Universiteit
Leiden
The Netherlands

Unpacking interest groups: on the intermediary role of interest groups and its effects for their political relevance Albareda Sanz, A.

Citation

Albareda Sanz, A. (2021, September 21). Unpacking interest groups: on the intermediary role of interest groups and its effects for their political relevance. Retrieved from https://hdl.handle.net/1887/3213547

Version:	Publisher's Version
Licence agreement concerning inclusion of doctoral	
License	thesis in the Institutional Repository of the University
Downloaded from:	$\underline{\text { of Leiden }}$

Note: To cite this publication please use the final published version (if applicable).

VII

Appendices

7.1 APPENDIX TO CHAPTER II

7.1.1 Selected Questions of the INTEREURO Interest Group Survey

Member involvement

- Interaction:

Does your organization have a general assembly or an annual general meeting?

- Decision-making:

Organizations like yours can make decisions in different ways, such as consensus among individual members or board members or by voting procedures. Can you please indicate below how your organization primarily makes decisions in the following areas?

| | Consensus
 among members | Voting among
 the members | Consensus
 in board | Voting in
 the board | Senior staff
 take these
 decisions | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Establishing your organization's position on
 policy issues | O | O | O | O | O | O |
| Deciding on advocacyllobbying strategies and
 tactics | O | O | O | O | O | O |

- Local chapters:

Does your organization have local or regional chapters?

Organizational capacity

- Autonomy:

Organizations like yours can make decisions in different ways, such as consensus among individual members or board members or by voting procedures. Can you please indicate below how your organization primarily makes decisions in the following areas?

| | Consensus
 among members | Voting among
 the members | Consensus
 in board | Voting in
 the board | Senior staff | Other
 take these
 decisions |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Budget | O | O | O | O | O | O |
| Hiring staff | O | O | O | O | O | O |

- Centralization:

Thinking about your organization's position on EU policies, how would you rate the relative influence of the following actors?

| | Very influential | Somewhat influential | Not very influential | Not at all influential |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Executive director | O | O | O | O |
| Chair of the board | O | O | O | O |
| The board of directorslexecutive
 committee | O | O | O | O |

Thinking about your organization's decisions on advocacy and lobbying tactics, how would you rate the relative influence of the following actors?

| | Very influential | Somewhat influential | Not very influential | Not at all influential |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Executive director | O | O | O | O |
| Chair of the board | O | O | O | O |
| The board of directorslexecutive
 committee | O | O | O | O |

- Functional differentiation:

Does your organization have committees for specific tasks?

7.1.2 Figures and Tables

FIGURE A1. Dendrogram for Ward's Linkage Cluster Analysis

FIGURE A2. Scatter Plot of CSOs by Cluster (Weighted by \%)

TABLE AI. Correlation Matrix of Organizational Variables

	1	2	3	4	5	6	7
1. Member involvement	1						
2. Interaction	$.4094^{*}$	1					
3. Decision-making	$.6863^{*}$.0042	1				
4. Local chapters	$.5606^{*}$.0344	-.0603	1			
5. Organizational capacity	.1082	$.2145^{*}$.0542	-.0182	1		
6. Autonomy	-.052	$-.1702^{*}$	-.076	.0711	$.3217^{*}$	1	
7. Centralization	.061	$.1881^{*}$.0626	-.0909	$.6633^{*}$	-.0196	1
8. Functional differentiation	$.1354^{*}$	$.3044^{*}$	-.0019	$.0987^{*}$	$.7047^{*}$	-.0889	$.1508^{*}$

* p < .05

TABLE AII. Descriptive Statistics and Correlation Matrix of the Four Clusters and Explanatory Factors

Variables	Mean (S.D.)	Min-Max	1	2	3	4	5	6	7	8	
1. Passive	$.164(.371)$	$0-1$	1								
2. Responsive	$.145(.353)$	$0-1$	$-.182^{*}$	1							
3. Capable	$.365(.482)$	$0-1$	$-.336^{*}$	$-.313^{*}$	1						
4. Balanced	$.324(.469)$	$0-1$	$-.307^{*}$	$-.286^{*}$	$-.526^{*}$	1					
5. CSO type	$.559(.497)$	$0-1$	-.114	.004	.065	.021	1				
6. Organizational age	$30.667(25.409)$	$3-168$	$-.135^{*}$.031	.063	.021	$.174^{*}$	1			
7. Resources (FTE)	$16.862(70.543)$	$0-1,000$	-.029	$.218^{*}$	-.059	-.083	.015	$.188^{*}$	1		
8. Organizational Scope	$.843(.364)$	$0-1$	-.031	-.055	-.014	.080	-.093	$-.205^{*}$	$-.224^{*}$	1	
9. Membership diversity	$2.123(1.258)$	$0-6$	-.011	.052	.074	-.106	$-.212^{*}$	$-.134^{*}$.093	.075	

* $\mathrm{p}<.05$

7.2 APPENDIX TO CHAPTER III

Table A1 (a). Descriptive overview of categorical variables (N (\%))

Economic groups
Citizen groups
Type of members: Individual organizations
Type of members: National associations
Type of members: Individual organizations \& National associations
Headquarters in Belgium
Policy domain: Agriculture \& Fisheries
Policy domain: Trade
Policy domain: Environment \& Social affairs
Policy domain: Finance
Policy domain: Health

Table A1(b). Descriptive overview of numerical variables (Mean (S.D.))

