and Lindeberg [192] extended the detector

32 Acknowledgements

in order to be velocity adaptable, which provides invariance to camera motion. In
order to achieve that they considered the transformation caused by camera motion
as a Galilean transformation, which is computed iteratively. This approach was later
used by [191] for motion recognition. Schuldt et al. [318] combined the feature size
adaptation of [190] and the velocity adaptation [192] in a single framework.

µ = g(·;σ2
i , τ

2
i) ∗

 L2
x LxLy LxLz

LxLy L2
y LyLz

LxLz LyLz L2
z

 (2.9)

Another very popular spatio-temporal detector is the one developed by Dollár et al.
[68], known as cuboids. The motivation behind their detector lies in the observations
that i) corners are very sparse in images and even sparser in videos and ii) there
are movements, like opening and closing of a jaw, that do not include corners and
thus if only corners are chosen to represent a video clip, many actions will not be
recognizable. STIP are detected at the local maxima of the response function given in
equation 2.10.

R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2 (2.10)

where g(x, y;σ) is a 2D Gaussian smoothing function applied only on the spatial di-
mensions and hev and hod are a quadrature pair of 1D Gabor filters, given by equa-
tions 2.11, applied temporally. The scale of the feature in the spatial dimensions is
defined by the Gaussian (σ) whilst in the temporal dimension by the quadrature pair
(τ, ω = 4

τ).

hev(t; τ, ω) = − cos(2πtω)e−
t2

τ2

hod(t; τ, ω) = − sin(2πtω)e−
t2

τ2

(2.11)

Bregonzio et al. [33] observed that the aforementioned detector has some drawbacks.
The Gabor filters applied in the temporal dimension are very sensitive to noise and
produce many false detections in textured scenes. Moreover, it fails to recognize slow
movements. In order to deal with these drawbacks they propose their own STIP de-
tector which works in two steps. The first step is simple differencing between con-
secutive frames in order to produce regions of interest in which there is motion. The
second step is to apply, spatially, a 2D Gabor filter.

Oikonomopoulos et al. [261] followed a different approach. They extended to the
spatio-temporal case the approach of Kadir and Brady [167]. They first defined a
measure of saliency based on the amount of information change in a neighborhood,
which they expressed by the entropy of the signal in the neighborhood. The extension

Acknowledgements 33

to the spatio-temporal case is done by considering a cylindrical neighborhood instead
of a two dimensional circle.

Wong and Cipolla [415] argued that all the above methods detect interest points
using only local information, which produces a lot of false positives in the presence
of noise. In order to counter this drawback they proposed an alternative approach
which uses global information in order to detect interest points in a video sequence.
In order to do so they applied non-negative decomposition of the sequence, which
is represented by a two dimensional matrix, in which each column is a frame of the
video. The result of the decomposition is a number of subspaces φ and transitions
χ. By applying Difference of Gaussians (DoG) on the subspaces and the transitions,
they detect spatio-temporal interest points. They compared their method with the
aforementioned approaches on gesture recognition using the same description for all
detectors, and showed that their method outperforms the rest.

Inspired by the work of Laptev [190], Willems et al. [413] proposed an new de-
tector which instead of utilizing the second moment matrix µ (given by equation 2.9)
they utilized the Hessian matrix H given by equation 2.12. The points are detected at
the local maxima of the saliency measurement S given by equation 2.13. Unlike the
2D case [20], maxima of S do not ensure positive eigenvalues of H which means that
saddle points will also be detected.

H =

Lxx Lxy Lxz
Lxy Lyy Lyz
Lxz Lyz Lzz

 (2.12)

S = |det(H)| (2.13)

Yu et al. [433] developed a generalization of the FAST [298] detector to the spatio-
temporal case, which they call V-FAST. For each candidate point they considered three
2D planes, the XY, XT and YT planes. They applied the FAST detector in each plane.
If the point is detected as interest point in the spatial domain (XY plane) and at least
one of the time comprising planes (XT or YT) then the point is considered as a STIP.

Cao et al. [42] observed that from all STIPs detected by Laptev’s [190] detector,
only 18% belong to a specific action whilst the rest belong to the background. In-
spired by this phenomenon, Chakraborty et al. [44] proposed an new pipeline for
STIP detection. They initially detect spatial interest points (SIPs) using the Harris de-
tector [123] and then apply background suppression and other temporal and spatial
constraints in order to keep only features relative to the motion in the sequence.

Finally, Li et al. [211] proposed a new detector, the UMAM-detector. The video is
transfered to a Clifford algebra based representation. There, a vector is extracted for
each pixel which contains both motion and appearance information. In this new space

34 Acknowledgements

Method comments Year

Harris3D [190] first STIP detector 2003
Harris3D + velocity adaptation [192, 318] limit camera motion detections 2004
Cuboids [68] more dense point detection 2005

Bregonzio et al. [33]
limit false detections

2009
& detect slow movements

Oikonomopoulos et al. [261] information based saliency 2005
Wong et al. [415] use of local and global information 2007
V-FAST [433] efficient computation 2010
Chakraborty et al. [44] limit background detections 2012
Li et al. [211] unified motion and appearance 2018

Table 2.3: Existing spatio-temporal detectors. The left column shows the name of
the descriptor together with the paper that proposes it, the middle column the con-
tribution of the method to the field and the right column the year the method was
published.

they apply a Harris corner detector to detect STIPs. According to their experiments the
UMAM-detector outperform all the aforementioned detectors and some deep learning
methods, in classification performance.

All the above detectors are summarized in Table 2.3, together with their contribu-
tion to the field.

2.3.3.2 STIP descriptors

In order for the STIPs to be represented in an optimal form for machine learning
pipelines, special descriptors are defined that try to capture important information
for the neighborhood of the STIP. Most proposed descriptors can be categorized de-
pending on the type of measurements they contain or the way they quantize that in-
formation. More specifically, the most typical measurements taken to describe a STIP
are the N-jets [179], Gaussian gradient field (similar to HoG and SIFT [225, 62]) or
optical flow field [24]. These measurements are usually quantized or vectorized by
histogramming or Principal Component Analysis (PCA) [193, 191].

The N-Jets represent a collection of point derivatives (up to Nth order) at a specific
scale of the scale-space representation L, given by equation 2.14.

J(g(·;σ0, τ0) ∗ f) = {σLx, σLy, τLt, σ2Lxx, ..., στ
N−1Lyt..tt, τ

NLtt..tt} (2.14)

The Gaussian first order gradient field is also computed on the scale-space represent-

Acknowledgements 35

ation L, in order to make the descriptors invariant to scaling and noise. The optical
flow field represents the movement in a clip at each pixel by a velocity vector field.
There are a lot of methods that try to efficiently and accurately extract that vector
field. For a good overview of the optical flow estimation field the reader is referred to
[354].

As mentioned above there are many ways to accumulate information over the
spatio-temporal neighborhood. The most common ones are histogramming and apply-
ing PCA. Histogramming is either applied globally, i.e., one histogram over the STIP
neighborhood, or on several small neighborhoods around the STIP. In the later case
the separate histograms are concatenated in order to constitute a single descriptor.
PCA is usually applied on a number of IP of a train set in order to obtain D most
significant dimensions defined by the eigenvectors.

Laptev et al. [193, 191] tested a number of different descriptors both in terms
of measurements accumulated and in the type of accumulation. Their study showed
that, on average, local histograms on adaptive scales perform better than the rest of
the approaches. Moreover, methods based on the first order gradient field outperform
both optical flow and the N-Jets.

In a parallel work, Dollár et al. [68] performed a similar comparison. They tested
normalized pixel values, first order intensity gradients and optical flow values. They
tried all the above measurements by flattening the cuboid and within global or local
histograms. Finally, on all descriptors, they applied PCA to reduce the dimensionality.
According to their experiments histogramming did not benefit performance and thus
concluded to the flattened values with PCA. As with Laptev et al.’s experiments, the
gradient based descriptors showed higher overall performance than the rest.

Niebles et al. [257] extended the aforementioned descriptor. They first smoothen
the image at a specific scale and then extract the intensity gradients. The apply this
function for several scales and then apply PCA to get the final descriptor. Their method
indeed outperforms Dollár et al.’s [68] method but it is still outperformed by Laptev
et al.’s [191] histogram of gradients, with velocity adaptation.

Laptev et al. [194] proposed a combined histogram of gradients with a histo-
gram of optical flow. Their descriptor together with the non linear SVMs managed
to outperform all previous methods on the KTH dataset [318]. Willems et al. [413]
extended the known SURF descriptor [19] to the spatio-temporal case. Their imple-
mentation differentiates between the spatial and temporal dimensions by setting a
different number of bins, as well as different scales (σ and τ). They evaluated their
method on the mouse behavior dataset as well as the KTH and they achieve compar-
able to the state of the art results.

Klaser et al. [177] designed a new 3D HoG descriptor. They introduced a gener-
alization of the orientation binning of the known SIFT descriptor by introducing a

36 Acknowledgements

Figure 2.7: An illustration of the encoding process of LTP. For each of 8 different
locations at time t− δt and the same locations at t+ δt SSD distances of 3x3 patches
to a central patch at time t are computed [429].

normal polyhedron, dodecahedron or icosahedron, and considering each face of the
polyhedron as a bin. The angle of the gradient vector to the surface normals of the
faces is computed and if its smaller than a threshold, the projection of the gradient
vector to the surface normal contributes to the respective face’s bin. Moreover, they
generalized the integral image method of [388] to the integral video method. The
integral video is a representation of the video volume that helps the fast computation
of average gradients. Given a video volume ν(x, y, t) and its three first order partial
derivatives ν∂x, ν∂y, ν∂t, the integral video, iv(·), of direction j is given by:

iνj(x, y, t) =
∑

x′<x,y′<y,t′<t

ν∂j(x
′, y′, t′) (2.15)

A block of video b is first divided into SxSxS sub-blocks. For each sub-block the
average gradient and its contribution to the histogram bins are calculated. The final
descriptor is a concatenation of several such histograms computed onMxMxN blocks
around the STIP. Willems et al. [412], inspired by the quantization of Klaser et al.
[177] extended the method of [413] to quantize the gradient orientations in the
same way.

Yeffet and Wolf [429], inspired by the Local Binary Pattern descriptor [262], pro-

Acknowledgements 37

posed the Local Trinary Pattern (LTP) a spatio-temporal motion descriptor. The main
idea of the descriptor is to compare patches between frames instead of pixels within
an image. Eight patches neighboring the pixel in question in the previous and next
frames are defined, as well as a “central” patch which includes the pixel in ques-
tion, as seen in Figure 2.7. A so-called trit is calculated for each spatial location (i, j)

according to the following rule:

−1 if SSD1 < SSD2

0 if SSD1 = SSD2

+1 if SSD1 > SSD2

(2.16)

where SSD is the sum of squared differences between the patches (Figure 2.7). A
global descriptor is calculated by combining the trinary patters for all available pixels
in histograms. First spatial histograms are created by splitting each frame in (m× n)
patches. The resulting histograms are then merged temporally to create one global
spatio-temporal descriptor.

2.3.3.3 3D space

Due to the inexpensive available sensors, scientists extended the STIPs to the 3.5 and
4 dimensional cases as well. To the best of our knowledge, the first to define detect-
ors and descriptors for higher than 2 + Time dimensional data are Xia and Aggarwal
[420]. Their detector is similar to Dollár et al. [68]’s Cuboids. The motivation behind
their method is that due to the nature of depth images, detectors developed for color
based STIP detection tend to find many points in the background and thus introdu-
cing a lot of noise in the description of a clip. In order to avoid that they introduced
a correction function that smoothens out depth map specific type of noise. After the
detection of the Depth-STIPs (DSTIPs) the information of the spatio-temporal neigh-
borhood is described by a occupancy histogram.

In later work Oreifej and Liu [265] generalized the Histogram of surface Normals
(HON) [361] to four dimensional surfaces (HON4D) and applied it on 3D Action
Recognition. Finally, Rahmaniet al. [285] proposed the Histogram of Oriented Prin-
cipal Component (HOPC). Their descriptor calculates the principal components of the
scatter matrix of spatio-temporal points around an interest point and create a histo-
gram of principal components for all points in a neighborhood. In a later work, they
also proposed a detector in order to filter out points that are irrelevant [284]. Their
method first computes the ratio of sequential eigenvalues. If the surface is symmetric
then at least one of these ratios is going to be one. Thus they define a threshold, and if
a ratio is below that the point is excluded. Otherwise the neighborhood of that point
is considered informative enough to be of interest.

38 Acknowledgements

2.3.3.4 Trajectories

Driven by the poor generalization performance of the aforementioned approaches,
researchers proposed a new strategy for handling the time dimension [237, 244, 356].
Instead of describing the change in the temporal dimension in a local manner as
with the spatial ones, researchers tried to describe motion using trajectories of spatial
interest points and their spatial description.

More specifically, Matikainen et al. [237] track features in a video using the stand-
ard KLT method [227, 328]. For every tracked feature they keep a vector of frame-
by-frame position derivatives. The resulting vector is the trajectory-feature. These
features are then clustered and the Bag of Words (BoW) model is implemented. The
final action classification happens using an SVM. In parallel work, Messing et al. [244]
proposed a very similar feature which they call velocity history. The difference with
the aforementioned method is that they quantize the velocities in eight directions and
five magnitudes. Moreover, the classification is done by a generative mixture model
instead of the BoW approach. Sun et al. [356] proposed a different approach, but
in the same direction. Instead of the KLT method, they find trajectories by applying
frame-by-frame SIFT feature matching. According to their results, this is a more ro-
bust approach for feature tracking. Then, the visual characteristics of each trajectory
is described by the average SIFT descriptor tracked. In order to describe the temporal
dynamics of the trajectory, a Hidden Markov Chain (HMC) is employed that is trained
on the spatial development of features. Finally, the inter-trajectory context is encoded
with their proximity descriptor.

Wang et al. [395, 396], inspired by the success of the aforementioned methods
as well as the dense sampling of features in images [260], proposed a combination,
the dense trajectories. The trajectories are sampled on multiple scales on a spatial
grid via dense optical flow. Finally, the area around the trajectories is described by the
HOG-HOF spatio-temporal descriptor. Their method achieved state of the art results
at the time, on many benchmarks. In later work, Wang and Schmid [397] proposed an
improvement on the dense trajectories. They tracked camera movement and used it
to reject trajectories caused by it. Moreover, they applied the estimated camera move-
ment as a correction to the optical flow, in order to extract camera motion invariant
trajectories.

2.4 Datasets and benchmarks

One of the main motives behind the research on higher than two dimensional data
is the large availability of datasets comprised by such representations. Depending on
the application and the type of data different datasets and benchmarks are proposed,

Acknowledgements 39

both small and large scale. In this section we will give an overview of the well known
and current benchmarks and large datasets for the domain of computer vision in
higher dimensions and we categorize them according to their intended application.
To be more precise, numerous small scale datasets and benchmarks exist that are
meant for very specific applications. Nonetheless, for each type of data, i.e., 3D scene,
action in video, objects etc., there are some large scale datasets that help evaluate
the data representation methods that can be applied on many different tasks. These
are the datasets that are presented here and are categorized according to the type
of data they deal with, namely object understanding, scene understanding and video
understanding. More specific concepts can be added, like video retrieval, but due to
the small number of datasets, they are grouped together in a category called “other
datasets”.

2.4.1 Object understanding

There is a large collection of datasets with various 3D models of objects used for
object understanding tasks, like detection and classification, shape understanding and
more. These datasets either contain 3D images or scans of real objects, e.g. [313, 330]
or they might contain designed objects like CAD models [419]. Moreover, different
datasets are used for different tasks. For example, the LINEMOD dataset [136] is used
for object detection, classification and pose estimation, whilst the Princeton shape
benchmark (PSB) [330] focuses on different classification themes. Besides these state
of the art datasets, there are also smaller but well known datasets. Some of these
are Lai et al.’s [188] dataset, the big bird [339] and the SHREC [206]. For a good
overview of all these benchmarks and datasets the reader is referred to [89]. Table
2.4 gives a comparison of the state of the art datasets.

The largest datasets available, to date, are datasets that contain designed mod-
els and objects instead of real scans, largely due to the longstanding graphics com-
munities. Some of the well known datasets are the Princeton shape benchmark [330],
which consists of 161 object classes and a total of 1814 models. The ModelNet [419],
a dataset which consists of 151,128 3D CAD models in 660 categories. ShapeNet
[45] is also a recent database, which tries to make even more detailed annotations
than just object labels. The raw dataset consists of roughly 3 million models, from
which 220,000 have been classified into 3,135 categories. Besides the raw dataset
the authors also made two subsets. The first, called shapeNetCore, consists of 51,300
models in 55 common categories, with extra alignment annotations and the second,
shapeNetSem, consists of 12,000 models from 270 categories. In addition to manu-
ally verified category labels and consistent alignments, they are also annotated with
real-world dimensions, estimates of their material composition at the category level,

40 Acknowledgements

Dataset Data Type #Images #Objects #Object Cat 6DoF pose

PSB [330] PSG - 1 814/6 670 161/1 271 -
ModelNet [419] CAD - 151 128 660 -
ShapeNet [45] CAD - 3M/220K - /3 135 -
shapeNetCore [45] CAD - 51 300 55 -
shapeNetSem [45] CAD - 12K 270 -
YCB [40] RGB-D 600 75 - No
Rutgers APC [289] RGB-D 10K 24 24 Yes
Redwood [52] RGB-D 23M > 10K 44 No

Table 2.4: Large scale datasets and benchmarks for object understanding. PSG stands
for polygonal surface geometry. DoF stands for degrees of freedom.

and estimates of their total volume and weight [45, 314].
As mentioned above there are also datasets with scanned real life objects instead

of designed models. One example is the YCB object and model set [40]. It consists
of every-day object scans from 75 object categories. For each object the dataset in-
cludes 600 RGB-D images coupled with 600 high resolution RGB images, segmenta-
tion masks as well as calibration information and texture-mapped 3D mesh models.
The Rutgers APC RGB-D dataset [289] consists of more than 10 thousand RGB-D im-
ages. In total it contains 25 objects along with their 6DoF pose. Choi et al. [52] created
a dataset of scanned 3D objects with an RGB-D camera. The dataset provides a vari-
ety of different objects, from bottles of shampoo to sculptures and even an howitzer.
They grouped these objects in 44 categories. Besides the raw RGB-D videos they also
provide 3D reconstruction for some of the objects. Some example 3D reconstructions
can be seen in Figure 2.8. For more information about the reconstruction technique
and the number of objects reconstructed we refer the reader to the original paper
[52]. All the above datasets are summarized in Table 2.4.

2.4.2 Scene understanding

Scene understanding is a domain that refers to machine learning pipelines that are
able to perform several tasks given a scene, such as object detection and localization,
scene semantic segmentation, scene classification and more. In general it includes all
methods that increase the understanding of a scene through visual means. Due to
the significant qualitative difference in terms of applied sensors and the structure of
indoor and outdoor scenes, they are considered as separate problems.

One of the first “bigger” datasets is Berkley’s B3DO dataset introduced by Janoch

Acknowledgements 41

Figure 2.8: Example scans of real objects from Choi et al.’s [52] dataset. Original
Figure from [52].

et al. [158]. It is comprised by 849 images from 75 scenes captured by an RGB-
D camera. Overall it includes more than 50 object classes. One of the most known
datasets and most used benchmarks for indoor scene understanding is the NYUv2,
created by Silberman et al. [335] in 2012. It is comprised by a set of indoor videos
taken with RGB-D camera, resulting in 795 labeled images with 894 object classes.
Xiao et al. [421] tried to provide a richer dataset, in the sense that the segmentation
is not pixel wise but there is a better 3D representation of the objects. The result is
the SUN 3D dataset [421] which also provides point cloud segmentation produced by
Structure from Motion (SfM). Song et al. [344] realized that existing datasets were
limited in (i) the number of scenes and sequences they include and (ii) they have
sequences from a single RGB-D camera type. They created a more large scale and
generic dataset, the SUN-RGBD dataset. They achieved that by taking images from
existing datasets and also introducing their own. The result was a dataset with 10,335
RGB-D images of a total of 47 scene categories and 800 object classes. Hua et al.
[145] created sceneNN, a dataset that contains 100 scenes with per-pixel annotation
of objects. The scenes are 3D reconstructed on triangular meshes.

Most of the scene understanding datasets suffer from small variation of well an-
notated scenes and limited number of objects. Handa et al. [121] created a method
for dataset creation in order to tackle these problems. They claimed that their system
is able to create a virtually infinite number of scenes with various objects in them and
perfect per-pixel annotation. They accomplish that by using computer graphics to ar-
tificially create scenes. They also acquired a large number of 3D CAD models, from
some of the datasets mentioned in Section 2.4.1, and randomly placed them in the
scenes. The resulting dataset can be used in order to properly pre-train a CNN which
can be then fine tuned on a real world dataset. McCormac et al. [241] continued
this work with the goal to create a dataset, called SceneNet RGB-D, with annotation
not only for semantic segmentation, object detection and instance segmentation but
also scene trajectories and optical flow. For comparison, example real scenes from the

42 Acknowledgements

(a) RGB Image (b) Depth Image (c) Instance Segmentation (d) Class Segmentation (e) Optical Flow

Figure 2.9: Example Images from the SceneNet RGB-D dataset [241]. (a) RGB Image,
(b) Depth Image, (c) Ground Truth Instance Segmentation, (d) Ground Truth Class
Segmentation, (e) Optical Flow

(a) RGB Image (b) Depth Image (c) Class Segmentation

Figure 2.10: Example Images from the NYUv2 dataset [335]. (a) RGB Image, (b)
Depth Image, (c) Ground Truth Segmentation

Acknowledgements 43

NYUv2 are shown in Figure 2.10 and some artificial scenes from the SceneNet RGB-D
in Figure 2.9. Similar to their work, Song et al. [346] created a synthetic 3D scene
dataset called SUN-CG, which contains 45,622 synthetic scene layouts created using
Planner5D [346]. Dai et al. [61] introduced a much bigger dataset with real world
scenes than all the aforementioned. It consists of 1,513 scenes with overall 2.5M RGB-
D frames and more than 36K object instances. All scenes have been reconstructed and
labeled manually.

For a good comparison the datasets, together with their features and details, are
shown in Table 2.5. As with the object datasets of the previous section, we can see that
the artificial datasets are orders of magnitude larger than the datasets that contain
images and videos of real scenes.

The aforementioned datasets focus only on indoor scenes and objects. When con-
sidering outdoor scenes, the availability of datasets decreases significantly. One of the
reasons is the low quality of the RGB-D sensors in open space. Most of the existing
datasets are limited to 2D RGB images, for example Richter et al.’s [290] dataset and
the SYNTHIA dataset [297]. Nonetheless the KITTI dataset [98], although built for
pedestrian, car and cyclist detection on images, it also includes Velodyne 64E range
scan data with 2D and 3D bounding boxes for 7500+ frames. Moreover, the Sydney
Urban Objects dataset [282] contains labeled Velodyne LiDAR scans of 631 urban
objects in 26 categories.

2.4.3 Video understanding

Video understanding is a broad field. There are several research areas that can be
considered subfields of video understanding, for example action recognition, video
retrieval as well as object detection and tracking. Object detection and tracking is
highly related to object and scene understanding which are covered in the previous
sections. The most active areas in video understanding are action recognition and
video retrieval. Most of video understanding related research focuses on action re-
cognition and more specifically human action recognition. Action recognition is the
main research area for which new representation approaches and video understand-
ing methods are developed and tested on. There is a large collection of datasets and
benchmarks whose content relates a lot to the evolution of the “action recognition”
research. Good overviews of these benchmarks and their historic value are given by
Hassner [124] and Idrees et al. [151]. In this section we will give an overview of the
state of the art datasets and benchmarks.

One of the well known and used benchmarks today is the Human Motion Data
Base (HMDB51) [186]. It consists of 6,766 video clips, each representing one out of
51 “every day” actions collected from various sources on the Internet. The annotation

44 Acknowledgements

D
ataset

(R
eference)

R
G

B
-D

video
Per-pixelannotation

traj.G
T

R
G

B
Texture

#
scenes

#
layouts

#
object
classes

3D
M

odels
avail.

B
3D

O
[158]

N
o

Key
fram

es
N

o
R

eal
75

-
>

50
N

o
N

YU
v2

[335]
Yes

Key
fram

es
N

o
R

eal
464

464
894

N
o

SU
N

3D
[421]

Yes
3D

point
cloud

+
Video

N
o

R
eal

254
415

-
Yes

SU
N

R
G

B
-D

[344]
N

o
Key

fram
es

N
o

R
eal

-
-

∼
800

N
o

sceneN
N

[145]
Yes

Video
Yes

R
eal

100
100

≥
63

Yes
SceneN

et
[121]

N
o

Key
fram

es
N

o
non-pr

57
1

000
-

Yes
SceneN

et
R

G
B

-D
[241]

Yes
Video

Yes
pr

57
16

895
255

Yes
SU

N
-C

G
[346]

Yes
Video

Yes
non-pr

45
622

45
622

84
Yes

ScanN
et

[61]
Yes

3D
+

Video
?

R
eal

1
513

?
≥

20
Yes

Table
2.5:

B
ig

scale
datasets

and
benchm

arks
for

indoor
scene

understanding.
The

first
colum

n
show

s
the

nam
e

of
the

dataset,
the

second
colum

n
show

s
w

hether
the

dataset
provides

R
G

B
-D

video
of

the
scenes,

the
third

one
the

level
of

the
annotation,

the
forth

one
w

hether
trajectory

ground
truth

is
included

and
the

fifth
w

hether
the

data
are

real,
or

synthetic.
“pr”

m
eans

photorealistic
w

hilst
“non-pr”

m
eans

non-photorealistic.Sixth,seventh
and

eighth
colum

ns
show

the
num

ber
of

scenes,layouts
and

object
classes

respectively
and

the
ninth,last,colum

n
show

s
w

hether
the

dataset
provides

3D
m

odels
of

the
objects

present
in

the
dataset.

Acknowledgements 45

is done in a redundant way (each label is verified by at least two humans) in order
to ensure its quality. Moreover, every video has some extra meta-data such as cam-
era view-point and motion. Although, for todays standards, this is a small to medium
scale dataset, it is still widely used due to its very accurate ground truth. A similarly
popular dataset is the UCF101 [348] dataset. It consists of 13,320 clips which belong
to one of the 101 action classes of the dataset. These classes are single person actions
as well as person to person interactions. Caba Heilbron et al. [39] proposed the Activ-
ityNet, a dataset of human activities. It contains about 20 thousand videos from 203
different human activities. Most videos are between 5 and 10 minutes long with a
maximum of 20 minutes. In these videos the classes are manually annotated and spe-
cified in time. This results in about 30 thousand human-annotated clips of a specific
human action. Recently, Kay et al. [170] proposed the Kinetics dataset, the largest
human action dataset to date. It consists of 306,245 trimmed clips from YouTube
that include human-object and human-human interactions. The clips are classified to
one of the 400 possible classes and were annotated using Amazons Mechanical Turk
(AMT) [170].

One of the largest datasets at the time of this paper is the Sports 1M dataset
[169]. It consists of 1 million YouTube videos assigned to one of 487 classes. These
classes are sport actions such as road bicycle training, track cycling, monster truck
etc. These videos have been automatically annotated according to the video tags.
Moreover, these are five minutes videos so the class might be a small proportion of the
whole video. Due to the above reasons, the labeling of the data is very weak and thus
hard to properly evaluate different algorithms. Jiang et al. [161] released the Fudan-
Columbia Video Dataset (FCVID), a dataset that contains over 90 thousand videos
from 239 categories. Most of these categories are actions like “making cake” whilst
there are some object and scene categories as well. The videos are collected from
YouTube and are manually labeled. Abu-El-Haija et al. [4] released the largest to date
video dataset, the YouTube-8M. It consists of about 8 million videos with 4 thousand
labels in total. Each label is supposed to shortly explain the content of the video. For
example, a video of biking on dirt roads and cliffs would have a central topic/theme of
Mountain Biking, not Dirt, Road, Person, Sky [4]. Possible labels are also filtered out
according to some characteristics. For example a label must be visually recognizable
and should not require specialized knowledge.

Barekatain et al. [18] introduced an aerial view video dataset for human action
recognition it consists of 43 videos with varying camera position and motion. The
videos are staged and include multiple actors that perform several actions out of the
12 defined classes. Goyal et al. [104] introduced the ”something - something” data-
set. It is an action recognition dataset where the labels are of the form ”something”
action ”something”, for example Dropping [something] into [something]. The dataset

46 Acknowledgements

Dataset #Videos #Clips #Classes m-l trimmed m-ann

HMDB51 [186] 3 312 6 766 51 No Yes Yes
UCF101 [348] 2 500 13 320 101 No Yes Yes
Sports 1M [169] 1M - 487 No No No
ActivityNet [39] 19 994 28 108 203 No Both Yes
FCVID [161] 91 223 91 223 239 No No Yes
YFCC100M [374] 0.8M - - - No -
YouTube-8M [4] ∼ 8M - 4 800 Yes No No
Kinetics [170] 306 245 306 245 400 No Yes Yes
Okutama - Action [18] 43 43 12 Yes Yes Yes
Something-Something [104] 108 499 108 499 174 No Yes Yes
Moments in Time [250] 1M 1M 339 No Yes Yes

Table 2.6: Big scale datasets and benchmarks for video understanding. First column
depicts the name of the dataset, the second third and forth the number of videos,
clips and classes respectively. The fifth column (m-l) specifies whether each video can
have multiple labels. The sixth column depicts whether the videos are trimmed and
the final column (m-ann) shows whether the videos/clips are manually annotated.

is manually annotated and consists of about 108K short videos (∼ 4 seconds) with
174 action classes and more than 23K object names. Monfort et al. [250] introduced
the ”Moments in Time” dataset, a big dataset of one million 3-second clips with 339
classes of verbs, which are picked from the VerbNet.

A summary of all the above datasets can be found in Table 2.6. For a more com-
prehensive review on Human Action Recognition datasets the reader is referred to
[340].

2.4.4 Other datasets

Besides the scene understanding, object and action classification datasets mentioned
in the previous sections there are also datasets for a big variety of applications. For
example the Cornell dataset [162] is a dataset built with the goal of training robotic
grasp detection on various objects. It contains 1035 RGB-D images with 280 grasp-
able objects annotated with several positive and negative graspable rectangles. For
the goal of shape deformation, Yumer et al. [436] created a dataset, containing ob-
jects from various categories and their deformations scales, that was later also used
for other research purposes, for example [435]. Garcia and Vogiatzis [95] proposed
the MovieDB, a dataset for different image-to-video retrieval tasks [94]. The TACoS

Acknowledgements 47

dataset [286], with action labels on videos as well as natural language descriptions
with temporal locations, and the Charades-STA [92] have been used for text-to-clip
video retrieval. The DiDeMo dataset [10] has been introduced for temporal localiz-
ation given natural language, but has also been used for the purpose of text-to-clip
video retrieval [423]. Recently, the Hollywood 3D dataset was proposed [118] which
contains 650 stereo clips with 14 action classes, together with stereo calibration and
depth reconstruction.

2.5 Research areas

2.5.1 Object classification and recognition

A very well researched topic that includes three dimensional representation of the
world is 3D object classification and recognition. Given an object with a 3D repres-
entation, a system has to classify the category or the instance of the object. Although,
conceptually, a straight forward task, it constitutes a very complex problem because
it requires efficient and complicated representation methods that are able to capture
the high level content from the raw representation. Moreover, it is a fundamental
step in understanding the three dimensional world. As a result, it is considered a very
good benchmark for 3D world representation methods. Two large clusters of object
classification and recognition methods are identified, depending on the data they pro-
cess. These are methods that try to classify full 3D objects, usually available as CAD
models, and methods that classify RGB-D images of objects.

2.5.1.1 RGB-D object recognition

The first methods applied for this task are inspired by the imaging community. Re-
searchers were trying to develop hand-crafted descriptors that were then used to
discriminate between different objects. One of the first examples of such methods is
the work of Lai et al. [187], which extracts spin images from the depth map and SIFT
features from the RGB values. They create two different vocabularies using the Ef-
ficient Match Kernel (EMK) method. The resulted representation is fed into a linear
SVM (linSVM), a Gaussian kernel SVM (kSVM) and a random forest (RF) and com-
pare their performance on their RGB-D object dataset [187, 188]. Other works apply
the well know Kernel descriptors (KDE) [27] on several characteristics of an RGB-D
image whilst other use the Hierarchical Kernel descriptor (HKDE) [25], which applies
the kernel descriptor also on the kernel representation instead of only on the pixel
level, creating a hierarchy of kernel descriptors.

48 Acknowledgements

Method Category Instance

linSVM [187] 81.9± 2.8 73.9

kSVM [187] 83.8± 3.5 74.8

RF [187] 79.6± 4 73.1

KDE [27] 86.2± 2.1 84.5

HKDE [25] 84.1± 2.2 82.4

Upgraded HMP [28] 87.5± 2.9 92.8

CNN-RNN [342] 86.8± 3.3 -
Fus-CNN [78] 91.3± 1.4 -

Table 2.7: Performance of object recognition
methods on the RGB-D Object recognition
dataset [187]. The performance is meas-
ured by classification accuracy. Left column
describes the method, the middle column
presents the results on the category level
classification benchmark and the right the
Instance level classification performance.

With the recent success of deep
convolutional neural networks (Deep
CNN) in image analysis tasks, re-
searchers try to extend these meth-
ods to the three dimensional repres-
entations as well. One of the first
approaches towards training features
from data from more than two di-
mensional representations was done
by Bo et al.[28] who learned fea-
tures in an unsupervised manner
from RGB-D data and Socher et al.
[342] who trained a Convolutional-
Recursive neural network. Alexan-
dre [8] proposed a transfer learning
method where different networks are
used for each channel (three color
channels and depth map). Instead of
training each network from scratch
they take as initialization method the
weights of the best performing net-
work trained so far. Since their exper-
iments aim to test the increase of performance using the transfer learning method,
they do not compare to other methods. Unfortunately, they also use a subset of the
original dataset which makes the comparison to other methods impractical. Eitel et
al. [78] propose a fusion architecture, in which two networks are trained, one on the
RGB data, pre-trained on ImageNet [302] and an other on the depth map. The two
networks are combined with a late fusion to produce the final result.

We summarize the performance of all the above methods, on the RGB-D Object
recognition benchmark [187, 188] in Table 2.7. The benchmark used for this com-
parison provides two different tasks. One is the category level classification, where a
classifier is supposed to label the type of object. The second is instance level classi-
fication, where the classifier is supposed to identify the specific object from different
views and in different environments.

2.5.1.2 3D object classification

As mentioned in Section 2.2.2.1, early deep learning approaches on learning from a
three dimensional representation define two design concepts. The first approach is to

Acknowledgements 49

train CNNs straight from a 3 dimensional representation of voxel grids [419], while
the second one applies 2D projections. In the context of 3D object classification the
projection is done via a multi-view approach [353]. In order to compensate for the
increased computational complexity of three dimensional convolutional kernels, the
networks are trained on very low resolution inputs (usually do not exceed 303 voxels)
and they are comprised by a small number of layers, restricting the complexity of the
features learned. Most of the proposed methods for 3D object classification belong to
one of these two categories.

Both strategies have received a lot of attention. The 3D kernel approach was first
applied in this research area by Wu et al. [419]. They utilize a 3D Convolutional
DBN, which is trained on their newly proposed ModelNet. The idea of 3D convolu-
tional kernels is further explored with the works of Maturana and Scherer [240], who
introduced a 3D CNN as well as a new representation approach. They argued that the
voxel representation usually used disregards a lot of information. The reason is than
the value of a voxel can only be ”occupied” or ”empty”. Thus, they propose a rep-
resentation in which the voxel value represents the posterior probability of the cell
being occupied. Later, Qi et al. [280] tried to improve the 3D CNN approach in three
stages: 1) new network structure, 2) data augmentation, 3) feature pooling. They pro-
posed two new architectures. The first improves the performance by training on an
extra auxiliary task, i.e., object classification from sub-volume, and the second mim-
ics the behavior of the multi-view CNN. A specialized convolutional layer performs a
2D projection of the 3D volume and then an image CNN performs the classification.
The object is presented to the network in various orientations. The network performs
orientation pooling to obtain a orientation invariant representation. Sedaghat et al.
[323] argued that the network should, at some point, be able to estimate the pose of
an object in order to be able to classify it. Thus, they added an auxiliary task, namely
pose estimation and increased the performance of the tested networks by a signific-
ant margin on a variety of benchmarks. Hegde and Zadeh [128] fused multi-view
and 3D CNNs, whilst Brock et al. [35] defined blocks of layers based on the inception
[358] and ResNet [127] architectures, namely Voxception, Voxception-downsample
and Voxception-ResNet.

The projection to lower dimensions has also received a lot of attention. As men-
tioned above, Su et al. [353] proposed a multi-view approach, where pictures of the
object are taken from 20 different views and processed by a pre-trained, on ImageNet,
network. Shi et al. [327] proposed the projection of the shape on a cylinder, described
in Section 2.2.2.1 and Qi et al. [280] improved the multi-view approach by introdu-
cing a multi-resolution extension of data augmentation. Wang et al. [392] argued that
the view pooling approach of the multi-view strategies fails to take into account im-
portant information from different views since only one survives the pooling. In order

50 Acknowledgements

Method Type ModelNet10 ModelNet40

shapeNet [419] 3D 83.54 77.32
MV-CNN [353] 2D proj. - 90.1
VoxNet [240] 3D 92.0 83.0
DeepPano [327] 2D proj. 88.66 82.54
MVCNN-MultiRes [280] 2D proj. - 91.4
MO-AniProbing [280] 3D - 89.9
ORION [323] 3D 93.9 89.4
FusionNet [128] Both 93.11 90.8
VRN [35] 3D 93.61 91.33
VRN-Ensemble [35] 3D 97.14 95.54
Wang et al. [392] 2D proj. - 93.8

Table 2.8: Performance of object classification methods on the ModelNet 10 and
40 benchmarks [419]. The performance is measured by classification accuracy. Left
column describes the method, the middle column presents the results on the Model-
Net10 classification benchmark and the right one the performance on the ModelNet40
classification benchmark.

to alleviate this issue they introduced a recurrent clustering and pooling layer based
on graph theory. With their approach they achieved state of the art performance on
the ModelNet 40 dataset.

The performance of the above methods is summarized on Table 2.8. Although, for
the most part multi-view approaches were outperforming the voxel-based approaches,
the work of Brock et al. [35] with the Voxception-ResNet approach managed to out-
perform all multi-view approaches. Nonetheless, their strategy needs to train multiple
big networks from scratch whilst the work of Wang et al. [392] only needs to fine tune
the networks lowering the training time by multiple orders of magnitude while still
having competitive performance.

2.5.2 Semantic segmentation

An important research area using such three dimensional datasets is semantic seg-
mentation. Semantic segmentation or scene labeling is the procedure of labeling every
pixel, or voxel, in an image, as seen in Figures 2.9 and 2.10. Most methods tackle this
problem by utilizing only RGB images. Since depth sensors became widely accessible,
people started to use this extra information in order to make better predictions. The

Acknowledgements 51

methods that utilize these features are heavily influenced by their RGB-only counter-
part. In this work we will only focus on the methods that utilize the depth information
since we are interested in applications and methods that deal with higher than two
dimensional data. Most traditional methods tackle this problem by utilizing hand-
crafted features, introduced in Section 2.3, in a Conditional Random Field (CRF) or
Markov Random Field (MRF) model. The usual pipeline is to over segment the image
in super pixels, extract features from the superpixels and then use them to construct
unary and pair wise potentials for the CRF or MRF model. With the success of deep
learning in image classification, researchers try to adapt these methods for three di-
mensional semantic segmentation as well.

2.5.2.1 Traditional approaches

The first to tackle this problem in the higher than two dimensional representations
are Silberman and Fergus [334]. In their work they use a CRF-based approach and
define unary potentials encoding spatial location and pairwise potentials encoding
relative depth. The unary potentials are learned from a neural network using local
descriptors. They evaluate their approach on their NYUv1 dataset, which they con-
struct for the purpose of their project. Moreover, they test different descriptors, both
image and depth descriptors, and compare their performance. They extended their
work [335], by introducing a new extended version of NYU, NYUv2, which is still one
of the most used datasets for benchmarking scene segmentation algorithms. Couprie
[57] explored other CRF-like approaches in order to improve the computational com-
plexity of the algorithm. Ren et al. [288] improved the segmentation performance by
using kernel descriptors [26, 27] and by combining superpixel MRF with segmenta-
tion trees for contextual modeling.

Koppula et al. [180] oversegmented a 3D pointclound [80] based on smoothness
and surface continuity. The segments are then labeled using an MRF. Gupta et al.
[116, 115] introduced gravity direction prediction and combine it with appearance
and depth contours coupled with either RDFs or SVMs. Hermans et al. [133] proposed
an RDF classification which is refined using a Dense CRF.

Deng et al. [65] argue that although hand-crafted features have achieved much
progress, the geometric relationship of local and global object spatial configurations
have not been studied, leaving room for improvement. They propose a method that
jointly considers local and global spatial configurations by adding mutex constraints
on Gupta et al.’s method [116].