Age (years)	35.94 (20.22)
Resources (FTE lobbying according to Transparency Register)	$6.3(5.97)$
Number of members (i.e., individual organizations and associations)	35.54 (23.94)

7.3 APPENDIX TO CHAPTER IV

7.3.1 Selected Questions of the INTEREURO Interest Group Survey

Member involvement

- Interaction among members:

Does your organization have a general assembly or an annual general meeting?

- Decision-making procedure:

Organizations like yours can make decisions in different ways, such as consensus among individual members or board members or by voting procedures. Can you please indicate below how your organization primarily makes decisions in the following areas?

| | Consensus
 among members | Voting among | Consensus
 the members | Voting in board | Senior staff
 the board
 take these
 decisions | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Establishing your organization's position on
 policy issues | O | O | O | O | O | O |
| Deciding on advocacy/lobbying strategies and
 tactics | O | O | O | O | O | O |

Note: These two items of the questionnaire have been grouped based on the results of a principal component analysis and confirmed by a Cronbach's alpha test of reliability $(\mathbb{\nabla}=0.72)$.

- Local branches:

Does your organization have local or regional chapters?

Organizational capacity

- Autonomy:

Organizations like yours can make decisions in different ways, such as consensus among individual members or board members or by voting procedures. Can you please indicate below how your organization primarily makes decisions in the following areas?

	Consensus among members	Voting among the members	Consensus in board	Voting in the board	Senior staff take these decisions	Other
Budget	O	O	O	O	O	O
Hiring staff	O	O	O	O	O	O

- Centralization:

Thinking about your organization's position on EU policies, how would you rate the relative influence of the following actors?

	Very influential	Somewhat influential	Not very influential	Not at all influential
Executive director	O	O	O	O
Chair of the board	O	O	O	O
The board of directorslexecutive committee	O	O	O	O

Thinking about your organization's decisions on advocacy and lobbying tactics, how would you rate the relative influence of the following actors?

| | Very, influential | Somewhat influential | Not very | influential |
| :--- | :---: | :---: | :---: | :---: | Not at all influential

Note: These six items have been grouped after examining the data with a principal component analysis and estimating the reliability of the construct $(\alpha=0.79)$.

- Functional differentiation:

Does your organization have committees for specific tasks?

Table A0. Cronbach's alpha and correlation matrix of items in the two explanatory variables ($\mathrm{n}=\mathbf{2 7 2}$)

Note: the low scores of the Cronbach's alphas (α) confirm that the two explanatory factors are multi-dimensional 'composites'.
7.3.2 Descriptive statistics and correlation matrix
Table A1. Descriptive statistics and correlation matrix of dependent variable and explanatory factors

	Mean (S.D.)	Min-Max	1	2	3	4	5	6	7	8	9
1.Level of access to the Commission	8.204 (15.431)	1-116	-								
2.Member involvement	1.486 (0.643)	0-3	0.035	-							
3.Organizational capacity	1.797 (.481)	0-3	0.199*	0.099	-						
4.Transmission belt	0.372 (0.485)	0-1	0.079	0.785*	0.391*	-					
5.Group type	0.546 (0.499)	0-1	-0.062	0.155	0.077	0.203*	-				
6.Organizational scale	0.893 (0.310)	0-1	0.069	0.059	0.217*	0.128	-0.001	-			
7.Scope of activity	4.888 (3.294)	1-15	0.122	0.086	-0.049	-0.092	-0.225*	-0.164	-		
8. Membership diversity	1.883 (1.133)	1-5	-0.098	-0.192*	-0.094	-0.298*	-0.154	-0.075	0.267*	-	
9.Organizational age	31.593 (28.534)	3-168	0.014	0.085	-0.130	-0.025	0.024	-0.253*	0.287*	-0.092	-
10.Resources (FTE)	16.790 (46.058)	0-500	0.116	0.139	-0.185	-0.078	-0.006	-0.473*	0.180	0.122	0.328*

${ }^{*} \mathrm{p}<0.05$

7.3.3 Robustness checks

This appendix presents several checks that have been conducted in order to confirm the results presented in Tables 4.2 and 4.3 in Chapter IV. Firstly, to account for a potential over-estimation of the models presented in the paper, Models 1 in Table A2 show how the main results hold when excluding all the control variables. Secondly, to provide a more contextualized analyses, Models 2 in Table A2 control for the policy domain in which groups have access (Klüver et al., 2015). According to the results, investing in organizational capacity is relevant across economic and non-economic domains. Thirdly, results also hold when controlling for whether groups seek access to the Commission and for the extent to which they include their potential constituency (see Models 1 and 2 in Table A3). The extent to which interest groups seek access is an important control as some groups may function as clubs that do not intend to interact with public officials (Braun, 2012; Schmitter \& Streeck, 1999) or may prioritize outside lobbying strategies (Binderkrantz, 2005). The level of representativeness is also important since it relates to the transmissive belt function and affects legislative access of interest groups (Junk, 2019a; Kohler-Koch et al., 2017). The inclusion of these two variables does not affect the main results. Fourthly, an OLS regressions using survey data as dependent variable has been conducted. More specifically, the dependent variable indicates the 'frequency of access to the Commission via public consultations, advisory meetings and presenting reports'. Again, results hold, and only organizational capacity is positively and significantly related to the frequency of access to the Commission (see Table A4).

To confirm the results while accounting for the organizations without access, Tables A5, A6 and A7 include alternative models. Firstly, Table A5 replicates the models in Table 2 of the manuscript but including the interest groups with "zero" meetings with public officials. The coefficients and p -values are almost identical to the ones reported in the manuscript, confirming the robustness of the results. Secondly, Table A6 presents the results of zero-inflated negative binomial regression that assumes that the zero outcome is due to two different processes - binomial and negative binomial distributions. Zeroinflated negative binomial accounts for both the structural and sampling zeros, therefore, the two components of the mixture distribution are estimated simultaneously. However, as noted by Rasmussen and Gross (2015), 'it is not theoretically clear which substantive factor/s predict whether a group always (or only sometimes) has the value of zero'. In this case, the models reported in Table A6 only consider group type, organizational age and resources, together with the main explanatory variables, as the predictors of the logit model - the models fail to converge when adding additional controls. It is worth noting that when comparing the models from Table A5 and Table A6 using the BIC and AIC, the negative binomial models (i.e., the ones in Table A5), are preferred over zero-inflated negative binomial reported int Table A6. Despite not being the preferred method, the
second-step of the model confirms the results related to the main explanatory variables as presented in the manuscript.

Table A7 present the results of a Heckman two step selection model. This approach involves estimation of a probit model for selection, followed by the insertion of a correction factor-the inverse Mills ratio, calculated from the probit model—into the second OLS model of interest. Due to the overdispersion of the dependent variable (i.e., level of access), OLS is not the most appropriate model, yet the results presented in Table A7 confirm the ones discussed in the paper. Importantly, the probit model is the same for all the models. To avoid inflated standard errors due to multicollinearity resulting from the use of the same factors in the selection and regression equations, the factors included in this first step are not the same as the ones included in the second step of the model (Bushway, Johnson, \& Slocum, 2007; Moffitt, 1999; Puhani, 2000). To circumvent the multicollinearity issue, and aligned with the goals of the paper, the hypotheses are tested at the second level of the selection model.

Last, Table A8 includes a model with all the individual items related to the transmission belt ideal. As can be seen, the items related to member involvement are not significantly related to the level of access. In fact, one of the items (i.e., local branches) is significantly and negatively related to the likelihood of gaining higher degrees of access to public officials. In contrast, the items related to the organizational capacity dimensions are positively and significantly related to the degree of access that interest groups obtain to EU public officials - the only exception if functional differentiation that is close to significant levels $(p$-value $=0.149)$.
Table A2. Models without controls and full model controlling for policy domain

	Main model without controls			Models with policy domains as controls ${ }^{\text {a }}$		
	Model 1a	Model 1b	Model 1c	Model 2a	Model 2b	Model 2c
Membership involvement	-0.003 (0.184)		0.086 (0.317)	-0.212 (0.152)		-0.353 (0.267)
Organizational capacity	$0.782^{* * *}(0.231)$		$0.843^{* * *}(0.289)$	$0.578^{* * *}(0.191)$		$0.494^{* *}(0.231)$
Transmission belt		0.313 (0.241)	-0.159 (0.452)		0.085 (0.200)	0.235 (0.368)
Group type: Non-business (REF)						
Group type: Business				-0.254 (0.192)	-0.206 (0.197)	-0.245 (0.192)
Org. scale: (Sub) National assns. (REF)						
Org. scale: European or Int'l assns.				0.442 (0.307)	0.416 (0.316)	0.445 (0.305)
Scope of activity				0.019 (0.032)	0.021 (0.034)	0.024 (0.033)
Membership diversity				$-0.264^{* * *}(0.089)$	${ }^{-0.245 * * * ~(0.093) ~}$	$-0.256^{* * *}(0.089)$
Organizational age				0.002 (0.004)	0.001 (0.004)	0.002 (0.004)
Resources (FTE)				0.004 (0.002)	0.003 (0.002)	0.004 (0.002)
Policy domain: Economy				$1.872^{* * *}(0.212)$	$1.931^{* * *}(0.222)$	$1.860 * * *(0.212)$
Policy domain: Others				$1.766^{* * *}(0.262)$	$1.952^{* * *}(0.268)$	$1.786^{* * *}(0.264)$
Constant	0.662 (0.498)	$2.021^{* * *}(0.148)$	0.472 (0.732)	$-1.657^{* * *}(0.555)$	$-1.133^{* * *}(0.489)$	$-1.445^{* *}(0.646)$
N	113	113	113	107	107	107
Alpha	1.326 (0.172)	1.424 (0.182)	1.325 (0.172)	0.519 (0.088)	0.589 (0.095)	0.516 (0.088)
Log likelihood	-352.452	-357.085	-352.390	-286.532	-291.212	-286.330

[^0]| Table A3. Models controlling for 'seeking access' and 'representativeness' |
| :--- |

${ }^{*} \mathrm{p}<0.1$; ${ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$
${ }^{\text {a }}$ Question: How frequently did your organization seek access to the Commission? [Options: $1=$ We did not seek access; $2=A t$ least once; $3=A t$ least once every three months; $4=A t$ least once a month; 5=At least once a week]
${ }^{b}$ Question: If you consider the size of your potential membership and the number of actual members, approximately what percentage of potential members are actually members of your organization? [Options: Less than 25\%; Between 25 and 50%; Between 50 and 75%; More than 75%]
$\underline{\text { Table A4. OLS regression using survey data as dependent variables }{ }^{a}}$