[351, 352] proposed a method for real time semantic segmentation of RGB-D
videos. Their method estimates camera pose by using simultaneous localization and
mapping (SLAM) and recognize and segments object classes in the image, using a

52 Acknowledgements

GPU implementation of random forests. Müller and Behnke [251] used the output
of this method as a feature for unary node potentials on a CRF model. For pairwise
depth-sensitive features they use a number of features such as contrast, vertical align-
ment, depth difference and more. The unary and pairwise functions are learned using
structural support vector machines (SSVM).

[174] propose a new CRF model that combines appearance and geometric inform-
ation in various levels of the models hierarchy. They introduce a new region growing
algorithm to extract fundamental geometric planes, and extract appearance and geo-
metric unary potentials from these planes. More information is included by adding
pairwise potentials between these planes and extra higher order potentials defined
on cliques, which encompass planar patches.

2.5.2.2 Deep learning

As mentioned above, a lot of methods that utilize deep learning have been also de-
veloped. Within this category we can identify two clusters of methods. The first rep-
resents a transition from the aforementioned traditional methods to the pure deep
learning ones. In these the networks are used in order to extract features that are
then used to classify segments or superpixels either using graph models like CRF and
MRF or some other classifiers. Some examples are the works of Couprie et al. [58]
who adopted a multi-scale approach by adapting previous work in semantic segment-
ation [85, 86], Höft et al. [142] and Wang et al. [391] who proposed a multi-modal
unsupervised method that would automatically learn rich high and low-level features
from an auto-encoder.

The second cluster is initiated by the work of Long et al.[224], who introduced
the Fully Convolutional Networks (FCN) in order to produce per pixel, dense, classi-
fications. These networks are end-to-end trainable and do not rely on other methods.
Eigen and Fergus [77] trained a multi-scale convolutional neural network to pre-
dict the depth-map, surface normals and provide semantic segmentation. Wang et
al. [401] designed two convolutional and deconvolutional networks, one trained on
depth values and one on RGB values. These networks explicitly try to learn common
features between different modalities (see Section 2.2.2.2). Li et al. [213, 212] pro-
posed an LSTM-CNN approach called LSTM-CF. They first transform the depth data
to the HHA form [117]. They use three LSTM networks, namely one for each modal-
ity, that explore vertical contexts. The results are concatenated and fed into the last
LSTM network which performs bi-directional propagation along the horizontal direc-
tion. Hazirbas et al. [125] argue that the aforementioned method is very complicated,
resulting in inefficient training. Moreover, they argue that the HHA representation of
the depth information is very computationally expensive to compute whilst it does

Acknowledgements 53

not provide any new information over the depth channel. In order to gain as much
information possible from the depth channel without increasing the preprocessing
computational complexity or the complexity of the model they propose the FuseNet.
They extended the work of Noh et al. and Badrinarayanan et al. [258, 14] to also
utilize depth information, by having two encoder parts, one processing the RGB data
and one the depth data. Every few layers of the encoders, the feature maps of the
depth data are inserted to the RGB processing network.

Park et al. [271] adapted the very successful work of Lin et al. [215], RefineNet, to
use RGB-D data. They do that by introducing the multi-modal feature fusion (MMF)
block which fuses feature maps from an RGB specific and a depth specific network.
These fused representations are used as input to the refine blocks of RefineNet [215].
Valada et al. [383] used the SSMA (Section 2.2.2.2) module to fuse geometric and
color features, while Deng et al. [64] used the interaction stream that they intro-
duced, described in Section 2.2.2.2 as encoders. The outputs of the streams are fused
together and sent to a decoder to predict the class labels. Qi et al. [281] introduced
a method which combines the two methodologies. They do that by utilizing graph
neural networks (GNN) instead of a CRF or MRF. They experiment with unary po-
tentials extracted from a pretrained VGG as well as a ResNet. Moreover, as an update
function for the GNN they try both MLP and an LSTM.

The performance of the aforementioned methods on the NYU benchmarks [334,
335] can be seen in Table 2.9. For all benchmarks, the highest performance is reported
by deep learning methods, and more specifically the second cluster of the deep learn-
ing methods. Nonetheless, the best performing traditional approaches still outperform
the first cluster of the deep learning approaches. Table 2.10a shows the performance
evaluation of the methods on the SUN-RGBD dataset and 2.10b on the ScanNet. From
both tables, it can be seen that the RDF-Net of Park et al. [271] outperforms all other
methods by a large margin, on every benchmark tested.

2.5.3 Object detection

Object detection is a conceptually similar task to scene semantic segmentation. The
main difference between the two fields is that object detection does not classify all
data points in a scene. Instead, the scene is parsed in order to detect the position
of specific objects. Traditional methods that tackle these problems mainly depend on
template matching [112, 366, 367].

2.5.3.1 Traditional methods

Template matching methods are very popular due to the absence of need for a large
annotated training set and training times. On the other hand, a system that is able

54 Acknowledgements
M

ethod
Year

Shallow
/

D
eep

N
YU

v1
N

YU
v2

4
C

lasses
40

C
lasses

pixacc
pixacc

clacc
fw

avacc
avacc

pixacc
clacc

SIFT+
M

R
F

[334]
2011

Shallow
56.6

±
2.9

-
-

-
-

-
-

Silberm
an

et
al.[335]

2012
Shallow

-
58.6

-
-

-
-

-
K

D
ES

[288]
2012

Shallow
*76.1

±
0.9

-
-

-
-

-
-

G
upta

et
al.[116]

2013
Shallow

-
-

-
45.1

26.1
57.9

*28.4
H

erm
ans

et
al.[133]

2014
Shallow

59.5
69.0

-
-

-
-

-
R

F
+

SP
+

C
R

F
[251]

2014
Shallow

-
*72.3

*71.9
-

-
-

-
K

han
et

al.[174]
2014

Shallow
-

69.2
65.6

-
-

-
-

G
upta

et
al.[115]

2015
Shallow

-
-

-
45.9

26.8
58.3

-
D

eng
et

al.[65]
2015

Shallow
-

-
-

*48.5
*31.5

*63.8
-

Stückler
et

al.[352]
2015

Shallow
-

70.9
67.0

-
-

-
-

C
ouprie

et
al.[58]

2013
D

eep
-

64.5
63.5

-
-

-
-

R
-C

N
N

[117]
2014

D
eep

-
-

-
47.0

28.6
60.3

35.1
FC

N
[224]

2015
D

eep
-

-
-

49.5
34.0

65.4
46.1

Eigen
and

Fergus
[77]

2015
D

eep
-

83.2
-

51.4
34.1

65.6
45.1

W
ang

et
al.[401]

2016
D

eep
78.8

-
74.7

-
-

-
47.3

R
D

F-152
[271]

2017
D

eep
-

-
-

-
50.1

76.0
62.8

3D
G

N
N

[281]
2017

D
eep

-
-

-
-

43.1
-

59.5

Table
2.9:

Perform
ance

evaluation
of

different
m

ethods
on

the
N

YU
datasets

(v1
&

v2).First
colum

n
refers

to
the

m
ethods

and
the

papers
thatpresentthem

.The
second

colum
n

is
the

year
thatthe

m
ethods

w
here

published.The
third

colum
n

show
s

w
hether

the
m

ethod
is

follow
s

a
traditional

approach,
or

shallow
learning,

or
a

deep
learning

approach.
Fourth

colum
n

show
s

the
per

pixelaverage
accuracy

on
the

N
YU

v1
dataset

using
all13

classes.The
rest

of
the

colum
ns

show
perform

ance
results

on
the

N
YU

v2
dataset.

The
fifth

and
sixth

colum
n

refer
to

the
4-class

segm
entation

task
w

hilst
the

rest
on

the
40-

class
segm

entation
task

[335].pixacc
refers

to
the

average
per

pixelaccuracy,clacc
refers

to
the

average
per

class
accuracy,

fw
avacc

is
the

frequency
w

eighted
average

accuracy
and

avacc
refers

to
the

m
eanIU

,
or

the
m

ean
Intersection

over
U

nion
[125].W

e
highlight

the
per

category
(shallow

or
deep)

best
perform

ance
w

ith
a

*
and

the
over-allbest

w
ith

bold
(in

w
hich

case
the

asterisk
is

om
itted).

Acknowledgements 55

Ta
bl

e
2.

10
:

Se
m

an
ti

c
se

gm
en

ta
ti

on
pe

rf
or

m
an

ce
ev

al
ua

ti
on

of
di

ff
er

en
t

m
et

ho
ds

.T
he

fir
st

co
lu

m
n

re
fe

rs
to

th
e

m
et

ho
d

an
d

th
e

se
co

nd
sh

ow
s

th
e

ye
ar

th
e

m
et

ho
d

w
as

pu
bl

is
he

d.
Th

e
re

st
of

th
e

co
lu

m
ns

sh
ow

th
e

pe
rf

or
m

an
ce

re
su

lt
s

on
th

e
re

sp
ec

ti
ve

be
nc

hm
ar

k.
pi

xa
cc

re
fe

rs
to

th
e

av
er

ag
e

pe
r

pi
xe

la
cc

ur
ac

y,
cl

ac
c

re
fe

rs
to

th
e

av
er

ag
e

pe
r

cl
as

s
ac

cu
ra

cy
an

d
av

ac
c

re
fe

rs
to

th
e

m
ea

nI
U

,
or

th
e

m
ea

n
In

te
rs

ec
ti

on
ov

er
U

ni
on

[1
25

].
W

e
hi

gh
lig

ht
th

e
be

st
pe

rf
or

m
an

ce
w

it
h

bo
ld

.
It

sh
ou

ld
be

no
te

d
th

at
al

lm
et

ho
ds

sh
ow

n
in

th
is

ta
bl

e
ar

e
de

ep
le

ar
ni

ng
m

et
ho

ds
.

M
et

ho
d

Ye
ar

SU
N

-R
G

B
D

cl
ac

c
av

ac
c

pi
xa

cc

*F
C

N
[2

24
]

20
15

41
.1

3
30

.4
6

68
.3

5
LS

TM
-C

F
[2

12
]

20
16

48
.1

-
-

Fu
se

N
et

-S
F5

[1
25

]
20

16
48

.3
37

.2
9

76
.2

7
R

D
F-

15
2

[2
71

]
20

17
60

.1
47

.7
81

.5
SS

M
A

[3
83

]
20

18
-

38
.4

-

(a
)

Pe
rf

or
m

an
ce

ev
al

ua
ti

on
of

di
ff

er
en

t
m

et
ho

ds
on

th
e

SU
N

-R
G

B
D

37
cl

as
s

be
nc

hm
ar

k
[3

44
].

*F
C

N
re

fe
rs

to
th

e
w

or
k

of
[2

24
]

bu
t

th
e

pe
rf

or
m

an
ce

on
th

e
SU

N
-R

G
B

D
is

re
po

rt
ed

by
[3

83
].

M
et

ho
d

Ye
ar

av
ac

c

SS
M

A
[3

83
]

20
18

57
.7

R
FB

-N
et

[6
4]

20
19

59
.2

(b
)

Pe
rf

or
m

an
ce

ev
al

ua
ti

on
of

di
ff

er
en

tm
et

ho
ds

on
th

e
Sc

an
N

et
da

ta
se

t
[6

1]
as

re
po

rt
ed

by
th

e
be

nc
hm

ar
k

w
eb

si
te

.

56 Acknowledgements

to detect objects from many classes has to try and fit many templates which makes
the algorithms slow for real time applications such as robotics [135]. The pipeline
of most of template matching method can be divided into four steps [112]: 1) fea-
ture extraction, where local features are extracted from template object points, 2)
feature matching where features from the new scene are corresponded to the lib-
rary (template) features. There are several matching strategies, such as threshold
based, nearest neighbor approach (NN) based and nearest neighbor distance ratio
(NNDR) based [247, 112]. An important step of the matching step is the strategy
with which the feature library is searched, such as the naive brute force search, kd-
trees [113, 109], hash tables [91] and more. Then, each match is used for a 3) hypo-
thesis generation where the match is voting for an object position and pose. Popular
methods include pose clustering [245, 72, 113, 109, 448], the RANSAC algorithm
[269, 270], hough transform [178, 375] and more. Finally, all hypotheses are lever-
aged in the final 4) hypothesis verification step. For a more comprehensive study
on traditional methods that perform object detection and recognition the reader is
referred to [112].

In recent years, learning based methods started getting attention for the problem
of 3D object detection and 6 DoF pose estimation. These methods rely on the size of
the dataset to provide both positive and negative examples for objects, contrary to
template methods that only require positive examples, and thus are more difficult to
generalize to new types of scenes. For example, Rios-Cabrera and Tuytelaars [292]
extended Hinterstoisser et al.’s [135, 134] method and learn the templates in a dis-
criminative fashion. Since the pipeline of this method is mostly a template method
we consider it a “learning boosted” template method. More representative works of
learning based method are Song et al.’s [345] sliding shapes method, where a sliding
window is fed into an Exemplar-SVM for each object and Bonde et al.’s [30] work
who followed a “sliding cuboid” approach coupled with a random forest classifier.
Tejani et al. [366, 367] proposed a novel method using latent-class hough forests to
detect objects in a 3D scene. The descriptions of objects are used in order to train a
multi class hough forest. Recently, Hinterstoisser et al. [137] extended the point pair
feature (PPF) [72], by introducing novel sampling and voting schemes that are not
influenced as much by occlusion.

2.5.3.2 Deep learning

Besides the traditional methods, people have tried to adapt the deep learning meth-
ods to perform object detection and 6 DoF pose estimation as well. One of the first
approaches was introduced by Wohlhart et al. [414]. They adapted the template ap-
proach to take advantage of the discriminative power of CNNs. In their approach they

Acknowledgements 57

trained a CNN to produce a patch descriptor. The training is done by their triplet error
function which leverages between similar and dissimilar objects. This is accomplished
by having two terms on the error function. One term punishes descriptor difference
of the same object with different background noise and clutter whilst the other pun-
ishes small distance of descriptors of different objects. This descriptor is then used to
describe both the templates and image patches. The detection and pose estimation
is done by the k Nearest Neighbors approach. In order to introduce scale invariance,
they adjust the size of the patch according to the distance of the center of the patch
to the camera so that the “real world” size of the patch is always the same. Balntas
et al. [16] extended the aforementioned method by adding one more term to the
error function that takes into account the pose of the object as well, punishing simil-
ar/dissimilar descriptors for different/same pose respectively. With this method they
achieved state of the art results on a modification [414] of the LINEMOD dataset
[135].

Krull et al. [185] proposed an analysis-by-synthesis method for 6DoF pose es-
timation. Their method uses a CNN to calculate an energy function which compares
an scene object estimate with a rendered version of the same object from the es-
timated view point. Doumanoglou et al. [71] followed a similar approach to that of
[366, 367], but instead of the LINEMOD [135] descriptor, they trained a sparse AE to
learn a discriminative representation. Kehl et al. [172], inspired by [414], introduced
a new method, in which they applied a similar approach but instead of training a
CNN on positive and negative objects, they used unsupervised learning with a CAE.
They argue that by using unsupervised learning, negative examples are not needed
any more and the method becomes less dataset-dependent.

Although there are some datasets that are commonly used, such as [135], a lot
of different variations of it as well as different datasets are proposed and used for
evaluation, making a global comparative analysis very difficult.

2.5.4 Human action classification

To the best of our knowledge, human action classification is the most researched
area concerning image sequences, or videos. Given a short video clip that contains
humans performing an action, an automated system has to be able and classify the
given action. Depending on the dataset these actions might be single human actions,
like standing up or opening door, single human actions in a sport environment, or
person to person actions, like hugging or kissing. Like with many fields that deal with
visual data, early approaches include template matching while a bulk of traditional
approaches define interest points in order to describe small clips and using these in-
terest point and special descriptors try to classify the actions. More recent approaches

58 Acknowledgements

try to apply deep learning methods to this field as well.

2.5.4.1 Traditional methods

As stated above the very early approaches are based on templates [29, 326, 325].
Unfortunately these methods can not define single templates for each activity which
renders them insufficient [295]. Thus, researchers turned their attention to other
models, like the Hidden Markov Model (HMM), Hidden Semi-Markov Model (HSMM),
Conditional Random Fields (CRF) and support vector machines (SVMs). Another
group of methods extract a representation that is derived using the STIP detectors
and descriptors introduced in Section 2.3.3. Finally, a group of works exploit traject-
ories of points in order to describe and classify actions [237, 244, 356, 395, 396, 397],
as described in Section 2.3.3.4.

Yamato et al. [424] were the first to apply HMM on the action classification prob-
lem. The method first extracts the mesh feature vector [424] for every frame I. Then
all features are quantized to codewords. Each frame codeword is then used as input
of the HMM. Oliver et al. [263] follow a different approach. They first extract the
human positions and their trajectories and utilize a Coupled HMM (CHMM) in order
describe pairwise human interactions. Wang and Mori [406] utilized the hidden CRF
(HCRF) in order to classify actions. The optical flow based descriptor of [76] is used
to describe each frame. Song et al. [347] proposed a hierarchical recursive sequence
representation coupled with a CRF model for sequence learning. In order to retrieve
the summarized representation for the next level in the hierarchy, the samples are
grouped adaptively, i.e., observations are grouped together when they have similar
semantic labeling by the CRF model in the previous layer. Fernando et al. [88] tried
to model the evolution of the actions in an video. In order to do that he used the
“learning to rank” framework on the Fisher Vector representation of each frame.

As mentioned above, many methods followed the classical approach for image
classification, utilizing interest points. Schuldt et al. [318] proposed a local SVM ap-
proach combined with the BoF representation in order to classify single human ac-
tions in videos. Later Laptev et al. [194] test both HoG and HoF to describe the STIPs,
as well as a number of different grids for accumulating histograms, and created a BoF
representation of the clips. Finally, the clips are classified with a local-SVM [441].
From the combinations that they tested the best performing one was the HoF fea-
tures in combination with a three way vertical split on the spatial dimensions and no
temporal split of the movie clip.

Sun et al. [356] were one of the first to explore trajectories. They extract SIFT
trajectories from the clips and measure the average SIFT descriptor along those tra-
jectories. Wang and Schmid [397] used dense trajectories with corrected camera mo-

Acknowledgements 59

tion, encodes them using Fisher Vectors and finally classify them using a linear SVM.
Kovashka and Grauman [182] proposed a hierarchical feature approach. They cre-
ated different vocabularies for a BoF representation for multiple scales. From all the
aforementioned methods, the only approach that still stands out today and can be
compared to the state of the art deep learning methods is the trajectory based im-
proved Dense Trajectories (IDT) of Wang and Schmid [397] and thus it is the only for
which we report results.

2.5.4.2 Deep learning

Many deep learning approaches have been proposed for tackling the HAR task. The
main bulk of works can be divided in three schemes, namely full 3D CNNs, two-stream
networks and CNN-LSTM approaches. Regardless of the class of the method, besides a
small number of works, the input to the networks is a small part of the video, usually
referred to as clip. The length of these clips can vary from five to sixteen frames. A
more detailed overview of the methods is given bellow.

To the best of our knowledge the first to apply deep learning on HAR were Taylor
et al. [363]. In their work they proposed a special RBM, the convolutional gated
RBM (convGRBM), which is a generalization of the gated RBM (GRBM) [242]. Their
method alleviates a limitation of GRBM, the fact that it can not scale up to large
inputs. Their method shares weights in all locations of an image and thus can scale to
large inputs. As an old approach, this work does not fit with our classification scheme.

Ji et al. [160] proposed the first 3D CNN for action recognition. Their network has
five 3D convolutional layers, one 2D convolutional layer and the output, classification
layer. Since their network takes as an input only seven frames, it can not take into ac-
count actions that span for a longer period. Thus, they use a feature vector from a
long span of frames, i.e., the BoW representation using SIFT features of the frames,
as auxiliary input through a hidden layer. In a later work, Tran et al. [379] delved
into optimizing the architecture of 3D convNets for spatio-temporal learning. Their
experiments indicated that uniform kernels (3x3x3) give the best overall perform-
ance. Karpathy et al. [169] did a detailed research on what architecture can exploit
the time-dimension better. They tested four different strategies, namely single frame
network, early, late and slow fusion networks. Interestingly enough, the single frame
network has similar performance to the rest, which means that these first approaches
towards spatio-temporal understanding using deep CNNs are not able to exploit the
temporal dimension as well.

Baccouche et al. [13] also proposed a 3D convolutional neural network. They
deal with the long-term actions by building an RNN-LSTM network which takes as
input the output of the 3D CNN network. Donahue et al. [70] proposed a very similar

60 Acknowledgements

architecture, stacking an LSTM on top of a CNN network and calling the complete
architecture Long-term Recurrent Convolutional Neural network (LRCN). The two
main differences with the model of [13] are that they train their network end-to-end
and that the CNN is pre-trained on ImageNet.

Simonyan and Zisserman [337] proposed a new strategy, the two-stream net-
works. In this architecture one network processes the RGB values of a single frame
whilst an other processes 10 stacked frames of optical flow fields. The spatial network
is first pre-trained on ImageNet and thus increasing the performance of the approach.
The final decision on the class of a clip is done by averaging the classification results
of the separate networks. Wang et al. [403] identified as drawbacks of deep learning
approaches on HAR the lack of large data and the limitation of the complexity and
depth of the networks applied. In order to alleviate these issues they proposed some
“good practices” for training very deep two-stream networks. The first important step
is that the temporal network is also pre-trained on images and thus able to be much
deeper. Second they utilized state of the art very deep networks, (VGG19 [338] and
GoogleNet [359]) for both streams. Furthermore they proposed more data augmenta-
tion techniques for the videos and applied smaller learning rates. Feichtenhofer et al.
[87] identified two drawbacks with the two-stream strategy as applied until then. (i)
It was not able to learn correlations between spatial and temporal features since the
fusion happened after the classification and (ii) the temporal scale was limited since
the temporal network only considered 10 frames. Also inspired by the work of [254]
they proposed a temporal fusion two-stream network. They applied feature map fu-
sion before the last convolutional layer. They fused the two streams and activations
from several frames with a 3D convolutional layer followed by a 3D pooling layer.
Carreira and Zisserman [43] proposed to inflate existing architectures from images to
three dimensions. They do that not only in terms of architecture but also inflate the
trained parameters. Given this starting point they trained two networks, one on RGB
values and one on optical flow. Finally, they averaged the outputs in order to provide
a unified prediction.

Ng et al. [254] followed a different approach, where they make predictions while
processing the whole video sequence rather than short clips. They tested several ar-
chitectures including two-stream networks, LSTM and other temporal feature pooling
mechanisms. Applying max-pooling over the temporal dimension in the last convolu-
tional layer (i.e., convPooling) and the LSTM are the two best performing strategies
for temporal handling. Their convPooling network takes as input 120 frames whilst
the LSTM 30 and both give similar results. In similar work, Varol et al. [384] proposed
a Long-Temporal Convolutional network (LTC). Their network is processing 60 frames
per video clip. They defined a number of 3D convolutional networks, each processing
different resolutions and modality, i.e., RGB and optical flow. The classification scores

Acknowledgements 61

M
et

ho
d

Ye
ar

+
ID

T
R

G
B

Fl
ow

U
C

F-
10

1
H

M
D

B
-5

1

ID
T

[3
97

]
20

13
-

-
-

86
.4

61
.7

Tw
o-

St
re

am
[3

37
]

20
14

N
o

Ye
s

Ye
s

88
.0

59
.4

K
ar

pa
th

y
et

al
.[

16
9]

,S
po

rt
1M

pr
e-

tr
ai

n
20

14
N

o
Ye

s
N

o
65

.2
-

TD
D

[4
02

]
20

15
N

o
Ye

s
Ye

s
90

.3
63

.2
C

3D
en

se
m

bl
e

[3
79

],
Sp

or
t

1M
pr

e-
tr

ai
n

20
15

N
o

Ye
s

N
o

85
.2

-
Ve

ry
de

ep
tw

o-
st

re
am

[4
03

]
20

15
N

o
Ye

s
Ye

s
91

.4
-

Tw
o-

st
re

am
fu

si
on

[8
7]

20
16

N
o

Ye
s

Ye
s

92
.5

65
.4

LT
C

[3
84

],
K

in
et

ic
s

pr
e-

tr
ai

n
20

17
N

o
Ye

s
Ye

s
91

.7
64

.8
Tw

o-
st

re
am

I3
D

[4
3]

,K
in

et
ic

s
pr

e-
tr

ai
n

20
17

N
o

Ye
s

Ye
s

97
.9

80
.2

(2
+

1)
D

[3
80

],
K

in
et

ic
s+

Sp
or

ts
1M

pr
e-

tr
ai

n
20

18
N

o
Ye

s
Ye

s
97

.3
78

.7

TD
D

+
ID

T
[4

02
]

20
15

Ye
s

Ye
s

Ye
s

91
.5

65
.9

C
3D

en
se

m
bl

e
+

ID
T

[3
79

],
Sp

or
t

1M
pr

e-
tr

ai
n

20
15

Ye
s

Ye
s

N
o

90
.1

-
D

yn
am

ic
Im

ag
e

N
et

w
or

ks
+

ID
T

[2
3]

20
16

Ye
s

Ye
s

N
o

89
.1

65
.2

Tw
o-

st
re

am
fu

si
on

+
ID

T
[8

7]
20

16
Ye

s
Ye

s
Ye

s
93

.5
69

.2
LT

C
+

ID
T

[3
84

],
K

in
et

ic
s

pr
e-

tr
ai

n
20

17
Ye

s
Ye

s
Ye

s
92

.7
67

.2

Ta
bl

e
2.

11
:

Pe
rf

or
m

an
ce

ev
al

ua
ti

on
of

di
ff

er
en

t
m

et
ho

ds
on

th
e

U
C

F-
10

1
[3

48
]

an
d

H
M

D
B

-5
1

[1
86

]
da

ta
se

ts
.

Th
e

fir
st

co
lu

m
n

re
fe

rs
to

th
e

m
et

ho
d

an
d

th
e

se
co

nd
sh

ow
s

th
e

ye
ar

th
e

m
et

ho
d

w
as

pu
bl

is
he

d.
Th

e
th

ir
d

co
lu

m
n

sp
ec

ifi
es

w
he

th
er

ID
T

is
us

ed
in

co
m

bi
na

ti
on

w
it

h
th

e
ne

tw
or

ks
.

Th
e

fo
rt

h
an

d
fif

th
co

lu
m

n
sh

ow
w

he
th

er
th

e
m

et
ho

d
is

ut
ili

zi
ng

R
G

B
an

d
op

ti
ca

lfl
ow

in
pu

ts
re

sp
ec

ti
ve

ly
.T

he
si

xt
h

an
d

se
ve

nt
h

co
lu

m
ns

sh
ow

cl
as

si
fic

at
io

n
ac

cu
ra

ci
es

of
th

e
m

et
ho

ds
on

th
e

U
C

F-
10

1
an

d
H

M
D

B
-5

1
da

ta
se

ts
,r

es
pe

ct
iv

el
y.

62 Acknowledgements

of all networks are averaged in order to produce the final prediction.
Wang et al. [402] proposed the trajectory-pooled CNNs (TDDs). Inspired by the

work of [397] and the lack of CNNs in exploiting long term temporal relationships,
they proposed the Trajectory pooled Deep-Convolutional Descriptors (TDDs), where
they compute descriptors by computing trajectories of CNN features maps using the
method of [397] and encoding them using Fisher Vectors.

Tran et al. [380] proposed to decompose the spatial to the temporal convolution,
and thus creating the (2+1)D convolution which is a 2D spatial convolution followed
by a 1D convolution exploiting the temporal dimension. Their top performing network
is a (2+1)D, two stream network which has a much lower complexity than the top
performing 3D networks, while keeping the performance competitive.

We summarize the results of some of the above methods on Table 2.11. There are
several conclusions we can derive from these results. Simple 3D networks seem to be
outperformed by CNN-LSTM as well as two stream networks, but the combination of
them outperform the ‘single solution’ networks. Moreover, pretraining on large data-
sets with not very accurate annotation, such as Sports 1M [169], benefit the quality
of the networks. Last but not least, as with many applications, the best performing
traditional approach, IDT [397], is outperformed by most deep recent deep learn-
ing approaches. Nonetheless, the combination of IDT and networks produces better
results, by a constantly large margin, driving us to the conclusion that the high-level
hand crafted features seem to capture information that is not learned by the networks,
rendering them complementary.

2.5.5 Other areas

There are numerous more research areas and applications that deal with high dimen-
sional data. Some examples are:

2.5.5.1 Outdoor object detection

Outdoor object detection is a very well studied research topic with many real life
applications, like autonomous vehicles and security. Some more specific examples
of object detections are pedestrian detection, vehicle detection, like cars motorcycles
and bicycles. Traditional methods first segmented the input point cloud and then clas-
sified the segments with various methods [365, 364, 393, 21]. For example, Behley
et al. [21] used the BoW model to describe each segment and used it to classify it.
State of the art methods take advantage of deep neural networks. Some examples
are [278, 82]. Qi et al. [278] uses the pointnet++ as a base, whilst [82] utilizes 3D
convolutional kernels and [207] utilizes a 2D FCN with the depth data as an extra

Acknowledgements 63

modality. To the best of our knowledge [278] achieves the state of the art performance
on the KITTI benchmark [98].

2.5.5.2 Landing zone detection.

This is a very important task for autonomous rotorcrafts. It provides the ability to
localize possible landing locations. Methods that perform such a task usually depend
on LiDAR [320] data. Traditional approaches depend simple geometric properties
such as terrain roughness and slope [410, 315, 165, 407]. The performance of such
methods lowers significantly once the terrain is covered by low vegetation. Maturane
and Scherer [239] propose a deep learning approach which utilizes a CNN with three
dimensional convolutional kernels which predicts which parts of the seen terrain are
safe for landing and which are not.

2.5.5.3 Structure from motion (SfM) and Simultaneous localization and map-
ping (SLAM)

These are very challenging tasks. SLAM is the process where the algorithm is trying
to identify the position of the camera or sensor in the environment while constructing
a map of the environment. SLAM is a very challenging while very interesting and im-
portant task in the field of robotics as well as augmented reality. Traditionally people
were trying to match new environment parts to the constructed map by matching
features (usually hand crafted) and RANSAC like algorithms. Some representative
work can be found in [350, 80, 173, 81, 411, 252]. SfM is the process of building a
3D representation of a scene/environment of a camera by using multiple views, and
more specifically views from the same camera as it moves in the space. It usually is
part of SLAM since it tries to built a 3D representation of the local environment of
the camera. A comprehensive survey on SLAM and SfM was recently published by
Saputra et al. [312].

2.5.5.4 Action Recognition in 3D videos

This is a relatively new research field. As with video action recognition the target
of the task is the classification of human actions in different kind of categories. The
methods applied in this field can be divided into two categories depending on the type
of data they process. More precisely, they process skeleton data or depth data [284].
Also methods that process color-data have been proposed but since these are much
closer to the 2D Video action recognition, described in Section 2.5.4, than the rest of
these methods we do not consider it as part of this section. Skeleton-based approaches
first extract the joints positions, usually using the OpenNI tracking framework [332],

64 Acknowledgements

and then either use them [427], or information from the area around them [400,
399], to describe the motion. Depth-based approaches use either silhouettes [208,
385] or 4D histogram descriptors [284, 265, 428] in a BoW framework to describe
each action and then try to classify them. In recent years plenty of DL approaches have
been proposed as well. They usually utilize an RNN-LSTM on joints and skeletons
[324, 73, 219] or process directly the depth data in time [404]. For a good overview
of deep learning approaches the user is referred to [446].

2.6 Discussion

Although this field has come a long way, there are still a lot of challenges that the re-
searchers face. Since most of these methods are generalized from successful methods
developed for two dimensional images, all limitations and problems that arise when
dealing with two dimensional images exist here as well. For example, when it comes
to deep learning, the models are typically not understood and treated as black boxes
[110]. Although researchers know how these models update their parameters and
learn from the data, retrieving the information that they have learned is still an open
research area. More specifically, although there has been done research on feature
visualization [440, 336, 434], it is still unknown how to discover or understand what
the networks learn and how they behave. Another inherent limitation is the typical
lack of rotation invariance of the models, although some methods try to work around
it. For example, Cheng et al. [49] train a specific layer to be orientation invariant.
They do that by adding a penalty term to the loss function to force the layer to be-
come rotation invariant. Although the result of the specific layer is rotation invariant
the rest of the network is not. In cases where information from multiple layers is
needed, such as semantic segmentation, this solution does not suffice. Another ex-
ample is the work of Marcos et al. [234]. They rotate the kernels and convolve with
the rotated kernels and thus obtain responses from all possible orientations. The rota-
tion invariance of this strategy is also limited since the information of the orientation
is getting lost during the orientation pooling operation.

Besides the inherited difficulties from the two dimensional case, other problems
arise when trying to extrapolate to more dimensions, either when the increase is
an increase of physical dimensions or if it is an increase of available modalities. A
common limitation to all state of the art methods that deal with higher than two
dimensional data is the high demand of resources. This limits the possible size of the
deep learning methods. Moreover, as shown from the two dimensional case, these
methods highly depend on the complexity and size of the resulted models [127, 358,
110, 146], which combined with the increased complexity of the data as well as the

Acknowledgements 65

increase of demand renders it very difficult to efficiently apply them.
According to the results shown in this chapter, the state of the art performance

on volumetric data is achieved using deep learning models. As described above, these
methods have many drawbacks, both inherited from the drawbacks of deep learning
in general as well as drawbacks regarding computational complexity. Moreover, it is
still unclear which strategy for dealing with the higher dimensionality of the data is
better. To be more precise it is still unclear whether reducing the dimensionality to two
is better than using three dimensional kernels. In the later case it is still unclear which
representation of the data works best. All these questions are left unanswered whilst
the computational complexity of the models together with the lack of very large scale,
high dimensional, diverse and well annotated datasets make the unbiased comparison
between approaches very hard.

Difficulties arise when processing spatio-temporal data as well. Although current
results show that methods that utilize optical flow outperform methods that do not, it
is still unclear how to optimally include this information. Moreover, the difference of
space and time is still a challenging concept. It is still not clear how to process them
in order to acquire as much information as possible from both spatial contexts as well
as their temporal interactions. Furthermore, most approaches process only short term
interactions and only a few process more that 16 frames long clips, and thus encoding
long term interactions [384]. Processing many frames though becomes very compu-
tationally expensive and thus the question of how to optimally perform temporal and
spatial pooling arises. Although there has been significant development in the field
the long term impact and directions for continued advances are still unclear. Some of
the limiting factors being the fundamental theory for understanding the strengths and
limitations of the networks, approaches for learning with small training sets and/or
the availability of accurately annotated, diverse and large scale real life datasets.

2.6.1 Major challenges

In summary, the major challenges as described by the research community are:

• Deep learning in high dimensional data is very computationally and memory
expensive, limiting the capabilities of the applied approaches.

• Deep learning approaches lack invariance in many transformations, such as
scale and rotation, which are usually tackled by very computationally expensive
approaches.

• There exist many competing strategies for handling high dimensional data and
it is still not clear which approaches are suited better for which type of data and
more importantly why.

66 Acknowledgements

• For many applications there are not enough labeled data to properly train and
test methods. Nonetheless, the past few years, in some research areas this issue
has been slowly tackled by introducing large scale datasets such as the ScanNet
[61] and the Moments in Time [250].

2.6.2 Future work

According to this study, there is significant room for improvement in all research areas
covered in this chapter. Nonetheless, we can identify some common issues to most of
them. In most cases deep learning approaches are too computationally expensive for
many real world applications, whilst the traditional counterparts have much lower
performance. It is important to get as high performing approaches while minimizing
computational complexity and memory demands. Moreover, being able to leverage
information from different modalities without performing unnecessary computations
for common features whilst not missing modality specific information is very import-
ant to the whole field. Although there are similarities in the type of dimensionality
increase in different research areas, the solutions applied are usually unique to the
research area. It would be interesting to acquire knowledge from multiple approaches
and create unified solutions.

2.7 Conclusions

This chapter presents a comprehensive review of methodologies, data types, datasets,
benchmarks and applications of computer vision on high dimensional data (higher
than 2D). Based on the recent research literature we identify four main data sources,
namely image videos, RGB-D images and videos, and 3D object models, such as CAD
models. Moreover, we identify common practices between methods that are applied
on all data types despite their qualitative difference. For example, deep learning ap-
proaches and hand crafted features, such as histograms, are developed and applied
on all data types and research areas considered. Most of the methods are inspired by
previous work in computer vision on 2D data.

Regarding deep learning methods, we discuss the interrelationships and give a
categorization of generalization of methods to higher dimensions, namely generaliz-
ation in case of increase of physical dimensions and generalization in case of increase
of modalities, or information per physical position. Finally, we review and discuss
the state of the art methods on the most researched areas using these data, such as
3D object recognition, classification and detection, 3D scene semantic segmentation,
human action recognition and more.

Acknowledgements 67

According to this study, some conclusions can be drawn regarding the top perform-
ing approaches. Deep learning approaches seem to outperform hand crafted feature
based approaches when it comes to recognition performance in all tested settings
(i.e., object classification, recognition and detection, semantic segmentation and hu-
man action classification). Nonetheless, hand-crafted feature based approaches have
much lower time complexity. In some cases they can produce similar performance
to the state of the art deep learning method, as shown in object detection by Tejani
et al. [366, 367]. As shown in Human action Recognition, with the IDT approach
[396], the hand crafted features can provide complementary information to the deep
learning features increasing the overall performance of a system by a significant mar-
gin. When the number of physical dimensions is increasing, although early experi-
ments showed that projecting information to lower dimensions and taking advantage
of large available systems outperformed the raw processing of the high dimensional
data, nowadays, we see an opposite trend. For example, the work by Brock et al. [35]
on object detection as well as Carreira and Zisserman [43] on HAR, outperform 2D
projection methods. Finally, late fusion seems to be the best performing naive strategy
across the board for combining different modalities, whilst fusion in multiple levels
and fusion on multiple stages of the process seem to outperform all other methods,
e.g. Wang et al. [401] and Park et al. [271].

Understanding the world around us is a difficult task [222]. Although there is a
lot of progress in this area, there is still a lot of room for improvement. For most
data types there is no clear solution or approach that properly handles the extra
dimensions. For example, even in the well studied area of video understanding, there
is not a definitive way to handle the difference between space and time. Similarly, in
the three dimensional static world even the optimal raw format of the data, e.g. point
cloud, 3D mesh or voxelized, is unknown.

3
Deep learning for computational fluid

dynamics simulation output

Computational Fluid Dynamics (CFD) simulations are able to produce complex and
large outputs that accurately describe the physical properties of fluids and gases in
various domains, such as air flow around a car, or the multi-phase flow inside an in-
ternal combustion engine. The simulation results, i.e. the flow fields, are often too
complex to be analyzed directly. With the increasing number of simulations as well
as their complexity, there is a need of automated processes that can analyze these
complex outputs. In this chapter, inspired by the success of convolutional neural net-
works (CNNs) in Computer Vision, CNNs are applied for the first time on CFD output.
We show their capabilities in capturing and processing flow patterns. Furthermore, a
novel CNN architecture is designed tailored to the data produced by CFD simulations,
as well as two conventional architectures. A new dataset of turbulent flow is proposed
and constructed, within the application domain of steady flow around passenger cars.
The approaches developed are evaluated and compared on the aforementioned data-
set, on different tasks that depend on flow patterns. Finally, the CNN approaches are
compared to a baseline k-nearest neighbor approach, tuned to be comparable to the
state of the art.

70 Acknowledgements

3.1 Introduction

3.1.1 Computational fluid dynamics simulations

Compared to physical experiments, CFD simulations provide a cheap way to test, ana-
lyze, and optimize complex engineering designs, such as minimizing the drag force
applied by the air on a moving object such as a car or an airplane. Such simulations
are also used in medical applications, for example simulating the flow in the arter-
ies and calculating the sheer stress can help discover potential threats to our health
[442]. These benefits and issues motivate methods that can explore all the informa-
tion given by the simulation and can help the automated optimization of engineering
systems, as well as help us understand complex phenomena around us.

Computational Fluid Dynamics (CFD) simulations produce very complex and in-
formation rich outputs. They usually produce results on 3D or 4D (3D + time) space
with many physical properties per point (pressure, velocity, turbulent kinetic energy,
etc.). Such outputs are difficult to analyze directly in detail and to interpret and derive
conclusions from [105]. In order to analyze these results, data reduction and feature
extraction methods that extract specific properties of the flow and present them in a
visually understandable way need to be employed [97]. With these methods an en-
gineer can look only at specific features and properties at a time making it difficult
to analyze the information as a whole. Moreover, this method of analyzing simula-
tion outputs requires a lot of manual labor per simulation. Thus there is a need for
an automated way to extract information from, and analyze, CFD simulation outputs
that is capable of exploiting all the information available.