	Model 1	Model 2	Model 3
Membership involvement	$-0.074(0.086)$		$-0.073(0.126)$
Organizational capacity	$0.278^{* * *}(0.088)$		$0.278^{* * *}(0.101)$
Transmission belt		$0.082(0.115)$	$-0.001(0.183)$
Group type: Non-business (REF)			
Group type: Business	$0.168(0.111)$	$0.183(0.114)$	$0.168(0.112)$
Org. scale: (Sub)National assns. (REF)			
Org. scale: European or Int'l assns.	$0.241^{*}(0.138)$	$0.266^{*}(0.140)$	$0.241^{*}(0.138)$
Scope of activity	$0.079^{* * *}(0.017)$	$0.076^{* * *}(0.018)$	$0.079^{* * *}(0.017)$
Membership diversity	$-0.034(0.043)$	$-0.026(0.044)$	$-0.034(0.043)$
Organizational age	$0.002(0.002)$	$0.002(0.002)$	$0.002(0.002)$
Resources (FTE)	$0.001(0.001)$	$0.001(0.001)$	$0.001(0.001)$
Constant	$1.336^{* * *}(0.254)$	$1.652^{* * *}(0.207)$	$1.335^{* * *}(0.298)$
N	197	197	197
R-square	0.163	0.120	10.

${ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$
${ }^{\text {a }}$ Questions to measure level of access: How frequently did your organization gained access to the Commission via (1) public consultations, (2) advisory meetings and (3) presenting reports? [Options: $1=$ We did not do this; $2=$ At least once; $3=$ At least once every three months; $4=A t$ least once a month; $5=A t$ least once a week]
Table A5. Negative binomial regression (including zeros)

	Model 1	Model 2	Model 3	Model 4	Model 5
Membership involvement	-0.168 (0.284)		-0.232 (0.260)		-0.218 (0.399)
Organizational capacity		$1.044^{* * *}(0.289)$	$1.056 * * *(0.287)$		1.066*** (0.361)
Transmission belt				0.265 (0.330)	-0.0251 (0.542)
Group type: Non-business (REF)					
Group type: Business	0.408 (0.315)	0.127 (0.306)	0.192 (0.313)	0.289 (0.318)	0.191 (0.313)
Org. scale: (Sub)National associations (REF)					
Org. scale: European or Int'l assns.	$1.338^{* * *}(0.447)$	$1.150 * * *(0.431)$	$1.201^{* * *}$ (0.432)	$1.258^{* * *}(0.449)$	$1.201^{* * *}(0.432)$
Scope of activity	$0.177^{* * *}(0.061)$	$0.160 * * *(0.056)$	$0.159 * * *(0.055)$	$0.181^{* * *}(0.062)$	$0.158 * * *(0.056)$
Membership diversity	$-0.412^{* * *}(0.159)$	$-0.429 * * *(0.148)$	$-0.450 * * *(0.149)$	$-0.366 * *(0.159)$	$-0.451^{* * *}(0.151)$
Organizational age	-0.012* (0.007)	-0.010 (0.007)	-0.010 (0.007)	-0.012 (0.007)	-0.010 (0.007)
Resources (FTE)	$0.023^{* *}(0.009)$	$0.018^{* *}(0.008)$	$0.018^{* *}(0.008)$	$0.023^{* *}(0.010)$	$0.018^{* *}(0.008)$
Constant	-0.195 (0.775)	$-1.948^{* * *}(0.740)$	$-1.655^{* *}(0.803)$	-0.558 (0.670)	$-1.679^{*}(0.952)$
N	272	272	272	272	272
Inlpha	$1.633^{* * *}(0.126)$	$1.549^{* * *}(0.129)$	$1.543 * * *(0.129)$	$1.630^{* * *}(0.126)$	$1.543 * * *(0.129)$
Log likelihood	-466.868	-461.050	-460.661	-466.713	-460.660

Table A6. Zero-inflated negative binomial

	Logit component					Negative binomial component				
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 1b	Model 2b	Model 3b	Model 4b	Model 5b
Membership involvement	$\begin{gathered} -1.27 \\ (0.853) \end{gathered}$		$\begin{gathered} -1.113 \\ (0.892) \end{gathered}$		$\begin{aligned} & -1.105 \\ & (0.889) \end{aligned}$	$\begin{gathered} -0.375 \\ (0.277) \end{gathered}$		$\begin{gathered} -0.384 \\ (0.260) \end{gathered}$		$\begin{aligned} & -0.331 \\ & (0.418) \end{aligned}$
Organizational capacity		$\begin{gathered} -0.262 \\ (0.975) \end{gathered}$	$\begin{gathered} -0.342 \\ (0.999) \end{gathered}$		$\begin{gathered} -0.299 \\ (1.042) \end{gathered}$		$\begin{gathered} 0.977^{* *} * \\ (0.341) \end{gathered}$	$\begin{gathered} 0.952^{* * *} \\ (0.334) \end{gathered}$		$\begin{aligned} & 0.999^{* *} \\ & (0.443) \end{aligned}$
Transmission belt				$\begin{gathered} -1.176 \\ (1.085) \end{gathered}$					$\begin{aligned} & 0.0326 \\ & (0.338) \end{aligned}$	$\begin{aligned} & -0.0913 \\ & (0.559) \end{aligned}$
Group type: Non-business (REF)										
Group type: Business	$\begin{aligned} & -0.451 \\ & (0.817) \end{aligned}$	$\begin{gathered} -0.938 \\ (0.770) \end{gathered}$	$\begin{gathered} -0.439 \\ (0.877) \end{gathered}$	$\begin{gathered} -0.744 \\ (0.771) \end{gathered}$	$\begin{aligned} & -0.452 \\ & (0.875) \end{aligned}$	$\begin{gathered} 0.437 \\ (0.325) \end{gathered}$	$\begin{gathered} 0.006 \\ (0.312) \end{gathered}$	$\begin{gathered} 0.212 \\ (0.332) \end{gathered}$	$\begin{gathered} 0.259 \\ (0.328) \end{gathered}$	$\begin{gathered} 0.205 \\ (0.335) \end{gathered}$
Org. scale: (Sub)National associations (REF)										
Org. scale: European or International associations						$\begin{gathered} 1.357^{* * *} \\ (0.413) \end{gathered}$	$\begin{gathered} 1.162^{* * *} \\ (0.393) \end{gathered}$	$\begin{gathered} 1.248^{* * *} \\ (0.400) \end{gathered}$	$\begin{gathered} 1.242^{* * *} \\ (0.415) \end{gathered}$	$\begin{gathered} 1.248^{* * *} \\ (0.400) \end{gathered}$
Scope of activity						$\begin{gathered} 0.173^{* * *} \\ (0.058) \end{gathered}$	$\begin{gathered} 0.1403^{* * *} \\ (0.054) \end{gathered}$	$\begin{aligned} & 0.149 * * * \\ & (0.0530) \end{aligned}$	$\begin{aligned} & 0.167^{* * *} \\ & (0.0597) \end{aligned}$	$\begin{aligned} & 0.147^{* *} \\ & (0.0545) \end{aligned}$
Membership diversity						$\begin{gathered} -0.469^{* * *} \\ (0.145) \end{gathered}$	$\begin{gathered} -0.451^{* * *} \\ (0.138) \end{gathered}$	$\begin{gathered} -0.474^{* * *} \\ (0.137) \end{gathered}$	$\begin{gathered} -0.442^{* * *} \\ (0.150) \end{gathered}$	$\begin{gathered} -0.478^{* * *} \\ (0.139) \end{gathered}$
Organizational age	$\begin{gathered} 0.020 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.035 \\ (0.023) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.026 \\ (0.021) \end{gathered}$	$\begin{gathered} 0.0257 \\ (0.0213) \end{gathered}$	$\begin{aligned} & -0.012^{*} \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.006 \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.010 \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.007) \end{aligned}$
Resources (FTE)	$\begin{gathered} -0.973^{* * *} \\ (0.359) \end{gathered}$	$\begin{gathered} -0.778^{* * *} \\ (0.281) \end{gathered}$	$\begin{aligned} & -0.960^{* *} \\ & (0.380) \end{aligned}$	$\begin{gathered} -0.894^{* * *} \\ (0.322) \end{gathered}$	$\begin{gathered} -0.957^{* *} \\ (0.376) \end{gathered}$	$\begin{aligned} & 0.013^{* *} \\ & (0.006) \end{aligned}$	$\begin{gathered} 0.010^{* * *} \\ (0.004) \end{gathered}$	$\begin{aligned} & 0.012^{* *} \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0.012^{*} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.012^{* *} \\ & (0.005) \end{aligned}$
Constant	$\begin{aligned} & 3.036^{* *} \\ & (1.512) \end{aligned}$	$\begin{gathered} 1.141 \\ (1.887) \end{gathered}$	$\begin{gathered} 3.180 \\ (2.244) \end{gathered}$	$\begin{gathered} 1.392 \\ (0.878) \end{gathered}$	$\begin{gathered} 3.103 \\ (2.312) \end{gathered}$	$\begin{gathered} 0.645 \\ (0.689) \end{gathered}$	$\begin{aligned} & -1.349^{*} \\ & (0.813) \end{aligned}$	$\begin{aligned} & -0.866 \\ & (0.845) \end{aligned}$	$\begin{gathered} 0.185 \\ (0.643) \end{gathered}$	$\begin{gathered} -0.971 \\ (1.063) \end{gathered}$
Lnalpha	$\begin{gathered} 1.276 * * * \\ (0.162) \end{gathered}$	$\begin{aligned} & 1.192^{* * *} \\ & (0.165) \end{aligned}$	$\begin{gathered} 1.201^{* * *} \\ (0.169) \end{gathered}$	$\begin{gathered} 1.289^{* * *} \\ (0.162) \end{gathered}$	$\begin{gathered} 1.199^{* * *} \\ (0.168) \end{gathered}$	$\begin{gathered} 1.276^{* * *} \\ (0.162) \end{gathered}$	$\begin{gathered} 1.192^{* * *} \\ (0.165) \end{gathered}$	$\begin{gathered} 1.201^{* * *} \\ (0.169) \end{gathered}$	$\begin{gathered} 1.289^{* * *} \\ (0.162) \end{gathered}$	$\begin{gathered} 1.199^{* * *} \\ (0.168) \end{gathered}$
Log likelihood	-456.623	-452.166	-450.717	-457.360	-452.166	-456.623	-452.166	-450.717	-457.360	-452.166

[^1]Table A7. Heckman two-step selection model

	Probit model ($1^{\text {st }}$ step)	OLS models ($2^{\text {nd }}$ step)				
		Model 1	Model 2	Model 3	Model 4	Model 5
Membership involvement		-1.840 (2.836)		-2.279 (2.784)		-2.504 (4.839)
Organizational capacity			$7.716^{* *}(3.673)$	7.935** (3.673)		7.812* (4.227)
Transmission belt					$0.671(3.612)$	0.375 (6.593)
Group type: Non-business (REF)						
Group type: Business	$0.284^{*}(0.157)$					
Org. scale: (Sub)National associations (REF)						
Org. scale: European or International associations		5.072 (5.454)	$1.045^{* *}(0.513)$	2.899 (5.431)	4.353 (5.417)	2.918 (5.448)
Scope of activity		$1.118^{* *}(0.532)$	2.262 (5.358)	$1.123^{* *}(0.521)$	$1.053^{* *}(0.523)$	$1.130^{* *}(0.533)$
Membership diversity		$-2.827^{*}(1.597)$	-2.336 (1.526)	$-2.624^{*}(1.566)$	-2.503 (1.618)	$-2.609^{*}(1.586)$
Organizational age	-0.001 (0.003)					
Resources (FTE)	$0.003^{*}(0.002)$					
Constant	-0.424*** (0.145)	23.48 (15.70)	5.893 (14.69)	11.21 (16.53)	18.28 (13.90)	11.64 (18.11)
lambda	-17.33 (15.08)	-17.33 (15.08)	-14.65 (13.93)	-17.41 (14.86)	-14.76 (14.30)	-17.50 (14.95)