This chapter focuses on investigating the potential of deep learning, and more
specifically convolutional neural networks (CNNs), on learning patterns of the flow
fields by taking into account all given information (the velocity field, pressure field,
turbulent kinetic energy and turbulent viscosity). Moreover, the network’s ability to
provide a lower dimensional yet discriminative representation is evaluated. The state
of the art representation of flow fields is the Vector Field Topology (VFT) introduced
by Helman and Hesselink [130]. This method suffers from interpolation errors and is
not always able to capture all information [405]. More specifically, VFT, as the name
suggests, focuses on vector fields and as a result only processes the velocity field while
it completely neglects other information available. Moreover, the features used for this
representation are hand crafted. This is especially problematic since it is a very hard
task to define general features which can be applied to many different application
domains without limiting the detectable physical features or loosing discriminative
ability.

Acknowledgements 71

3.1.2 Convolutional neural networks

In recent years, deep learning approaches have outperformed the hand-crafted ap-
proaches by a large margin in a variety of computer vision tasks like image classi-
fication [184], semantic segmentation [224], 3D object detection [240] and many
more (see Section 2.5). They have demonstrated to successfully capture semantic in-
formation and exploit complex patterns, without being limited by the imagination of
the scientist that designs them. This constitutes a major advantage of deep learning
over hand-crafted features, which are also exploited in the domain of fluid flows in
Chapter 4. However, they are limited by the complexity and diversity of the examples
they have been trained on [280].

A key component of the success of these methods is the availability of large scale,
fully annotated and diverse image and video labeled datasets, like ImageNet [302].
The application of deep learning techniques to fluid flows is a little more problem-
atic as compared to image or video datasets. Realistic CFD simulations which try to
simulate viscous effects and turbulence need hours or even days to compute on high
performance compute clusters. Additionally, there exists a multitude of configuration
options such as design parameters specifying the geometry, the spacial and temporal
grid on which the flow is going to be solved, the number of solver iterations to con-
verge the flow field and many more. Thus producing a large and diverse dataset on
which a deep learning approach might be trained is a very long process that requires a
lot of resources, both computing infrastructure and human labor. Such complex CFD
simulations also have the tendency to sometimes not converge at all. This introduces
either the need to supervise each simulation during dataset creation in order to detect
failed simulations, or if they are not detected, the dataset will contain a considerable
amount of noise, i.e., unconverged and thus unrealistic flow fields. Moreover, such
CFD simulations produce large and high dimensional results usually composed of
millions of grid points, making each data example very big in size and thus difficult to
use in a deep learning approach, which relies on GPU memory for their computations.

Such problems seem to make the direct application of deep learning approaches to
CFD output data almost impossible. In this chapter we try to tackle these problems by
using a partially automated way to create and simulate new designs, which enforces
convergence with as little supervision as possible. Tasks for the CNN are designed,
that should force the CNN to identify patterns of the flow field while learning to
complete multiple tasks to a given accuracy. Each data sample to be processed is
build up from many points in space (3D), where the velocity vector and three scalar
fields (pressure, turbulent kinetic energy, and turbulent viscosity) are associated with
each point. In order to avoid even larger resource demand, we are simulating viscous
but incompressible flow where the density is assumed to be constant. The extension

72 Acknowledgements

to compressible flow or more general flows, like multi-phase flow, is conceptually
straight forward, as the additional fields just need to be added as input variables. A
number of CNN architectures are designed, tailored and optimized for this kind of
data and we evaluate their strengths and weaknesses. Since it is not trivial to find
tasks that will depend on any possible patterns that might appear, a supervised CNN
trained on them will learn to recognize only the patterns specific to the given task.
In order to force the CNNs to learn a more general representation they are forced
to learn more than one task at the same time while also trying to reconstruct the
input. We compare our results with a k-nearest neighbor approach, using optimum
conditions, in order to make it competitive.

The rest of this chapter is structured as following: In Section 3.2 the related work
in the field of flow field feature extraction and convolutional neural networks is out-
lined, Section 3.3 describes the dataset constructed as well as the tasks defined with
it. In Section 3.4 the proposed methods are described and in Section 3.5 the experi-
ments are shown. Finally, the conclusions from the experiments are drawn in Section
3.6.

3.2 Related work

3.2.1 Flow field pattern recognition

The analysis of steady flows has been researched for many years. Many interesting
and useful features of steady flow fields exist, even though they are not always very
well defined. There are two categories of features for steady flow fields, local and
global features. Local features are features that have specific local behavior of the
flow and they mostly can be mathematically defined precisely. Some examples of
local features are the critical points of a vector field [130]. These features are used
by Vector Field Topology (VFT) in order to produce a visually comprehensible repres-
entation of the flow, as introduced by Helman and Hesselink [130]. There are many
algorithms that try to extract them, all having their limitations and advantages. Global
features usually do not have a single definition and the algorithms extracting them
need a lot of manual processing and fine tuning in order to produce a desired res-
ult [275]. For example, such features are vortices, shock waves, and flow separation.
A good overview of flow field feature extraction and visualization can be found in
[275, 196, 405].

Although the above mentioned methods deal with the same data as we do they
have some core differences. VFT only takes into account the vector fields, which in
fluid flows means the velocity and completely neglects the rest of the data. The major-
ity of global flow features can not be automatically extracted in a reliable way, since

Acknowledgements 73

they require manual tuning for each application and data example. As such they are
inefficient for a large scale automated machine learning approach, which is the target
of this work.

3.2.2 Convolutional neural networks for CFD simulation output

Previous approaches have applied CNNs to the CFD simulation domain. In those stud-
ies, the target was to either speed up the simulation itself or predict the simulation
output from the input design. This is in contrast to the current approach, where we
try to learn from the simulation output. For example, [108] tries to predict the out-
put of Lattice Boltzmann Method Simulation of laminar flow, which is much faster to
compute and much simpler than the currently used turbulent viscous flow. [218] use
neural networks to predict the Reynolds stress anisotropy tensor in order to get a more
accurate approximation in less time, leading to more accurate and faster simulations.

To the best of our knowledge this is the first work that tries to apply CNNs on the
output of simulations.

3.3 Dataset collection

In order for a network to be able to learn flow patterns, a big and diverse dataset is
needed. Moreover there is a need of tasks that depend on flow patterns so a network
can be forced to learn general flow features in order to solve the task.

3.3.1 Example creation

One of the contributions of this work is the creation of a large dataset of turbulent
flow fields within the application domain of steady flow around passenger cars. In
order for CNNs to be trained a diverse and big dataset is needed. Given the complex-
ity and time needed to calculate such simulations this process is not trivial. Starting
from a set of given car shapes, an automatized shape deformation setup is employed,
which utilized free form deformations [243, 333] to generate variations of the starting
shapes. The computational CFD grid is then created for each deformed shape in a way
which adjusts itself to the specific geometry, in order to have a sufficient resolution
where necessary while keeping the grid coarse where complexity is not needed. This
is achieved by using the snappyHexMesh meshing tool from the OpenFOAM package
[264]. The flow field is obtained by running the simpleFoam solver where the bound-
ary conditions are specified by a constant inflow velocity magnitude 44.5ms coming
from the front with a very small angle.

74 Acknowledgements

Original Shape Example deformation 1

Example deformation 3Example deformation 2 Example deformation 4

Figure 3.1: Example deformations of a passenger car, for four different deformation
scales.

For this first study two base models for passenger cars are used. The deformed
shapes are obtained by defining a number of control points on the car surface which
are moved randomly, stretching the shape as they move. In order to avoid very sharp
edges on the deformed shape the deformations are smoothed out where neighboring
control points can not have arbitrary large distance. Example deformations for four
different deformation scales are shown in Figure 3.1.

Each simulation provides many different attributes of the flow in every location of
the mesh used to calculate it. These are the velocity (3 components) (~U), turbulent
viscosity (νt), turbulent kinetic energy (k) and pressure (p). For every simulation
some metrics are also calculated from the flow, more specifically the forces and torque
applied to the passengers car due to pressure difference as well as due to friction.

Each base car is deformed with eight different deformation scales. For each scale
1,024 random deformations are performed, resulting in 16,384 examples. Even though
our pipeline is designed to increase the chances of the simulation to converge, some
shapes are still deformed in a way that the simulation could not converge. These
examples are discarded, resulting in 14,238 usable examples. These are split into
training and test sets. The split is done randomly, by picking 498 examples for the

Acknowledgements 75

test set. The remaining ones constitute the training set.
Most of the simulation domain contains almost uniform air flow, which is not

interesting for this application. Thus a box behind the car is cropped where most
of the flow patterns appear. The cropping procedure is done in a randomized way
and each crop is used as a separate example enlarging the dataset even further. The
flow field is calculated on a mesh of irregular tetrahedrals. In order to make them
optimal for being input to CNNs, the flow is interpolated on a fixed uniform grid. We
tried three different grid scales, namely 96x64x32, 192x128x64 and 384x256x128
voxels. Due to the process and memory limitations of currently available GPUs, the
only feasible resolution is 96x64x32. Regarding the flow physics, this constitutes a
very coarse representation of the flow field where most of the small scale details have
been averaged out. However, the large scale structures are still preserved and due to
the nature of fluid flow, where strong correlations exist between large and small scale
structures, we hope to be able to capture relevant flow features. Additionally, in the
future with increasing computational power much finer resolutions might be possible.
The velocity field is mapped on three channels, one for each direction (x, y, z), and
the scalar fields take one channel each, resulting in six channels overall.

3.3.2 Training tasks

Convolutional neural networks have demonstrated high capacity of learning semantic-
ally meaningful representations in many computer vision tasks. One of the key com-
ponents needed to achieve that is the availability of large and diverse datasets, ac-
companied with tasks that depend on these semantics, which steer the training of the
networks. In order to exploit the capabilities of CNNs in identifying meaningful pat-
terns in flow fields, without knowing in advance which these are, tasks that depend
on the properties of the flow are needed for having an efficient training procedure.
For the networks described in this chapter we considered three tasks, namely force
regression, flow prediction and flow reconstruction.

3.3.2.1 Force regression

Calculating the forces which act on a geometry due to the flow is a pretty straight
forward task and easily computable from the flow around that geometry. Nonethe-
less, when considering a flow of a specific direction, the patterns that appear after the
geometry in the direction of the flow are an indication of the forces that are applied
on the geometry. For example, at the back of a very tall car there would be big vor-
tices which increase the drag force on the car. On the contrary, if the car is short these
vortices would be much smaller and possibly not even there. Additionally, areas of
reversed flow behind the car also crucially depend on the exact car shape and create

76 Acknowledgements

more patterns that also reflect the forces acting on the car. This relationship of down-
stream patterns of the flow and the forces on the shape is exploited in order to force
the network to identify relevant flow features. The network is only presented the flow
behind the car and it should learn to predict the forces as well as the torque acting on
the car.

3.3.2.2 Flow prediction

As it is well known from fluid dynamics, the patterns of a flow are interdependent.
The flow field at a specific point is in causal relation to a large part of the flow field
at distant locations, possibly even the whole flow volume (details of this depend on
the general flow conditions, see for example [60]). In an attempt to also exploit this
dependence of patterns of the flow we introduce the flow prediction task. Namely,
given a part of the flow, the network is asked to predict the downstream flow.

3.3.2.3 Reconstruction

Encoding and decoding data in order to extract features is a well known practice
in the computer vision community. Usual methods include deep auto-encoders or
Boltzmann machines [110]. In this work we also try to exploit the power of these
methods. In order to force the representation to be discriminative and meaningful,
the reconstruction is done in parallel with the other two tasks.

3.4 Network architecture and training details

3.4.1 General network architecture

Most of the existing work with applying CNNs on three dimensional data can be
divided into two main groups [280]: (i) Applying 3D convolutions [419, 240] and
(ii) projecting the input to one or multiple 2D representations and using of-the-shelf
state of the art networks pre-trained on ImageNet [353, 327]. To the best of our
knowledge (see Chapter 2), taking 2D projections outperforms the 3D convolution in
object classification and recognition tasks [280]. There are three main reasons for this
finding. First, the 3D representation of the objects does not take full advantage of the
extra dimension. Since the objects in 3D are usually represented by a occupancy grid
the only information given is whether a voxel belongs to the object or not. Secondly,
the 2D projections can take advantage of very deep networks trained on the very big
ImageNet dataset. A comparably large dataset is not available for 3D data. Thirdly,
the 2D projections of objects are very closely related to images of objects which is the
content of ImageNet and making use of networks trained on it is ideal for 3D objects.

Acknowledgements 77

The examples in this case are very rich in 3D information, since all values change
in all three directions with various gradients. Taking 2D projections or slices would
largely decrease the information content of the network input. On top of that, al-
though we would be able to use state of the art very deep architectures, the data
would have very different structures and statistics as compared to images from ob-
jects. This would render most of a 2D network layers irrelevant since they are trained
to the task of recognizing objects. For the above reasons a 3D approach is followed
rather than a 2D projections. Nonetheless, this is just an assumption and thus it needs
to be verified with experiments.

As mentioned in Section 3.3.1, the input data has six channels: three from the
vector field (~U) and the remaining three from the pressure field (p), turbulent kinetic
energy (k) and turbulent viscosity (νt). These constitute different modalities for the
data. The goal of this work is to design a system which is able to analyze a flow field
without disregarding any information. Thus, all channels are used as an input. For
images it is common practice for a network to process all channels with the same
feature maps. Due to the curse of dimensionality, when scaling to three dimensional
problems, it becomes very restrictive in the size of networks that can be trained, both
in terms of memory and computational complexity. A solution to this problem applied
in many methods that solve tasks with high dimensional input is to split the input and
feed each channel to a separate network and finally fuse the models to make the final
prediction. This strategy is followed in order to be able to construct deeper networks.
We consider three different schemes of splitting the input.

One option for organizing the inputs is to consider each of the six channels separ-
ately. However, this results in a very high number of free parameters for the network
to be trained. In order to reduce the number of parameters, the following approach
seems reasonable. Since three of the channels contain scalar fields (pressure, turbu-
lent viscosity, turbulent kinetic energy) we expect similar low level features for them
such as edges and ridges. In an attempt to take advantage of that, one option is to
processes all three scalar fields with the same network which has only one input chan-
nel, i.e., the networks processing the scalar fields share the same weights. In contrast
to that, the three channels of the velocity field are expected to show a different type
of interdependency than the scalar fields since they constitute a coherent vector field.
We envisage that processing these channels together can be beneficial and thus we
consider another option which processes the velocity with one network which has
three input channels.

The above described options facilitate four different schemes for organizing the
input from which the following three are considered for further experiments: The
baseline network is defined with sharing weights networks for processing the scalar
fields and one network with three input channels for processing the velocity field. We

78 Acknowledgements

Table 3.1: Number of feature maps per layer for different schemes, as well as the
”Common layers” of the five and six layer networks. (/2) denotes a max-pooling layer
after the denoted layer. ”Common layers” refers to the part of the network after the
fusion of the feature maps (see Figure 3.3).

Scalar Layer 1 Scalar Layer 2 (/2) Vector Layer 1 Vector Layer 2 (/2)

FMS 16*3 32*3 64 128
DS 16 32 21*3 42*3
V C 16 32 64 128
V C∗ 16 32 21 42

Common Layers Layer 3 Layer 4 (/2) Layer 5 Layer 6

All above 128 128 64 -
V C∗∗ 128 128 64 (/2) 64

refer to this network as Velocity Coherent (VC). The second network differs from the
baseline VC network by using three independent networks for processing the scalar
fields, one for each scalar field, while it still retains one network with three input
channels for processing the velocity field. We refer to this network as Full Modality
Specific network (FMS). Finally, the third network differs from the VC on how it
processes the velocity field, for which it utilizes three separate networks, one for each
direction of the velocity (but still has sharing weights networks for processing the
scalar fields). This network is referred to as Direction Specific (DS) network. These
three networks are visualized in Figure 3.2.

In all convolutional layers, the kernel is of size 3x3x3. Each layer is followed by
batch normalization [154] and the ReLU activation function.

Independent of which scheme is used, the rest of the architecture follows the same
principles. After a few convolutional and pooling layers, the resulting feature maps are
fused together by concatenating them. The fused representation is further processed
by more convolutional and pooling layers. The depth on which the fusion happens
is a parameter to be experimented with. Overall, two different network depths are
tested in the encoding stage which have either five or six layers. Finally, the resulting
feature representation is passed to different output networks which perform one of
the tasks defined above.

As an example, the work flow for the VC network is shown in Figure 3.3. The
number of feature maps of the five and six layer networks as well as each different
scheme are shown in Table 3.1.

Acknowledgements 79

:
In

p
u

t
Te

n
s
o
rs

:
C

o
n

v
o
lu

ti
o
n
a
l
a
n
d
 p

o
o
li
n
g
 l
a
y
e
rs

U

t

kp

(C
+

P
) U

(C
+

P
)

t

(C
+

P
) k

(C
+

P
) p

S
h
a
ri

n
g
 W

e
ig

h
ts

U

t

kp

(C
+

P
) U

(C
+

P
)

t

(C
+

P
) k

(C
+

P
) p

t

kp
(C

+
P
) p

S
h
a
ri

n
g
 W

e
ig

h
ts

(C
+

P
) k

(C
+

P
)

t

U
z

U
y

U
x

(C
+

P
) U

x

(C
+

P
) U

y

(C
+

P
) U

z

V
e
lo

c
it

y
 C

o
h
e
re

n
t

(V
C

)

:
F
e
a
tu

re
 M

a
p
 C

o
n
c
a
te

n
a
ti

o
n

F
u
ll
 M

o
d
a
li
ty

 S
p
e
c
i

c
 (

F
M

S
)

D
ir

e
c
ti

o
n
 S

p
e
c
i

c
 (

D
S
)

Fi
gu

re
3.

2:
Th

e
th

re
e

in
pu

t
sc

he
m

es
pr

op
os

ed
an

d
ev

al
ua

te
d.

80 Acknowledgements

U
(C

+
P
)

U

t
(C

+
P
)

t

k
(C

+
P
)

k

p
(C

+
P
)

p

S
h
a
rin

g
 W

e
ig

h
ts

(C
+

P
)

C
o
m

m
o
n

(C
+

U
)

R
e
c
o
n
.

(C
+

U
)

F
l. P

re
d
.

M
L
P

R
e
c
o
n
.

F
l.P

re
d
.

F
o
rc

e
s
 &

To
rq

u
e

: In
p
u

t Te
n
s
o
rs

: C
o
n

v
o
lu

tio
n
a
l a

n
d
 p

o
o
lin

g
 la

y
e
rs

: C
o
n

v
o
lu

tio
n
a
l a

n
d
 u

p
s
a
m

p
lin

g
 la

y
e
rs

: M
u

ltip
le

 L
a
y
e
r P

rc
e
p
tro

n
: O

u
tp

u
t Te

n
s
o
rs

: F
e
a
tu

re
 M

a
p
 C

o
n
c
a
te

n
a
tio

n

Figure
3.3:G

eneralA
rchitecture

ofthe
velocity

coherent(V
C

)
N

etw
ork.The

netw
ork

takes
as

an
inputthe

Velocity
field

(
~U

),
turbulent

kinetic
energy

(k),pressure
(p)

and
turbulent

viscosity
(ν
t).It

perform
s

three
tasks

sim
ultaneously

nam
ely,input

reconstruction,flow
prediction

and
force

regression.

Acknowledgements 81

3.4.2 Prediction networks

The output networks take as input the encoded representation (flow features) and
are trained to perform one specific task. The force regression task is performed by
a three layer multi-layer perceptron (MLP) network that has six outputs, three force
components and three torque components. The last layer is not passed through an
activation function, but the output is forced to be the actual prediction. The flow pre-
diction and reconstruction networks consist of convolutional and up-sampling layers.
The reconstruction network is mirroring the encoding network in terms of number
of feature maps per layer, but it does not split into multiple networks as happens in
the input. The flow prediction network consists of five convolutional layers. The up-
sampling layers are setup to give the output the desired shape. Since the values that
the flow prediction and reconstruction networks are predicting are in the range [-1,
1], the activation function of their last layer is set to the hyperbolic tangent.

3.4.3 Activation functions

As activation functions several different options are considered: ReLU, ReLU with
batch normalization [154], ELU [53] and PReLU [126] activation functions. In total
five different setups are tried: (i) all layers have ReLU activations, (ii) half the layers
have ReLU and the other half ReLU with batch normalization, (iii) all layers use ReLU
with batch normalization, (iv) all layers use ELU activation functions and (v) all layers
use PReLU activation functions.

Unfortunately our implementation of the PReLU activation function was too me-
mory intensive which, in combination with the high dimensionality of the data, was
impossible to train. For the rest of the activation functions we used tensorflow’s native
implementations. The networks using the ELU activation function where not able to
converge. In most cases the activations diverged resulting in NaN loss values after
approximately half the training steps. Thus the only activation schemes for which
training finished successfully are the ReLU, referred to as No Batch Normalization
(NBN), ReLU with batch normalization, referred to as Batch Normalization (BN) and
half the layers batch normalized (HBN).

3.4.4 Training details

As mentioned in Section 3.3.1 each separate data sample is a 3D volume of 96x64x32
voxels with six channels in each voxel. In order to introduce translation invariance,
the common practice is followed where random crops are extracted from the volume
and considered as the separate example. When training on the force regression task,
the size of each random crop is 80x56x32. When training on the flow prediction the

82 Acknowledgements

Figure 3.4: Input and ground truth crops for the flow prediction task. The white box
is the initial example, the black box is the input and the red is the ground truth.

dimensions of the input crop are 24x56x32, while adjacent 12x56x32 downstream
voxels are taken as the output ground truth, as seen in Figure 3.4. An example slice
of the input as well as the prediction and the ground truth can be seen in Figure 3.5.
The input of the reconstruction task depends on the auxiliary task. In case that both
flow prediction and force regression tasks are used, both possible crops (24x56x32
and 80x56x32) are used.

When considering the larger crops used for force regression training or reconstruc-
tion, the batch size is set to 4. When the small crop is used as input, the batch size
is set to 16. The weight decay of the layers is set to 10−4. We are training using the
Adam optimizer [175], with learning rate 10−4, β1 = 0.9, β2 = 0.999 and ε = 10−8.
In all cases we train for a total of 5 · 105 iterations.

For all training tasks the L2 distance between the predictions and the ground
truth is used as the error function with the addition of the weight decay. In the case of
the force regression that is calculated over the forces and torque that the network is
predicting while on the flow prediction and reconstruction tasks it is calculated over
all voxels and channels.

3.4.5 Multi task training

In the current approach of learning 3D flow field features we are faced with the
problem, that the size of the dataset is not sufficient for training a deep convolutional
network from scratch. When dealing with such tasks for which there are not enough
data to properly train a neural network, it is common practice to use networks pre-
trained on larger and more diverse data of the same type (i.e., for an image task

Acknowledgements 83

0 10 20 30

In
pu

t

p
k

ν t
U
x

U
y

U
z

0 10 20 30

Pr
ed

ict
io

n

0 10 20 30

Gr
ou

nd
 T

ru
th

0
20

40

0 10 20 30

Di
ffe

re
nc

e
Im

ag
e

0
20

40
0

20
40

0
20

40
0

20
40

0
20

40

Fi
gu

re
3.

5:
Ex

am
pl

e
sl

ic
e

of
flo

w
pr

ed
ic

ti
on

ta
sk

.
Th

e
to

p
ro

w
sh

ow
s

an
ex

am
pl

e
sl

ic
e

fr
om

th
e

ne
tw

or
k

in
pu

t,
w

hi
ls

t
th

e
se

co
nd

an
d

th
ir

d
an

ex
am

pl
e

sl
ic

e
fr

om
th

e
ne

tw
or

k
ou

tp
ut

an
d

gr
ou

nd
tr

ut
h

re
sp

ec
ti

ve
ly

.T
he

la
st

ro
w

sh
ow

s
th

e
di

ff
er

en
ce

be
tw

ee
n

th
e

flo
w

pr
ed

ic
ti

on
an

d
th

e
ou

tp
ut

gr
ou

nd
tr

ut
h

sl
ic

es
(G

ro
un

d
Tr

ut
h

m
in

us
Pr

ed
ic

ti
on

).
W

hi
te

is
ze

ro
di

ff
er

en
ce

,
re

d
is

po
si

ti
ve

an
d

bl
ue

is
ne

ga
ti

ve
.

84 Acknowledgements

one would use a network pre-trained on the Imagenet dataset). When a network is
trained on a small dataset and on one task, the features learned during its training are
tailored for this specific task and more importantly, there is a big chance of overfitting
the data. In such a case, most of the layers, if not all, will learn only the patterns
important for the specific task which might not capture all interesting information of
the input and are not so easily transferable to new tasks and examples. In an attempt
to force the networks to learn a more general, yet discriminative, representation we
try to train the core CNN on multiple tasks at the same time.

Networks are trained simultaneously on all three tasks we have defined. In one
step, the network processes two examples, or mini batches, one which is passed to
the flow prediction part and one which is passed to the force prediction part. Both
examples are also passed to the reconstruction part. The individual errors, together
with the weight decay factor are added to the final global error, as shown in equation
3.1,

Eglobal = L2,force regr. + L2,flow pred. + L2,recon.1 + L2,recon.2 + wd , (3.1)

where L2 denotes the Euclidean distance between the network predictions and
the ground truth.

During training, the gradients are computed on the global error and we maintain
all parameters of the individual task training, i.e., the batch size for the flow predic-
tion examples is 16, for force regression the batch size is four, etc.

3.5 Experiments

We conducted several numerical experiments and evaluated the results based on the
mean absolute error (MAE) between predictions and ground truth. In case of flow
prediction and reconstruction the numbers presented are the average over all possible
examples (all possible crops of all test set examples), all voxels and all channels. In
the case of force prediction, our evaluation measurement is calculated as an averaged
relative MAE,

Errorperformance =
1

6N

∑
j

∑
i

∣∣predictioni,j −GT i,j∣∣
max(GT j)−min(GT j)

(3.2)

where i denotes a test example and j a predicted value. predictioni,j and GT i,j
are the prediction value and ground truth of the network for example i and predicted
value j, respectively. max(GT j) and min(GT j) are the maximum and minimum pos-
sible values of the jth target value over all test examples. The above formula first
calculates the MAE for all test examples for each target value j. It is then transformed

Acknowledgements 85

Table 3.2: Comparison of different activation function schemes in flow prediction task
and force regression tasks. The left column shows the performance error on force
regression using equation 3.2 whilst the right column shows the results on the flow
prediction task using the MAE.

Force Regression Error Flow Prediction Error

VC NBN 0.02689 0.00661
VC HBN 0.03642 0.00446
VC BN 0.03667 0.00347

to relative MAE by dividing with the range of possible values and finally averaged
over all six predicted values.

All our experiments are done on modern Nvidia GPUs, namely the Geforce GTX
980 Ti and Geforce Titan X (Maxwell). Our network implementations are done using
Google’s Tensorflow framework [1], with the Python interface.

3.5.1 Activation functions

As mentioned in Section 3.4.3, several activation functions were tested of which only
ReLU, referred to as No Batch Normalization (NBN), ReLU with batch normalization,
referred to as Batch Normalization (BN) and half the layers batch normalized (HBN)
produced useful results.

In order to compare them properly, all other parameters of the networks remain
the same for all schemes. In particular, the encoder part of the network follows the V C
scheme and has five layers overall, two of which are before fusion and the last three
after fusion. The flow prediction and force regression networks are the ones defined in
Section 3.4.2. The HBN network uses batch normalization layers during the encoding
part whilst simple ReLU in their prediction parts. The results are summarized in Table
3.2.

The results show different trends as to which architecture is beneficial for flow pre-
diction as compared to force regression. Batch normalization seems to hurt the force
prediction performance of the networks. This is to be expected, since the forces that
are predicted are not normalized. Batch normalization is normalizing the activations
to [-1,1]. Thus when predicting the forces the scaling of the results is solely handled
by the last few layers in cases of HBN and BN. The performance variation from force
regression to flow prediction between the VC NBN and VC HBN architectures is much
larger than for VC BN architecture. This suggests that the VC BN architecture is more

86 Acknowledgements

Table 3.3: Comparison of different schemes for handling the input on flow prediction
and force regression tasks. The left column shows the performance on force regression
using equation 3.2 whilst the right shows the results of flow prediction task using the
MAE.

Force Regression Flow Prediction

V C 0.03667 0.00347
DS 0.03959 0.00342
V C∗ 0.03859 0.00348
FMS 0.03715 0.00359
V C∗∗ 0.03863 0.00495

robust with respect to the specific task and we therefore conclude that quality of the
network using batch normalization layers is higher than the simple ReLUs. Thus, for
the rest of the experiments only BN networks are used.

3.5.2 Input handling schemes

In Section 3.4.1 three schemes were defined (FMS, DS and VC) for handling the
peculiar input data. We trained three networks which only differed by input layers
prior to the fusion of feature maps. In all other respects the networks are the same.
Two kinds of comparison are performed, one that keeps the number of feature maps
similar and one that keeps the number of trainable variables similar.

In our experiments the input networks to be analyzed are two layers deep. The
number of feature maps per layer in those networks are shown in Table 3.1.

The DS and V C networks have approximately the same number of feature maps.
The V C∗ network is defined using the same principles with the V C but with fewer
feature maps (Table 3.1), in order to keep the number of trainable parameters similar
to the DS network. We also tried to increase the number of layers with the V C∗∗

network. It is the same as the V C network, in all respects, except that it has an extra
max-pooling and a convolutional layer with 64 feature maps before the prediction
networks. Table 3.3 summarizes the performances of the various networks.

The FMS scheme has rather low performance on flow prediction and force re-
gression, strengthening the assumption that the scalar fields have similar low level
features. Thus, using different networks for each field does not provide much more
information while it increases the overall complexity as well as the number of train-
able variables. On the other hand, the DS scheme shows better performance than

Acknowledgements 87

Table 3.4: Comparison of different training processes with reconstruction. The first
two columns show the results for the force regression and flow prediction tasks. The
two right most columns show the results of reconstruction using the MAE, for small
(24x56x32) and big (80x56x32) crops. For comparative purposes the performance of
the V C network trained on a single task is also shown.

Evaluation Task Force Regression Flow Prediction Reconstruction

Training tasks
Input resolution

80x56x32 24x56x32 24x56x32 80x56x32

Flow - Reconstruction - 0.005799 0.00288 0.00428
Force - Reconstruction 0.15595 - 0.10367 0.06845
All tasks 0.043197 0.01624 0.0090997 0.01079
Single task 0.03642 0.00347 - -

the V C network at the flow prediction task, whilst the performance is lower for the
force prediction task. The same behavior is seen when DS is compared to the V C∗

network.
The V C∗∗ has the lowest performance on both tasks, which leads us to the con-

clusion that increasing the number of layers hurts the performance of the networks
(V C∗∗ compared to V C). More experimentation is needed in order to properly eval-
uate the performance of the networks with increasing depth which is left for future
work.

3.5.3 Reconstruction

Three training processes are applied for input reconstruction. In the first two, the
network is trained on two tasks at the same time, namely reconstruction and flow
prediction or force regression, respectively. In the third the network is trained on all
three tasks at the same time. For all experiments the V C network is used. When
training on two tasks (flow and reconstruction or force and reconstruction) only one
input size is used, defined by the prediction task. For better comparison the trained
networks are evaluated on both input sizes. When training on all tasks, the network
is trained on both input sizes at the same time. During training the total error is com-
puted by adding the errors of the individual tasks. In the case where the network is
trained on all three tasks, the overall error is given by equation 3.1. The performance
of the trained networks is shown in Table 3.4.

In terms of reconstruction, the best results are achieved when training on recon-
struction and flow prediction. Since the network is only trained on the small input

88 Acknowledgements

Table 3.5: Number of feature maps per layer for the late fusion network (V Clate).

Scalar Layers Vector Layers Common Layers

Layer 1 16 64 -
Layer 2 (/2) 32 128 -

Layer 3 32 128 -
Layer 4 (/2) 16 64 -

Common Layer (#5) - - 64

crops, when reconstructing the big input crops the performance drops significantly
(the error is doubled). Still it is much better than any other tested training process.
Training on force regression and reconstruction produced the worst results. Training
on all tasks also performs worse than the flow - reconstruction training. An interesting
observation is that it still produces better results on force regression than the force -
reconstruction training.

3.5.4 Fusion stage

The next experiment evaluates how the performance of the network is effected by
the stage of the fusion. With that goal in mind a new network is defined, V Clate with
the same principles as the V C network. The new network fuses the activation maps
of the separate input handling networks after 4 convolutional layers and 2 pooling
layers, and only has one convolutional layer after the fusion, as shown in Table 3.5.

The performance of the network on the force regression and the flow prediction
tasks is summarized in Table 3.6. In both cases the V Clate network performs worse
than the V C network. As with the total depth of the networks, more experimentation
is needed to properly evaluate the effect of the fusion stage on the quality of the
networks and is left for future work.

3.5.5 Comparison to a k-NN regressor

As mentioned in Section 3.2.1, the state of the art in flow field feature extraction
and representation is VFT. Since VFT is meant for flow field visualization, it is not
trivial to directly compare the methods for machine learning applications, since a
method which uses VFT of performing the tasks still has to be developed. In order
to have a good comparison we perform the force regression task using simple k-NN
regression. The motivation behind it lies in the distance measurement. In literature

Acknowledgements 89

Table 3.6: Comparison of V C and V Clate networks on flow prediction and force
regression tasks. The left column shows the performance on force regression using
equation 3.2 whilst the right shows the results of flow prediction task using the MAE.

Force Regression Flow Prediction

V C 0.03667 0.00347
V Clate 0.04035 0.00366

there are a couple of ways to define flow field similarity [105, 66]. A naive way to
measure the similarity between flow fields is the L2 distance. In the general case this
will produce very low quality comparison between flow fields since it is sensitive to
any translation and rotation. Nonetheless, given that the flow fields are aligned, the
L2 distance will not diverge much from other similarity, or distance, measurements.
In this case aligning the flow fields is a very easy task given the pipeline used to create
them. By always using a crop in the same position relative to the car, we ensure that
the flow fields are aligned. Moreover, for each comparison we move one of the fields
over the other and measure their distance for every position. The smallest number is
taken as the final distance. Given all these restrictions we consider the L2 distance
a good approximation of the actual distance of the flows. Using this distance we
perform a k-NN regression with three different values of k.

Table 3.7: Comparison of k-NN method
with V C network on force regression task.

Method Force Regression

1−NN 0.08655
2−NN 0.080499
4−NN 0.082705
V C 0.03667

From Table 3.7 it can be seen that the
V C method produces significantly bet-
ter results than the k-NN method, with
less than half total error. It should be
noted that the networks are trained over
crops in random positions, relative to
the car, whilst the k-NN method only
considers a crop at the same position,
resulting in no flexibility.

3.6 Conclusion

Motivated by the large amount of data
produced by CFD simulations, the need
for a machine learning pipeline capable of processing these amounts of data, and
the success of CNN in computer vision, we proposed several CNN strategies designed

90 Acknowledgements

to handle the output of CFD simulations. We performed a qualitative comparison
between the networks and compared them to a k-NN approach. The experiments
showed the capabilities of the approach proposed, which outperformed the afore-
mentioned method and generally produced very promising results.

The networks were successfully trained to solve prediction tasks, such as pre-
dicting the forces and torque applied on a car, or the prediction of the flow field
downstream of the training volume. Additionally, the networks were capable of re-
constructing the input flow field in the training volume. A key aspect of the proposed
approach is that a network is trained simultaneously on different tasks thereby learn-
ing general features of flow fields which are independent of a specific task.

Moreover, a novel dataset was established accompanied with three tasks, as a
benchmarking platform for machine learning on steady flow fluids.

This chapter constitutes a first important step in the direction of large scale ma-
chine learning on CFD simulation output, which can be beneficial for several engin-
eering applications, meteorology or even for the medical domain.

4
Comparing deep learning and hand
crafted features for simulation data

Computational Fluid Dynamics (CFD) simulations are a very important tool for many
industrial applications, such as aerodynamic optimization of engineering designs like
cars shapes, airplanes parts etc. The output of such simulations is usually very com-
plex and hard to interpret for realistic three-dimensional real-world applications.
Automated data analysis methods are warranted but a non-trivial obstacle is given by
the very large dimensionality of the data. Deep learning techniques usually require
very large datasets to be properly trained on. As we saw in the previous chapter, creat-
ing a big scale dataset of CFD simulation requires a lot of time, even for a toy example
as the steady flow simulation of the air around a passenger car. On the other hand
hand-crafted feature based approaches from computer vision have already defined
the low level features and thus might require less data. In this chapter we propose
an adaptation of the classical hand crafted features known from computer vision to
address the same problem and compare a large variety of descriptors and detectors.
Moreover, we adjust the deep learning approaches of the previous chapter to the data
used in this chapter and propose a new one. Finally, we compile a large dataset of 2D
simulations of the flow field around airfoils with which we tested and compared ap-
proaches. Our results show that both deep learning-based methods and hand crafted
feature based approaches, are well-capable to accurately describe the content of the
CFD simulation output.

92 Acknowledgements

4.1 Introduction

Computational Fluid Dynamics (CFD) simulations provide a relatively fast way to
evaluate and optimize the performance of different engineering designs. For example,
estimations for drag and lift forces of moving objects such as cars or airplanes, as well
as tumble motion patterns in internal combustions engines can readily be extracted.
The availability of such simulations as well as their high complexity, which renders
them difficult to analyze, motivate the development of methods that can analyze them
automatically. For example, in the previous chapter we developed and applied deep
learning techniques in order to analyze the simulation while taking into account all
the information produced by the simulation. Most existing feature extraction tech-
niques, developed for CFD simulations focus on visualization and not machine learn-
ing [273, 405]. Deep learning techniques require exhaustive datasets with a very large
number of data samples to produce reliable and generalizable performance. On the
other hand, CFD simulations are computationally very expensive and large datasets
are therefore hard to produce. Additionally, each data sample is substantially bigger,
compared to typical input of deep learning pipelines, such as images and videos, due
to the high dimensionality and the high spatio-temporal resolutions typical for en-
gineering applications. These contradicting issues set the stage for the challenging
research field considered in this work where deep learning methods are applied to
CFD simulation data.

Hand crafted features are a well known topic in computer vision. A big variety
of features has been proposed along with methods that utilize them for numerous
applications. One of the most well known is the SIFT detector and descriptor [226].
After its success, a number of different descriptors and detectors were proposed, in
order to improve performance, to be more efficient, or both. A very well known one
is the SURF [19] descriptor and detector as well as a number of different binary
descriptors, such as ORB [299], BRIEF[41], BRISK [205] and FREAK [7]. In this
chapter we utilize those features in the context of CFD simulation output. To the best
of our knowledge we are the first to do so.

In recent years, deep learning approaches are outperforming the more traditional
approach of feature extraction and description in most applications. Nonetheless, for
some applications hand crafted features are better suited, for example when hard-
ware availability is limited. Since running complex CFD simulations takes a very long
time, e.g. the simulation of a combustion process in an engine can take more than
a month to compute, handcrafted features, which do not rely on a data-heavy train-
ing procedure, might still be a viable option. In order to validate that hypothesis we
test a number of different detectors and descriptors on their ability to represent dif-
ferent flow fields and to discriminate between them. Moreover, we implement and

Acknowledgements 93

test several deep learning approaches, adjusted from Chapter 3, and compare them
to the aforementioned hand crafted features. Finally, a new dataset consisting of 16K
2D flow fields of the air around airfoils is compiled and utilized as the benchmark
platform.

The rest of the chapter is organized as following. Section 4.2 discusses the relevant
work to this paper, Section 4.3 describes the hand crafted features tested, as well as
the implementation details. Section 4.4 discusses the deep learning techniques used,
Section 4.5 describes the dataset and benchmark developed for the purpose of this
comparison. In Section 4.6 we report and comment on our experimental results and
finally, in Section 4.7 the conclusions of this study are drawn.

4.2 Related work

Most existing approaches for feature extraction on CFD simulations focus on visual-
ization [273, 405]. Moreover, they focus specifically on the vector field and neglect
other information, such as pressure and turbulent viscosity. The only work we are
aware of that applied hand crafted features for machine learning on CFD simulation
output, collects a number of streamlines, i.e., theoretical particle path in a vector field,
with which they described each example [105].

Hand crafted features from computer vision, such as SIFT [226], SURF [19] and
ORB [299], have been studied in much detail and applied to a plethora of applications
[317, 220]. Nonetheless, there is no work that applies them on CFD simulation out-
put data. There have been many comparisons between the detectors and descriptors
[317, 220, 268, 307, 209], but since there have been no applications of them on CFD
simulation output, there is also no performance comparison.

In recent years, deep learning has become a mainstream approach for processing
a number of different data types [368, 111] and especially data types that show some
spatial or temporal relationship within each example, making the convolution a very
effective operator. Since each example on the CFD simulation output can show both
spatial and temporal relationships, deep learning and more specifically deep convolu-
tional neural networks are an obvious choice for applying machine learning. As such
there have been several applications of D-CNNs on CFD data [108, 218, 371, 416].
Most of these, though, focus on either predicting the flow itself [108, 416], and thus
substituting the simulation or substituting parts of the simulation with a deep learning
predictor [218]. The work in [371] (Chapter 3) is the first that applies deep learning
on the output of CFD simulations in order to extract features from it, and thus the
most relevant to this chapter. In this work some of the methods introduced in Chapter
3 are adapted to the 2D case. The work of [233] proposed a deep learning architec-

94 Acknowledgements

ture for processing vector fields. A large part of the output of the CFD simulation is the
velocity vector field. Thus a combination of it with the approaches in Chapter 3 is also
tested. Finally, a comparison between the deep learning and traditional approaches,
based on hand crafted features, is performed.

4.3 Hand crafted features

Hand crafted feature detection and description is a very well studied subject in com-
puter vision [317, 220, 268, 307, 209]. These features have been utilized for many ap-
plications, such as image classification [260], image retrieval [341], object detection
[100] and scene semantic segmentation. Depending on the application the utilization
strategy may vary. For example, when used for object detection separate descriptors
are matched and aligned [226]. In applications such as image classification or image
retrieval, it is more useful to create a global description of the image. A common
approach towards a global image description is to create the so called Bag of Words
(BoW) model [341]. For the purpose of this comparison a global description of the
flow is created aiming to predict the drag and lift forces applied on an airfoil.

In the literature a multitude of approaches exists, both for detecting and describ-
ing visual features. Moreover there have been numerous studies that compare them
for many applications. In order to limit the search the most popular and best per-
forming detectors and descriptors are chosen, according to the studies found [317,
220, 268, 307, 209]. CFD simulation output is very peculiar in comparison to nat-
ural imagery. Each example consists of multiple data modalities and the values of
each modality usually change smoothly. Thus, detectors created for natural images
with many corners and abrupt changes do not detect many points. This raises some
issues since some detector-descriptor combinations completely fail to find any fea-
tures for some examples. In these cases it would be completely impossible to create
a global description. Thus, these detectors are neglected from this study. Moreover,
extracting features from a regular grid instead of detected keypoints is considered,
as this strategy has proven to be superior in several applications that require global
image description [260, 398]. The combinations tested, as well as whether they were
successful in producing a global description for all examples are given in Tab. 4.1. Be-
sides these detectors and descriptors the CenSure [6], Harris-Laplace [246] detectors
as well as the BRIEF [41] and FREAK [7] descriptors were tested, but we did not man-
age to get comparable results with any combination and thus they are not included
this comparison. The focus of this chapter has moved to the 2D case since there exist
big libraries with many implementations of hand crafted features in comparison to
the 3D case, making this an easier benchmark to see if these methods are suited for

Acknowledgements 95

Table 4.1: Combination of detectors and descriptors tested. ”SD” signifies that the
combination is used with the single dictionary approach, ”MD” signifies that the com-
bination is used with the multiple dictionaries approach, ”x” signifies that the com-
bination didn’t manage to produce results and ”-” signifies that the combination was
not tested.

SIFT [226] SURF [19] ORB [299] AGAST [232]

SIFT [226] x,MD - - SD,MD
SURF [19] - SD,MD - SD,MD
ORB [299] - - SD,MD SD,MD
BRISK [205] - - - SD,x

describing CFD simulation output.

One of the peculiarities of CFD data, compared with traditional imagery, is the
number of modalities. Overall there are five modalities, i.e. two for the velocity vec-
tor field and three for pressure, turbulent viscosity and a viscosity related field from
the turbulence modeling, i.e. ν̃ from SpalartAllmaras RAS model [264]. According
to this study [187, 334, 368] (see Chapter 2), the most common approach for com-
bining information from multiple modalities is to process each modality separately,
e.g. create a dictionary for each modality and concatenate the per-modality repres-
entation to construct the final representation [187] or perform classification based
on each modality and then average the results [334]. In this study a slightly different
approach is also explored. Features from all modalities are extracted and the common
features are filtered out by discarding the ones that have intersection over union ratio
above 0.9. Then, for each detected feature, a description for each modality is created
and concatenated to produce the final description. Finally, one common dictionary is
constructed from the concatenated features. In order to differentiate between the dif-
ferent strategies, the common approach is called ”Multiple Dictionaries” (MD) and the
second one ”Single Dictionary” (SD). Dense feature extraction is also tested, which is
denoted as ”DE”.

After acquiring the global description of each example, a Random Forest (RF)
regressor is trained to predict the drag and lift forces. We utilize the OpenCV [32] im-
plementations of the detectors and descriptors from the Python API. The dictionaries
for real valued descriptors are built using an approximate K-Means clustering, whilst
for binary descriptors the K-Majority algorithm is used with Hamming distance as the
distance metric. The approximation of K-Means, pre-computes all the pairwise dis-
tances of data points and sets as cluster center the closest point to the actual cluster
center. Thus, the distances of all points to all centers do not need to be computed in

96 Acknowledgements

each step since they are already available. We utilize the scikit-learn package’s [272]
implementation of the RF with default parameters, while the clustering algorithms
are implemented from scratch, using the Python-numpy library.

4.4 Deep learning approaches

4.4.1 Methodology

As mentioned in Section 4.2, deep learning has already been applied to the same sub-
ject. In Chapter 3 three different strategies were proposed and tested for processing
the multi-modal data produced by the simulations. Based on the results, the Velocity
Coherent (VC) and Direction Specific (DS) approaches were picked and adjusted, for
the 2D case, as the baseline models. Specifically, both approaches use one network
with one input channel to process the scalar fields (applied to each one separately).
The VC approach utilizes a network with two input channels to process the velocity
vector field whilst the DS uses two networks with one input channel, one for each
direction of the velocity. These input processing networks are comprised by four con-
volutional layers. Their output is concatenated and then passed to another CNN for
further processing. The structure ends with three fully connected layers the last of
which is performing the drag and lift regression. Besides reducing the dimensionality
to two, skip connections are also added every two layers, since it proved to increase
the performance of the networks.

Moreover, as mentioned in Section 4.2, a third approach is defined based on the
RotEqNet, proposed by Marcos et. al.[233]. In their work, they propose an architec-
ture tailored for vectorized data. This approach is utilized by using the RotEqNet as
a substitute of the velocity processing network of the VC and DS approaches. The
output of each layer is a vector field for each filter, resulting in double number of
channels compared to a plain CNN with the same number of filters. Moreover, since
the input consists of vector field feature maps, the number of trainable parameters
is given by: Fh · Fw · 2 · ci · co, where Fh, Fw are the filter height and width respect-
ively and ci, co the input and output number of channels. The three different input
pipelines are shown in Fig. 4.1, top. After the processing of each modality, the fea-
ture maps are concatenated and further processed by a common CNN of five layers.
Finally, three fully connected layers perform the regression. Notice that in the case of
RotEqNet the number of filters is halved. This is a consequence of the vectorization
of the activations where for each filter there are two output channels, the magnitude
and the angle of the vector.

Acknowledgements 97

2
x
8

8
x
8

8
x
1

6
1

6
x
1

6
1

x
6

6
x
6

6
x
8

8
x
8

1
x
4

4
x
4

4
x
8

8
x
8

(a
)

S
c
a
la

r
F
ie

ld
 P

ro
c
e
s
s
in

g
 C

N
N

 (
S
P
N

)
(b

)
V
e
lo

c
it

y
 C

o
h
e
re

n
t

(V
P
N

)
(c

)
R

o
tE

q
N

e
t

(V
P
N

)

(d
)

O
v
e
ra

ll
 G

e
n
e
ra

l
A

rc
h
it

e
c
tu

re
,

c
o
n

s
it

in
g
 o

f
th

re
e
 i
n
p
u
t

n
e
tw

o
rk

s
,
3

*
s
c
a
la

r

�

e
ld

 p
ro

c
e
s
s
in

g
 C

N
N

 (
S
P
N

),

V
e
c
to

r
P
ro

c
e
s
s
in

g
 N

e
tw

o
rk

 (
V

P
N

),
 f

e
a
tu

re
 c

o
n
c
a
te

n
a
ti

o
n
,

a
 c

o
m

m
o
n
 C

N
N

 a
n
d
 a

 2
 l
a
y
e
r

p
e
rc

e
p
tr

o
n

C
o
n
v
o
lu

ti
o
n
a
l
la

y
e
r

S
p
a
ti

a
l
A
v
a
ra

g
e
 P

o
o
li
n
g

S
p
a
ti

a
l
M

a
x
 P

o
o
li
n
g

R
o
ta

ti
o
n
 E

q
u

iv
a
ri

a
n
t

V
e
c
to

r
F
ie

ld
 L

a
y
e
r

C
F
e
a
tu

re
 C

o
n
c
a
te

n
a
ti

o
n

F
u
ll
y
 C

o
n
n

e
c
te

d
 L

a
y
e
r

C

�

x
6

4
6

4
x
6

4
6

4
x
1

2
8

1
2

8
x
1

2
8

1
2

8
x
1

2
8

h
*
w

*
1

2
8

x
5

1
2

5
1

2
x
2

V
P
N

S
P
N

S
P
N

S
P
N

5
1

2
x
5

1
2

Fi
gu

re
4.

1:
C

N
N

ar
ch

it
ec

tu
re

.
(a

)
Is

th
e

ne
tw

or
k

pr
oc

es
si

ng
th

e
sc

al
ar

fie
ld

s
(S

PN
),

sh
ar

ed
fo

r
al

l
sc

al
ar

fie
ld

s.
(b

)
Th

e
Ve

ct
or

Pr
oc

es
si

ng
N

et
w

or
k

(V
PN

)
fo

r
th

e
V

C
st

ra
te

gy
.

(c
)

Th
e

V
PN

ne
tw

or
k

fo
r

th
e

R
ot

Eq
N

et
st

ra
te

gy
.

(d
)

Th
e

co
m

pl
et

e
ar

ch
it

ec
tu

re
.T

he
V

PN
is

ei
th

er
(b

),
(c

)
or

in
th

e
ca

se
of

D
S

2*
SP

N
.T

he
nu

m
be

rs
ab

ov
e

ea
ch

la
ye

r
ar

e
th

e
in

pu
t

an
d

ou
tp

ut
fil

te
rs

re
sp

ec
ti

ve
ly

.h
,w

ar
e

th
e

he
ig

ht
an

d
w

id
th

of
th

e
in

pu
t

fe
at

ur
e

m
ap

s.

98 Acknowledgements

4.4.2 Implementation and training details

For all strategies, the input processing networks are four layers deep and the network
applied after the feature concatenation consists of five convolutional layers. Spatial
average pooling operations are performed every two convolutional layers in the input
processing networks, whilst spatial max-pooling is performed every two convolutional
layers in the network after the feature concatenation. All convolutional kernels have
spatial dimensions 5 × 5 and are followed by batch normalization [154] and a leaky
ReLU activation function [230] where α = 0.1. The number of nodes per layer is given
in Fig. 4.1. The prediction network consists of a max-pooling operation, followed by
three fully connected layers, with 512, 512 and 2 nodes respectively. The third fully
connected layer is tasked to predict the drag and lift forces. All networks are trained
with Adam optimizer [175], with the default parameters and a batch size of 200,
for 36K iterations. The implementation is done using Tensorflow 1.13.1 [1] and all
experiments ran on NVIDIA GTX 1080Ti graphics cards.

4.5 Dataset

The aim of this chapter is to compare the performance of deep learning based and
more traditional hand crafted feature based approaches, for mining CFD simulation
output. Due to the much larger variety of hand crafted features for 2D imagery, as well
as the high computational demand of deep learning methods on high dimensional
data, the 2D simulation domain is picked as the setting for this benchmark, since
it exhibits many of the characteristics that exist in the 3D domain, such as a large
number of modalities and a velocity vector field, that satisfy, to a certain extent, the
Navier-stokes equations.

To the best of our knowledge there is no 2D dataset that can be utilized as the
benchmark. Consequently, a new dataset is proposed. The focus is on the standard
airfoil example. In order to create a large dataset with as big variety as possible, a
similar approach to [371] (Chapter 3) is followed. First, a baseline airfoil shape (Fig.
4.2) is defined and random deformations are applied to it. Then, given intake air
from the left of the simulation domain, the air around the airfoil is simulated using
Reynolds-Average Simulator (RAS) implemented in OpenFOAM-v5 [264]. The output
of the simulation consists of the velocity vector field, the pressure field, turbulent
viscosity, and the drag and lift forces applied on the airfoil. Overall 2K shapes are
created and simulations are done for 8 different angles of attack per shape, resulting
in 16K simulations. 15K are chosen for training at random and the remaining 1K are
using as a test set.

The aim of this work is to perform data mining and pattern recognition on the flow

Acknowledgements 99

(a) (b)

Figure 4.2: Example airfoil shapes. (a) Baseline model. (b) Randomly deformed
shape.

fields. Thus, we want to discard any information that relates to the shape of the airfoil.
Consequently, a window behind the airfoil is cropped (see Fig. 4.3) and the flow field
in this region is extracted for further processing. The simulation is performed on an
unstructured mesh. In order to bring the data to a format that hand crafted features
and CNNs can be easily applied to, the values are interpolated on a regular grid with
resolution 192 × 128. Finally, to evaluate whether the defined methods are able to
extract meaningful information, they aim is to predict the drag and lift forces applied
on the airfoil. The dataset is publicly available on Zenodo 1.

4.6 Experiments

In order to asses whether the features are capable of encoding relevant information,
they are used to predict drag and lift force coefficients of each airfoil. We then com-
pare the predicted values with the actual simulation results and quantify the perform-
ance using the root-mean squared error (RMSE) as metric.

The first experiment aims at identifying the optimal number of clusters which are
used to construct the dictionaries. Dictionary sizes of 512, 1024 and 2048 are tested
for the SD approaches. The results are summarized in Table 4.2.

For the MD approach, the number of clusters for each modality needs to be defined.
Most of the detectors detected extremely low number of points for some of the mod-
alities, e.g. pressure, and thus large dictionary sizes are infeasible. As a result the
dictionary sizes for the two velocity directions as well as pressure are set to 32 and

1https://zenodo.org/record/4077323#.X4QeI3VfhhE

100 Acknowledgements

Figure 4.3: Example simulation. The square behind the airfoil is the window used as
an example for our pipeline.

Table 4.2: Regression performance of the SD approach with varying dictionary sizes,
measured by RMSE. The best performing method per column is highlighted with
italics, and the overall best for each evaluation measure (Drag or Lift) is highlighted
with bold.

Detector Descriptor Drag (*1e-3) Lift (*1e-2)

512 1024 2048 512 1024 2048

SURF SURF 10.17 9.37 9.57 5.6 5.59 6.02
ORB ORB 7.88 8.22 7.77 4.74 4.1 3.87
AGAST SIFT 8 7.83 7.51 5.25 4.72 4.88
AGAST SURF 10.06 9.89 10.49 7.73 7.39 8.64
AGAST ORB 7.93 7.86 7.84 5.8 5.56 5.69
AGAST BRISK 8.67 8.42 8.95 7.95 7.42 7.32

Acknowledgements 101

Table 4.3: Regression performance of the MD approach with varying dictionary sizes,
measured by RMSE. The best performing method per column is highlighted with
italics, and the overall best for each evaluation measure (Drag or Lift) is highlighted
with bold.

Detector Descriptor Drag (*1e-3) Lift (*1e-2)

32-512 64-1024 32-512 64-1024

SIFT SIFT 19.55 16.59 15.16 14.11
SURF SURF 11.67 9.52 7.97 9.56
ORB ORB 8.52 8.84 4.6 4.52
AGAST SIFT 7.22 7.68 6.68 7.3
AGAST SURF 9.99 9.92 11.98 10.24
AGAST ORB 9.76 9.26 7.15 6.93

64. For the rest of the modalities dictionary sizes of 512 and 1024 are tested. The
results are given in Table 4.3.

Looking at Tables 4.2 and 4.3 one can identify a few trends. Overall, the ORB-
ORB combination produces the best performance for predicting the lift force while
being a close second on the lift prediction performance. The AGAST-SIFT combination
similarly has the highest performance in predicting drag forces and a close second on
predicting lift forces. Regarding the modality aggregation strategy, for most detector-
descriptor combinations, the SD approach outperformed the MD approach, with the
only exceptions being the AGAST-SIFT on drag prediction and the AGAST-ORB on lift
prediction.

For dense sampling we extract features in 4 different scales, i.e., {12, 16, 24, 32}
pixels. The step size for each scale is the same number of pixels as the size of the scale.
Regarding modality aggregation both approaches are evaluated, i.e., SD and MD. Due
to time limitations only the, according to our previous experiments, best performing
descriptors were used, namely ORB and SIFT. For the MD approach dictionary sizes
of {256, 512} were tested, for each modality, resulting in a 1280 and 2560 global
description sizes, respectively. For the SD approach the same dictionary sizes with the
detector approach were used. The results can be seen in Tables 4.4 and 4.5.

The results show that dense sampling outperforms the detection mechanism in
terms of global description in most cases, similar to what is found for other computer
vision tasks. This is not the case only for the ORB descriptor in the context of drag
prediction. Moreover, in contrast to the use of detectors, the MD approach performs
better than the SD approach. The dense description approach increased the quality of
the results for the SIFT by a significant margin, rendering it the highest performing

102 Acknowledgements

Table 4.4: Regression performance, measured by RMSE, of the DE-SD approach with
varying dictionary sizes and modality aggregation strategies.

Descriptor Drag (·10−3) Lift (·10−2)

512 1024 2048 512 1024 2048

ORB 10.46 9.22 9.26 3.34 3.58 3.94
SIFT 7.03 8.08 6.59 2.68 3.11 2.65

Table 4.5: Regression performance, measured by RMSE, of the DE-MD approach with
varying dictionary sizes and modality aggregation strategies.

Descriptor Drag (·10−3) Lift (·10−2)

256 512 256 512

ORB 21.14 38.78 10.74 16.63
SIFT 6.28 9.09 2.33 2.87

method for both tasks. In contrast, the performance increase is not found with the
ORB descriptor, where the performance even dropped by a significant margin.

Table 4.6 shows the performance achieved by the deep learning approaches. Com-
paring Tables 4.5 and 4.6, deep learning approaches outperform hand crafted feature
approaches in all benchmarks. Particularly, all deep learning approaches perform bet-
ter than the DE-SIFT-MD, i.e., the best hand crafted feature based approach, for both
drag and lift prediction. For a more thorough comparison relevant in practice, it needs
to be stated that hand crafted feature approaches have less computational complex-
ity. The DE-SIFT-MD approach with dictionary sizes of 256 per modality takes 7.5k
seconds to extract features from the training set, cluster them and train the random

Table 4.6: Regression performance, measured by RMSE, of the deep learning ap-
proaches.

Approach Drag (·10−3) Lift (·10−2)

VC 5.32 2.18
DS 5.53 2.25
RotEqNet 5.22 2.2
VC-RF 2.83 0.92

Acknowledgements 103

Table 4.7: Regression performance, measured by R2, of the three best performing
approaches. The best performing method is highlighted with bold.

Approach Drag Lift

DE-SIFT-MD 0.965 0.987
VC 0.917 0.949
VC-RF 0.981 0.994

forest on two Intel(R) Xeon(R) CPU E5-2699. At the same time the VC approach takes
around 11.1K seconds to be trained on the same machine running on an NVIDIA GTX
1080Ti. Applying these approaches to large scale CFD simulations, with 4 physical
dimensions and multiple modalities, where the data complexity is much larger, the
high computational demand of deep learning approaches might render them infeas-
ible, making the hand crafted feature based approaches an appealing alternative.

For a further comparison between the features produced by deep learning and the
hand crafted features, we extract the output of the last fully connected layer of our
best network (VC) and train a RF regressor. The result is given in the last row of Table
4.6, depicted as VC-RF. It is apparent that the use of CNNs as feature extractor and a
random forest regressor to perform the given task achieves much higher performance
than the equivalent neural network solution, or the use of hand crafted feature based
description with an RF regressor.

In order to get a more informative image of the performance of the evaluated
methods, the R2 values for the three top performing methods, i.e., the DE-SIFT-MD,
the VC and the VC-RF are also calculated and shown in Table 4.7. Moreover, the sorted
absolute errors, per test example, are plotted for both lift and drag forces in Figure
4.4. There is a qualitative difference between the performance of the VC and the DE-
SIFT-MD approaches. The VC approach has much lower R2 values whilst it achieves
lower RMSE. This can be explained by the two figures. Although overall the DE-SIFT-
MD approach has lower absolute errors, the error of the extreme cases become much
more severe than in the case of the VC approach. Depending on the behavior one
needs from a system, a different approach would be preferable. Finally, in both drag
and lift prediction, the VC-RF approach manages to produce much better results in
all measures tested, RMSE, R2 as well as overall better absolute error curves.

One of the motivations of this work was to assess the usability of hand-crafted
features for CFD simulation output and compare them to deep learning solutions for
situations with small training datasets. In order to evaluate this, the best performing
configurations, from both deep learning and hand-crafted features are trained with

104 Acknowledgements

(a)
(b)

Figure
4.4:Sorted

absolute
drag

(a)
and

lift
(b)

regression
error

per
test

exam
ple.The

Y-axis
is

the
absolute

error,w
hilst

the
X-axis

is
the

index
ofthe

test
exam

ples
(after

sorting
based

on
the

absolute
error).

Acknowledgements 105

Table 4.8: Drag regression performance, measured by RMSE, of the DE-SIFT-MD and
VC with varying training set sizes.

1K 2K 4K 8K 14K

VC 11.7 8.39 6.81 6.05 5.32
DE-SIFT-MD 21.26 19.26 14.56 12.19 6.27

Table 4.9: Lift regression performance, measured by RMSE, of the DE-SIFT-MD and
VC with varying training set sizes.

1K 2K 4K 8K 14K

VC 4 3.05 2.71 2.3 2.18
DE-SIFT-MD 10.3 7.36 6.16 5.19 2.33

varying training set sizes and the same validation and test sets. The training set sizes
are {1K, 2K, 4K, 8K, 14K}. The performance for drag and lift forces are shown in
Tables 4.8 and 4.9 respectively. It is apparent, that even with small training set sizes
the deep learning approaches outperform the hand-crafted features. Surprisingly, the
difference between the performances becomes larger as the training set size reduces,
showing that deep learning approaches are more capable of maintaining relatively
good performance even with small training set sizes.

4.7 Conclusion

In this chapter the performance of hand crafted features such as SIFT [226], SURF
[19] and ORB [299] is evaluated on their ability to efficiently describe CFD simulation
output. Furthermore, they are compared to a number of deep learning approaches.
CFD simulation output can be very complex and large, compared to standard com-
puter vision application examples, such as 2D and 3D imagery. Moreover, creating
these examples can even take months making the generation of enough examples for
deep learning approaches infeasible. On the other hand, a complete working pipeline
based on hand crafted features might not require as many examples, since the basic
features are predefined and not learned from the data, an assumption that was, sur-
prisingly, falsified by the experimental results. Due to the large variety of detectors
and descriptors that exist in 2D, as well as the lower computational complexity of 2D
CFD simulations compared to 3D & 4D, a dataset of 2D CFD simulations is created

106 Acknowledgements

and used as our benchmark platform.

Overall 4 detectors and 6 descriptors are tested as well as dense sampling. More-
over, two different approaches for combining different data modalities are evaluated,
namely a multiple dictionary (MD) approach and a single dictionary (SD) approach.
Their difference lies in the concatenation step. Specifically, in the SD approach we
concatenate the low level features, before the dictionary construction, whilst in the
MD approach we concatenate the information after we create the dictionaries. Ac-
cording to our experiments, for the drag and lift prediction tasks, dense sampling
combined with SIFT descriptor produces the best results of all hand crafted feature
based approaches by a large margin. Moreover, we identify a contradiction. In most
cases, the SD approach outperforms the MD approach, but with dense sampling and
SIFT features, which is the best combination tested, we see the opposite behavior.

We also implemented and tested a number of deep learning approaches. They
are adapted approaches from data mining on 3D simulation data [371] (Chapter 3).
We also combine them with the work of Marcos et al. [233], which is designed for
vector fields. Deep learning methods outperformed the hand crafted feature based
approaches in the benchmarks tested. Moreover, our experiments showed that using
the neural networks as feature extractors whilst a random forest regressor to perform
the task produces higher performance than the pure deep CNN counterpart. Compar-
ing different regression characteristics, like R2 and the absolute error curves, we see a
qualitative difference between the DE-SIFT-MD and the VC approaches. The DE-SIFT-
MD produces more accurate predictions on most test instances but also gets much
higher maximum error than the VC approach. Moreover, the R2 performance of the
DE-SIFT-MD is higher than that of the VC, even thought the the RMSE of VC is lower
than that of DE-SIFT-MD. Thus, depending on the requirements of an application,
different method would be preferable.

We compared the deep learning methods to the hand crafted features in terms
of efficiency. As expected, the hand crafted feature approach is more efficient as it
managed to construct the global description of all examples as well as train the RF
regressor in 67% of the time it took to train the best performing CNN.

The 2D airfoil example is considered a very important benchmark for CFD sim-
ulations. Nonetheless, it is much simpler than many industrial application CFD sim-
ulations. As such, we are able to get a much higher number of examples for this
dataset. In order to get an intuition on how these methods would generalize to the
more realistic case with much smaller datasets, we perform an experiment and train
our models on much smaller training set sizes while testing on the same test set.
Our results show that deep learning approaches are much more capable of getting a
high performance with the drop of the training set size, than the hand-crafted feature
based approaches. We speculate that the reason behind this is the necessity of a large

Acknowledgements 107

number of descriptors required to build generalizable enough dictionaries.

5
Clifford convolution inspired
orientation equivariant CNNs

Convolutional Neural Networks (CNNs) such as VGG [338], ResNet [127] and Dense-
Net [146], are very powerful models for processing image and sensor data. However,
a notable drawback for their application in many domains is their sensitivity to ro-
tations of the input data. In order to alleviate this issue several methods have been
proposed. Most of these implement orientation pooling through max-pooling as a core
aspect to achieve rotational invariance or equivariance. However, such operations are
very computationally intensive since all the activations have to be computed for many
different orientations. In this chapter, we take advantage of vector field representation
to repeatably calculate the angle of the kernel with the input pattern. This is achieved
by generalizing the basic convolutional kernels to realize Clifford convolutions. With
this architecture, rotation angles can be calculated without computing activations for
all orientations. Since the rotation angle is computed from the Clifford kernels and
the input alone, this information can be utilized in the learning process through back-
propagation. The proposed method is evaluated on the rotated MNIST [200, 197]
on classification performance (rotation invariance) and orientation prediction (rota-
tion equivariance). We show that this method improves the equivariance property of
networks over max-pooling, preserving or even improving classification performance
while having lower computational cost.

110 Acknowledgements

5.1 Introduction

Convolutional Neural Networks (CNNs) are very powerful models that can extract
high level information from their input, such as the contents of an image [302]. State
of the art networks, such as AlexNet [184], NiN [216], VGG nets [338], ResNet [127],
and DenseNet [146], achieve this by combining a hierarchy of feature extractors, i.e.,
convolutional layers, to complex and deep architectures. A limitation of the convolu-
tion operation is that it is not rotation equivariant, and thus the output signal changes
if input signal is rotated. As a result, if a network needs to identify the same pattern
at different orientations it would require multiple kernels.

There are multiple potential benefits in a rotational invariant or equivariant con-
volution operator as proposed in this work. The number of trainable parameters might
be reduced [409, 408] since no additional kernels are required for detecting rotated
patterns. Due to the resulting models being simpler, they will also be less prone to
overfitting and have lower memory footprints. Additionally, in some cases it is es-
sential to extract the orientation of the detected patterns, such as for aerial imagery
[233] and robotic grasp detection [204].

From the research literature on rotational equivariance, four main groups can be
identified. One is to rotate the input in multiple orientations and then pool the top
most activations from the different orientations [189]. The second rotates the kernels
from all layers and forwards the activations of different orientations throughout the
network, and then pools the activations from different orientations at the latest layer
[449]. The third group of methods is similar to the second group, with the differ-
ence that orientation pooling happens at all layers and all positions of the feature
maps [233]. Thus the orientation information is still propagated, whilst the number
of trainable parameters and the information flow does not explode. The last method
is inspired by the group convolutional networks [55] and convolves in the orientation
dimension as well. This combined with an initial input of convolutions through all
rotations and orientation pooling in the last layer results in one of the highest per-
forming methods to date. Nonetheless, since all equivariant layers are convolving in
the orientation dimension as well, it is a very computationally intensive approach.
All four methods increase the memory footprint of the networks and incur additional
computational cost.

In this work, we take advantage of vector field representation to calculate the
angle between two vector fields, i.e., the kernel and input signal. This is achieved by
using convolutional kernels which utilize operations from Clifford Algebra [316, 75].
This enables the detection of rotated patterns without significant memory and com-
putational overhead, but also allows for the extraction of the rotation angles of the
detected patterns. The orientation angles are calculated from the kernels and the

Acknowledgements 111

layer input alone, and thus can contribute to the learning process through back-
propagation. Even though the extractable rotation angles are in principle continuous,
we employ rotation quantization in order to reduce complexity. However, we recon-
struct (approximate) continuous angles by employing a correction mechanism. Our
experiments show that our method increases the rotation equivariance of the mod-
els over max-pooling based networks. At the same time it manages to maintain and
in some cases improve the classification performance while being less memory and
computationally intensive.

5.2 Related work

An early approach to rotation equivariant CNNs is the Spatial Transform Networks
(STN) [157]. A specific module is proposed which transforms the network input be-
fore it is passed to the prediction network. Although this method does not suffer from
the extra memory footprint and computational demand of computing feature maps
for all orientations, the invariance is not intrinsic but rather learned by the network,
and thus restricted by the training data. TI-pooling [189] rotates the input multiple
times and processes it with Siamese networks. After the first fully connected (FC)
layer, they perform orientation pooling and thus the next FC layer takes as input
rotation equivariant features.

Another group of works rotate the feature maps in every layer and propagate
all the information to the next layers. At a final stage the orientation and spatial
information are pooled together. The Orientation Response Networks (ORN) [449]
additionally define the orientation alignment layer, a SIFT like alignment applied
before the orientation pooling. The same principle is also applied in the RI-LBC [443].

The Rotation Equivariant Networks (RotEqNet) [233] calculate the response at
each layer and position for a number of rotated kernels, which represent vector fields.
Then, the most dominant orientation per location and output channel is computed
via max-pooling, and the result is represented by a new vector field with the response
of the convolution as the magnitude at the respective angle. The approach presented
here is similar in the sense that the activations are also vector fields, and that different
orientations in all positions and channels throughout the network are accounted for.

Another approach to rotation equivariance is the group convolution [55], which
define operation groups, e.g. rotation, and perform convolution on all the operations
in the group. The result are filters that have equivariant response to all operations in
the group. The main difference with the above is that all rotations are being processed
and the equivalent information propagated in the network instead of performing ori-
entation pooling and propagating only a fraction of the information. This approach

112 Acknowledgements

is utilized by the steerable filter CNNs defined by [409]. These networks make use
of the group convolutions in combination with steerable filters to produce rotation
equivariant nets. At the last convolution layer they perform orientation pooling and
finally three fully connected layers perform the classification. The work of Weiler et al.
[408] created a more general formulation regarding and re-implement existing archi-
tectures, such as the steerable CNNs [409] and propose new architectures based on
their finding and existing operators. With a combination of cyclic equivariant group
with a cyclic and flip group (only in the first few layers) they achieve state of the art
performance in the MNIST-rot dataset. It should be noted that most of the networks
in this cluster of methods, i.e., utilizing group convolutions, only perform orientation
pooling before the fully connected layers and thus process much more information
than most methods.

The aforementioned methods perform orientation pooling in various variants,
where to the best of our knowledge the best performing methods incorporate max-
pooling for orientation pooling. In this paper we propose a method which specific-
ally tackles the orientation estimation and therefore we compare to max-pooling
as the state of the art orientation pooling mechanism in our experiments. Addi-
tional techniques which would influence the performance, such as the steerable filters
[409], could be combined with our approach. In order to evaluate our claim we re-
implement the RotEqNet [233], as well as group convolutional CNNs with steerable
filters [409, 408] using the proposed Clifford convolution inspired layer for orienta-
tion pooling.

Clifford convolution has been previously used for pattern recognition on 3D vector
fields [75]. Patterns, such as vortices, were identified using predefined kernels, that
represent those patterns, i.e., hand crafted feature extraction was done. As far as the
authors know, this is the first time Clifford algebra has been used in the area of deep
learning where multiple layers of filters (so called features) are learned.

5.3 Clifford convolutions and calculation of rotation
angles

One central aspect of Clifford Algebras is the definition of general products between
vectors and their geometric interpretation. Most relevant for this work is the ability
to estimate the angle between two vector fields by performing two convolutions [75],

tanφi,j =
conv2(i, j)

conv0(i, j)
⇒ φi,j = arctan

conv2(i, j)

conv0(i, j)
, (5.1)

Acknowledgements 113

where

conv0(i
′, j′) =

cin∑
ci

Fh∑
i

Fw∑
j

~Wi,j,ci · ~Oi′−Fh2 +i,j′−Fw2 +j,ci

conv2(i
′, j′) =

cin∑
ci

Fh∑
i

Fw∑
j

(W0,i,j,ci ·O1,i′−Fh2 +i,j′−Fw2 +j,ci
−W1,i′,j′,ci ·O0,i′−Fh2 +i,j′−Fw2 +j,ci

)

(5.2)

where ~Oi′,j′,ci , ~Wi,j,ci ∈ R2 are multi-channel 2D signal and kernel vector fields with
discrete coordinates (i′, j′) ∈ [(0, 0), (Oh, Ow)] and (i, j) ∈ [(0, 0), (Fh, Fw)], where
Oh, Ow, Fh, Fw are the image (O) and filter (F) height and width respectively:

~Oi′,j′,ci = (O0,i′,j′,ci , O1,i′,j′,ci) (5.3)

The original formulation considers continuous vector fields and integrations instead
of summations [75]. Depending on the instantiation of ~O and ~W , as well as the angle
between them, the computation might be inaccurate. In order minimize this error,
we calculate the angles for four orientations of the kernels for successive angles of
π
2 . The kernel orientation that produced the smallest angle is considered the most
accurate, and thus we calculate the final angle from this choice. Experimentally we
found that choosing the orientation that produced the highest value of conv0 results
in more accurate networks and thus it is chosen for all our experiments.

To illustrate the angle measurement, we construct a random 50-channel 2D vector
field ~O on a 3×3 grid. Each magnitude is randomly drawn from a uniform distribution
in [0, 1) and each angle in [0, 2π). To construct example filters, we rotate ~O randomly
and add Gaussian noise, ~Wij = rotatei′j′→ij(~Oi′j′ , φ) + ~Gij . Both the grid positions
and the 2D vectors are rotated by a random angle φ. We denote the rotated kernel ~W
by angle φ as ~Wφ.

We generate 10, 000 such random vector fields and filters and calculate the angle
of the original fields (~O) to the rotated fields (~W) with and without the addition
of noise. Figure 5.1 shows the distribution of the difference between the calculated
angle and the real angle used for the rotation. Even with the addition of noise, the
average absolute difference is less than 10−2 radians.

5.4 Layer construction

5.4.1 Forward pass computations

The rotation equivariant processing layer proposed in this work can be decomposed
into five steps [C1, C5] which is schematically shown in Figure 5.2. For the sake of

114 Acknowledgements

Figure 5.1: Distribution of the difference, in radians, between the rotation angle and
the calculated one. (a) The difference without Gaussian noise added to the rotated
signal. (b) The difference with Gaussian noise where µ = 0 and σ is 10 percent of the
maximum possible value of the signal.

Figure 5.2: Computational pipeline of a filter ~W l in layer l. C1−5 define the different
operations. Input to the pipeline is a kernel of dimensions (Fh, Fw, cin) and a window
of the input with the same size with the kernel. For that combination, an angle φl is
computed which is used to rotate the kernel. The rotated kernel is used to compute
the scalar convolution which is then transformed to a vector.

simplicity we define the following shorthand indices:

pw : weight position, (i, j, cin, cout)

po : output position, (i′, j′, cout)

pin : input position, (i′′, j′′, cin)

(5.4)

For clarity, we note that if certain indices of a Tensor are not displayed, then the
complete dimensionality is considered.

The first step (C1) calculates the angle φlpo between the input to this layer ~Ol−1

and a kernel ~W l
cout for all output positions and all output channels cout. In the second

and third step the rotated kernels ~W l
φ po

are calculated (C2,3), for all output positions
and channels, where the first step C2 only rotates in the 2D vector space for each

channel and grid location (indicated by ~̇W), and in the third step C3 the rotation is

Acknowledgements 115

also performed with respect to the grid indices (i, j) using bi-linear interpolation, i.e.,
plane rotation. Without loss of generality we can consider both steps as one operation.
The step C4 performs a scalar convolution of the rotated kernels and the input. The
scalar convolution result Olpo and the angle φlpo used to compute it are considered as
vectors in the polar coordinate system which are then transformed to the Cartesian
representation at step C5.

In large networks, calculating rotated kernels, ~W l
φ po

, for all positions and chan-
nels is very inefficient. Thus, we precompute the rotation of the kernels for B angles,
φb = b 2πB (b = 0, ..., B − 1). At each output point we calculate an angle φlpo using
formulas 5.1 and 5.2 and then select the precomputed kernel with the closest angle
to φlpo . If the input pattern is significantly different from the kernels, the computed
angle might still be very large. We set a maximum threshold for the angle, in which
case the output Olpo is set to zero. The final pipeline can be seen in Figure 5.3. In
order to reconstruct continuous angles φ and the respective scalar convolution result
Oφ from the quantized angles φb, we make the assumption that for a small angle ε
and the output of the scalar convolution at the most appropriate angle φ, Oφ, the
convolution can be approximated as Oφ+ε = Oφ cos ε. In our case this becomes:

Oφb = Oφ cos εb ⇒ Oφ =
Oφb
cos εb

, (5.5)

where φb and εb = φ − φb are the closest quantized angle and the difference to the
continuous angle. We also considered calculating the Taylor expansion to calculate
the response in the real angle φ given the response at angle φb. For every order of the
Taylor expansion an extra convolution operation has to be computed, which adds a
lot to the final computational complexity. Thus we only implement a first order Taylor
expansion:

Oφ = Oφb +

∂Oφ
∂φ (φb)

1!
· (φ− φb) (5.6)

In our experiments, the correction in Equation 5.5 produced significantly better res-
ults than the first order Taylor expansion approximation 5.6. Given that it is also less
computationally intensive, we use this correction for all our experiments.

5.4.2 Back propagation

Implementing the back propagation algorithm is straight forward for the operations
C4 and C5, whereas some explanation is needed for operations C1 and C2,3 (for
simplicity, we group C2 and C3, without effecting the derivations.) At operations C2,3

the output is:

~W l
φ po = vector field rotation(~W l

cout , φ
l
po), (5.7)

116 Acknowledgements

T
h
re
sh
o
ld

Figure
5.3:

Im
plem

entation
W

orkflow
.

In
parentheses

are
the

shapes
of

the
respective

tensors,
w

here
b

is
the

batch
size,

h
,w
,c
in

the
size

of
the

input,
c
o

the
num

ber
of

channels
and

F
h
,F

w
the

kernel
height

and
w

idth
respectively.

Finally,
B

is
the

num
ber

ofbins
used

for
the

precom
puted

rotated
kernels.

Acknowledgements 117

where ~W l
cout is the complete vector field kernel of shape (Fh, Fw, 2× ci). For the back

propagation two sets of gradients need to be computed, ∂E

∂ ~W l
cout

and ∂E
∂φlpo

. Since ~W l
φ po

is the rotated ~W l
cout , we get:

∂E

∂ ~W l
cout

= vector field rotation(
∂E

∂ ~W l
φ po

,−φlpo),
∂E

∂φlpo

=
∑
i

∑
j

∑
cin

∂E

∂ ~W l
φ popw

·
∂ ~W l

φ popw

∂φlpo

(5.8)

To avoid confusion we note that ~W l
φ popw

refers to the rotated weights for the output
position po indexed by pw. The last term in Equations 5.8 above can be estimated with
the precomputed kernel weight sets for the quantized angle φb as:

∂ ~W l
φb

∂φl
=

~W l
φb+1
− ~W l

φb−1

2 2π
B

(5.9)

To back propagate the gradient through step C1, where φlpo = arctan (conv2conv0
), we

need to calculate two sets of gradients:

∂E

∂conv0
= − ∂E

∂φlpo

conv2
conv20 + conv22

,
∂E

∂conv2
=

∂E

∂φlpo

conv0
conv20 + conv22

(5.10)

Equations 5.10 introduce numeric instabilities when both conv0 and conv2 are
very close to zero, and even undefined when exactly zero. As a remedy, we set a
small threshold for conv0 and conv2, below which we turn off the feature map at the
specific location. The derivatives of conv0 and conv2 can easily be calculated from
their definitions in Eq. 5.2. The analytical derivations can be found in the Appendix
A.

5.5 Experiments

5.5.1 Datasets and ground truth

In order to evaluate our method, we perform experiments on rotation invariance and
rotation equivariance. With that goal in mind we utilize the MNIST-rot [200, 197]
dataset and a car orientation dataset [131]. Moreover, we construct our own ver-
sion of the MNIST-rot, as explained in Section 5.5.4, to help us evaluate the rotation
equivariance property of the methods tested.