[^2]TABLE A8. Negative binomial regression: Level of access to Commission officials

Variable	Coefficient	Std. Err.	p-value
Membership involvement			
Interaction	1.119	1.171	0.339
Decision-making	0.124	0.237	0.600
Local branches	-0.586	0.299	0.050
Organizational capacity			
Autonomy	0.918	0.498	0.065
Centralization	0.873	0.383	0.023
Functional differentiation	0.522	0.363	0.149
Group type: Non-business (REF)			
Group type: Business	-0.166	0.240	0.490
Org. scale: (Sub)National associations (REF)			
Org. scale: European or International associations	0.550	0.377	0.145
Scope of activity	0.092	0.041	0.025
Membership diversity	-0.322	0.111	0.004
Organizational age	-0.001	0.005	0.799
Resources (FTE)	0.009	0.003	0.004
Constant	0.000	0.144	
Alpha	0.999	0.143	
Log likelihood	-319.838		
N	107		

7.4 APPENDIX TO CHAPTER V

7.4.1 Interview questions

Selection of prominent interest groups: Please indicate the key stakeholders regarding (the issues of) this regulation/directive.

Dependent variable: Please, clarify below how decisive have been these stakeholders for the final policy outcome.

- Not at all.
- To some extent.
- To a large extent.

Explanatory variables: Which of the reasons presented below were considered as important for interacting with the key stakeholders regarding (the issues of) this regulation/directive? For each condition, indicate whether it applies or not (Randomized).

- For offering necessary policy expertise, such as technical, economic and/or legal expertise)
- For offering high quality policy input in the past
- For offering an assessment of the societal impact
- For offering political information (level of public or societal support)
- For their ability to mobilize public support
- For representing a key constituency
- For being a familiar partner to the organization
- For being one of the few alternatives
- For being a regular partner to our organization in various stakeholder bodies

Table A1. Principal Component Analysis to explore the constructs of the explanatory factors

F䔍تुU	Variables	Reasons why public official interacted with them	Loadings		
	Analytical capacities	For offering necessary policy expertise	0.39	0.53	
		For offering high quality policy input in the past	0.84		
		For offering an assessment of the societal impact	0.71	0.32	
	Political capacities	For offering political information	. 38		0.63
158		For their ability to mobilize public support			0.80
		For representing a key constituency	0.80		0.30
	Policy insider	For being a familiar partner	0.30	0.70	
		For being one of the few alternatives		0.78	
		For being a regular partner		0.57	0.50
	McDonald's omega total reliability score ${ }^{\left({ }^{(3)}\right.}$		0.69	0.60	0.60

[^3]7.4.2 Dependent, explanatory and control variables: Descriptive statistics and correlation matrix

Table A2. Descriptive statistics and correlation matrix (${ }^{*} \mathrm{p}$ <.05)											
Variable	Source	N	Mean	Min-Max	1	2	3	4	5	6	7
1.Perceived influence	Interview	103	2.243 (0.585)	1-3	-						
2.Analytical capacities	Interview	109	1.514 (1.042)	0-3	0.36*	-					
3.Political capacities	Interview	109	1.202 (1.034)	0-3	$0.33 *$	0.44^{*}	-				
4.Policy insider	Interview	109	2.009 (0.986)	0-3	-0.02	0.33*	0.19*	-			
5.Group type (Ref: Citizen groups)	Group website	109	0.633 (0.484)	0-1	-0.08	0.07	-0.18	0.03	-		
6.Membership (Ref: No-members)	Group website	109	0.853 (0.356)	0-1	-0.01	0.33	0.11	0.29*	0.17	-	
7.Advocacy Salience (Ref: Low Salience)	Desk research	109	0.523 (0.502)	0-1	0.19	-0.24*	-0.10	-0.16*	-0.19	-0.08	-
8.Policy domain (Ref: Non-economic)	Desk research	109	0.257 (0.440)	0-1	0.01	-0.08	-0.03	-0.35*	0.14	0.04	0.18

7.4.3 Robustness checks

Table A3 tests the hypothesis using alternative model specifications as the ones presented in the paper. More specifically, model 1 only includes the three main explanatory factors and models 2 to 4 test the interaction effects while controlling for all the explanatory factors.

Table A4 tests all the hypotheses by controlling for three additional variables. Importantly, the main effects found in our main models hold, indicating that the results are robust and that the additional controls do not moderate the relationships between our explanatory factors and the dependent variable.
At the group-level, we include organizational age and resources. Previous studies have shown that organizational age has a positive effect on the level of access that interest groups gain to public officials as older groups may have more expertise to engage in lobbying and a wider circle of contacts among public officials (Dür \& Mateo, 2014). A similar effect is expected to apply when examining what determines the extent to which group are perceived as influential. The variable has been manually coded by revising the websites of the organizations included in the study. The numerical variable has been logged due to its skewed distribution. As shown in Table A4, the variable is not significantly related to how perceived influence of groups.