For the RotEqNet [233] networks and their Clifford convolution counterparts we
extract the gradients of the color from a 3 × 3 window and utilize them as input, in
order to have a vector field as input.

118 Acknowledgements

5.5.2 Networks

For our experiments we utilize two network architectures, i.e. the SFCNN [409,
408] and the RotEqNet [233]. The SFCNN represent the state of the art in rota-
tion equivariance and equivariance, utilizing group convolutions whilst the RotEqNet
remains one of highest performing approaches and its much less computationally in-
tensive than the group convolution approach.

Each layer of the RotEqNet performs convolutions in a number of predefined ori-
entations of the kernels and then forwards the maximum response. Furthermore, it
utilizes the orientation information to create a vector field as an output, i.e., the mag-
nitude of each vector is the maximum response and the angle is the rotation angle of
the orientation that produced that maximum response. Every convolutional layer is
followed by batch normalization and a ReLU activation function (both applied on the
magnitudes of the vectors). We also experimented with batch normalization with only
rescaling, as proposed by the authors [233], but in our experiments the full batch nor-
malization proved to produce better results. After a number of layers global pooling
is applied and the resulted information is processed by a number of fully connected
layers which perform classification.

The Clifford convolution (cc) inspired counterparts of the RotEqNet follow the
same architecture with a few differences. Instead of full batch normalization we ap-
ply only rescaling (as with the cc networks it proved to result in higher performance)
and the addition of a second normalization which makes the average norm of a square
window, with size equal to the next layer’s kernel size, to be one (Equation 5.11). This
is needed in the cc networks due to the threshold introduced at the end of Section
5.4.2. With varying input norm the effect of the threshold changes. For fair compar-
ison we did also try to add them at the original RotEqNet and found that it marginally
improves the performance and thus utilized it in all our experiments.

norm(~Ol−1) =
~Ol−1

λO
, λO =

√
F lwF

l
h

Ol−1w Ol−1h

||Ol−1||2 (5.11)

For the SFCNN we follow the proposed hyperparameter settings proposed in
[408] and reproduced their results. The first layer outputs the response of the net-
works for the predefined orientations (sixteen orientations). The rest of the convo-
lutional layers besides the standard spatial 2D convolution, convolve in the angular
dimension as well and output responses for all orientations. Before their three fully
connected layers they perform both spatial and orientation pooling by applying max-
pooling.

The cc counterpart utilizes the input layer and group convolutions as with the
max-pooling version. The difference lies in the orientation pooling layer in which we

Acknowledgements 119

Table 5.1: Number of channels per layer. CL denotes Convolutional Layer, FC are
Fully Connected and Out is the classification layer. With (/2) we denote layers that
are followed by 2x2 spatial pooling. (-) denotes layers for which the kernel size is the
same as the input and do not use padding, producing output size 1x1.

CL1 CL2 (/2) CL3 CL4 (/2) CL5 CL6(-) FC FC Out
kernel size 9 7 7 7 7 5 - - -

rotEqNet [233] 16 32 36 36 64 96 96 96 10
SFCNN [409] 24 32 36 36 64 96 96 96 10
D16|5C16

∗ [408] 24 32 36 36 64 96 96 96 10

utilize the cc approach.
All the above networks have fully connected layers performing the classification

and thus rendering the whole network as rotation invariant and not rotation equivari-
ant. In order to test rotation equivariant networks, we consider the fully connected
layers as convolutional layers with kernel size 1×1 and thus we are able to utilize the
orientation equivariant operators above. The output of the network outputs classific-
ation probabilities (after a soft max activation) as well as a prediction angle, either
produced by the argmax for max-pooling or by the cc operator. In the case of the cc
operator, the produced angle is a function of the weights and the input and thus can
be used for extra supervision, by utilizing the ground truth angle of the examples.
The resulted networks approximate end-to-end orientation equivariant behavior.

For our experiments we implemented our forward pass and back propagation steps
for using the ”new op” module of Tensorflow [1], both for CPU and GPU computa-
tions. Our source code has been tested with Tensorflow versions 1.12 and 1.13, with
CUDA version 10.0. All experiments were done on nVidia Geforce GTX 1080Ti and
RTX 2080Ti GPUs.

5.5.3 MNIST-rot

For all our experiments, we use the number of layers as well as number and sizes of
kernels as in [409, 408, 233]. All the relevant parameters can be seen in Table 5.1.
For reference we also show the parameters and performance of the D16|5C16 [408]
network since, to the best of our knowledge, it has the highest performance on the
rotated MNIST dataset. It should be noted that it is very similar to the SFCNN ,
utilizing group convolutions. The main difference is that it performs convolution over
the flip operation as well for the first few layers.

120 Acknowledgements

Table 5.2: Classification accuracy of the networks on the rotated MNIST dataset. * de-
notes results reported in the respective papers. Values in parentheses denote average
performance over 5 runs and outside the parenthesis is the maximum performance
achieved. In case there is no value in parenthesis the presented value is the perform-
ance of the only run.

op Acc. our lr scheduler Acc. [408] lr scheduler

RotEqNet [233] mp 98.954 (98.918) 99.064 (99.031)
RotEqNet cc 99.088 (99.071) 99.004 (98.974)

SFCNN [409] mp 99.358 (99.308) 99.320 (99.294)
SFCNN [409] cc 99.318 99.238 (99.166)

RotEqNet∗ [233] mp - - (98.99)
SFCNN∗ [409] mp - - (99.286)
D16|5C16

∗ [408] mp - - (99.318)

For all networks we trained using the Adam optimizer [175] with learning rate
10−3 and a mini-batch size of 128. We drop the learning rate to 10−5 at 30 epochs
and train for 320 epochs overall. We also train with the scheduler defined in [409]
for fairness. The angle threshold defined in Section 5.4.1 is set to π

2 , as it proved to
increase the performance. The threshold due to gradient instabilities, described in
Section 5.4.2, is set to 10−3.

Following the practice in literature [233, 409, 408] we set the number of orient-
ations to B = 16. For both Clifford and max-pooling based networks. We found out
that training with 16 bins and testing with 32 slightly increases the performance,
while keeping the training times lower. For the SFCNN this is not possible since
increasing the number of bins B changes the shape of the weight matrices as well.
The results can be seen in Table 5.2.

We should note that as it is apparent that the learning rate scheduler of [408] is
not favorable to the Clifford convolution (cc) inspired operator, since using our sched-
uler increases the performance of the networks. When replacing the max-pooling op-
eration with the cc operator, the accuracy of the RotEqNet model increases by a
small margin. When applied on the SFCNN the result remains approximately the
same (with our learning rate scheduler). As a benefit, our method has much less
computational intensity discussed in Section 5.5.6.

Acknowledgements 121

5.5.4 Enriched MNIST-rot

As a second test, we wanted to also predict the angles of the digits. Unfortunately
the original MNIST-rot dataset does not provide the angles with which each image is
rotated and thus it is not possible to evaluate the performance of the networks. Thus,
we create our own MNIST-rot in the same way that is described in the original work
[200, 197], with the only difference that we use cubic spline interpolation instead of
bilinear interpolation for rotation. Moreover, we save the angle used to rotate each
digit.

The networks in the previous section can not predict any angles and thus we
adjust them. We change the fully connected layers (even the output) to convolutional,
with kernel size 1x1. Then we perform the same orientation prediction as with the
rest convolutional layers, i.e., max-pooling with argmax or the one proposed here
(Equations 5.1, 5.2). Similarly, for the SFCNN networks we remove the orientation
pooling layer after the last convolution, transform the two fully connected layers to
group convolutional layers with filter size 1x1 and make the output layer orientation
equivariant with either argmax or Clifford convolution to predict the angles (like the
RotEqNet).

Our method is the only one that can utilize angle information as a supervisory
signal (without big adjustments on the network). Thus we implement two setups.
In the first setup the networks are trained only with class labels and the angle is
left unsupervised. For the second setup the angle information is also utilized during
training. The networks that utilize the max-pooling with argmax can not utilize angle
information. Thus we include a second output branch (in parallel to the first) which
is tasked to predict the sinus and cosine of the angle. This second branch consists of
two layers. We follow the approach of [233], where a hand crafted fully connected
layer of the form [[cos(0), cos(1 · 2πB), cos(2 · 2πB), · · · , cos((B − 1) · 2πB)], [sin(0), sin(1 ·
2π
B), sin(2 · 2πB), · · · , sin((B − 1) · 2πB)]] takes as input the responses of all orientations
of the previous layer. A final fully connected layer predicts the sinus and cosine of
the angle. An interesting remark is that this method utilizes a secondary network
that predicts the angle, increasing the complexity of the network and its trainable
parameters. Meanwhile, the Clifford convolution approach calculates the angle from
the existing weight vectors and their respective input. It is also important to note that
the unsupervised setup does not utilize this new branch and the predicted angle is
the result of the argmax function.

During test, we expect that the networks that utilized the angle information while
training will be able and predict the correct orientation of the input. In the case of
unsupervised angles, we expect the output of the network to be rotation equivariant.
Thus, there should be a steady offset between the angles predicted by the network

122 Acknowledgements

and the ground truth angles. In order to test the angle prediction performance, we
compute the average angle difference between predicted and ground truth angles on
the training set. We use that offset to ”correct” the predicted test angles and measure
the difference to the ground truth.

To measure the performance on angle prediction, the absolute value (∈ [0, π)) of
the difference between the predicted angles and the ground truth angles is averaged
out. The results of the unsupervised angle experiment can be seen in Table 5.3a and
those of the supervised angle experiment in Table 5.3b. For a fair comparison we also
train the networks from the previous section, i.e., not equivariant fully connected
layers with this version of the MNIST-rot (four first rows of Table 5.3a).

From the first four rows of Table 5.3a, we see that the methods have similar per-
formance on the proposed MNIST-rot with the original one in Table 5.2. It is import-
ant to note that all experiments here use our learning rate scheduler instead of the
one used in [408]. Regarding classification accuracy, the fully convolutional and end-
to-end rotation equivariant networks seem to have similar performance to the non-
fully convolutional counterparts. Regarding the angle prediction (unsupervised in this
case), the inclusion of the cc operator increases the performance of the RotEqNet by
a significant margin. This is not the case though with the SFCNN . There the unsu-
pervised angle prediction becomes worse than the performance of the max-pooling.
In a closer inspection we found out that this is a result of the vector field construction
we used for the SFCNN , where most of the vectors end up being parallel due to the
fact that the group convolutional layers approximate very well rotation equivariant
behavior.

When the angle information is used to supervise the networks, it is apparent
that the cc operator improves the angle prediction performance over the introduced
branch used for the networks utilizing the max-pooling operator. Regarding classific-
ation performance we see a similar trend to our previous two experiments.

As an extra experiment, we train the networks on only straight digits (from the
original MNIST) and measure their performance on the test set of our MNIST-rot.
For training we pick randomly 12K digits from the original MNIST (the same for
all networks) and train with the learning rate scheduler proposed in this work. The
results can be seen in Table 5.4. It is obvious that since the extra branch introduced for
the previous experiment explicitly learns to predict the angles and is not inherently
rotation equivariant, it does not generalize to unseen angles and its performance
is very poor. On the other hand the cc operator manages to maintain high angle
prediction performance.

Acknowledgements 123

Table 5.3: Classification accuracy and angle prediction performance of the networks
on the enriched rotated MNIST dataset. “(Full)” donates networks that are equivari-
ant end-to-end, i.e., they output angle of prediction. The first column denotes the
method, the second the orientation pooling (op) method, while the third and forth
columns the classification accuracy and average absolute angle difference (in radi-
ans) respectively. Values in parentheses denote average performance over 5 runs and
outside the parenthesis is the maximum performance achieved. In case there is no
value in parentheses the presented value is the performance of the only run. In case
of two values separated by a ‘/’, the first value is the model that achieved maximum
classification accuracy while the second is the model that achieved minimum average
absolute angle difference.

op Accuracy Angle Prediction

RotEqNet [233] mp 99.06 (98.99) -
RotEqNet cc 99.14 (99.12) -
SFCNN [409] mp 99.36 (99.32) -
SFCNN [409] cc 99.28 -

RotEqNet (Full) [233] mp 99.05/98.92 (98.99) 0.4441/0.3711 (0.4301)
RotEqNet (Full) cc 99.15/99.08 (99.09) 0.2970/0.2756 (0.3059)
RotEqNet (0.5 dropout, Full) cc 99.14/99.11 (99.10) 0.2720/0.2579 (0.2696)

SFCNN (Full) mp 99.37 (99.36) 0.1798 (0.1843)
SFCNN (Full) cc 99.29 (99.27) 0.1985 (0.2227)

(a) Unsupervised angles.

op Accuracy Angle Prediction

RotEqNet (Full) [233] mp 98.93/98.88 (98.84) 0.1156/0.1140 (0.1200)
RotEqNet (Full) cc 99.15 (99.10) 0.0985 (0.1005)
RotEqNet (0.5 dropout, Full) cc 99.29 (99.24) 0.1095 (0.1110)

SFCNN (Full) mp 99.38/99.35 (99.34) 0.0688/0.0659 (0.0694)
SFCNN (Full) cc 99.33/99.28 (99.26) 0.0608/0.0580 (0.0620)

(b) Supervised angles.

124 Acknowledgements

Table 5.4: Classification accuracy and angle prediction performance of the networks
on the our rotated MNIST dataset, with supervised angles trained on 12K digits of
the original MNIST dataset. “(Full)” donates networks that are equivariant end-to-
end, i.e., they output angle of prediction. The first column denotes the method, the
second the orientation pooling (op) method, while the third and forth columns the
classification accuracy and average absolute angle difference (in radians) respectively.

op Accuracy Angle Prediction

RotEqNet (Full) [233] mp 98.33 1.5693
RotEqNet (0.5 dropout, Full) cc 98.41 0.1892

SFCNN (Full) mp 99.12 0.3183
SFCNN (Full) cc 98.99 0.1727

(a) (b) (c) (d)

Figure 5.4: Example images from the vehicle orientation dataset. (a) and (b) are
positive examples (include vehicles), (c) and (d) are negative examples.

5.5.5 Vehicle Orientation

As mentioned above we also utilize the vehicle orientation dataset from [131]. This
dataset consists of 15 aerial images with labeled vehicles and their orientations. In
order to include non trivial negative examples, i.e., crops with no vehicle in them, we
add specific crops from these images that do not include vehicles. We automatically
extract negative patches that are challenging by utilizing the results of the detector of
[129]. We pick the patches that have high scores, i.e., high confidence for vehicle de-
tection, but have very small or no overlap to positive crops. We use the same number
of negative examples are there are positive in the train set and no negative examples
in the test set. To further enrich the dataset, we extract patches of resolution 76× 76

randomly rotate them and crop the center 48 × 48 pixels to be used as input to the
networks. With this dataset we train on both vehicle detection by patch classification
and orientation estimation. Some pictures from our dataset can be seen in Figure 5.4.
The network structures can be seen in Table 5.5 and the results in Table 5.6.

Our results show that in the case of the car vehicle detection and orientation

Acknowledgements 125

Table 5.5: Number of channels per layer. CL denotes Convolutional Layer, FC are
Fully Connected and Out is the classification layer. With (/2) we denote layers that
are followed by 2x2 spatial pooling. (-) denotes layers for which the kernel size is the
same as the input and do not use padding, producing output size 1x1.

CL1 CL2 (/2) CL3 CL4 CL5(-) Out
kernel size 9 7 7 5 7 -

rotEqNet [233] 4 8 8 8 16 2
SFCNN [409] 4 8 8 8 16 2

Table 5.6: Classification accuracy and angle prediction performance of the networks
on the vehicle orientation dataset, with supervised angles. The first column denotes
the method, the second the orientation pooling (op) method, while the third and
forth columns the classification accuracy and average absolute angle difference (in
radians) respectively. Values in parentheses denote average performance over 5 runs
and outside the parenthesis is the maximum performance achieved. In case of two
values separated by a ‘/’, the first value is the model that achieved maximum classific-
ation accuracy while the second the model that achieved minimum average absolute
angle difference.

op Accuracy Angle Prediction

RotEqNet [233] mp 87.08 (83.88) 0.5355 (0.5894)
RotEqNet cc 93.06/91.39 (91.39) 0.3694/0.3614 (0.4433)

SFCNN mp 94.02 (93.83) 0.4348 (0.4796)
SFCNN cc 96.41 (95.50) 0.3325 (0.4093)

126 Acknowledgements

Table 5.7: Time required to process a mini-batch of size 200. “(Full)” donates net-
works that are equivariant end-to-end, i.e., they output angle of prediction. The first
column denotes the method, the second the orientation pooling (op) method, while
the third and forth columns the average time in seconds on a GPU and a CPU respect-
ively.

op GPU Time (s) CPU time (s)

RotEqNet (Full) [233] mp 0.1248 3.1202
RotEqNet (Full) cc 0.4880 1.8781
SFCNN (Full) mp 0.2180 8.3354

prediction dataset the cc networks, both RotEqNet and SFCNN outperform their
max-pooling counterparts both in classification accuracy and angle estimation.

5.5.6 Computational complexity

The last experiment is designed to compare the time each network requires to process
data. For this test, we process with each network 100 batches of batch size 200 and
average the the time required to precess each batch. The results can be seen in Table
5.7. For each layer, the RotEqNet with max-pooling requires B convolutions to be
performed, a reduce max and argmax function. In the current implementation, the
equivalent cc layer requires 9 convolutions and an arctan function, which overall is
much lower than the RotEqNet. The SFCNN on the other hand, not only requires
B convolutions, but the dimensionality of the filters and input is also B times larger
than the equivalent RotEqNet. Thus, we expect the cc implementation to be much
faster on average than the other two approaches. Unfortunately, this is not always
the case. In particular, for GPU computations the cc operator is much slower than
the max-pooling counterpart. We believe that there are two main reasons for this
finding. The first is that the efficiency of our code is not on par with the native code
of Tensorflow. Moreover, when it comes to GPU computations, the architecture is
such that the constant change of the filter being used is penalized a lot due to intense
input/output overhead. This is not the case with CPU computations, where we can
observe the benefit of the cc approach. Nonetheless, the difference we observe is still
smaller than the one expected, leading us to the belief that with higher optimization
the cc method can have a big benefit in computational cost and processing time.

Acknowledgements 127

5.6 Conclusion and future work

In this chapter, vector field representation is utilized and a new operator, based on
Clifford convolution, is proposed for measuring feature angles in images and con-
struct rotation equivariant CNNs. The angles are computed solely based on the ker-
nels and the input signal, enabling the use of this information during training through
back-propagation, which increases the accuracy of the resulting networks while being
memory and computationally more efficient. We compare our networks to the state of
the art rotation equivariant method, using orientation pooling through max-pooling.

The new operator is evaluated with two network architectures representative of
the state of the art on the rotated MNIST and a vehicle orientation dataset [131] in
rotation invariance, equivariance and time complexity. Our experiments show that our
method is competitive to the state of the art in classification accuracy, while gaining
higher accuracy in angle prediction and having a lower computational and memory
resource demand.

Our work clearly demonstrates the potential of the proposed method in achieving
orientation equivariant networks. However, more detailed insights are necessary. For
example, the influence of the filter size on the performance, or the robustness and
performance with increasing depth of networks has to be investigated. Applying our
method to other datasets will give valuable insights as well. A very promising route is
provided by the possibility to combine our Clifford convolution approach with other
state of the art architectures, such as the res-block [127] and dense-block [146].

6
Norm Loss: Regularizing artificial

neural networks

Convolutional neural network training can suffer from diverse issues like exploding
or vanishing gradients, scaling-based weight space symmetry and covariant-shift. In
order to address these issues, researchers develop weight regularization methods
and activation normalization methods. In this chapter, a weight soft-regularization
method is proposed based on the Oblique manifold. The proposed method uses a loss
function which pushes each weight vector to have a norm close to one, i.e., the weight
matrix is smoothly steered toward the so-called Oblique manifold. It is evaluated on
the very popular CIFAR-10, CIFAR-100 and ImageNet 2012 datasets using two state
of the art architectures, namely the ResNet and wide-ResNet. This regularization ap-
proach introduces negligible computational overhead and the results show that it is
competitive to the state of the art and in some cases superior to it. Additionally, the
results are less sensitive to hyperparameter settings such as batch size and regulariz-
ation factor.

130 Acknowledgements

6.1 Introduction

Convolutional neural networks, and deep learning in general, have received a lot of
attention in the past few years [184, 127, 437, 111, 368] and have been applied in
many research areas, such as image understanding [111, 368], natural language pro-
cessing [431, 300] and game solving [248]. The research in these models has been
motivated by the success of deep learning in image classification with AlexNet [184]
and later by much deeper models such as VGG [338], ResNet [127] and wide-ResNet
[437]. In order to understand these models and enhance their performance, a lot
of research has been carried out and in many directions [111, 368], including data
preprocessing strategies [59, 214], activation normalization [394, 418], weight reg-
ularization [17, 147], activation functions [381], and overall network architectures
[127, 437, 119]. This chapter focuses on weight regularization methods and a new
soft regularization loss function, the norm loss, is proposed.

Weight regularization has been a wide research topic. The main issues of deep
learning training procedures are the exploding/vanishing gradients, as well as the
scaling-based weight space symmetry and covariant-shift [153, 148, 17]. In order
to alleviate one or more of the aforementioned issues, researchers are developing
methods that restrict the search space of possible weight vectors.

One of the first approaches, and most popular, is the weight decay [184], which
adds a penalty to the Euclidean norm of the weight vector. In the past few years
a number of approaches and theories have emerged, regarding weight regulariza-
tion, such as weight normalization [311, 148] and weight orthogonalization [149, 17,
147]. The most popular goal for regularization methods has been weight orthogon-
alization. The reason is that orthogonal weights have very nice properties in relation
to deep network training [17, 48, 147]. For example, orthogonal weights can ob-
tain dynamical symmetry [147] which accelerates convergence. Nonetheless, it is not
always possible to have orthogonal weights, due to the fact that in many DNN archi-
tectures, the weight matrices are over-complete. Moreover, hard-orthogonalization
can restrict the learning capacity of a network [17]. As an oversimplified, intuitive
example of learning capacity restriction we show the schematic visualization of the
weights of two 3 × 3, one-channel kernels in Figure 6.1. A combination of (a) with
a ReLU activation function would result in upper edge detection, while the combin-
ation of (b) with a ReLU activation function would result in lower edge detection.
The inner product of these filters is -1 and thus it would not be possible to have both
kernels in a layer restricted to orthogonal weight matrices. Thus, it is possible that in
some cases weight orthogonalization can be too restrictive, hurting the final perform-
ance. In order to overcome this limitation some authors, like [17], reduce the effect
of regularization after some point during training, or drop it completely.

Acknowledgements 131

(a) (b)

Figure 6.1: Schematic visualization of the weights of two example 3× 3 one-channel
kernels. White (dark) values indicate high (low) numbers. The weight matrix in ex-
ample (b) is a 180°rotated version of (a).

In this chapter, weight regularization is addressed by imposing a normalization
constraint and propose a new soft-regularization method pushing the weight matrix
into the Oblique manifold [2, 148]. To that end a new loss function is proposed, the
norm loss. Its performance is evaluated on state of the art networks on standard re-
search benchmarks, i.e., CIFAR-10, CIFAR-100 [183] and ImageNet 2012 [302]. The
experimental results show that networks trained with the norm loss achieve compar-
able to the state of the art performance and in some cases superior to it, while having
negligible computational overhead. To the best of our knowledge we are the first to
propose this regularization loss function.

The rest of this chapter is organized as follows. In Section 6.2 the related research
to norm loss is presented, in Section 6.3 describes the theory on which the proposed
approach is based and in Section 6.4 the proposed method is formulated. In Section
6.5 the experimental procedure as well as the experimental results are presented and
finally the conclusions are discussed in Section 6.6.

6.2 Related work

There are many methods that try and alleviate the scaling-based weight space sym-
metry and the exploding gradients problems. Most of them can be classified into one
of two groups, namely hard-regularization and soft-regularization [147]. A very well
known approach is the inclusion of the weight decay loss to the total loss which im-
poses a penalty to the magnitude of the weight vectors [184]. It can be considered
as a soft-regularization method, since it applies a small change to the weights or the
gradients (depending on the implementation) in every step. Although this method
does address the exploding gradients issue, it does not address the scaling-based

132 Acknowledgements

weight space symmetry problem. Most methods try to normalize the weights, i.e.
force them to have unit norm, make them orthogonal, i.e., WTW = I ∗ λ, where
λ is a small scaling factor, or both, i.e., WTW = I. Another work proposed to use
the norm of the CNN Jacobian as a training to regularize the models [343], while
[430] proposed spectral norm regularization, which penalizes the high spectral norm
of weight matrices.

Hard-regularization methods specify hard limits for the weights. For example,
[311] divide the weight vector with its norm (W∗ = W

‖W‖), before applying them
to the input, ensuring that the applied weights are normalized. This method is com-
putationally expensive since the normalization happens on the fly. A later work [148]
ensures that the weights are normalized by normalizing the weight vector every T
iterations, i.e., instead of normalizing on the fly they change the original weight vec-
tor. This method is more computationally efficient than the previous one and exper-
iments show that it also produces higher performing networks. Moreover, it is the
most similar to the norm loss approach as it is targeting the same goal but with a soft
constraint. Instead of abruptly changing the weights to force unit norm, a term is ad-
ded to the loss function (instead of the weight decay) to smoothly guide the weights
towards unit norm.

Other regularization methods try to force the weights to be orthogonal to each
other, i.e., WTW = I [149, 147]. Some works [389, 17, 422, 15] apply soft regu-
larization methods by utilizing the standard Frobenius norm and define a term in the
training loss function which requires the Gram matrix of the weight matrix to be close
to identity, i.e.:

L = λ‖WTW − I‖ (6.1)

Although this is an efficient method, when considering over-complete weight vectors
it can only be a rough approximation [17]. In order to overcome this issue, [17]
proposed and tested a number of different regularization terms, all focused around
weight orthogonalization. The norm loss is similar to the aforementioned, in the sense
that a loose regularization term is applied on the loss function. Norm loss is a bit
softer regularization since it only loosely constrains the norm of the weight vectors
and does not force them to be orthogonal. Although orthogonal weights have many
nice properties, they also restrict the learning capacity of the weights [147].

One of the first works that implemented weight orthogonalization with hard regu-
larization, did so for only fully connected layers [122]. They defined the generalized
back propagation algorithm and compute gradients on the Stiefel manifold. Though
this procedure requires the form of Riemannian gradient and a retraction mechanism,
which are computationally intensive. In a later work [267] extended this approach
to convolutional layers as well. [149], [147] propose re-parameterization techniques
in order to overcome the limitations of a retraction mechanism. [149] uses eigen

Acknowledgements 133

decomposition to calculate the transformation, whilst [147] used the Newtonian it-
eration (ONI), which is shown to be more stable and more computationally efficient.
The last method also allows for weights to be orthogonal but not normalized, i.e.
WTW = I ∗ λ. The approach proposed in this chapter provides a softer regular-
ization than all aforementioned, with the exception of weight decay, whilst having
negligible computational overhead over the “vanilla” weight decay.

6.3 Preliminaries

Given a set of corresponding sets {X,Y}, where every xi ∈ X has a unique cor-
responding value, or ground-truth label, yi ∈ Y, a neural network f should predict
the value yi for the corresponding input xi with a set of model parameters W. For a
given set of model parameters, the neural network output, i.e., the predicted values
ỹi = f(xi,W), does not match the desired output yi. If E is the discrepancy between
the Y and the predicted values Ỹ, the aim of the network training process is to find
a set of parameters W that minimize E(Y, Ỹ). This is done with the help of a dif-
ferentiable loss function L(Y, Ỹ). The training process is carried out by changing by
a small factor the set of parameters W in the direction that minimizes L(·). For an
example xi, yi or a set of examples {X,Y} the direction is given by the gradients of
L, and the weights W are updated as follows:

Wnew = W − η ∂L
∂W

(6.2)

where η � 1 denotes the learning rate.

Remark: Since the Oblique manifold defines matrices with normalized rows, the
weight matrix is constructed as a row-matrix of the individual weight vectors of each
filter, W ∈ Rn×p where p is the dimensionality of each weight vector of a filter, while
n is the number of filters. This corresponds to the transpose of the weight matrix typ-
ically used in the orthogonality related literature [17].

As shown by [148], the Hessian matrix can be ill-conditioned due to the scaling-
based weight space symmetry. In an effort to avoid this issue they propose to optim-
ize the network parameters using the Riemannian optimization [3] over the Oblique
manifold. The Oblique manifold BO(n, p) defines a subset of Rn×p, where for every
W ∈ BO(n, p):

ddiag(WWT) = I (6.3)

where ddiag(·) is a function that sets all elements of an input array except the diagonal
to zero. The above formulation restricts all rows of the matrix W to have a norm of

134 Acknowledgements

one. Notice that imposing the requirement of equation 6.3 is less restricting than the
usual orthogonalization requirement WWT = I, since it only enforces a unit norm
but does not enforce the weight vectors to be orthogonal to each other.

Given a set of weights w of a single neuron, i.e., w ∈ R1×p, where wwT = 1, the
Riemannian gradients are given by the following equation [148]:

∂̂L

∂W
=

∂L

∂W
−
(
WT ∂L

∂W

)
w (6.4)

where the norm of the gradients is bound [148]:∥∥∥∥ ∂L∂W
∥∥∥∥ ≤ ∥∥∥∥(WT ∂L

∂W

)
w

∥∥∥∥ (6.5)

From equation 6.5 and experimental evidence they conclude that ∂L
∂W is the domin-

ant factor of the derivative in equation 6.4 and thus propose to apply the Euclidean
gradient (equation 6.2) and then project the weights back to the Oblique manifold by
normalizing them:

wnew =
w

‖w‖
(6.6)

6.4 Proposed method

Inspired by the insights of using the Riemannian gradients described in the previous
section, we propose to use a similar normalization for neural network training. How-
ever, the hard change in the weights after normalization can cause disturbance in the
training process since they abruptly shift the weights from the direction of the original
gradients. This can be a problem with large learning rates or large projection period
T , where T is the number of training steps between each projection operation [148].
In order to overcome this issue we propose a soft regularization method that instead
of abruptly changing the weights, slowly guides them towards the Oblique manifold,
i.e., to have unit norm. We implement that by introducing a normalization loss, or
norm loss (nl):

Lnl =

Co∑
co=1

1−

√√√√ Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico

2

(6.7)

where Fw, Fh, Ci, Co are the filter (or weight vector) width, height, number of input
and number of output channels respectively. The loss is penalizing the weight vector
of each neuron if its Euclidean norm is different from one. The final loss function then
becomes:

Ltotal = Ltarget + λnl · Lnl (6.8)

Acknowledgements 135

where λnl a small factor that determines how strong the regularization will be and
Ltarget is the loss function defined by the task to be solved, e.g., triplet loss function,
cross entropy loss etc.

6.4.1 Connection to weight decay

The weight decay is similar to norm loss since it introduces a small penalty on the
magnitude of the weights. The loss function for the weight decay is given by:

Lwd =

Co∑
co=1

Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico (6.9)

There are two main differences. Firstly, weight decay penalizes the absolute mag-
nitude of the weight vector while norm loss penalizes the deviation to having unit
norm. This means that in the case where the norm is smaller than one, our method
will try to increase it, whilst the weight decay will continue pushing to decrease it.
This makes a difference in situations where some components are rarely being util-
ized (e.g., due to nonlinearities such as the ReLU) in which case the main loss chan-
ging these components is the weight decay loss, resulting in very small weights that
might never recover. The second difference is that it applies to all components of a
layer uniformly, whilst the norm loss differentiates between the vectors of each output
channel. This can be seen by the derivatives of each method. The derivatives for each
component of the weight matrix are given by:

∂Lwd
∂wijcico

= 2wijcico (6.10)

From Equation 6.7 it is easy to derive the gradients of the norm loss:

Lnl =

Co∑
co=1

1−

√√√√ Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico

2

⇒ ∂Lnl
∂wijcico

=
∂

∂wijcico

 Co∑
co=1

1−

√√√√ Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico

2
 =

∂

∂wijcico

1−

√√√√ Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico

2

=

2

1−

√√√√ Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico

 ∂

∂wijcico

1−

√√√√ Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico



(6.11)

136 Acknowledgements

The norm of a weight matrix of a kernel with index co is:

‖wco‖ =

√√√√ Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico

(6.12)

From equations 6.11, 6.12:

∂Lnl
∂wijcico

= 2 (1− ‖wco‖)
(
− 1

2‖wco‖

)
∂

∂wijcico

 Ci∑
ci=1

Fh∑
i=1

Fw∑
j=1

w2
ijcico

⇒
∂Lnl

∂wijcico
= 2 (1− ‖wco‖)

(
− 1

2‖wco‖

)
2wijcico ⇒

(6.13)

∂Lnl
∂wijcico

= 2wijcico

(
1− 1

‖wco‖

)
(6.14)

Comparing equations 6.10 and 6.14 we can see that effectively norm loss can be seen
as an extension of the weight decay where the weight decay factor and its sign are
regulated during training by the norm of the weight vector. This is explicitly visible
from the overall update rule (combining equations 6.2, 6.8, 6.14):

wnew = w − ηλnl2
(
1− 1

‖wco‖

)
w − η ∂Ltarget

∂w
(6.15)

6.4.2 Computational cost

For a convolutional layer with Co filters of shape Fh × Fw × Ci, the computational
cost of weight decay is two operations per weight, thus 2 · Co · Fh · Fw · Ci. For
the norm loss it is 3 · Co · (Fh · Fw · Ci) + Co + 2 · Co · Fh · Fw · Ci. The overhead
then is 3 · Co · (Fh · Fw · Ci) + Co. The computational cost of a convolutional layer is
6 ·m ·Co ·Ci ·Fh ·Fw ·Ih ·Iw, where m, Ih, Iw are the number of images in a mini batch,
and the input (to the layer) image height and width respectively. The computational
overhead of the norm loss is orders of magnitude smaller than the computational cost
of a convolutional layer with weight decay, for usual network and image input sizes.

6.5 Experiments

We evaluate our method on three well known benchmarks, i.e., CIFAR-10, CIFAR-100
and ImageNet2012. CIFAR-10 consists of 50K training and 10K test 32 × 32 natural
images, divided into 10 classes. CIFAR-100 also consists of 50K training and 10K test
natural images with the same resolution, but in this dataset they are divided into

Acknowledgements 137

Figure 6.2: Test error of WRN-28-10 on CIFAR-100 with weight decay and norm loss
for different regularization factors.

100 classes. For both CIFAR-10 and CIFAR-100 we evaluate using classification error
on the designated test sets. The ImageNet 2012 is a large scale image recognition
dataset. The train set consists of 1.281 million natural images of arbitrary resolution
and aspect ratio. The images are divided into 1000 classes. The validation set consists
of 50K images, i.e., 50 images per class. We evaluate our method on the validation
set top 1 and top 5 error rates, as is common practice in the field.

We utilize two different state of the art architectures, namely the ResNet [127]
and the wide ResNet (WRN) [437], since they are usual test cases for weight regu-
larization methods [148, 149, 147, 17]. Both ResNet and WRN have been defined for
many different sizes with different learning capacity. Unfortunately, training such big
networks is very computationally expensive and thus we choose only one architecture
per model. For all our three benchmarks we utilize the cross-entropy loss function as
our target loss function (Ltarget).

The norm loss approach is compared with state of the art approaches, like weight
decay (wd), weight normalization (WN)[311], projection based weight normaliza-
tion (PBWN)[148], orthogonalization with Newton iteration (ONI)[147], orthogonal
linear module (OLM)[149].

6.5.1 Regularization factor

With the first experiment we evaluate the effect of the regularization factor λnl on the
training. As a benchmark we use the CIFAR-100 dataset. We train for four different
values of λnl and plot our results in Figure 6.2. It is apparent that the effect of λnl on
the training is much smaller than that of λwd in the case of weight decay. We believe
that this results from the regularization of the λnl factor discussed before (equation
6.15).

Figure 6.3 shows the evolution of the train cross entropy (per batch) during train-

138 Acknowledgements

Figure 6.3: Evolution of cross entropy during training on CIFAR-100 for weight decay
and norm loss. The regularization factor for both runs is 5e-4. The shaded lines are
the true lines, whilst the non-shaded are smoothed version of the original (averaged
over 19 steps) for more comprehensive visualization.

ing, for the case of λ = 5 · 10−4. We can see that with the norm loss, the networks are
being trained faster than with weight decay, even in the case where the weight decay
training has marginally higher accuracy in the end of training (see Figure 6.2).

6.5.2 Batch size

The next experiment is to test the training behavior for different batch sizes. We train
networks with both weight decay and our method for batch sizes {8, 16, 32, 64, 128}
on CIFAR-100. The performance of the trained networks on the test set can be seen in
Figure 6.4. We can see that the norm loss has more steady behavior than the weight
decay. We can still see some dependence on the batch size, which is expected since
our networks utilize batch normalization. Moreover, although for most batch sizes

Acknowledgements 139

Figure 6.4: Test error of WRN-28-10 on CIFAR-100 with weight decay and norm loss
for different batch sizes.

tested the networks trained with norm loss show better performance, only for batch
size 128 the opposite is true. Finally, we can see that the highest overall performance
for both methods is achieved by the networks trained with batch size 64.

6.5.3 CIFAR-10

On this dataset we train on the ResNet110 and WRN-28-10. As is common practice
[127, 437] we train the networks using SGD with momentum of 0.9 and a batch size
of 128. The initial learning rate is set to 0.1. We follow a learning schedule close to
the one used in [437]. When training the WRN, we drop the learning rate by a factor
of 5 at epochs 53, 107, 230 and we train for a total of 300 epochs. For the ResNet we
train for 164 epochs and reduce the learning rate at epochs 82 and 123. We follow
the standard preprocessing for training as in [127, 437, 17], i.e., padding each train
example by four pixels and getting a random 32×32 crop. Both train and test sets are
mean and std normalized [437]. We train five times and report the mean as well as
the best run. For both networks, the regularization factor λnl is set to 0.01 while the
weight decay factor λwd is set to 10−4 for the ResNet and 5 · 10−4 for the WRN, as in
the original papers [127, 437]. The results can be seen in Table 6.1.

When training the ResNet110 training with norm loss outperforms all other regu-
larization methods we are aware of, that tested on the same network [147, 311, 148].
Norm loss also outperforms the reported accuracy of the SRIP regularization method
of [17]. Due to large difference with our and their baseline performance, we do not
consider it a valid comparison and thus their result is omitted from Table 6.1.

When training the WRN-28-10 we observe a big decrease in performance over
our benchmark. Figures 6.5, 6.6 show the training process of the WRN-28-10 on the
CIFAR-10 with weight decay and norm loss. We can see that even in this case, where
the final performance of weight decay is better, the network that utilizes the norm loss

140 Acknowledgements

Table 6.1: Performance of different methods on CIFAR-10 test set for the ResNet110
and WRN-28-10. In parentheses are the mean or median over some runs given by the
authors of the respective papers. Outside parentheses the best accuracy (if shown by
the authors). For methods denoted by *, the performance is given in the respective
papers.

model reg. method error

ResNet110 wd 6.32 (6.568)
ResNet110 [127]* wd 6.43 (6.61)
ResNet110 [311]* WN - (7.56)
ResNet110 [148]* PBWN - (6.27)
ResNet110 [147]* ONI - (6.56)
ResNet110 (Ours) nl 5.9 (5.996)

WRN-28-10 wd 3.9 (3.966)
WRN-28-10 [437]* wd - (3.89)
WRN-28-10 [149]* OLM - (3.73)
WRN-28-10 [149]* OLM-L1 - (3.82)
WRN-28-10 (Ours) nl 4.47 (4.662)

Figure 6.5: Evolution of cross entropy during training on CIFAR-10 for weight decay
and norm loss for the WRN-28-10. The shaded lines are the true lines, whilst the
non-shaded are smoothed version of the original (averaged over 19 steps) for more
comprehensive visualization.

Acknowledgements 141

Figure 6.6: Evolution of test accuracy during training on CIFAR-10 for weight decay
and norm loss for the WRN-28-10.

is converging much faster and shows more stable behavior. More experimentation is
needed to understand why in this specific scenario the final performance is worse than
the baseline. For example, a schema like the one used in [17] could be used, where
from a certain epoch on the regularization is minimized or even dropped completely.

In order to evaluate the computational overhead of our method, we report that
training the ResNet110 on CIFAR-10 with weight decay takes, on average, 4.56 hours
while training the same network with norm loss takes, on average, 4.79 hours. All
aforementioned experiments ran on an Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
and an NVIDIA GTX 1080Ti graphics card.

6.5.4 CIFAR-100

As with CIFAR-10, for this section we use the same hyper parameters as in [437], with
a slightly different learning rate schedule. We train the WRN using a batch size of 64
instead of 128, because it results in better performance even for the baseline method.
The regularization factor λnl was set to 10−3 and the λwd to 5 · 10−4. We train for a
total of 448 epochs and reduce the learning rate by a factor of 5 in epochs 77, 153
and 307. We train the ResNet for 300 epochs and drop the learning rate at epochs
53, 107, 230. We train 5 times and report the accuracy of the mean and best run. The
results are shown in Table 6.2. We also trained with the learning rate scheduler used
for ResNet110 on CIFAR-10, i.e., 164 epochs and reduce the learning rate at epochs
82 and 123, but the aforementioned scheduler produced results for the baseline that

142 Acknowledgements

Table 6.2: Performance of different methods on CIFAR-100 test set for the ResNet110
and WRN-28-10. In parentheses are the mean or median over some runs given by the
authors of the respective papers. Outside parentheses the best accuracy (if shown by
the authors). For methods denoted by *, the performance is given in the respective
papers.

model reg. method error

ResNet110 wd 27.9 (28.398)
ResNet110 [311]* WN - (28.38)
ResNet110 [148]* PBWN - (27.03)
ResNet110 (Ours) nl 26.24 (26.526)

WRN-28-10 wd 18.85 (19.138)
WRN-28-10 [437]* wd - (18.85)
WRN-28-10 [149]* OLM - (18.76)
WRN-28-10 [149]* OLM-L1 - (18.61)
WRN-28-10 (Ours) nl 18.57 (18.648)

match the literature and thus is reported on Table 6.2. For clarity we also report the
results using the CIFAR-10 scheduler: Average error for the weight decay is 28.094

with a best run of 27.56 whilst for the norm loss the average error is 25.878 with a
best run of 25.2. For all ResNet experiments, the regularization factor λnl was set to
10−2 and the λwd to 10−4.

The norm loss manages to produce better performance than most methods for
both ResNet110 and WRN-28-10. Although in the case of CIFAR-10 we managed to
outperform the method developed in [17] (results were omitted from the tables due
to large difference of their and our baseline performance), in the case of CIFAR-100
their methods outperform our own. For the same reason as before their results are
omitted (25.42% vs 27.49% accuracy for the baseline ResNet110). It should be noted
that they used a different optimizer for their experiments, the Adam optimizer [175].

6.5.5 ImageNet

For the ImageNet dataset, we utilize the ResNet50 architecture to evaluate our method.
We use the same data augmentation and hyper parameters (for batch normalization,
dropout rates, etc.) as the implementation of [148] on GitHub1. We train using SGD
with Nesterov momentum of 0.9. The learning rate is initialized at 0.1 and divided
by 10 every 30 epochs. We train with a batch size of 128, whilst due to GPU memory

1https://github.com/huangleiBuaa/NormProjection

Acknowledgements 143

Table 6.3: Top-1 and Top-5 error rates of different methods on ImageNet validation
set for the ResNet50. For methods denoted by *, the performance is given in the
respective papers.

model reg. method Top-1 error Top-5 error

ResNet50 wd 25.29 7.86
ResNet50 [147]* wd 23.85 -
ResNet50 [147]* ONI 23.30 -
ResNet50 (Ours) nl 24.34 7.44

limitations, the batch normalization parameters are trained on half, i.e., 64 examples.
The regularization factor for both methods, i.e., λnl, λwd is set to 10−4. The top-1 and
top-5 error rates2 of the networks on the ImageNet 2012 validation set are shown in
Table 6.3.

The first two rows show the performance of the baseline method as reported in
literature [147] and our attempt at reproducing it. As it can be seen, there is a large
difference between the results as our error is much larger than the one reported
in literature. The origin of this is currently not clear to us and therefore a direct
comparison of performance numbers is not warranted. Nonetheless, we can observe
that for our implementations the norm loss approach improves both TOP-1 and TOP-5
performances substantially over weight decay.

6.6 Conclusions

In this chapter, a new soft-regularization method is proposed, that tries to guide the
weight vector towards the Oblique manifold. It accomplishes that by utilizing the
proposed norm-loss function as regularization during the neural network training.

We evaluate the norm loss on standard benchmarks, i.e., CIFAR-10, CIFAR-100
and ImageNet 2012 and compare the performance to the state of the art regulariza-
tion methods. The Norm loss approach accelerates the convergence speed of networks
and leads to a more robust, i.e., less sensitive training process with regard to the hy-
perparameters settings for the regularization factor and the batch size. While having
a negligible computational overhead over weight decay during training, and no extra
computational cost during inference, our method has comparable performance to the
state of the art and some cases even higher, while only for one setup norm loss is

2Top-1 error is 100 - classification accuracy. Top-5 error counts a correct classification if the ground truth
label is in the top-5 predictions of the network.

144 Acknowledgements

under performing, i.e., WRN-28-10 on CIFAR-10.

7
Conclusions

7.1 Conclusions

In this thesis, we explore the application of computer vision methods on high dimen-
sional data. With high dimensional data we define data that have more than two di-
mensions. More specifically, we explore whether computer vision inspired approaches
are capable of representing computational fluid dynamics simulation output.

In Chapter 2 we presented an extensive overview of the methodologies, data
sources and applications whose subject is high dimensional vision data. The aim of
this chapter is to find common practices between methodologies that, at a first glance,
seem disconnected but have in common the high dimensionality of the data they pro-
cess and thus answer research question 1: Overall we identified four common data
sources, namely 2D videos, RGB-D images and videos, and 3D models such as CAD
models or point clouds. Moreover, we identified common characteristics of methodo-
logies regardless the data they are applied on and we identified two main categories
of high dimensionality, high physical dimensions and large number of information
per physical location. Finally, we concluded that although hand crafted feature based
approaches are outperformed by deep learning based approaches, they can provide
complementary information and increase the overall performance of an approach.

In Chapter 3, we constructed a large scale dataset and proposed several approaches
for dealing with the high dimensionality of the data. This dataset is used as a bench-
mark to help us answer research question 2. The experiments conducted showed
that deep learning approaches are well capable of representing CFD simulation out-
put and moreover, how to better utilize our model resources, i.e., number of train-
able parameters, hardware computational capabilities and available memory. Our best
models are able to accurately, i.e., with about 3% accuracy, predict forces applied on

146 Acknowledgements

a shape not visible to them, by leveraging flow data. Meanwhile, the encoded repres-
entation is enough to reconstruct the input in a large extent leading us to believe that
it still encodes most of the information of the original flow field.

In Chapter 4 we answered research question 3. We implemented hand crafted
feature based approaches and evaluated whether they are capable of representing
flow field data and how they compare to deep learning approaches. Overall we made
three tests, (i) which hand-crafted feature produces the most accurate results and
with what kind of sampling (i.e., dense or which detector), (ii) how does the per-
formance compare to deep learning approaches and (iii) which approach maintains its
performance better as the training set size reduces. The experimental results showed
interesting behavior. The dense sampling of SIFT [225, 226] features produced the
best performance out of all setups based on hand-crafted features tested. Interest-
ingly, although in terms of RMSE the SIFT approach was outperformed by the deep
learning approaches, it was able to outperform them in terms of R2. As we showed,
deep learning approaches and hand crafted feature based approaches show different
behavior. For most test examples, the SIFT based approach had smaller error than the
deep learning one, but it also produced much larger errors than the deep learning ap-
proaches at the extreme (bringing the RMSE high). This finding is strengthening the
observation that hand-crafted feature based approaches can provide complementary
information to the deep learning approaches.

In Chapter 5 we answered research question 4. By taking advantage of the vector
field representation we are able to extract angle information from the input and the
kernel of a convolutional layer and subsequently build rotation invariant and equivari-
ant convolutional layers and networks. Our experiments showed that this approach
produces similar classification performance to the state of the art, while having better
angle prediction with a much lower computational cost.

Finally, in Chapter 6 the norm loss was proposed, answering research question
5. The norm loss is a soft weight regularization method for deep neural networks and
it aims to keep the norm of the kernels of a convolutional layer close to one. The
experimental results suggest that networks that utilize the norm Loss during training
converge much faster than the equivalent that utilized weight decay. Moreover, in
most cases, networks trained with the norm loss exhibit state of the art performance.

7.2 Limitations

Although the research presented here has revealed interesting information, it has
also shown many limitations of the approaches proposed and tested. As the main data
source for this thesis has been CFD simulation output we deem necessary to start with

Acknowledgements 147

this application in mind. The major limiting factor in extracting meaningful informa-
tion from CFD simulation data, is its availability. CFD simulations can even produce
terabytes of data. Nonetheless, most information usually comes from the same ex-
ample. As a result, we have huge amounts of data, split into very few examples. This
is the opposite from the ideal situation, where many examples exist and thus correl-
ations can be found. The main reason for this limitation is the time required for CFD
simulations to converge. A complicated simulation might even take a month to con-
verge on a cluster with thousands cores. Moreover, there are many hyper parameters
as well as different algorithms for obtaining CFD simulation output. With many of
these parameters, such as the grid on which the flow field is computed, the result can
vary significantly. Having a model capable of representing simulations produced in a
different manner increases the complexity and amount of data required even further.

Regarding deep learning models, we can identify some limitations as well. A com-
mon approach to produce general high performing models is to augment the training
data. By applying slight augmentations on the data during training, effectively in-
creases the train data size by introducing new variations of the same subject, i.e.,
the content of the image. The resulting models become more robust to certain types
and amount of noise. If a flow field is augmented using the popular approaches such
as affine transformations, it will probably not be an approximation of a solution to
Navier-Stokes equations anymore and more importantly it will not maintain the same
label. Thus, one must be careful in how data is augmented. Moreover, many patterns
appear in small scales in the flow. For the models to fit in GPU memory the input
resolution has to be relatively low which may result in the disappearance of many
important characteristics. Nonetheless, large scale patterns, like vortices and reverse
flow still exist in the simulations examples that we utilized which made the training
of models possible.

In the last two chapters, new deep learning approaches are proposed. In Chapter 5
a new operator is proposed, that utilizes the vector field representation to measure the
angle between a convolutional kernel and an input signal. Utilizing this operator in
deep neural networks, although shows great potential, it has several limitations. The
most important one is that for most applications, the input is scalar, e.g. RGB images.
Moreover, due to the arctan function, during back propagation, numeric instabilities
can occur which forces the usage of thresholding and masking the output. In our
experience, depending on the application, the network size, the learning rates and
other parameters, the most effective value of this threshold changes. This introduces
another hyper parameter to the many existing in deep learning approaches. Moreover,
as we saw with the current implementation, utilizing this operator on GPUs increases
the computation time by a large margin, which may significantly reduce one of the
main advantages of the method - lower computational requirements.

148 Acknowledgements

7.3 Future work

The Clifford convolution operator was implemented for two dimensional fields, as an
initial case study. Most CFD simulation outputs though, have three spatial dimensions.
Extending the operator to calculate solid angles might be very beneficial for minim-
izing the required number of free parameters in a deep learning model. Interestingly,
the potential benefit of calculating solid angles might be even higher than that of the
two dimensions, since the amount of convolutions needed for a max-pooling opera-
tion over solid angle increases exponentially with the number of dimensions.

This research is one of the early works on deep learning applied on CFD simulation
output. One of the main limitations is the large amount of time required to produce
simulations. Thus, a feasible approach in applying deep learning on more complicated
simulations is transferring models. To be more precise, a model could be trained on
a large scale CFD dataset that requires feasible amount of time to be created. Would
this model then be applicable, with minor adjustments i.e., fine tuning, on a small
dataset of complex and time consuming CFD simulations?

From a deep learning perspective, there are still many open questions. For ex-
ample, one question is how to better utilize the extra dimensions of higher than two
dimensional images. When a temporal dimension is included, it is not certain yet
which approach is more effective. Is there a certain approach to handling the tem-
poral dimension that suits better, or will it always depend on the application? For
the static world there are similar questions that are important to research if greater
performing or efficiency is required. For example, the projection to lower dimension-
ality, seems to be performing better than having three dimensional kernels for low
computational models. Increasing the capacity of networks with three dimensional
kernels, coupled with large and diverse datasets seems to perform better than the 2D
projections. In many applications the computational and memory budgets are limited.
It is still unclear at which point does a more complex network with high dimensional
kernels is a more appropriate choice. These are questions that are becoming more
relevant as computational demand of deep learning approaches seem to grow and
mobile applications seem to have increasing demand.

APPENDICIES

A Clifford Convolution gradients calculations

Bellow are all the calculations of all the equations used for the back-propagation
algorithm. For all formulas, for the sake of simplicity we use the following notation:

pw : weight position, (i, j, cin, cout)

po : output position, (i′, j′, cout)

pin : input position, (i′′, j′′, cin)

(1)

During the backward pass, every arrow in Figure 5.2 should return the respective de-
rivatives. We start the computations from step C5 and work our way to step C1.

C5:
The final output ~Olpo is given by:

~Olpo = (Ol0,po , O
l
1,po) = (Olpo · cos (φpo), O

l
po · sin (φpo)) (2)

Following the chain rule:

∂E

∂Olpo
=

∂E

∂Ol0,po

∂Ol0,po
∂Olpo

+
∂E

∂Ol1,po

∂Ol1,po
∂Olpo

⇒

∂E

∂Olpo
= δl,C5

0,po
· cos (φpo) + δl,C5

1,po
· sin (φpo)

(3)

150 Acknowledgements

∂E

∂φlpo
=

∂E

∂Ol0,po

∂Ol0,po
∂φlpo

+
∂E

∂Ol1,po

∂Ol1,po
∂φlpo

⇒

∂E

∂φlpo
= −δl,C5

0,po
·Ol0,po · sin (φpo) + δl,C5

1,po
·Ol1,po · cos (φpo)

(4)

C4:

Olpo =
∑
i

∑
j

∑
cin

~W l
φ popw · ~O

l−1
pin =

∑
i

∑
j

∑
cin

∑
k

W l
φ popw,k ·O

l−1
pin,k

(5)

where k indexes the x and y coordinates of the vectors.

∂E

∂W l
φ popw,k

=
∂E

∂Olpo

∂Olpo
∂W l

φ popw,k

(6)

Since for every output pixel we calculate a different angle (φlpo), there is a different
set of weights associated with every output pixel, ~W l

φ po
.

∂E

∂W l
φ popw,k

=
∂E

∂Olpo

∂Olpo
∂W l

φ popw,k

=
∑
po∈Pφ

δl,C4
po ·O

l−1
pin,k

(7)

∂E

∂Ol−1pin,k

=
∑
i

∑
j

∑
cout

∂E

∂Olpo

∂Olpo
∂Ol−1pin,k

=
∑
i

∑
j

∑
cout

δl4po ·W
l
φ popw,k (8)

where the φ in W l
φ popw,k

refers to the predefined angles (∈ [0, 2π)) used for the spe-
cific output position.

C3:

~W l
φ po = rotation(~̇W l

po , φ
l
po) (9)

As mentioned above, there is a seperate set of weights for every output pixel. The
gradients from all sets of weights are calculated and then added to the orginal weight
vector. For simplicity the index of po on the weight vectors is omited. From equation
9 we see that there are two sets of gradients need to be computed, ∂E

∂ ~̇W l
and ∂E

∂φlpo
.

Since ~W l
φ are the rotated ~̇W l, we set:

∂E

∂ ~̇W l
= rotation(

∂E

∂ ~W l
φ

,−φlpo) (10)

Acknowledgements 151

For the second set we have:

∂E

∂φlpo
=
∑
i

∑
j

∑
cin

∂E

∂ ~W l
φ pw

∂ ~W l
φ pw

∂φlpo
=
∑
i

∑
j

∑
cin

δl,C3

~Wφ pw

·
∂ ~W l

φ pw

∂φlpo
(11)

We have two options for calculating
∂ ~W l

φ pw

∂φlpo
. The first is to differentiate the bilinear

interpolation (at least at the points that it is differentiable), or use the precalculated
rotated weights. Let θ be the quantized calculated angle φ. Then:

∂ ~W l
θ pw

∂φlpo
=

~W l
θ+1 pw

− ~W l
θ−1 pw

2 2π
B

(12)

where B is the number of predefined orientations. Have in mind that the rotation
above (~W l

θ+1 pw
) considers only plane rotation after acquiring the in-place vector ro-

tation ~̇Wφ.

C2:
On all equations related to C2, like C3, the indexes po on weight vectors are omitted.

~̇W l
φ pw = ~W l

pw ·

(
cosφlpo sinφlpo
− sinφlpo cosφlpo

)
⇔

{
~̇W l
φ 0,pw

= ~W l
0,pw cosφlpo − ~W l

1,pw sinφlpo
~̇W l
φ 1,pw

= ~W l
0,pw sinφlpo +

~W l
1,pw cosφlpo

(13)
As with C3, there are two set of gradients to be calculated, specifically ∂E

∂ ~W l
pw

and ∂E
∂φlpo

where the first represents two sets, one for each direction of the vectors in ~W l.

∂E

∂ ~W l
pw

= (
∂E

∂W l
0,pw

,
∂E

∂W l
1,pw

) (14)

For the two components we get:

∂E

∂W l
0,pw

= (
∂E

∂Ẇ l
φ 0,pw

∂Ẇ l
φ 0,pw

∂W l
0,pw

+
∂E

∂Ẇ l
φ 1,pw

∂Ẇ l
φ 1,pw

∂W l
0,pw

)

= (
∂E

∂Ẇ l
φ 0,pw

cosφlpo +
∂E

∂Ẇ l
φ 1,pw

sinφlpo)

∂E

∂W l
1,pw

= (
∂E

∂Ẇ l
φ 0,pw

∂Ẇ l
φ 0,pw

∂W l
1,pw

+
∂E

∂Ẇ l
φ 1,pw

∂Ẇ l
φ 1,pw

∂W l
1,pw

)

= (− ∂E

∂Ẇ l
φ 0,pw

sinφlpo +
∂E

∂Ẇ l
φ 1,pw

cosφlpo)

(15)

152 Acknowledgements

(14), (15)→ ∂E

∂ ~W l
pw

=
∂E

∂ ~̇W l
φ pw

·

(
cos (−φlpo) sin (−φlpo)
− sin (−φlpo) cos (−φlpo)

)

= ~δl,C2

φ pw
·

(
cos (−φlpo) sin (−φlpo)
− sin (−φlpo) cos (−φlpo)

) (16)

∂E

∂φlpo
=
∑
i

∑
j

∑
cin

(
∂E

∂Ẇ l
0,pw

∂Ẇ l
0,pw

∂φlpo
+

∂E

∂Ẇ l
1,pw

∂Ẇ l
1,pw

∂φlpo
) (17)

∂Ẇ l
0,pw

∂φlpo
= −W l

0,pw sinφlpo −W
l
1,pw cosφlpo = −Ẇ

l
1,pw

∂Ẇ l
1,pw

∂φlpo
=W l

0,pw cosφlpo −W
l
1,pw sinφlpo = Ẇ l

0,pw

(18)

(17), (18)→ ∂E

∂φlpo
=
∑
i

∑
j

∑
cin

(
∂E

∂Ẇ l
0,pw

(−Ẇ l
1,pw) +

∂E

∂Ẇ l
1,pw

Ẇ l
0,pw)

=
∑
i

∑
j

∑
cin

(δl,C2

0,pw
(−Ẇ l

1,pw) + δl,C2

1,pw
Ẇ l

0,pw)
(19)

In our implementation C2 and C3 are considered as one operation. Moreover, we

keep in memory the rotated weights ~Wφ and not ~̇
φW . Fortunately, we can approximate

the gradients as of the separate operations as following:

~W l
φ = vector field rotation(~W l, φlpo) (20)

Similarly with C3:

∂E

∂ ~W l
= vector field rotation(

∂E

∂ ~W l
φ

,−φlpo) (21)

∂ ~W l
θ pw

∂φlpo
=

~W l
θ+1 pw

− ~W l
θ−1 pw

2 2π
B

(22)

Unlike C3, here the rotated ~W l
θ+1 pw

are the complete vector field rotation with
angle θ + 1 from the original ~W .

Acknowledgements 153

C1:
Let:

tanlpo =
conv

lpo
0

conv
lpo
2

(23)

then:
(5.2), (5.1)→ φlpo = arctan (

conv2
conv0

) = arctan (tanlpo) (24)

∂E

∂tanlpo
=

∂E

∂φlpo

∂φlpo
∂tanlpo

=
∂E

∂φlpo

1

1 + (tanlpo)
2

(25)

∂E

∂conv0
=

∂E

∂tanlpo

∂tanlpo
∂conv0

=
∂E

∂tanlpo
(− conv2
conv20

)25⇒

∂E

∂conv0
=

∂E

∂φlpo

1

1 + (tanlpo)
2
(− conv2
conv20

) = − ∂E

∂φlpo

conv2
conv20 + conv22

(26)

∂E

∂conv2
=

∂E

∂tanlpo

∂tanlpo
∂conv2

=
∂E

∂tanlpo

1

conv0
25
⇒

∂E

∂conv2
=

∂E

∂φlpo

1

1 + (tanlpo)
2

1

conv0
=

∂E

∂φlpo

conv0
conv20 + conv22

(27)

From Equation 5.2 we see that conv0 is the conventional convolutional operation,
meaning that the derivatives are the standard derivatives used in all CNN works. For
conv2 we have:

∂E

∂W l
0,pw

=
∑
i′

∑
j′

∂E

∂conv2

∂conv2
∂W l

0,pw

=
∑
i′

∑
j′

∂E

∂conv2
Ol−11,pin

∂E

∂W l
1,pw

=
∑
i′

∑
j′

∂E

∂conv2

∂conv2
∂W l

1,pw

=
∑
i′

∑
j′

∂E

∂conv2
(−Ol−10,pin

)

(28)

Similarly:

∂E

∂Ol−10,pin

=
∑
i

∑
j

∂E

∂conv2

∂conv2

∂Ol−10,pin

=
∑
i

∑
j

∂E

∂conv2
(−W l

1,pw)

∂E

∂Ol−11,pin

=
∑
i

∑
j

∂E

∂conv2

∂conv2

∂Ol−11,pin

=
∑
i

∑
j

∂E

∂conv2
W l

0,pw

(29)

For each output pixel a separate weight vector was calculated and thus different
gradients as well, i.e.,

(
∂E

∂ ~W

)
po

. The final result is given by adding the
(
∂E

∂ ~W

)
po

for all
po.

154 Acknowledgements

B Table of abbreviations

Abbreviation Explanation

2D two dimensions/dimensional
3D three dimensions/dimensional
3DBRIEF 3D BRIEF
3DLBP 3D LBP
3DORB 3D ORB
3DSC 3D SC
4D four dimensions/dimensional
Adam adaptive moment estimation
AE auto-encoder
AGAST adaptive and generic accelerated segment test
AlexNet Alex Network
AMT Amazon mechanical turk
ANN artificial neural network
APC Amazon picking challenge
API application programming interface
avacc meanIU
B3DO Berkley 3D Objects
BN batch normalization
BoF bag of features
BoW bag of words
BPTT back propagation through time
BRAND binary robust appearance and normal descriptor
BRIEF binary robust independent elementary features
BRISK binary robust invariant scale keypoint
BRoPH binary rotational projection histogram
C3D convolutional 3D
CAD computer-aided design
CAE convolutional AE

Acknowledgements 155

Abbreviation Explanation

CBCT cone beam computed tomography
cc Clifford convolution
CFD computational fluid dynamics
CFN convolutional fusion network
Charades-STA Charades sentence temporal annotations
CHMM coupled HMM
CIFAR Canadian institute for advanced research
CL convolutional layer
clacc classification accuracy
CNN convolutional neural network
COCO common objects in context
convGRBM convolutional GRBM
CPU central processing unit
CRF conditional random field
CT computerized tomography
DAE denoising AE
DB database
DBM deep Boltzmann machines
DBN deep belief network
D-CNN deep CNN
DE dense sampling
DEM deep energy model
DenseNet dense network
DiDeMo distinct describable moments
DL deep learning
DNN deep neural network
DoG difference of Gaussians
DoF degrees of freedom
DS direction specific
DSN deeply supervised nets
DSTIP depth STIP
ED elevation descriptor
ELU exponential linear unit
EMK efficient match kernel
EVD eigenvalue decomposition
FAST features from accelerated segment test
FC fully connected

156 Acknowledgements

Abbreviation Explanation

FCN fully convolutional networks
FCVID Fudan-Columbia video dataset
FMS full modality specific
FPFH fast PFH
FREAK fast retina keypoint
fus-CNN fusion CNN
fwavacc frequency weighted average accuracy
GAH geometric attribute histograms
GAN generative adversarial network
GFU gated fusion unit
GNN graph neural network
GPU graphics processing unit
GRBM gated RBM
GRU gated recurrent unit
GT ground truth
HAR human action recognition
Harris3D Harris 3D
HBN half layers batch normalized
HCRF hidden CRF

HHA
horizontal disparity, height above ground, angle the pixels local

surface normal makes with the inferred gravity direction
HKDE hierarchical KDE
HKS heat kernel signature
HMC hidden Markov chain
HMDB51 human motion database
HMM hidden Markov model
HMP hierarchical matching pursuit
HOF histogram of flow
HOG histogram of oriented gradients
HON histogram of surface normals
HON4D HON 4D
HOPC histogram of principal components
HSMM hidden semi-Markov model
I3D inflated 3D CNN
IDT improved dense trajectories
IP interest point
KDE kernel descriptor

Acknowledgements 157

Abbreviation Explanation

kd-tree k dimensional tree
KITTI ? (not mentioned in the work that proposes it [98])
KLT Kanade Lucas-Tomasi
k-NN k nearest neighbors
kSVM kernel SVM
KTH Royal institute of technology, Stockholm
LBP local binary pattern
LeNet LeCun network
LFD light field descriptor
LFSH local feature statistics histogram
LiDAR light detection and ranging
LINE linearizing the memory
LINEMOD multimodal LINE
linSVM linear SVM
LN locally connected
LRCN long-term recurrent CNN
LReLU leaky ReLU
LRF local reference frame
LSP local surface patch
LSTM long short-term memory node
LSTM-CF LSTM context fusion
LTC long temporal convolutional network
LTP local trinary pattern
MAE mean absolute error
MD multiple dictionary
meanIU mean intersection over union
MK-MMD multiple kernel maximum mean discrepancy
MLP multi-layer perceptron
MMF multi modal feature fusion
MNIST modified national institute of standards and technology
MO-AniProbing multi orientation anisotropic probing
mp max pooling
MR magnetic resonance
MRF Markov random field
MRI magnetic resonance imaging
MVCNN multi view CNN
MVD multi-view depth

158 Acknowledgements

Abbreviation Explanation

NaN not a number
NBN no BN
NiN network in network
nl norm loss
NN nearest neighbor
NNDR nearest neighbor distance ratio
NYU New York University
NYUv2 NYU version 2
OGH oriented gradient histograms
OLM orthogonal linear module
ONI orthogonalization using Newton’s iteration
op orientation pooling
ORB oriented FAST and rotated BRIEF
ORION orientation boosted voxel net
ORN orientation response network
PA-LSTM part-aware LSTM
PBWN projection based weight normalization
PCA principal component analysis
PELU parametric ELU
PFH point feature histogram
pixacc pixel accuracy
PPF point pair feature
PReLU parametric ReLU
PSB Princeton shape benchmark
PSG polygonal surface geometry
RA reference angle
RANSAC random sample consensus
RAS Reynolds-averaged simulation
RBM restricted Boltzmann machine
R-CNN regions with CNN features
RDF randomized decision forest
RDF-Net RGB-D fusion network
ReLU rectified linear unit
ResBlock residual block
ResNet residual network
RF random forest
RFB residual fusion block

Acknowledgements 159

Abbreviation Explanation

RGB Red-Green-Blue
RGB-D Red-Green-Blue-Depth
RI-LBC rotation invariant local binary convolution
RMSE root mean square error
RNN recurrent neural network
Rohr3D Karl Rohr 3D
RoSP rotational projection statistics
RotEqNet rotation equivariant vector field network
RQ research question
RSM rotational silhouette map
SC shape context
SD single dictionary
SDH spatial distribution histograms
SF sparse fusion
SFCNN steerable filter CNN
SfM structure from motion
SGD stochastic gradient descent
SHOT signature of histograms of orientation
SHREC shape retrieval contest
SI spin image
SIFT scale invariant feature transform
SI-HKS SI HKS
SISI scale invariant SI
SLAM simultaneous localization and mapping
SP superpixel
SPN scalar field processing network
SRIP spectral restricted isometry property
SSCD spatial structure circular descriptor
SSD sum of squared differences
SSMA self-supervised model adaptation
SSVM structural SVM
std standard deviation
STIP spatio-temporal interest point
ST-LSTM spatio-temporal LSTM
STN spatial transform networks
SUN scene understanding
SUN-CG ? (not mentioned in the work that proposes it [346])

160 Acknowledgements

Abbreviation Explanation

SURF speeded up robust features
SVD singular value decomposition
SVM support vector machine
SYNTHIA synthetic collection of imagery and annotations
TACoS textually annotated cooking scenes
TDD trajectory pooled deep convolutional descriptors
THRIFT ? (not mentioned in the work that proposes it [90])
TI transformation invariant
TOLDI triple orthogonal local depth images
Tri-SI Tri-Spin-Image
UCF university of central Florida
UMAM unified model of appearance and motion
US ultrasound
VC velocity coherent
V-FAST video FAST
VFT vector field topology
VGG ? (not mentioned in the work that proposes it [338])
VPN vector processing network
VRN Voxeption ResNet
wd weight decay
WKS wave kernel signature
WN weight normalization
WRN wide ResNet
YCB Yale-CMU-Berkeley
YFCC100M Yahoo Flickr creative commons 100 million

Bibliography

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning. In 12th symposium on
operating systems design and implementation (OSDI), pages 265–283, 2016.

[2] P-A Absil and Kyle A Gallivan. Joint diagonalization on the oblique manifold for
independent component analysis. In IEEE International Conference on Acoustics
Speech and Signal Processing Proceedings, volume 5, pages V–V, 2006.

[3] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms
on matrix manifolds. Princeton University Press, 2009.

[4] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A
large-scale video classification benchmark. arXiv preprint arXiv:1609.08675,
2016.

[5] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learn-
ing activation functions to improve deep neural networks. arXiv preprint
arXiv:1412.6830, 2014.

[6] Motilal Agrawal, Kurt Konolige, and Morten Rufus Blas. Censure: Center sur-
round extremas for realtime feature detection and matching. In Proceedings of
the European conference on computer vision (ECCV), pages 102–115. Springer,
2008.

162 Bibliography

[7] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina
keypoint. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 510–517. IEEE, 2012.

[8] Lúıs A Alexandre. 3d object recognition using convolutional neural networks
with transfer learning between input channels. In Intelligent Autonomous Sys-
tems 13, pages 889–898. Springer, 2016.

[9] Stéphane Allaire, John J Kim, Stephen L Breen, David A Jaffray, and Vladimir
Pekar. Full orientation invariance and improved feature selectivity of 3d sift
with application to medical image analysis. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition workshops (CVPRW), pages
1–8. IEEE, 2008.

[10] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell,
and Bryan Russell. Localizing moments in video with natural language. In Pro-
ceedings of the IEEE international conference on computer vision (ICCV), pages
5803–5812. IEEE, 2017.

[11] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel sig-
nature: A quantum mechanical approach to shape analysis. In Proceedings of
the IEEE international conference on computer vision workshops (ICCVW), pages
1626–1633. IEEE, 2011.

[12] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[13] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and
Atilla Baskurt. Sequential deep learning for human action recognition. In In-
ternational workshop on human behavior understanding, pages 29–39. Springer,
2011.

[14] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. IEEE transac-
tions on pattern analysis and machine intelligence (PAMI), 39:2481–2495, 2017.

[15] Randall Balestriero et al. A spline theory of deep learning. In International
Conference on Machine Learning (ICML), pages 374–383, 2018.

[16] Vassileios Balntas, Andreas Doumanoglou, Caner Sahin, Juil Sock, Rigas
Kouskouridas, and Tae-Kyun Kim. Pose guided rgbd feature learning for 3d
object pose estimation. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), pages 3856–3864. IEEE, 2017.

Bibliography 163

[17] Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from
orthogonality regularizations in training deep networks? In Advances in Neural
Information Processing Systems, pages 4261–4271, 2018.

[18] Mohammadamin Barekatain, Miquel Mart́ı, Hsueh-Fu Shih, Samuel Murray,
Kotaro Nakayama, Yutaka Matsuo, and Helmut Prendinger. Okutama-action:
An aerial view video dataset for concurrent human action detection. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition work-
shops (CVPRW), pages 28–35. IEEE, 2017.

[19] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In Proceedings of the European conference on computer vision (ECCV),
pages 404–417. Springer, 2006.

[20] Paul R Beaudet. Rotationally invariant image operators. In Proceedings of the
4th international joint conference on pattern recognition, 1978.

[21] Jens Behley, Volker Steinhage, and Armin B Cremers. Laser-based segment
classification using a mixture of bag-of-words. In IEEE/RSJ international con-
ference on intelligent robots and systems (IROS), pages 4195–4200. IEEE, 2013.

[22] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object
recognition using shape contexts. IEEE transactions on pattern analysis and
machine intelligence (PAMI), 24:509–522, 2002.

[23] Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea Vedaldi, and Stephen
Gould. Dynamic image networks for action recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR), pages 3034–
3042. IEEE, 2016.

[24] Michael J Black and Allan D Jepson. Eigentracking: Robust matching and
tracking of articulated objects using a view-based representation. International
journal of computer vision (IJCV), 26:63–84, 1998.

[25] Liefeng Bo, Kevin Lai, Xiaofeng Ren, and Dieter Fox. Object recognition with
hierarchical kernel descriptors. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (CVPR), pages 1729–1736. IEEE, 2011.

[26] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Kernel descriptors for visual recogni-
tion. In Advances in neural information processing systems 23, pages 244–252.
Curran Associates, Inc., 2010.

164 Bibliography

[27] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Depth kernel descriptors for ob-
ject recognition. In IEEE/RSJ international conference on intelligent robots and
systems (IROS), pages 821–826. IEEE, 2011.

[28] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Unsupervised feature learning for
rgb-d based object recognition. In Jaydev P. Desai, Gregory Dudek, Ous-
sama Khatib, and Vijay Kumar, editors, Experimental Robotics, pages 387–402.
Springer, 2013.

[29] Aaron F. Bobick and James W. Davis. The recognition of human movement
using temporal templates. IEEE transactions on pattern analysis and machine
intelligence (PAMI), 23:257–267, 2001.

[30] Ujwal Bonde, Vijay Badrinarayanan, and Roberto Cipolla. Robust instance re-
cognition in presence of occlusion and clutter. In Proceedings of the European
conference on computer vision (ECCV), pages 520–535. Springer, 2014.

[31] Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons
and singular value decomposition. Biological cybernetics, 59:291–294, 1988.

[32] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[33] Matteo Bregonzio, Shaogang Gong, and Tao Xiang. Recognising action as
clouds of space-time interest points. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 1948–1955. IEEE, 2009.

[34] Rasmus Bro, Evrim Acar, and Tamara G Kolda. Resolving the sign ambiguity
in the singular value decomposition. Journal of Chemometrics, 22:135–140,
2008.

[35] Andrew Brock, Theodore Lim, JM Ritchie, and Nick Weston. Generative and
discriminative voxel modeling with convolutional neural networks. arXiv pre-
print arXiv:1608.04236, 2016.

[36] Alexander Bronstein, Michael Bronstein, and Maks Ovsjanikov. 3d features,
surface descriptors, and object descriptors. 3D Imaging, Analysis, and Applica-
tions, pages 1–27, 2010.

[37] Alexander M Bronstein, Michael M Bronstein, Leonidas J Guibas, and Maks
Ovsjanikov. Shape google: Geometric words and expressions for invariant
shape retrieval. ACM Transactions on Graphics (TOG), 30:1, 2011.

[38] Michael M Bronstein and Iasonas Kokkinos. Scale-invariant heat kernel signa-
tures for non-rigid shape recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 1704–1711. IEEE, 2010.

Bibliography 165

[39] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Car-
los Niebles. Activitynet: A large-scale video benchmark for human activity
understanding. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 961–970. IEEE, 2015.

[40] Berk Calli, Arjun Singh, Aaron Walsman, Siddhartha Srinivasa, Pieter Abbeel,
and Aaron M Dollar. The ycb object and model set: Towards common bench-
marks for manipulation research. In International conference on advanced ro-
botics (ICAR), pages 510–517. IEEE, 2015.

[41] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: Binary robust independ-
ent elementary features. In Proceedings of the European conference on computer
vision (ECCV), pages 778–792, 2010.

[42] Liangliang Cao, Zicheng Liu, and Thomas S Huang. Cross-dataset action de-
tection. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 1998–2005. IEEE, 2010.

[43] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new
model and the kinetics dataset. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (CVPR), pages 4724–4733. IEEE, 2017.

[44] Bhaskar Chakraborty, Michael B Holte, Thomas B Moeslund, and Jordi
Gonzàlez. Selective spatio-temporal interest points. Computer vision and image
understanding (CVIU), 116:396–410, 2012.

[45] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qix-
ing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[46] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual
similarity based 3d model retrieval. In Computer graphics forum, pages 223–
232. Wiley Online Library, 2003.

[47] Hui Chen and Bir Bhanu. 3d free-form object recognition in range images using
local surface patches. Pattern Recognition Letters, pages 1252–1262, 2007.

[48] Minmin Chen, Jeffrey Pennington, and Samuel Schoenholz. Dynamical iso-
metry and a mean field theory of RNNs: Gating enables signal propagation in
recurrent neural networks. In Proceedings of the International conference on
machine learning (ICML), volume 80, pages 873–882. PMLR, Jul 2018.

166 Bibliography

[49] Gong Cheng, Peicheng Zhou, and Junwei Han. Rifd-cnn: Rotation-invariant
and fisher discriminative convolutional neural networks for object detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 2884–2893. IEEE, 2016.

[50] Warren Cheung and Ghassan Hamarneh. N-sift: N-dimensional scale invari-
ant feature transform for matching medical images. In 4th IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, pages 720–723. IEEE,
2007.

[51] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase repres-
entations using rnn encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078, 2014.

[52] Sungjoon Choi, Qian-Yi Zhou, Stephen Miller, and Vladlen Koltun. A large
dataset of object scans. arXiv:1602.02481, 2016.

[53] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accur-
ate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

[54] Chris A Cocosco, Vasken Kollokian, Remi K-S Kwan, G Bruce Pike, and Alan C
Evans. Brainweb: Online interface to a 3d mri simulated brain database. In
NeuroImage. Citeseer, 1997.

[55] Taco Cohen and Max Welling. Group equivariant convolutional networks. In
Proceedings of the International conference on machine learning (ICML), pages
2990–2999, 2016.

[56] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron
Courville. Recurrent batch normalization. arXiv preprint arXiv:1603.09025,
2016.

[57] Camille Couprie. Multi-label energy minimization for object class segment-
ation. In Proceedings of the 20th European Signal Processing Conference (EU-
SIPCO), pages 2233–2237. IEEE, 2012.

[58] Camille Couprie, Clément Farabet, Laurent Najman, and Yann LeCun. In-
door semantic segmentation using depth information. arXiv preprint
arXiv:1301.3572, 2013.

[59] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.
Autoaugment: Learning augmentation strategies from data. In Proceedings of

Bibliography 167

the IEEE conference on computer vision and pattern recognition (CVPR), pages
113–123, 2019.

[60] John D. and Anderson Jr. Computational Fluid Dynamics. McGraw-Hill, 1995.

[61] Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funk-
houser, and Matthias Nießner. Scannet: Richly-annotated 3d reconstructions
of indoor scenes. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 5828–5839. IEEE, 2017.

[62] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 886–893. IEEE, 2005.

[63] Tal Darom and Yosi Keller. Scale-invariant features for 3-d mesh models. IEEE
Transactions on Image Processing, 21:2758–2769, 2012.

[64] Liuyuan Deng, Ming Yang, Tianyi Li, Yuesheng He, and Chunxiang Wang. Rfb-
net: Deep multimodal networks with residual fusion blocks for rgb-d semantic
segmentation. arXiv preprint arXiv:1907.00135, 2019.

[65] Zhuo Deng, Sinisa Todorovic, and Longin Jan Latecki. Semantic segmentation
of rgbd images with mutex constraints. In Proceedings of the IEEE international
conference on computer vision (ICCV), pages 1733–1741. IEEE, 2015.

[66] H Quynh Dinh and Liefei Xu. Measuring the similarity of vector fields us-
ing global distributions. In Joint IAPR International Workshops on Statistical
Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR), pages 187–196. Springer, 2008.

[67] Erickson R do Nascimento, Gabriel L Oliveira, Antônio W Vieira, and Mario FM
Campos. On the development of a robust, fast and lightweight keypoint
descriptor. Neurocomputing, 120:141–155, 2013.

[68] Piotr Dollár, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior
recognition via sparse spatio-temporal features. In Workshop on visual surveil-
lance and performance evaluation of tracking and surveillance., pages 65–72.
IEEE, 2005.

[69] Jose Dolz, Christian Desrosiers, and Ismail Ben Ayed. 3d fully convolutional
networks for subcortical segmentation in mri: A large-scale study. NeuroImage,
170:456–470, 2017.

168 Bibliography

[70] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach,
Subhashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recur-
rent convolutional networks for visual recognition and description. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition (CVPR),
pages 2625–2634. IEEE, 2015.