Resources may determine the policy capacities in hands of groups, thus affecting their perceived influence on final policy outcomes (Halpin, 2014, pp. 179-180). This variable is operationalized as the full time equivalent of people in the organization that is involved in the different activities cantered on interacting with public officials of the EU. The variable has been collected from the Transparency Register website and logged transformed due to high skewed distribution. Intriguingly, we find a negative and significant effect between resources and prominent groups' perceived influence.

At the issue-level, we include complexity, as it might affect public officials' demands and the extent to which some groups are perceived more influential than others. We use Carroll's Corrected Type-Token ratio (CTTR) to capture technical complexity of the legislation included in the study (Carroll, 1964). The formula measures how many unique words (i.e., types) appear in the text in relation to the overall number of words (i.e., tokens). ${ }^{45}$ More specifically, we rely on the text of the preamble and the full text of the legislative proposals of the Commission. The CTTR includes a term that corrects for increasing text length as the likelihood that any particular word will be repeated naturally increases as the text gets longer. A high CTTR therefore signals a high technical complexity of the text, whilst a low CTTR signals less technical complexity (see Aizenberg \& Müller, 2020).

Table A5 runs the models in the manuscript while relying on alternative operationalization of the three main explanatory factors. More specifically, the items that less clearly load into the factors as reported in PCA of Table A1 have been excluded. In that regard, analytical capacities is operationalized with the items "For offering high quality policy input in
the past" and "For offering an assessment of the societal impact"; political capacities is based on the items "For offering political information" and "For their ability to mobilize public support"; lastly, policy insiders are operationalized with the items "For being a familiar partner" and "For being one of the few alternatives". ${ }^{46}$ As presented in Table A5, the coefficients and their p-values are very similar to the ones reported in the manuscript. The only exception is that the interaction effect between political capacities and advocacy salience becomes significant also when adding the control variables.
Lastly, Figure A1 depicts the interaction testing H4c while treating the moderating factor (i.e., advocacy salience) as a continuous variable, instead of a binary one as done in the manuscript. The figure shows how the same result applies in this case, making the results related to H 4 c more robust.

Table A3. Alternative model specifications

	(1)	(2)	(3)	(4)
Analytical capacities	$0.272^{\cdots \cdots}$	$0.261 \cdots$	$0.276{ }^{\cdots}$	$0.263{ }^{* \cdots}$
	(0.053)	(0.066)	(0.053)	(0.053)
Political capacities	$0.117^{\prime \prime}$	$0.130 \cdots$	0.065	0.136
	(0.057)	(0.060)	(0.074)	(0.059)
Policy insider	-0.126	-0.124	-0.144	-0.250"
	(0.074)	(0.079)	(0.079)	(0.104)
Controls				
Group type		0.061	0.030	0.087
		(0.102)	(0.103)	(0.102)
Membership group		-0.092	-0.050	-0.063
		(0.123)	(0.125)	(0.124)
Advocacy salience		0.249	0.105	-0.143
		(0.228)	(0.226)	(0.294)
Policy domain		-0.318	-0.313	-0.307*
		(0.197)	(0.197)	(0.184)

Interaction effects

Political capacities * Advocacy salience		0.150		
		(0.101)		
Policy insider * Advocacy salience				0.237°
				(0.127)
Constant	$1.904 \cdots$	1.894	$1.978 \cdots$	$2.089 \cdots$
	(0.160)	(0.241)	(0.238)	(0.249)
N observations	103	103	103	103
N issues	28	28	28	28
Log Likelihood	-62.989	-59.714	-58.736	-58.250
Akaike Inf. Crit.	137.979	141.427	139.472	138.500
Bayesian Inf. Crit.	153.787	170.409	168.454	167.482

Table A4. Regressions with additional control variables

	(1)	(2)	(3)	(4)
Analytical capacities	$0.279 \cdots$	$0.296 \cdots$	$0.279{ }^{\text {"** }}$	$0.256{ }^{*}$
	(0.061)	(0.071)	(0.060)	(0.060)
Political capacities	$0.150{ }^{\circ}$	0.152^{\prime}	0.094	$0.161 \cdots$
	(0.062)	(0.062)	(0.076)	(0.060)
Policy insider	-0.131	-0.124	-0.156	$-0.280 \times$
	(0.085)	(0.086)	(0.086)	(0.109)
Controls				
Group type	0.009	0.010	-0.017	0.044
	(0.116)	(0.116)	(0.117)	(0.116)
Membership group	-0.111	-0.115	-0.063	-0.073
	(0.134)	(0.134)	(0.139)	(0.136)
Organizational age+	0.049	0.047	0.052	0.069
	(0.078)	(0.078)	(0.077)	(0.079)
Resources+	-0.072	-0.075*	-0.068	-0.072*
	(0.040)	(0.040)	(0.039)	(0.040)
Advocacy salience	$0.346^{\prime \prime}$	0.421^{*}	0.162	-0.205
	(0.173)	(0.239)	(0.227)	(0.309)
Policy domain	-0.260	-0.254	-0.261	-0.248
	(0.194)	(0.195)	(0.192)	(0.177)
Complexity+	-0.075	-0.084	-0.080	-0.024
	(0.093)	(0.096)	(0.093)	(0.088)
Interaction effects				
Analytical capacities * Advocacy salience		-0.046		
		(0.102)		
Political capacities * Advocacy salience		0.132		
		(0.106)		
Policy insider * Advocacy salience				$0.282 *$
				(0.136)
Constant	$2.404 \cdots$	$2.442 \cdots$	$2.531 \cdots$	2.162^{*}
	(0.907)	(0.913)	(0.907)	(0.851)
Observations	95	95	95	95
Log Likelihood	-56.128	-56.027	-55.368	-54.193
Akaike Inf. Crit.	138.256	140.055	138.735	136.385
Bayesian Inf. Crit.	171.457	175.809	174.490	172.140
Note:			<0.1; "p<0	; ${ }^{\prime} \mathrm{p}<0.01$