[71] Andreas Doumanoglou, Rigas Kouskouridas, Sotiris Malassiotis, and Tae-Kyun
Kim. Recovering 6d object pose and predicting next-best-view in the crowd.
In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 3583–3592. IEEE, 2016.

[72] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan Ilic. Model globally,
match locally: Efficient and robust 3d object recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR). IEEE, 2010.

[73] Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network
for skeleton based action recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 1110–1118. IEEE, 2015.

[74] Aman Dureja and Payal Pahwa. Image retrieval techniques: a survey. Interna-
tional Journal of Engineering & Technology, 7(1.2):215–219, 2018.

[75] Julia Ebling and Gerik Scheuermann. Clifford convolution and pattern match-
ing on vector fields. In Proceedings of the 14th IEEE visualization, page 26. IEEE
Computer Society, 2003.

[76] Alexei A Efros, Alexander C Berg, Greg Mori, and Jitendra Malik. Recognizing
action at a distance. In Proceedings of the IEEE international conference on
computer vision (ICCV), page 726. IEEE, 2003.

[77] David Eigen and Rob Fergus. Predicting depth, surface normals and semantic
labels with a common multi-scale convolutional architecture. In Proceedings of
the IEEE international conference on computer vision (ICCV), pages 2650–2658.
IEEE, 2015.

[78] Andreas Eitel, Jost Tobias Springenberg, Luciano Spinello, Martin Riedmiller,
and Wolfram Burgard. Multimodal deep learning for robust rgb-d object re-
cognition. In IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 681–687. IEEE, 2015.

[79] Hanan ElNaghy, Safwat Hamad, and M Essam Khalifa. Taxonomy for 3d
content-based object retrieval methods. International Journal of Recent Re-
search and Applied Studies (IJRRAS), 14:412–446, 2013.

Bibliography 169

[80] Felix Endres, Jürgen Hess, Nikolas Engelhard, Jürgen Sturm, Daniel Cremers,
and Wolfram Burgard. An evaluation of the rgb-d slam system. In IEEE interna-
tional conference on robotics and automation (ICRA), pages 1691–1696. IEEE,
2012.

[81] Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers, and Wolfram Bur-
gard. 3-d mapping with an rgb-d camera. Transactions on Robotics, 30:177–
187, 2014.

[82] Martin Engelcke, Dushyant Rao, Dominic Zeng Wang, Chi Hay Tong, and Ing-
mar Posner. Vote3deep: Fast object detection in 3d point clouds using efficient
convolutional neural networks. In IEEE international conference on robotics and
automation (ICRA), pages 1355–1361. IEEE, 2017.

[83] POST F., V. ROLIJK B., H AUSER H., L ARAMEE R., and D OLEISCH H. The
state of the art in flow visualisation: Feature extraction and tracking. Computer
Graphics Forum, 22(4):775–792, 2003.

[84] Yuchen Fan, Yao Qian, Feng-Long Xie, and Frank K Soong. Tts synthesis with
bidirectional lstm based recurrent neural networks. In Fifteenth annual confer-
ence of the international speech communication association, 2014.

[85] Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Scene
parsing with multiscale feature learning, purity trees, and optimal covers. In
Proceedings of the International conference on machine learning (ICML), pages
1857–1864. Omnipress, 2012.

[86] Clement Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning
hierarchical features for scene labeling. IEEE transactions on pattern analysis
and machine intelligence (PAMI), 35:1915–1929, 2013.

[87] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional
two-stream network fusion for video action recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR), pages 1933–
1941. IEEE, 2016.

[88] Basura Fernando, Stratis Gavves, Oramas Mogrovejo, José Antonio, Amir
Ghodrati, and Tinne Tuytelaars. Modeling video evolution for action recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 5378–5387. IEEE, 2015.

[89] Michael Firman. Rgbd datasets: Past, present and future. In Proceedings of the
IEEE conference on computer vision and pattern recognition workshops (CVPRW),
pages 19–31. IEEE, 2016.

170 Bibliography

[90] Alex Flint, Anthony Dick, and Anton Van Den Hengel. Thrift: Local 3d structure
recognition. In 9th Biennial Conference of the Australian Pattern Recognition
Society on Digital Image Computing Techniques and Applications (DICTA), pages
182–188. IEEE, 2007.

[91] Andrea Frome, Daniel Huber, Ravi Kolluri, Thomas Bülow, and Jitendra Malik.
Recognizing objects in range data using regional point descriptors. In Pro-
ceedings of the European conference on computer vision (ECCV), pages 224–237.
Springer, 2004.

[92] Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia. Tall: Temporal activ-
ity localization via language query. In Proceedings of the IEEE international
conference on computer vision (ICCV), pages 5267–5275. IEEE, 2017.

[93] Yue Gao, Qionghai Dai, and Nai-Yao Zhang. 3d model comparison using spatial
structure circular descriptor. Pattern Recognition, 43:1142–1151, 2010.

[94] Noa Garcia. Temporal aggregation of visual features for large-scale image-to-
video retrieval. In Proceedings of the 2018 ACM on International Conference on
Multimedia Retrieval, pages 489–492. ACM, 2018.

[95] Noa Garcia and George Vogiatzis. Dress like a star: Retrieving fashion products
from videos. In Proceedings of the IEEE international conference on computer
vision workshops (ICCVW), pages 2293–2299. IEEE, 2017.

[96] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-
Martinez, and Jose Garcia-Rodriguez. A review on deep learning techniques
applied to semantic segmentation. arXiv preprint arXiv:1704.06857, 2017.

[97] Christoph Garth, Robert S Laramee, Xavier Tricoche, Jürgen Schneider, and
Hans Hagen. Extraction and visualization of swirl and tumble motion from
engine simulation data. In Topology-based Methods in Visualization, pages 121–
135. Springer, 2007.

[98] Andreas Geiger. Are we ready for autonomous driving? the kitti vision bench-
mark suite. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 3354–3361. IEEE, 2012.

[99] Felix A Gers, Nicol N Schraudolph, and Jürgen Schmidhuber. Learning precise
timing with lstm recurrent networks. Journal of machine learning research
(JMLR), 3:115–143, 2002.

Bibliography 171

[100] R. B Girshick, P. F Felzenszwalb, and D. A Mcallester. Object detection with
grammar models. In Advances in Neural Information Processing Systems, pages
442–450, 2011.

[101] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural
networks. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 315–323. PMLR, 2011.

[102] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep
learning, volume 1. MIT press Cambridge, 2016.

[103] Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and
Yoshua Bengio. Maxout networks. In Proceedings of the International conference
on machine learning (ICML), pages III–1319–III–1327. Omnipress, 2013.

[104] Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzyn-
ska, Susanne Westphal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yi-
anilos, Moritz Mueller-Freitag, et al. The” something something” video data-
base for learning and evaluating visual common sense. In Proceedings of the
IEEE international conference on computer vision (ICCV), page 3. IEEE, 2017.

[105] Lars Graening and Thomas Ramsay. Flow field data mining based on a compact
streamline representation. Technical report, SAE Technical Paper, 2015.

[106] Klaus Greff, Rupesh K Srivastava, Jan Koutńık, Bas R Steunebrink, and Jürgen
Schmidhuber. Lstm: A search space odyssey. Transactions on neural networks
and learning systems, 28:2222–2232, 2017.

[107] Wulong Guo, Weiduo Hu, Chang Liu, and Tingting Lu. 3d object recognition
from cluttered and occluded scenes with a compact local feature. Machine
vision and applications, 30:763–783, 2019.

[108] Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for
steady flow approximation. In Proceedings of the 22Nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages 481–490.
ACM, 2016.

[109] Y Guo, Ferdous Sohel, Mohammed Bennamoun, M Lu, and J Wan. Trisi: A
distinctive local surface descriptor for 3d modeling and object recognition. In
8th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, pages 86–93. Scitepress, 2013.

172 Bibliography

[110] Yanming Guo, Yu Liu, Ard Oerlemans, Songyang Lao, Song Wu, and Michael
Lew. Deep learning for visual understanding: A review. Neurocomputing,
187:27–48, 2016.

[111] Yanming Guo, Yu Liu, Theodoros Georgiou, and Michael Lew. A review of
semantic segmentation using deep neural networks. International Journal of
Multimedia Information Retrieval (IJMIR), 7:87–93, 2018.

[112] Yulan Guo, Mohammed Bennamoun, Ferdous Sohel, Min Lu, and Jianwei Wan.
3d object recognition in cluttered scenes with local surface features: a survey.
IEEE transactions on pattern analysis and machine intelligence (PAMI), pages
2270–2287, 2014.

[113] Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Min Lu, and Jianwei Wan.
Rotational projection statistics for 3d local surface description and object re-
cognition. International journal of computer vision (IJCV), 105:63–86, 2013.

[114] Yulan Guo, Ferdous Sohel, Mohammed Bennamoun, Jianwei Wan, and Min
Lu. A novel local surface feature for 3d object recognition under clutter and
occlusion. Information Sciences, pages 196–213, 2015.

[115] Saurabh Gupta, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Indoor
scene understanding with rgb-d images: Bottom-up segmentation, object de-
tection and semantic segmentation. International journal of computer vision
(IJCV), 112:133–149, 2015.

[116] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. Perceptual organization
and recognition of indoor scenes from rgb-d images. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pages 564–571.
IEEE, 2013.

[117] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning
rich features from rgb-d images for object detection and segmentation. In
Proceedings of the European conference on computer vision (ECCV), pages 345–
360. Springer, 2014.

[118] Simon Hadfield, Karel Lebeda, and Richard Bowden. Hollywood 3d: What are
the best 3d features for action recognition? International journal of computer
vision (IJCV), 121:95–110, 2017.

[119] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual net-
works. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 5927–5935, 2017.

Bibliography 173

[120] Ju Han and Kai-Kuang Ma. Fuzzy color histogram and its use in color image
retrieval. IEEE Transactions on image Processing, 11(8):944–952, 2002.

[121] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Simon Stent, and
Roberto Cipolla. Understanding real world indoor scenes with synthetic data.
In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 4077–4085. IEEE, 2016.

[122] Mehrtash Harandi and Basura Fernando. Generalized backpropagation,\’{E}
tude de cas: Orthogonality. arXiv preprint arXiv:1611.05927, 2016.

[123] Chris Harris and Mike Stephens. A combined corner and edge detector. In
Alvey vision conference, pages 10–5244. Citeseer, 1988.

[124] Tal Hassner. A critical review of action recognition benchmarks. In Proceedings
of the IEEE conference on computer vision and pattern recognition workshops
(CVPRW), pages 245–250. IEEE, 2013.

[125] Caner Hazirbas, Lingni Ma, Csaba Domokos, and Daniel Cremers. Fusenet:
Incorporating depth into semantic segmentation via fusion-based cnn architec-
ture. In Asian conference on computer vision (ACCV), pages 213–228. Springer,
2016.

[126] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision (ICCV),
pages 1026–1034. IEEE, 2015.

[127] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), pages 770–778. IEEE, 2016.

[128] Vishakh Hegde and Reza Zadeh. Fusionnet: 3d object classification using mul-
tiple data representations. arXiv preprint arXiv:1607.05695, 2016.

[129] Geremy Heitz and Daphne Koller. Learning spatial context: Using stuff to find
things. In Proceedings of the European conference on computer vision (ECCV),
pages 30–43. Springer, 2008.

[130] James Helman and Lambertus Hesselink. Representation and display of vector
field topology in fluid flow data sets. IEEE computer, 22(8):27–36, 1989.

[131] Joao F Henriques and Andrea Vedaldi. Warped convolutions: Efficient invari-
ance to spatial transformations. In Proceedings of the International conference
on machine learning (ICML), pages 1461–1469. PMLR, 2017.

174 Bibliography

[132] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. Going deeper into action
recognition: A survey. Image and vision computing, 60:4–21, 2017.

[133] Alexander Hermans, Georgios Floros, and Bastian Leibe. Dense 3d semantic
mapping of indoor scenes from rgb-d images. In IEEE international conference
on robotics and automation (ICRA), pages 2631–2638. IEEE, 2014.

[134] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter Sturm, Nassir
Navab, Pascal Fua, and Vincent Lepetit. Gradient response maps for real-time
detection of textureless objects. IEEE transactions on pattern analysis and ma-
chine intelligence (PAMI), pages 876–888, 2012.

[135] Stefan Hinterstoisser, Stefan Holzer, Cedric Cagniart, Slobodan Ilic, Kurt Kono-
lige, Nassir Navab, and Vincent Lepetit. Multimodal templates for real-time
detection of texture-less objects in heavily cluttered scenes. In Proceedings of
the IEEE international conference on computer vision (ICCV), pages 858–865.
IEEE, 2011.

[136] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Brad-
ski, Kurt Konolige, and Nassir Navab. Model based training, detection and
pose estimation of texture-less 3d objects in heavily cluttered scenes. In Asian
conference on computer vision (ACCV), pages 548–562. Springer, 2012.

[137] Stefan Hinterstoisser, Vincent Lepetit, Naresh Rajkumar, and Kurt Konolige.
Going further with point pair features. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 834–848. Springer, 2016.

[138] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning al-
gorithm for deep belief nets. Neural computation, 18:1527–1554, 2006.

[139] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality
of data with neural networks. science, pages 504–507, 2006.

[140] Geoffrey E Hinton and Terrence J Sejnowski. Learning and releaming in
boltzmann machines. Parallel distributed processing: Explorations in the mi-
crostructure of cognition, 1:2, 1986.

[141] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, pages 1735–1780, 1997.

[142] Nico Höft, Hannes Schulz, and Sven Behnke. Fast semantic segmentation of
rgb-d scenes with gpu-accelerated deep neural networks. In Joint German/Aus-
trian Conference on Artificial Intelligence, pages 80–85. Springer, 2014.

Bibliography 175

[143] David R Holmes, Ellis L Workman, and Richard A Robb. The nlm-mayo image
collection: Common access to uncommon data. In International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI) Work-
shop, 2005.

[144] Berthold Klaus Paul Horn. Extended gaussian images. Proceedings of the IEEE,
pages 1671–1686, 1984.

[145] Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen, Minh-Khoi Tran, Lap-
Fai Yu, and Sai-Kit Yeung. Scenenn: A scene meshes dataset with annotations.
In Fourth International Conference on 3D Vision (3DV), pages 92–101. IEEE,
2016.

[146] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten.
Densely connected convolutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (CVPR), pages 2261–2269.
IEEE, 2017.

[147] Lei Huang, Li Liu, Fan Zhu, Diwen Wan, Zehuan Yuan, Bo Li, and Ling Shao.
Controllable orthogonalization in training dnns. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 6429–
6438, 2020.

[148] Lei Huang, Xianglong Liu, Bo Lang, and Bo Li. Projection based weight nor-
malization for deep neural networks. arXiv preprint arXiv:1710.02338, 2017.

[149] Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and Bo Li.
Orthogonal weight normalization: Solution to optimization over multiple de-
pendent stiefel manifolds in deep neural networks. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[150] Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normal-
ization. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 791–800. IEEE, 2018.

[151] Haroon Idrees, Amir R Zamir, Yu-Gang Jiang, Alex Gorban, Ivan Laptev, Rahul
Sukthankar, and Mubarak Shah. The thumos challenge on action recognition
for videos in the wild. Computer vision and image understanding (CVIU), 155:1–
23, 2017.

[152] Anastasia Ioannidou, Elisavet Chatzilari, Spiros Nikolopoulos, and Ioannis
Kompatsiaris. Deep learning advances in computer vision with 3d data: A
survey. ACM Computing Surveys (CSUR), page 20, 2017.

176 Bibliography

[153] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the
32nd International Conference on Machine Learning (ICML), volume 37, pages
448–456. PMLR, 2015.

[154] Sergey Ioffe and Christian Szegedy. Batch normalization: accelerating deep
network training by reducing internal covariate shift. In Proceedings of the
32nd International Conference on Machine Learning (ICML), pages 448–456.
Omnipress, 2015.

[155] L. Helman J. and Hesselink L. Representation and display of vector field topo-
logy in fluid flow data sets. IEEE Computer, 22(8):27–36, 1989.

[156] L. Helman J. and Hesselink L. Visualizing vector field topology in fluid flows.
IEEE Computer Graphics and Applications, 11(3):36–46, 1991.

[157] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in neural information processing systems, pages 2017–
2025, 2015.

[158] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T Barron, Mario Fritz,
Kate Saenko, and Trevor Darrell. A category-level 3d object dataset: Putting
the kinect to work. In Andrea Fossati, Juergen Gall, Helmut Grabner, Xiaofeng
Ren, and Kurt Konolige, editors, Consumer Depth Cameras for Computer Vision,
pages 141–165. Springer, 2013.

[159] Kevin Jarrett, Koray Kavukcuoglu, Yann LeCun, et al. What is the best multi-
stage architecture for object recognition? In IEEE 12th international conference
on computer vision (ICCV), pages 2146–2153. IEEE, 2009.

[160] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural net-
works for human action recognition. IEEE transactions on pattern analysis and
machine intelligence (PAMI), pages 221–231, 2013.

[161] Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, and Shih-Fu Chang.
Exploiting feature and class relationships in video categorization with regular-
ized deep neural networks. IEEE transactions on pattern analysis and machine
intelligence (PAMI), 40:352–364, 2018.

[162] Yun Jiang, Stephen Moseson, and Ashutosh Saxena. Efficient grasping from
rgbd images: Learning using a new rectangle representation. In IEEE interna-
tional conference on robotics and automation (ICRA), pages 3304–3311. IEEE,
2011.

Bibliography 177

[163] Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and
Shuicheng Yan. Deep learning with s-shaped rectified linear activation units.
In AAAI Conference on Artificial Intelligence, pages 1737–1743, 2016.

[164] Andrew E. Johnson and Martial Hebert. Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE transactions on pattern analysis and
machine intelligence (PAMI), 21:433–449, 1999.

[165] Andrew E Johnson, Allan R Klumpp, James B Collier, and Aron A Wolf. Lidar-
based hazard avoidance for safe landing on mars. Journal of guidance, control,
and dynamics, pages 1091–1099, 2002.

[166] Andrew Edie Johnson and Martial Hebert. Surface matching for object re-
cognition in complex three-dimensional scenes. Image and vision computing,
16:635–651, 1998.

[167] T. Kadir and M. Brady. Scale saliency: a novel approach to salient feature and
scale selection. In International conference on visual information engineering
(VIE), pages 25–28. IET, 2003.

[168] Soo Min Kang and Richard P Wildes. Review of action recognition and detec-
tion methods. arXiv preprint arXiv:1610.06906, 2016.

[169] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 1725–1732. IEEE, 2014.

[170] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sud-
heendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Nat-
sev, et al. The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017.

[171] Yan Ke, Rahul Sukthankar, and Martial Hebert. Efficient visual event detection
using volumetric features. In Proceedings of the IEEE international conference
on computer vision (ICCV), pages 166–173. IEEE, 2005.

[172] Wadim Kehl, Fausto Milletari, Federico Tombari, Slobodan Ilic, and Nassir
Navab. Deep learning of local rgb-d patches for 3d object detection and 6d
pose estimation. In Proceedings of the European conference on computer vision
(ECCV), pages 205–220. Springer, 2016.

178 Bibliography

[173] Christian Kerl, Jurgen Sturm, and Daniel Cremers. Dense visual slam for rgb-d
cameras. In IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 2100–2106. IEEE, 2013.

[174] Salman Hameed Khan, Mohammed Bennamoun, Ferdous Sohel, and Roberto
Togneri. Geometry driven semantic labeling of indoor scenes. In Proceedings of
the European conference on computer vision (ECCV), pages 679–694. Springer,
2014.

[175] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[176] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. In Advances in neural information processing
systems 30, pages 971–980. Curran Associates, Inc., 2017.

[177] Alexander Klaser, Marcin Marszałek, and Cordelia Schmid. A spatio-temporal
descriptor based on 3d-gradients. In Proceedings of the British machine vision
conference (BMVC), pages 995–1004. BMVA Press, 2008.

[178] Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte, and Luc Van Gool.
Hough transform and 3d surf for robust three dimensional classification. In
Proceedings of the European conference on computer vision (ECCV), pages 589–
602. Springer, 2010.

[179] Jan J Koenderink and Andrea J van Doorn. Representation of local geometry
in the visual system. Biological cybernetics, 55:367–375, 1987.

[180] Hema S Koppula, Abhishek Anand, Thorsten Joachims, and Ashutosh Sax-
ena. Semantic labeling of 3d point clouds for indoor scenes. In Advances in
neural information processing systems 24, pages 244–252. Curran Associates,
Inc., 2011.

[181] Iryna Korshunova, Wenzhe Shi, Joni Dambre, and Lucas Theis. Fast face-swap
using convolutional neural networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[182] Adriana Kovashka and Kristen Grauman. Learning a hierarchy of discrim-
inative space-time neighborhood features for human action recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 2046–2053. IEEE, 2010.

Bibliography 179

[183] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. 2009.

[184] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

[185] Alexander Krull, Eric Brachmann, Frank Michel, Michael Ying Yang, Stefan
Gumhold, and Carsten Rother. Learning analysis-by-synthesis for 6d pose es-
timation in rgb-d images. In Proceedings of the IEEE international conference on
computer vision (ICCV), pages 954–962. IEEE, 2015.

[186] Hildegard Kuehne, Hueihan Jhuang, Est́ıbaliz Garrote, Tomaso Poggio, and
Thomas Serre. Hmdb: a large video database for human motion recognition.
In Proceedings of the IEEE international conference on computer vision (ICCV),
pages 2556–2563. IEEE, 2011.

[187] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In IEEE international conference on robotics
and automation (ICRA), pages 1817–1824. IEEE, 2011.

[188] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Rgb-d object recognition:
Features, algorithms, and a large scale benchmark. In Consumer Depth Cameras
for Computer Vision, pages 167–192. Springer, 2013.

[189] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and Marc Pollefeys. Ti-
pooling: transformation-invariant pooling for feature learning in convolutional
neural networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 289–297, 2016.

[190] Ivan Laptev. On space-time interest points. International journal of computer
vision (IJCV), pages 107–123, 2005.

[191] Ivan Laptev, Barbara Caputo, Christian Schüldt, and Tony Lindeberg. Local
velocity-adapted motion events for spatio-temporal recognition. Computer vis-
ion and image understanding (CVIU), 108:207–229, 2007.

[192] Ivan Laptev and Tony Lindeberg. Velocity adaptation of space-time interest
points. In Proceedings of the International Conference on Pattern Recognition
(ICPR), pages 52–56. IEEE, 2004.

[193] Ivan Laptev and Tony Lindeberg. Local descriptors for spatio-temporal recog-
nition. In Spatial Coherence for Visual Motion Analysis, pages 91–103. Springer,
2006.

180 Bibliography

[194] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld.
Learning realistic human actions from movies. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (CVPR), pages 1–8. IEEE,
2008.

[195] Graciela Lara López, Adriana Pena Pérez Negrón, Angélica De Anto-
nio Jiménez, Jaime Ramı́rez Rodŕıguez, and Ricardo Imbert Paredes. Com-
parative analysis of shape descriptors for 3d objects. Multimedia Tools and
Applications, 76:6993–7040, 2017.

[196] Robert S Laramee, Helwig Hauser, Lingxiao Zhao, and Frits H Post. Topology-
based flow visualization, the state of the art. In Topology-based methods in
visualization, pages 1–19. Springer, 2007.

[197] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua
Bengio. An empirical evaluation of deep architectures on problems with many
factors of variation. In Proceedings of the International conference on machine
learning (ICML), pages 473–480. ACM, 2007.

[198] César Laurent, Gabriel Pereyra, Philémon Brakel, Ying Zhang, and Yoshua Ben-
gio. Batch normalized recurrent neural networks. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages 2657–2661.
IEEE, 2016.

[199] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R Howard,
Wayne Hubbard, and Lawrence Jackel. Handwritten digit recognition with a
back-propagation network. Advances in neural information processing systems,
2:396–404, 1989.

[200] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[201] Yann LeCun, Lawrence D Jackel, Léon Bottou, Corinna Cortes, John S Den-
ker, Harris Drucker, Isabelle Guyon, Urs A Muller, Eduard Sackinger, Patrice
Simard, et al. Learning algorithms for classification: A comparison on hand-
written digit recognition. Neural networks: the statistical mechanics perspective,
261:276, 1995.

[202] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework
for back-propagation. In Proceedings of the 1988 connectionist models summer
school, volume 1, pages 21–28. CMU, Pittsburgh, Pa: Morgan Kaufmann, 1988.

Bibliography 181

[203] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, and Zhuowen
Tu. Deeply-supervised nets. In Artificial intelligence and statistics, pages 562–
570. PMLR, 2015.

[204] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting
robotic grasps. The International Journal of Robotics Research, 34(4-5):705–
724, 2015.

[205] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust invariant scal-
able keypoints. In Proceedings of the IEEE international conference on computer
vision (ICCV), pages 2548–2555, 2011.

[206] Bo Li, Yijuan Lu, Chunyuan Li, Afzal Godil, Tobias Schreck, Masaki Aono, Mar-
tin Burtscher, Hongbo Fu, Takahiko Furuya, Henry Johan, et al. Shrec14 track:
extended large scale sketch-based 3d shape retrieval. In Eurographics workshop
on 3D object retrieval (3DOR), pages 121–130, 2014.

[207] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from 3d lidar using fully
convolutional network. arXiv preprint arXiv:1608.07916, 2016.

[208] Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Action recognition based on a
bag of 3d points. In Proceedings of the IEEE conference on computer vision and
pattern recognition workshops (CVPRW), pages 9–14. IEEE, 2010.

[209] Y. Li, S. Wang, Q. Tian, and X. Ding. A survey of recent advances in visual
feature detection. Neurocomputing, 149:736–751, 2015.

[210] Yanshan Li, Rongjie Xia, Qinghua Huang, Weixin Xie, and Xuelong Li. Survey
of spatio-temporal interest point detection algorithms in video. IEEE Access,
5:10323–10331, 2017.

[211] Yanshan Li, Rongjie Xia, and Weixin Xie. A unified model of appearance and
motion of video and its application in stip detection. Signal, Image and Video
Processing, pages 403–410, 2018.

[212] Zhen Li, Yukang Gan, Xiaodan Liang, Yizhou Yu, Hui Cheng, and Liang Lin.
Lstm-cf: Unifying context modeling and fusion with lstms for rgb-d scene la-
beling. In Proceedings of the European conference on computer vision (ECCV),
pages 541–557. Springer, 2016.

[213] Zhen Li, Yukang Gan, Xiaodan Liang, Yizhou Yu, Hui Cheng, and Liang Lin.
Rgb-d scene labeling with long short-term memorized fusion model. arXiv
preprint arXiv:1604.05000, 2016.

182 Bibliography

[214] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast
autoaugment. In Advances in Neural Information Processing Systems, pages
6665–6675, 2019.

[215] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. Refinenet: Multi-
path refinement networks for high-resolution semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition
(CVPR). IEEE, 2017.

[216] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

[217] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common ob-
jects in context. In Proceedings of the European conference on computer vision
(ECCV), pages 740–755. Springer, 2014.

[218] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged
turbulence modelling using deep neural networks with embedded invariance.
Journal of Fluid Mechanics, 807:155–166, 2016.

[219] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang. Spatio-temporal lstm with
trust gates for 3d human action recognition. In Proceedings of the European
conference on computer vision (ECCV), pages 816–833. Springer, 2016.

[220] L. Liu, P. Fieguth, Y. Guo, X. Wang, and M. Pietikäinen. Local binary features
for texture classification: Taxonomy and experimental study. Pattern Recogni-
tion, 62:135–160, 2017.

[221] Long Liu, Zhixuan Xi, RuiRui Ji, and Weigang Ma. Advanced deep learning
techniques for image style transfer: A survey. Signal Processing: Image Commu-
nication, 78:465–470, 2019.

[222] Yu Liu, Yanming Guo, Theodoros Georgiou, and Michael Lew. Fusion that
matters: convolutional fusion networks for visual recognition. Multimedia Tools
and Applications, 77:1–28, 2018.

[223] Tsz-Wai Rachel Lo and J Paul Siebert. Local feature extraction and matching
on range images: 2.5 d sift. Computer vision and image understanding (CVIU),
pages 1235–1250, 2009.

[224] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (CVPR), pages 3431–3440. IEEE, 2015.

Bibliography 183

[225] David G Lowe. Object recognition from local scale-invariant features. In Pro-
ceedings of the IEEE international conference on computer vision (ICCV), pages
1150–1157. IEEE, 1999.

[226] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational journal of computer vision (IJCV), 60:91–110, 2004.

[227] Bruce D Lucas, Takeo Kanade, et al. An iterative image registration technique
with an application to stereo vision. In Proceedings of the 1981 DARPA imaging
understanding Workshop (IJCAI). Vancouver, BC, Canada, 1981.

[228] Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech
Zaremba. Addressing the rare word problem in neural machine translation.
arXiv preprint arXiv:1410.8206, 2014.

[229] Jiang M, Machiraju R, and Thompson D. Detection and visualization of vor-
tices. The visualization handbook, page 295, 2005.

[230] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proceedings of the International
Conference on Machine Learning (ICML), page 3. Omnipress, 2013.

[231] Chris Maes, Thomas Fabry, Johannes Keustermans, Dirk Smeets, Paul Suetens,
and Dirk Vandermeulen. Feature detection on 3d face surfaces for pose normal-
isation and recognition. In Fourth IEEE International Conference on Biometrics:
Theory, Applications and Systems (BTAS), pages 1–6. IEEE, 2010.

[232] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger. Adaptive and
generic corner detection based on the accelerated segment test. In Proceedings
of the European conference on computer vision (ECCV), pages 183–196, 2010.

[233] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia. Rotation equivariant vector
field networks. In Proceedings of the IEEE international conference on computer
vision (ICCV), pages 5048–5057, 2017.

[234] Diego Marcos, Michele Volpi, and Devis Tuia. Learning rotation invariant con-
volutional filters for texture classification. In Proceedings of the International
Conference on Pattern Recognition (ICPR), pages 2012–2017. IEEE, 2016.

[235] Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in context. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 2929–2936. IEEE, 2009.

184 Bibliography

[236] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked
convolutional auto-encoders for hierarchical feature extraction. In Interna-
tional conference on artificial neural networks, pages 52–59. Springer, 2011.

[237] Pyry Matikainen, Martial Hebert, and Rahul Sukthankar. Trajectons: Action
recognition through the motion analysis of tracked features. In Proceedings of
the IEEE international conference on computer vision workshops (ICCVW), pages
514–521. IEEE, 2009.

[238] Takahiro Matsuda, Takahiko Furuya, and Ryutarou Ohbuchi. Lightweight bin-
ary voxel shape features for 3d data matching and retrieval. In IEEE Interna-
tional Conference on Multimedia Big Data, pages 100–107. IEEE, 2015.

[239] Daniel Maturana and Sebastian Scherer. 3d convolutional neural networks for
landing zone detection from lidar. In IEEE international conference on robotics
and automation (ICRA), pages 3471–3478. IEEE, 2015.

[240] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural
network for real-time object recognition. In IEEE/RSJ international conference
on intelligent robots and systems (IROS), pages 922–928. IEEE, 2015.

[241] John McCormac, Ankur Handa, Stefan Leutenegger, and Andrew J Davison.
Scenenet rgb-d: 5m photorealistic images of synthetic indoor trajectories with
ground truth. arXiv preprint arXiv:1612.05079, 2016.

[242] Roland Memisevic and Geoffrey Hinton. Unsupervised learning of image trans-
formations. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 1–8. IEEE, 2007.

[243] Stefan Menzel and Bernhard Sendhoff. Representing the change - free form
deformation for evolutionary design optimisation. In Tina Yu, David Davis,
Cem Baydar, and Rajkumar Roy, editors, Evolutionary Computation in Practice,
chapter 4, pages 63–86. Springer, 2008.

[244] Ross Messing, Chris Pal, and Henry Kautz. Activity recognition using the ve-
locity histories of tracked keypoints. In Proceedings of the IEEE international
conference on computer vision (ICCV), pages 104–111. IEEE, 2009.

[245] Ajmal Mian, Mohammed Bennamoun, and Robyn Owens. On the repeatab-
ility and quality of keypoints for local feature-based 3d object retrieval from
cluttered scenes. International journal of computer vision (IJCV), pages 348–
361, 2010.

Bibliography 185

[246] K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detect-
ors. Proceedings of the IEEE international conference on computer vision (ICCV),
60(1):63–86, 2004.

[247] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local
descriptors. IEEE transactions on pattern analysis and machine intelligence
(PAMI), 27:1615–1630, 2005.

[248] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[249] Farzin Mokhtarian, Nasser Khalili, and Peter Yuen. Multi-scale free-form 3d
object recognition using 3d models. Image and Vision Computing, 19:271–281,
2001.

[250] Mathew Monfort, Alex Andonian, Bolei Zhou, Kandan Ramakrishnan,
Sarah Adel Bargal, Tom Yan, Lisa Brown, Quanfu Fan, Dan Gutfreund, Carl
Vondrick, et al. Moments in time dataset: one million videos for event under-
standing. IEEE transactions on pattern analysis and machine intelligence (PAMI),
42(2):502–508, 2019.

[251] Andreas C Müller and Sven Behnke. Learning depth-sensitive conditional ran-
dom fields for semantic segmentation of rgb-d images. In IEEE international
conference on robotics and automation (ICRA), pages 6232–6237. IEEE, 2014.

[252] Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. Transactions on Robotics, 33:1255–
1262, 2017.

[253] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the International conference on machine
learning (ICML), pages 807–814. Omnipress, 2010.

[254] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol
Vinyals, Rajat Monga, and George Toderici. Beyond short snippets: Deep net-
works for video classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), pages 4694–4702. IEEE, 2015.

[255] Jiquan Ngiam, Zhenghao Chen, Pang W Koh, and Andrew Y Ng. Learning
deep energy models. In Proceedings of the International conference on machine
learning (ICML), pages 1105–1112. Omnipress, 2011.

186 Bibliography

[256] Dong Ni, Yim Pan Chui, Yingge Qu, Xuan Yang, Jing Qin, Tien-Tsin Wong,
Simon SH Ho, and Pheng Ann Heng. Reconstruction of volumetric ultra-
sound panorama based on improved 3d sift. Computerized Medical Imaging
and Graphics, 33:559–566, 2009.

[257] Juan Carlos Niebles, Hongcheng Wang, and Li Fei-Fei. Unsupervised learning
of human action categories using spatial-temporal words. International journal
of computer vision (IJCV), 79:299–318, 2008.

[258] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution
network for semantic segmentation. In Proceedings of the IEEE international
conference on computer vision (ICCV), pages 1520–1528. IEEE, 2015.

[259] John Novatnack and Ko Nishino. Scale-dependent/invariant local 3d shape
descriptors for fully automatic registration of multiple sets of range images. In
Proceedings of the European conference on computer vision (ECCV), pages 440–
453. Springer, 2008.

[260] Eric Nowak, Frédéric Jurie, and Bill Triggs. Sampling strategies for bag-of-
features image classification. In Proceedings of the European conference on com-
puter vision (ECCV), pages 490–503. Springer, 2006.

[261] Antonios Oikonomopoulos, Ioannis Patras, and Maja Pantic. Spatiotemporal
salient points for visual recognition of human actions. Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 36:710–719, 2005.

[262] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns. IEEE
transactions on pattern analysis and machine intelligence (PAMI), 24:971–987,
2002.

[263] Nuria M Oliver, Barbara Rosario, and Alex P Pentland. A bayesian computer
vision system for modeling human interactions. IEEE transactions on pattern
analysis and machine intelligence (PAMI), 22:831–843, 2000.

[264] openFOAM and the openFOAM foundation. openfoam, 2011-2017.

[265] Omar Oreifej and Zicheng Liu. Hon4d: Histogram of oriented 4d normals for
activity recognition from depth sequences. In Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR), pages 716–723. IEEE, 2013.

[266] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin.
Shape distributions. ACM Transactions on Graphics (TOG), 21:807–832, 2002.

Bibliography 187

[267] Mete Ozay and Takayuki Okatani. Optimization on submanifolds of convolu-
tion kernels in cnns. arXiv preprint arXiv:1610.07008, 2016.

[268] Umut Özaydın, Theodoros Georgiou, and Michael Lew. A comparison of cnn
and classic features for image retrieval. In International Conference on Content-
Based Multimedia Indexing (CBMI), pages 1–4, 2019.

[269] Chavdar Papazov and Darius Burschka. An efficient ransac for 3d object re-
cognition in noisy and occluded scenes. In Asian conference on computer vision
(ACCV), pages 135–148. Springer, 2010.

[270] Chavdar Papazov, Sami Haddadin, Sven Parusel, Kai Krieger, and Darius
Burschka. Rigid 3d geometry matching for grasping of known objects in
cluttered scenes. The International Journal of Robotics Research (IJRR), pages
538–553, 2012.

[271] Seong-Jin Park, Ki-Sang Hong, and Seungyong Lee. Rdfnet: Rgb-d multi-level
residual feature fusion for indoor semantic segmentation. In Proceedings of
the IEEE international conference on computer vision (ICCV), pages 4990–4999.
IEEE, 2017.

[272] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python . Journal of Machine Learning Research, 12:2825–
2830, 2011.

[273] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel, K. Matkovi,
and H. Hauser. The state of the art in topology-based visualization of unsteady
flow. Computer Graphics forum, 30:1789–1811, 2011.

[274] Ronald Poppe. A survey on vision-based human action recognition. Image and
vision computing, 28:976–990, 2010.

[275] Frits H Post, Benjamin Vrolijk, Helwig Hauser, Robert S Laramee, and Helmut
Doleisch. The state of the art in flow visualisation: Feature extraction and
tracking. In Computer Graphics Forum, volume 22, pages 775–792. Wiley On-
line Library, 2003.

[276] Christopher Poultney, Sumit Chopra, Yann L Cun, et al. Efficient learning of
sparse representations with an energy-based model. In Advances in neural
information processing systems, pages 1137–1144, 2007.

188 Bibliography

[277] Nan Pu, Theodoros Georgiou, Erwin M Bakker, and Michael Lew. Learning
a domain-invariant embedding for unsupervised person re-identification. In
International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE,
2019.

[278] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J Guibas.
Frustum pointnets for 3d object detection from rgb-d data. arXiv preprint
arXiv:1711.08488, 2017.

[279] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE,
2017.

[280] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan, and Le-
onidas J Guibas. Volumetric and multi-view cnns for object classification on
3d data. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 5648–5656. IEEE, 2016.

[281] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 3d graph
neural networks for rgbd semantic segmentation. In Proceedings of the IEEE
international conference on computer vision (ICCV), pages 5199–5208. IEEE,
2017.

[282] Alastair Quadros, James Patrick Underwood, and Bertrand Douil-
lard. Sydney urban objects dataset. http://www.acfr.usyd.

\protect\discretionary{\char\hyphenchar\font}{}{}edu.au/papers/

SydneyUrbanObjectsDataset.shtml., 2013.

[283] Siwen Quan, Jie Ma, Tao Ma, Fangyu Hu, and Bin Fang. Representing local
shape geometry from multi-view silhouette perspective: A distinctive and ro-
bust binary 3d feature. Signal Processing: Image Communication, 65:67–80,
2018.

[284] Hossein Rahmani, Arif Mahmood, Du Huynh, and Ajmal Mian. Histogram of
oriented principal components for cross-view action recognition. IEEE transac-
tions on pattern analysis and machine intelligence (PAMI), 38:2430–2443, 2016.

[285] Hossein Rahmani, Arif Mahmood, Du Q Huynh, and Ajmal Mian. Hopc: His-
togram of oriented principal components of 3d pointclouds for action recog-
nition. In Proceedings of the European conference on computer vision (ECCV),
pages 742–757. Springer, 2014.

 http://www.acfr.usyd.\protect \discretionary {\char \hyphenchar \font }{}{}edu.au/papers/SydneyUrbanObjectsDataset.shtml.
 http://www.acfr.usyd.\protect \discretionary {\char \hyphenchar \font }{}{}edu.au/papers/SydneyUrbanObjectsDataset.shtml.
 http://www.acfr.usyd.\protect \discretionary {\char \hyphenchar \font }{}{}edu.au/papers/SydneyUrbanObjectsDataset.shtml.

Bibliography 189

[286] Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt
Schiele, and Manfred Pinkal. Grounding action descriptions in videos. Trans-
actions of the Association for Computational Linguistics, 1:25–36, 2013.

[287] Mengye Ren, Renjie Liao, Raquel Urtasun, Fabian H Sinz, and Richard S Zemel.
Normalizing the normalizers: Comparing and extending network normaliza-
tion schemes. arXiv preprint arXiv:1611.04520, 2016.

[288] Xiaofeng Ren, Liefeng Bo, and Dieter Fox. Rgb-(d) scene labeling: Features
and algorithms. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), pages 2759–2766. IEEE, 2012.

[289] Colin Rennie, Rahul Shome, Kostas E Bekris, and Alberto F De Souza. A dataset
for improved rgbd-based object detection and pose estimation for warehouse
pick-and-place. Robotics and Automation Letters, 1:1179–1185, 2016.