+ New variables not included in the main models

Table A5. Ordinal regression models

	(1)	(2)	(3)	(4)
Analytical capacities	$2.392^{* *}$	2.341 ***	$2.430 * * *$	$2.201^{* *}$
	(0.689)	(0.800)	(0.683)	(0.660)
Political capacities	1.286**	1.275**	0.721	1.265**
	(0.628)	(0.629)	(0.702)	(0.599)
Policy insider	-1.053	-1.062	-1.334*	-2.189**
	(0.772)	(0.772)	(0.779)	(1.015)
Controls				
Group type	0.811	0.803	0.497	0.950
	(0.974)	(0.972)	(0.992)	(0.929)
Membership group	-1.029	-1.020	-0.532	-0.739
	(1.151)	(1.152)	(1.189)	(1.142)
Advocacy salience	2.976*	2.800	0.931	-1.268
	(1.759)	(2.264)	(1.977)	(2.677)
Policy domain	-2.950	-2.933	$-3.013^{* *}$	-2.893^{*}
	(1.951)	(1.941)	(1.512)	(1.760)
Interaction effects				
Analytical capacities * Advocacy salience		0.097		
		(0.799)		
Political capacities * Advocacy salience			1.574	
			(1.021)	
Policy insider * Advocacy salience				2.143*
				(1.197)
N observations	103	103	103	103
N issues	28	28	28	28
Log Likelihood	-59.56	-59.56	-58.30	-57.97
Akaike Inf. Crit.	139.13	141.11	138.61	137.94
Note:			p<0.1; ${ }^{\text {p }}<0$	5; ${ }^{\text {p }}<0.01$

Table A6. Multilevel OLS regression with alternative operationalization of the explanatory factors

	(1)	(2)	(3)	(4)
Analytical capacities (alt.)	$0.290 \cdots$	$0.332 \cdots$	$0.303{ }^{\text {"** }}$	$0.272 \cdots$
	(0.059)	(0.080)	(0.057)	(0.059)
Political capacities (alt.)	0.146°	0.142°	-0.089	0.140°
	(0.083)	(0.083)	(0.114)	(0.080)
Policy insider (alt.)	-0.038	-0.015	-0.117	-0.336
	(0.094)	(0.098)	(0.094)	(0.145)
Controls				
Group type	0.127	0.127	0.054	0.162
	(0.106)	(0.105)	(0.105)	(0.105)
Membership group	-0.051	-0.071	0.061	-0.042
	(0.122)	(0.124)	(0.124)	(0.121)
Advocacy salience	0.327^{*}	0.415^{*}	0.026	-0.200
	(0.190)	(0.223)	(0.210)	(0.268)
Policy domain	-0.318	-0.302	-0.335*	-0.285
	(0.211)	(0.214)	(0.202)	(0.193)
Interaction effects				
Analytical capacities (alt.) * Advocacy salience		-0.086		
		(0.112)		
Political capacities (alt.) * Advocacy salience		0.435		
		(0.151)		
Policy insider (alt.) * Advocacy salience				$0.451{ }^{\prime \prime}$
				(0.177)
Constant	1.836	1.776	$2.022 \cdots$	2.187^{\cdots}
	(0.220)	(0.233)	(0.221)	(0.244)
Observations	103	103	103	103
Log Likelihood	-65.504	-65.217	-61.491	-62.493
Akaike Inf. Crit.	151.009	152.434	144.981	146.986
Bayesian Inf. Crit.	177.356	181.416	173.963	175.968
Note:			p<0.1; "p<0	5; ${ }^{\prime} \mathrm{p}<0.01$

Figure A1. Interaction effect between Policy insider and Advocacy salience treated as a continuous variable (logged)

Notes

45 CTTR $=\frac{\text { Number of unique words }}{\sqrt{2 \times \text { Total number words }}}$
46 Due to their conceptual similarity, we also operationalized 'policy insider' with the items "For being a familiar partner" and "For being a regular partner". Importantly, all the results hold with this alternative operationalization.

[^0]: Policy domain: Economic domains include the following DGs: Competition; Economic and Financial Affairs; Financial Stability, Financial Services and Capital Markets Union; Internal Market, Industry, Entrepreneurship and SMEs; Taxation and Customs Union; Trade. Other domains include the remaining DGs of the Commission.

[^1]: $\mathrm{N}=272 ;{ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$

[^2]: $\mathrm{N}=272 ;{ }^{*} \mathrm{p}<0.1 ;{ }^{* *} \mathrm{p}<0.05 ;{ }^{* * *} \mathrm{p}<0.01$

[^3]: Principal Component Analysis - Rotation 'Equamax' (cut-off level ≥ 0.30)
 ${ }^{(a)}$ The McDonald's omega (1999) for each variable ranges from 0.60 and 0.70 , indicating that the internal consistency of the constructs is moderate, yet acceptable considering the limited number of items and their binary nature.