[290] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing
for data: Ground truth from computer games. In Proceedings of the European
conference on computer vision (ECCV), pages 102–118. Springer, 2016.

[291] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.
Contractive auto-encoders: Explicit invariance during feature extraction. In
Proceedings of the International conference on machine learning (ICML), pages
833–840. Omnipress, 2011.

[292] Reyes Rios-Cabrera and Tinne Tuytelaars. Discriminatively trained templates
for 3d object detection: A real time scalable approach. In Proceedings of the
IEEE international conference on computer vision (ICCV), pages 2048–2055.
IEEE, 2013.

[293] S. Laramee Robert, Hauser Helwig, xiao Ling, Frits Zhao, and Post H. Topology-
based flow visualization, the state of the art. Hauser H., Hagen H., Theisel H.
(eds) Topology-based Methods in Visualization. Mathematics and Visualization.,
pages 1–19, 2007.

[294] Stephen K Robinson. Coherent motions in the turbulent boundary layer. An-
nual Review of Fluid Mechanics, 23(1):601–639, 1991.

[295] Mikel D Rodriguez, Javed Ahmed, and Mubarak Shah. Action mach a spatio-
temporal maximum average correlation height filter for action recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 1–8. IEEE, 2008.

190 Bibliography

[296] Karl Rohr. On 3d differential operators for detecting point landmarks. Image
and Vision Computing, 15:219–233, 1997.

[297] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Anto-
nio M Lopez. The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes. In Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR), pages 3234–3243. IEEE,
2016.

[298] Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In Proceedings of the European conference on computer vision (ECCV),
pages 430–443. Springer, 2006.

[299] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R Bradski. Orb: An
efficient alternative to sift or surf. In Proceedings of the IEEE international con-
ference on computer vision (ICCV), volume 11, page 2. Citeseer, 2011.

[300] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf.
Transfer learning in natural language processing. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Tutorials, pages 15–18, 2019.

[301] DE Rumelhart. Hinton and williams, rj (1986):learning internal representa-
tions by error propagation. parallel distributed processing, 1, 1986.

[302] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International journal of com-
puter vision (IJCV), 115:211–252, 2015.

[303] Raif M Rustamov. Laplace-beltrami eigenfunctions for deformation invariant
shape representation. In Proceedings of the fifth Eurographics symposium on
Geometry processing, pages 225–233. Eurographics Association, 2007.

[304] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature his-
tograms (fpfh) for 3d registration. In IEEE international conference on robotics
and automation (ICRA), pages 3212–3217. IEEE, 2009.

[305] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz.
Aligning point cloud views using persistent feature histograms. In IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 3384–
3391. IEEE, 2008.

Bibliography 191

[306] Ajmal Saeed Mian, Mohammed Bennamoun, and Robyn Owens. Automated
3d model-based free-form object recognition. Sensor Review, pages 206–215,
2004.

[307] E. Salahat and M. Qasaimeh. Recent advances in features extraction and de-
scription algorithms: A comprehensive survey. In IEEE international conference
on industrial technology (ICIT), pages 1059–1063, 2017.

[308] Ruslan Salakhutdinov. Learning and evaluating boltzmann machines. Tech.
Rep., Technical Report UTML TR 2008-002, Department of Computer Science,
University of Toronto, 2008.

[309] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In
Artificial intelligence and statistics, pages 448–455. PMLR, 2009.

[310] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep
boltzmann machines. In Artificial intelligence and statistics, pages 693–700.
PMLR, 2010.

[311] Tim Salimans and Diederik P Kingma. Weight normalization: A simple repara-
meterization to accelerate training of deep neural networks. In Advances in
Neural Information Processing Systems 29, pages 901–909. Curran Associates,
Inc., 2016.

[312] Muhamad Risqi U Saputra, Andrew Markham, and Niki Trigoni. Visual slam
and structure from motion in dynamic environments: A survey. ACM Comput-
ing Surveys (CSUR), page 37, 2018.

[313] Silvio Savarese and Li Fei-Fei. 3d generic object categorization, localization
and pose estimation. In Proceedings of the IEEE international conference on
computer vision (ICCV), pages 1–8. IEEE, 2007.

[314] Manolis Savva, Angel X. Chang, and Pat Hanrahan. Semantically-enriched 3d
models for common-sense knowledge. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops (CVPRW), pages 24–31.
IEEE, 2015.

[315] Sebastian Scherer, Lyle Chamberlain, and Sanjiv Singh. Autonomous landing
at unprepared sites by a full-scale helicopter. Robotics and Autonomous Systems,
pages 1545–1562, 2012.

[316] Gerik Scheuermann. Topological vector field visualization with clifford al-
gebra. In Ausgezeichnete Informatikdissertationen, pages 213–222. Springer,
2000.

192 Bibliography

[317] J. L. Schonberger, H. Hardmeier, T. Sattler, and M. Pollefeys. Comparative
evaluation of hand-crafted and learned local features. In Proceedings of the
IEEE conference on computer vision and pattern recognition (CVPR), pages 1482–
1491, 2017.

[318] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human ac-
tions: a local svm approach. In Proceedings of the International Conference on
Pattern Recognition (ICPR), pages 32–36. IEEE, 2004.

[319] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks.
Transactions on Signal Processing, 45:2673–2681, 1997.

[320] Brent Schwarz. Lidar: Mapping the world in 3d. Nature Photonics, page 429,
2010.

[321] Paul Scovanner, Saad Ali, and Mubarak Shah. A 3-dimensional sift descriptor
and its application to action recognition. In Proceedings of the 15th ACM inter-
national conference on Multimedia (ICM), pages 357–360. ACM, 2007.

[322] Nicu Sebe, Michael Lew, and Thomas S Huang. The state-of-the-art in human-
computer interaction. In International workshop on computer vision in human-
computer interaction, pages 1–6. Springer, 2004.

[323] Nima Sedaghat, Mohammadreza Zolfaghari, Ehsan Amiri, and Thomas Brox.
Orientation-boosted voxel nets for 3d object recognition. arXiv preprint
arXiv:1604.03351, 2016.

[324] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large
scale dataset for 3d human activity analysis. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (CVPR), pages 1010–1019.
IEEE, 2016.

[325] Eli Shechtman and Michal Irani. Space-time behavior based correlation. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 405–412. IEEE, 2005.

[326] Eli Shechtman and Michal Irani. Space-time behavior-based correlation-or-
how to tell if two underlying motion fields are similar without computing
them? IEEE transactions on pattern analysis and machine intelligence (PAMI),
29:2045–2056, 2007.

[327] Baoguang Shi, Song Bai, Zhichao Zhou, and Xiang Bai. Deeppano: Deep pan-
oramic representation for 3-d shape recognition. Signal Processing Letters,
22:2339–2343, 2015.

Bibliography 193

[328] Jianbo Shi et al. Good features to track. In 1994 Proceedings of IEEE conference
on computer vision and pattern recognition, pages 593–600. IEEE, 1994.

[329] Jau-Ling Shih, Chang-Hsing Lee, and Jian Tang Wang. A new 3d model
retrieval approach based on the elevation descriptor. Pattern Recognition,
40:283–295, 2007.

[330] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser. The
princeton shape benchmark. In Shape modeling applications, Proceedings, pages
167–178. IEEE, 2004.

[331] Hidetoshi Shimodaira. Improving predictive inference under covariate shift
by weighting the log-likelihood function. Journal of statistical planning and
inference, 90(2):227–244, 2000.

[332] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,
Richard Moore, Alex Kipman, and Andrew Blake. Real-time human pose re-
cognition in parts from single depth images. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (CVPR), pages 1297–1304.
IEEE, 2011.

[333] Daniel Sieger, Sergius Gaulik, Jascha Achenbach, Stefan Menzel, and Mario
Botsch. Constrained space deformation techniques for design optimization.
Computer-Aided Design, 72:40–51, March 2016.

[334] Nathan Silberman and Rob Fergus. Indoor scene segmentation using a struc-
tured light sensor. In Proceedings of the IEEE international conference on com-
puter vision workshops (ICCVW), pages 601–608. IEEE, 2011.

[335] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor
segmentation and support inference from rgbd images. In Proceedings of
the European conference on computer vision (ECCV), pages 746–760. Springer,
2012.

[336] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convo-
lutional networks: Visualising image classification models and saliency maps.
arXiv preprint arXiv:1312.6034, 2013.

[337] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks
for action recognition in videos. In Advances in neural information processing
systems 27, pages 568–576. Curran Associates, Inc., 2014.

[338] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In 3rd International Conference on Learning

194 Bibliography

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, 2015.

[339] Arjun Singh, James Sha, Karthik S Narayan, Tudor Achim, and Pieter Abbeel.
Bigbird: A large-scale 3d database of object instances. In IEEE international
conference on robotics and automation (ICRA), pages 509–516. IEEE, 2014.

[340] Tej Singh and Dinesh Kumar Vishwakarma. Video benchmarks of human action
datasets: a review. Artificial Intelligence Review, 52:1107–1154, 2019.

[341] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In Proceedings of the IEEE international conference on com-
puter vision (ICCV), pages 1470–1478, 2003.

[342] Richard Socher, Brody Huval, Bharath Putta Bath, Christopher D Manning, and
Andrew Y Ng. Convolutional-recursive deep learning for 3d object classifica-
tion. In Advances in neural information processing systems 25, page 8. Curran
Associates Inc., 2012.

[343] Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust
large margin deep neural networks. IEEE Transactions on Signal Processing,
65(16):4265–4280, 2017.

[344] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d
scene understanding benchmark suite. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 567–576. IEEE, 2015.

[345] Shuran Song and Jianxiong Xiao. Sliding shapes for 3d object detection in
depth images. In Proceedings of the European conference on computer vision
(ECCV), pages 634–651. Springer, 2014.

[346] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and
Thomas Funkhouser. Semantic scene completion from a single depth image.
In Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 1746–1754. IEEE, 2017.

[347] Yale Song, Louis-Philippe Morency, and Randall Davis. Action recognition by
hierarchical sequence summarization. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 3562–3569. IEEE, 2013.

[348] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A data-
set of 101 human actions classes from videos in the wild. arXiv preprint
arXiv:1212.0402, 2012.

Bibliography 195

[349] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
networks. arXiv preprint arXiv:1505.00387, 2015.

[350] Hauke Strasdat, Andrew J Davison, JM Mart̀ınez Montiel, and Kurt Konolige.
Double window optimisation for constant time visual slam. In Proceedings of
the IEEE international conference on computer vision (ICCV), pages 2352–2359.
IEEE, 2011.

[351] Jörg Stückler, Nenad Biresev, and Sven Behnke. Semantic mapping using
object-class segmentation of rgb-d images. In IEEE/RSJ international confer-
ence on intelligent robots and systems (IROS), pages 3005–3010. IEEE, 2012.

[352] Jörg Stückler, Benedikt Waldvogel, Hannes Schulz, and Sven Behnke. Dense
real-time mapping of object-class semantics from rgb-d video. Journal of Real-
Time Image Processing, 10:599–609, 2015.

[353] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller.
Multi-view convolutional neural networks for 3d shape recognition. In Pro-
ceedings of the IEEE international conference on computer vision (ICCV), pages
945–953. IEEE, 2015.

[354] Deqing Sun, Stefan Roth, and Michael J Black. A quantitative analysis of cur-
rent practices in optical flow estimation and the principles behind them. Inter-
national journal of computer vision (IJCV), 106:115–137, 2014.

[355] Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A concise and provably in-
formative multi-scale signature based on heat diffusion. In Computer graphics
forum, pages 1383–1392. Wiley Online Library, 2009.

[356] Ju Sun, Xiao Wu, Shuicheng Yan, Loong-Fah Cheong, Tat-Seng Chua, and
Jintao Li. Hierarchical spatio-temporal context modeling for action recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition (CVPR), pages 2004–2011. IEEE, 2009.

[357] Michael J Swain and Dana H Ballard. Color indexing. International journal of
computer vision, 7(1):11–32, 1991.

[358] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learn-
ing. In Proceedings of the AAAI Conference on Artificial Intelligence, 2017.

[359] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich,

196 Bibliography

et al. Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 1–9. IEEE, 2015.

[360] Salzbrunn T., Janicke H., Wischgoll T., and Scheuermann G. The state of the
art in flow visualization: Partition-based techniques. Proceedings of the 2008
Simulation and Visualization Conference, pages 75–92, 2008.

[361] Shuai Tang, Xiaoyu Wang, Xutao Lv, Tony X Han, James Keller, Zhihai He,
Marjorie Skubic, and Shihong Lao. Histogram of oriented normal vectors for
object recognition with a depth sensor. In Asian conference on computer vision
(ACCV), pages 525–538. Springer, 2012.

[362] Johan WH Tangelder and Remco C Veltkamp. A survey of content based 3d
shape retrieval methods. Multimedia tools and applications, 39(3):441–471,
2008.

[363] Graham W Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convo-
lutional learning of spatio-temporal features. In Proceedings of the European
conference on computer vision (ECCV), pages 140–153. Springer, 2010.

[364] Alex Teichman, Jesse Levinson, and Sebastian Thrun. Towards 3d object re-
cognition via classification of arbitrary object tracks. In IEEE international con-
ference on robotics and automation (ICRA), pages 4034–4041. IEEE, 2011.

[365] Alex Teichman and Sebastian Thrun. Tracking-based semi-supervised learning.
The International Journal of Robotics Research (IJRR), 31:804–818, 2012.

[366] Alykhan Tejani, Rigas Kouskouridas, Andreas Doumanoglou, Danhang Tang,
and Tae-Kyun Kim. Latent-class hough forests for 6 dof object pose estimation.
IEEE transactions on pattern analysis and machine intelligence (PAMI), 40:119–
132, 2017.

[367] Alykhan Tejani, Rigas Kouskouridas, Andreas Doumanoglou, Danhang Tang,
and Tae-Kyun Kim. Latent-class hough forests for 6 dof object pose estimation.
IEEE transactions on pattern analysis and machine intelligence (PAMI), 40:119–
132, 2018.

[368] Theodoros Georgiou, Yu Liu, Wei Chen, and Michael Lew. A survey of tradi-
tional and deep learning-based feature descriptors for high dimensional data
in computer vision. International Journal of Multimedia Information Retrieval
(IJMIR), pages 1–36, 2019.

[369] Theodoros Georgiou, Sebastian Schmitt, Thomas Bäck, and Michael Lew. Ori-
entational equivariant neural networks using clifford convolutions.

Bibliography 197

[370] Theodoros Georgiou, Sebastian Schmitt, Wei Chen, Thomas Bäck, and Mi-
chael Lew. Norm loss: An efficient yet effective regularization method for deep
neural networks. In Proceedings of the International Conference on Pattern Re-
cognition (ICPR). IEEE.

[371] Theodoros Georgiou, Sebastian Schmitt, Markus Olhofer, Yu Liu, Thomas
Bäck, and Michael Lew. Learning fluid flows. In International Joint Confer-
ence on Neural Networks (IJCNN), pages 1–8. IEEE, 2018.

[372] Theodoros Georgiou, Sebastian Schmitt, Nan Pu, Wei Chen, Thomas Bäck,
and Michael Lew. Comparison of deep learning and hand crafted features
for mining simulation data. In Proceedings of the International Conference on
Pattern Recognition (ICPR). IEEE.

[373] Bart Thomee, Mark J Huiskes, Erwin Bakker, and Michael Lew. Large scale
image copy detection evaluation. In Proceedings of the 1st ACM international
conference on Multimedia information retrieval (ICMIR), pages 59–66. ACM,
2008.

[374] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni,
Douglas Poland, Damian Borth, and Li-Jia Li. The new data and new challenges
in multimedia research. arXiv preprint arXiv:1503.01817, 2015.

[375] Federico Tombari and Luigi Di Stefano. Hough voting for 3d object recogni-
tion under occlusion and clutter. IPSJ Transactions on Computer Vision and
Applications, pages 20–29, 2012.

[376] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signatures of
histograms for local surface description. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 356–369. Springer, 2010.

[377] Federico Tombari, Samuele Salti, and Luigi Di Stefano. A combined texture-
shape descriptor for enhanced 3d feature matching. In 18th IEEE international
conference on image processing (ICIP), pages 809–812. IEEE, 2011.

[378] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Performance evalu-
ation of 3d keypoint detectors. International journal of computer vision (IJCV),
102:198–220, 2013.

[379] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3d convolutional networks.
In Proceedings of the IEEE international conference on computer vision (ICCV),
pages 4489–4497. IEEE, 2015.

198 Bibliography

[380] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar
Paluri. A closer look at spatiotemporal convolutions for action recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 6450–6459. IEEE, 2018.

[381] Ludovic Trottier, Philippe Gigu, Brahim Chaib-draa, et al. Parametric expo-
nential linear unit for deep convolutional neural networks. In 16th IEEE In-
ternational Conference on Machine Learning and Applications (ICMLA), pages
207–214. IEEE, 2017.

[382] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance nor-
malization: The missing ingredient for fast stylization. arXiv preprint
arXiv:1607.08022, 2016.

[383] Abhinav Valada, Rohit Mohan, and Wolfram Burgard. Self-supervised model
adaptation for multimodal semantic segmentation. International journal of
computer vision (IJCV), 2019.

[384] Gul Varol, Ivan Laptev, and Cordelia Schmid. Long-term temporal convolu-
tions for action recognition. IEEE transactions on pattern analysis and machine
intelligence (PAMI), 40:1510–1517, 2017.

[385] Antonio W Vieira, Erickson R Nascimento, Gabriel L Oliveira, Zicheng Liu, and
Mario FM Campos. Stop: Space-time occupancy patterns for 3d action re-
cognition from depth map sequences. In Iberoamerican congress on pattern
recognition, pages 252–259. Springer, 2012.

[386] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
Extracting and composing robust features with denoising autoencoders. In
Proceedings of the International conference on machine learning (ICML), pages
1096–1103. ACM, 2008.

[387] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-
Antoine Manzagol. Stacked denoising autoencoders: Learning useful repres-
entations in a deep network with a local denoising criterion. Journal of Ma-
chine Learning Research, 11:3371–3408, 2010.

[388] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade
of simple features. In Proceedings of the IEEE conference on computer vision and
pattern recognition (CVPR), page 3. IEEE, 2001.

[389] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On ortho-
gonality and learning recurrent networks with long term dependencies. arXiv
preprint arXiv:1702.00071, 2017.

Bibliography 199

[390] Wang W., Wang W., and Li S. From numerics to combinatorics: a survey of
topological methods for vector field visualization. Journal of Visualization,
19:727–752, 2016.

[391] Anran Wang, Jiwen Lu, Gang Wang, Jianfei Cai, and Tat-Jen Cham. Multi-
modal unsupervised feature learning for rgb-d scene labeling. In Proceedings of
the European conference on computer vision (ECCV), pages 453–467. Springer,
2014.

[392] Chu Wang, Marcello Pelillo, and Kaleem Siddiqi. Dominant set clustering and
pooling for multi-view 3d object recognition. arXiv preprint arXiv:1906.01592,
2019.

[393] Dominic Zeng Wang, Ingmar Posner, and Paul Newman. What could move?
finding cars, pedestrians and bicyclists in 3d laser data. In IEEE international
conference on robotics and automation (ICRA), pages 4038–4044. IEEE, 2012.

[394] Guangrun Wang, Ping Luo, Xinjiang Wang, Liang Lin, et al. Kalman normaliz-
ation: Normalizing internal representations across network layers. In Advances
in Neural Information Processing Systems 31, pages 21–31. Curran Associates,
Inc., 2018.

[395] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Action
recognition by dense trajectories. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition (CVPR), pages 3169–3176. IEEE, 2011.

[396] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense tra-
jectories and motion boundary descriptors for action recognition. International
journal of computer vision (IJCV), 103:60–79, 2013.

[397] Heng Wang and Cordelia Schmid. Action recognition with improved traject-
ories. In Proceedings of the IEEE international conference on computer vision
(ICCV), pages 3551–3558. IEEE, 2013.

[398] Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan Laptev, and
Cordelia Schmid. Evaluation of local spatio-temporal features for action recog-
nition. In Proceedings of the British machine vision conference (BMVC), pages
1–11, 2009.

[399] J. Wang, Z. Liu, Y. Wu, and J. Yuan. Learning actionlet ensemble for 3d human
action recognition. IEEE transactions on pattern analysis and machine intelli-
gence (PAMI), 36:914–927, 2014.

200 Bibliography

[400] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining actionlet en-
semble for action recognition with depth cameras. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pages 1290–
1297. IEEE, 2012.

[401] Jinghua Wang, Zhenhua Wang, Dacheng Tao, Simon See, and Gang Wang.
Learning common and specific features for rgb-d semantic segmentation with
deconvolutional networks. In Proceedings of the European conference on com-
puter vision (ECCV), pages 664–679. Springer, 2016.

[402] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-
pooled deep-convolutional descriptors. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 4305–4314. IEEE, 2015.

[403] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. Towards good practices
for very deep two-stream convnets. arXiv preprint arXiv:1507.02159, 2015.

[404] Pichao Wang, Wanqing Li, Zhimin Gao, Jing Zhang, Chang Tang, and Philip O
Ogunbona. Action recognition from depth maps using deep convolutional
neural networks. Transactions on Human-Machine Systems, 46:498–509, 2016.

[405] Wentao Wang, Wenke Wang, and Sikun Li. From numerics to combinatorics: a
survey of topological methods for vector field visualization. Journal of Visual-
ization, 19(4):727–752, 2016.

[406] Yang Wang and Greg Mori. Hidden part models for human action recognition:
Probabilistic versus max margin. IEEE transactions on pattern analysis and
machine intelligence (PAMI), 33:1310–1323, 2011.

[407] Michael Warren, Luis Mejias, Xilin Yang, Bilal Arain, Felipe Gonzalez, and Ben
Upcroft. Enabling aircraft emergency landings using active visual site detec-
tion. In Field and Service Robotics, pages 167–181. Springer, 2015.

[408] Maurice Weiler and Gabriele Cesa. General e (2)-equivariant steerable cnns. In
Advances in Neural Information Processing Systems, pages 14334–14345, 2019.

[409] Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable
filters for rotation equivariant cnns. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 849–858, 2018.

[410] Matt Whalley, Marc Takahashi, P Tsenkov, G Schulein, and C Goerzen. Field-
testing of a helicopter uav obstacle field navigation and landing system. In
65th Annual Forum of the American Helicopter Society, Grapevine, TX, 2009.

Bibliography 201

[411] Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison, and
Stefan Leutenegger. Elasticfusion: Real-time dense slam and light source es-
timation. The International Journal of Robotics Research (IJRR), 35:1697–1716,
2016.

[412] Geert Willems, Jan Hendrik Becker, Tinne Tuytelaars, and Luc J Van Gool.
Exemplar-based action recognition in video. In Proceedings of the British ma-
chine vision conference (BMVC), page 3. BMVA Press, 2009.

[413] Geert Willems, Tinne Tuytelaars, and Luc Van Gool. An efficient dense and
scale-invariant spatio-temporal interest point detector. In Proceedings of the
European conference on computer vision (ECCV), pages 650–663. Springer,
2008.

[414] Paul Wohlhart and Vincent Lepetit. Learning descriptors for object recognition
and 3d pose estimation. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), pages 3109–3118. IEEE, 2015.

[415] Shu-Fai Wong and Roberto Cipolla. Extracting spatiotemporal interest points
using global information. In Proceedings of the IEEE international conference on
computer vision (ICCV), pages 1–8. IEEE, 2007.

[416] H. Wu, X. Liu, W. An, S. Chen, and H. Lyu. A deep learning approach for effi-
ciently and accurately evaluating the flow field of supercritical airfoils. Com-
puters & Fluids, 198:104393, 2020.

[417] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenen-
baum. Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling. In Advances in neural information processing systems 29,
pages 82–90. Curran Associates, Inc., 2016.

[418] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the
European conference on computer vision (ECCV), pages 3–19. Springer, 2018.

[419] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou
Tang, and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer vision and pattern
recognition (CVPR), pages 1912–1920. IEEE, 2015.

[420] Lu Xia and JK Aggarwal. Spatio-temporal depth cuboid similarity feature for
activity recognition using depth camera. In Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR), pages 2834–2841. IEEE,
2013.

202 Bibliography

[421] Jianxiong Xiao, Andrew Owens, and Antonio Torralba. Sun3d: A database of
big spaces reconstructed using sfm and object labels. In Proceedings of the IEEE
international conference on computer vision (ICCV), pages 1625–1632. IEEE,
2013.

[422] Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Explor-
ing better solution for training extremely deep convolutional neural networks
with orthonormality and modulation. In Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR), pages 6176–6185, 2017.

[423] Huijuan Xu, Kun He, Leonid Sigal, Stan Sclaroff, and Kate Saenko. Text-
to-clip video retrieval with early fusion and re-captioning. arXiv preprint
arXiv:1804.05113, 2018.

[424] Junji Yamato, Jun Ohya, and Kenichiro Ishii. Recognizing human action in
time-sequential images using hidden markov model. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), pages 379–385.
IEEE, 1992.

[425] Jiaqi Yang, Zhiguo Cao, and Qian Zhang. A fast and robust local descriptor for
3d point cloud registration. Information Sciences, 346:163–179, 2016.

[426] Jiaqi Yang, Qian Zhang, Yang Xiao, and Zhiguo Cao. Toldi: An effective and
robust approach for 3d local shape description. Pattern Recognition, 65:175–
187, 2017.

[427] Xiaodong Yang and Ying Li Tian. Eigenjoints-based action recognition using
naive-bayes-nearest-neighbor. In Proceedings of the IEEE conference on computer
vision and pattern recognition (CVPR), pages 14–19. IEEE, 2012.

[428] Xiaodong Yang and YingLi Tian. Super normal vector for activity recognition
using depth sequences. In Proceedings of the IEEE conference on computer vision
and pattern recognition (CVPR), pages 804–811. IEEE, 2014.

[429] Lahav Yeffet and Lior Wolf. Local trinary patterns for human action recog-
nition. In Proceedings of the IEEE international conference on computer vision
(ICCV), pages 492–497. IEEE, 2009.

[430] Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving
the generalizability of deep learning. arXiv preprint arXiv:1705.10941, 2017.

[431] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent
trends in deep learning based natural language processing. IEEE Computa-
tional intelligence magazine, 13(3):55–75, 2018.

Bibliography 203

[432] Hongshan Yu, Zhengeng Yang, Lei Tan, Yaonan Wang, Wei Sun, Mingui Sun,
and Yandong Tang. Methods and datasets on semantic segmentation: A review.
Neurocomputing, 304:82–103, 2018.

[433] Tsz-Ho Yu, Tae-Kyun Kim, and Roberto Cipolla. Real-time action recognition
by spatiotemporal semantic and structural forests. In Proceedings of the British
machine vision conference (BMVC), pages 1–7. BMVA Press, 2010.

[434] Wei Yu, Kuiyuan Yang, Yalong Bai, Hongxun Yao, and Yong Rui. Visualizing and
comparing convolutional neural networks. arXiv preprint arXiv:1412.6631,
2014.

[435] M Ersin Yumer and Niloy J Mitra. Learning semantic deformation flows with 3d
convolutional networks. In Proceedings of the European conference on computer
vision (ECCV), pages 294–311. Springer, 2016.

[436] Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K Hodgins, and
Levent Burak Kara. Semantic shape editing using deformation handles. ACM
Transactions on Graphics (TOG), 34(4):1–12, 2015.

[437] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Proceed-
ings of the British Machine Vision Conference (BMVC), pages 87.1–87.12, 2016.

[438] Andrei Zaharescu, Edmond Boyer, Kiran Varanasi, and Radu Horaud. Sur-
face feature detection and description with applications to mesh matching. In
Proceedings of the IEEE conference on computer vision and pattern recognition
(CVPR), pages 373–380. IEEE, 2009.

[439] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network
regularization. arXiv preprint arXiv:1409.2329, 2014.

[440] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In Proceedings of the European conference on computer vision
(ECCV), pages 818–833. Springer, 2014.

[441] Jianguo Zhang, Marcin Marszałek, Svetlana Lazebnik, and Cordelia Schmid.
Local features and kernels for classification of texture and object categories:
A comprehensive study. International journal of computer vision (IJCV), pages
213–238, 2007.

[442] Jun-Mei Zhang, Liang Zhong, Boyang Su, Min Wan, Jinq Shya Yap, Jasmine PL
Tham, Leok Poh Chua, Dhanjoo N Ghista, and Ru San Tan. Perspective on cfd

204 Bibliography

studies of coronary artery disease lesions and hemodynamics: A review. Inter-
national journal for numerical methods in biomedical engineering, 30(6):659–
680, 2014.

[443] Xin Zhang, Li Liu, Yuxiang Xie, Jie Chen, Lingda Wu, and Matti Pietikainen.
Rotation invariant local binary convolution neural networks. In Proceedings of
the IEEE international conference on computer vision (ICCV), pages 1210–1219,
2017.

[444] Zhengyou Zhang. Microsoft kinect sensor and its effect. multimedia, 19:4–10,
2012.

[445] Bo Zhao, Jiashi Feng, Xiao Wu, and Shuicheng Yan. A survey on deep learning-
based fine-grained object classification and semantic segmentation. Interna-
tional Journal of Automation and Computing, 14(2):119–135, 2017.

[446] Rui Zhao, Haider Ali, and Patrick Van der Smagt. Two-stream rnn/cnn for
action recognition in 3d videos. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 4260–4267. IEEE, 2017.

[447] Liang Zheng, Yi Yang, and Qi Tian. Sift meets cnn: A decade survey of instance
retrieval. IEEE transactions on pattern analysis and machine intelligence (PAMI),
40(5):1224–1244, 2017.

[448] Yu Zhong. Intrinsic shape signatures: A shape descriptor for 3d object recog-
nition. In Proceedings of the IEEE international conference on computer vision
workshops (ICCVW), pages 689–696. IEEE, 2009.

[449] Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Oriented response
networks. In Proceedings of the IEEE Conference on computer vision and pattern
recognition (CVPR), pages 519–528, 2017.

[450] Yu Zou, Xueqian Wang, Tao Zhang, Bin Liang, Jingyan Song, and Houde Liu.
Broph: An efficient and compact binary descriptor for 3d point clouds. Pattern
Recognition, 76:522–536, 2018.

Summary

In this thesis we explore machine and deep learning approaches that address key
challenges in high dimensional problem areas and also in improving accuracy in well
known problems. In high dimensional contexts, we have focused on computational
fluid dynamics (CFD) simulations. CFD simulations are able to produce complex and
large outputs that accurately describe the physical properties of fluids and gases in
various domains and they are frequently used for studying the effects of flow pat-
terns and design choices on many engineering designs, such as wing, car and engine
shapes. Due to the high dimensional aspect of the data, it is difficult to model to-
ward achieving critical goals such as optimizing lift and drag forces. The key research
question addressed in this thesis is whether we develop automated approaches that
accurately abstract this information? We tackle these issues by studying a closely re-
lated field, 3D computer vision, and adapt approaches to the particular data type.
Moreover, inspired by this data type we propose new, deep learning, approaches that
are also applied to traditional computer vision.

The first part of this thesis focuses on understanding how computer vision deals
with higher dimensional data than the traditional 2D image. We identify several cat-
egories of approaches as well as a generalization of methods from 2D to higher di-
mensions. We identify two main types of generalization, i.e. generalization to higher
physical dimensions and generalization to more information per physical point, i.e.
increasing the number of modalities. As the benchmarks and datasets are key com-
ponents that drive the research questions and proposed approaches we also include a
categorization of the available big scale dataset and benchmarks.

The second part of this thesis focuses on adapting computer vision approaches to

206 Summary

CFD simulation output. More specifically, combinations of CNNs and auto-encoders
are used to learn to represent as well as perform model based prediction condi-
tioned to CFD simulation output. Moreover, the more traditional feature engineering
approach is tested as well and compared to the aforementioned deep learning ap-
proaches. We propose two different large scale datasets of CFD simulation output, i.e.
a 3D simulation domain of the air around passenger vehicles in a virtual wind tunnel
and a 2D simulation domain of the air around airfoils, which are used for training
models and benchmarking their performance. With extensive experimentation, we
conclude that deep learning and traditional approaches have different strengths and
weaknesses and thus, according to the application in mind, a different approach might
be favorable. Moreover, we concluded that, for generalization purposes, deep learning
approaches outperform the hand crafted feature based ones. Finally, a common trend
in most computer vision applications is that hand crafted features can provide com-
plementary information to the deep learning approaches and a combination of the
two produces higher performance models than any of the individual parts. A similar
approach is considered very promising and is left for future work.

In the third, and final, part of the thesis, inspired by a large proportion of the CFD
simulation output, i.e. the velocity vector fields, a new approach is proposed which
focuses on vector fields and it is generalized back to traditional computer vision to
create rotation invariant and equivariant deep learning models. These approaches are
tested on standard benchmarks in the field, i.e. the MNIST-rot and a vehicle orient-
ation benchmark. Finally, a weight regularization approach is defined and tested on
the standard computer vision large scale image classification benchmarks and models,
i.e. CIFAR-10, CIFAR-100 and ImageNet.

Samenvatting

In dit proefschrift onderzoeken we machine- en deep learning-technieken, in het
bijzonder technieken die opereren in hoog dimensionale probleemgebieden of die
de prestaties op bekende problemen verbeteren. In hoog dimensionale probleemge-
bieden hebben we ons gericht op computationele vloeistofdynamica-simulaties. Deze
simulaties kunnen complexe en omvangrijke resultaten produceren die de fysieke ei-
genschappen van vloeistoffen en gassen in verschillende domeinen nauwkeurig bes-
chrijven. Daardoor worden ze vaak gebruikt voor het bestuderen van de effecten van
stromingspatronen en ontwerpkeuzes op veel technische ontwerpen, zoals de vorm
van vleugels, auto’s en motoren. Vanwege het hoog dimensionale aspect van de data
is het moeilijk om belangrijke doelen te modelleren, zoals het optimaliseren van lift-
en sleepkrachten. De hoofdvraag van deze thesis luidt: Kunnen we geautomatiseerde
benaderingen ontwikkelen die deze informatie nauwkeurig abstraheren? We pakken
deze problemen aan door een nauw verwant veld, 3D-computer vision te bestuderen,
en de benaderingen aan te passen naar het specifieke probleemdomein. Gëınspireerd
door dit probleemtype stellen we bovendien nieuwe, deep learning-technieken voor
die ook worden toegepast op traditionele computer vision.

Het eerste deel van dit proefschrift richt zich op het begrijpen hoe computer
vision omgaat met data van een hogere dimensionaliteit dan het traditionele 2D-
beeld. We identificeren verschillende categorieën benaderingen en generalisatie van
methoden van 2D naar hogere dimensies. We onderscheiden twee hoofdtypen gen-
eralisatie, (i) generalisatie naar hogere fysieke dimensies en (ii) generalisatie naar
meer informatie per fysiek punt (i.e., toenemend aantal modaliteiten). Omdat de
benchmarks en datasets de belangrijkste componenten zijn die de onderzoeksvragen

208 Samenvatting

en voorgestelde benaderingen aansturen, nemen we ook een categorisering van de
beschikbare grootschalige dataset en benchmarks op. Het tweede deel van dit proef-
schrift richt zich op het aanpassen van computer vision benaderingen aan de uitvoer
van de computationele vloeistofdynamica-simulatie. We combineren CNN’s en auto-
encoders om dit te representeren en om model-gebaseerde voorspellingen te maken,
geconditioneerd op de uitvoer van de simulatie. Bovendien wordt de meer tradi-
tionele ’feature engineering’ methode ook getest en vergeleken met de eerder gen-
oemde deep learning-technieken. We stellen twee verschillende grootschalige data-
sets van computationele vloeistofdynamica-simulaties uitvoer voor, namelijk een 3D-
simulatie domein van de lucht rond passagiersvoertuigen in een virtuele windtunnel
en een 2D-simulatie domein van de lucht rond draagvlakken. Die worden gebruikt
voor het trainen van modellen en het benchmarken van hun prestaties. Onderbouwd
door uitgebreide experimenten concluderen we dat deep learning en traditionele ben-
aderingen verschillende sterke en zwakke punten hebben en dat dus, afhankelijk van
de toepassing, een andere benadering gunstig kan zijn. Bovendien concludeerden we
dat, voor generalisatie doeleinden, deep learning-technieken beter presteren dan de
handgemaakte, op functies gebaseerde benaderingen. Ten slotte, een algemene trend
in de meeste computer vision-applicaties is dat handgemaakte functies aanvullende
informatie kunnen bieden aan de deep learning-technieken. Daardoor zou een com-
binatie van beide modellen betere prestaties opleveren dan elk van de afzonderlijke
onderdelen. Een vergelijkbare aanpak wordt als veelbelovend beschouwd en wordt
overgelaten aan toekomstig werk.

In het derde en laatste deel van het proefschrift, dat is gëınspireerd op snelheids-
vector van de computationele vloeistofdynamica-simulatie, wordt een nieuwe ben-
adering voorgesteld die zich richt op vectorvelden en wordt gegeneraliseerd naar
traditionele computer vision om rotatie-invariante en equivariante deep learning-
modellen. Deze benaderingen worden standaard getest in de veld benchmarks, d.w.z.
de MNIST-rot en een voertuig oriëntatie benchmark. Ten slotte wordt een benader-
ing voor gewichtsregularisatie gedefinieerd en getest op de standaard computer vis-
ion grootschalige benchmarks en modellen voor beeldclassificatie, d.w.z. CIFAR-10,
CIFAR-100 en ImageNet.

About the author

Theodoros Georgiou was born in Athens, Greece on the 11th of February 1989. He
studied Physics at the National and Kapodistrian University of Athens where he gradu-
ated as a B.Sc. in 2013. He then moved to the Netherlands and obtained his M.Sc. in
Computer Science from Leiden University in 2016.

In September 2016, he started his PhD supported by the Dutch Research Council
(Nederlandse Organisatie voor Wetenschappelijk Onderzoek, NWO) and the Honda
Research Institute - Europe GmbH (HRI-EU) in Offenbach, Germany. He worked at
the Media Lab in the Leiden Institute of Advanced Computer Science (LIACS), Leiden
University, the Netherlands, in the Natural Computing group of the same institute
and HRI-EU, under the supervision of Prof.Dr. T.H.W. Bäck and Prof.Dr. M.S.K. Lew.
During his PhD he worked in the project ”Data Mining on High Volume Simulation
Output (DAMIOSO)” during which he collaborated with and was supervised by Dr.
S. Schmitt and Dr. M. Olhofer. His research interests include computer vision, high
dimensional data mining, deep learning and artificial intelligence applications. Spe-
cifically he is focusing on description methods for various data types, such as RGB,
RGB-D and volumetric images. Moreover, he developed deep learning approaches for
similar fields as well as core deep learning methods such as rotation invariant oper-
ators, regularization and normalization techniques with application CFD simulation
output. He has published papers in international conferences and journal such as
WCCI, IJMIR, MTAP, CBMI and ICPR.

	Acknowledgements
	Introduction
	Background
	Feature extraction of CFD simulation output
	Computer vision

	Research questions
	Dissertation outline
	Dissertation contributions
	Other work by the author

	Deep learning and traditional approaches for high dimensional data
	Introduction
	Deep learning
	Basic deep learning methods
	Deep learning for high dimensional data

	Traditional methods
	Object surface features
	Volume features
	Spatio-temporal features

	Datasets and benchmarks
	Object understanding
	Scene understanding
	Video understanding
	Other datasets

	Research areas
	Object classification and recognition
	Semantic segmentation
	Object detection
	Human action classification
	Other areas

	Discussion
	Major challenges
	Future work

	Conclusions

	Deep learning for computational fluid dynamics simulation output
	Introduction
	Computational fluid dynamics simulations
	Convolutional neural networks

	Related work
	Flow field pattern recognition
	Convolutional neural networks for CFD simulation output

	Dataset collection
	Example creation
	Training tasks

	Network architecture and training details
	General network architecture
	Prediction networks
	Activation functions
	Training details
	Multi task training

	Experiments
	Activation functions
	Input handling schemes
	Reconstruction
	Fusion stage
	Comparison to a k-NN regressor

	Conclusion

	Comparing deep learning and hand crafted features for simulation data
	Introduction
	Related work
	Hand crafted features
	Deep learning approaches
	Methodology
	Implementation and training details

	Dataset
	Experiments
	Conclusion

	Clifford convolution inspired orientation equivariant CNNs
	Introduction
	Related work
	Clifford convolutions and calculation of rotation angles
	Layer construction
	Forward pass computations
	Back propagation

	Experiments
	Datasets and ground truth
	Networks
	MNIST-rot
	Enriched MNIST-rot
	Vehicle Orientation
	Computational complexity

	Conclusion and future work

	Norm Loss: Regularizing artificial neural networks
	Introduction
	Related work
	Preliminaries
	Proposed method
	Connection to weight decay
	Computational cost

	Experiments
	Regularization factor
	Batch size
	CIFAR-10
	CIFAR-100
	ImageNet

	Conclusions

	Conclusions
	Conclusions
	Limitations
	Future work
	APPENDICIES
	Clifford Convolution gradients calculations
	Table of abbreviations

	Bibliography

	Summary
	Samenvatting
	About the author

