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Chapter 8

A High-Dimensional Neural
Network Potential for the
dissociative chemisorption of
CHD3 + Cu(111)

This chapter is based on Gerrits, N.; Shakouri, K.; Behler, J.; Kroes, G.-J.
Accurate Probabilities for Highly Activated Reaction of Polyatomic Molecules
on Surfaces Using a High-Dimensional Neural Network Potential: CHD3 +
Cu(111). J. Phys. Chem. Lett. 2019, 10, 1763–1768, DOI: 10.1021/acs.jpclett.
9b00560

Abstract
An accurate description of reactive scattering of molecules on metal sur-

faces often requires the modeling of energy transfer between the molecule
and the surface phonons. Although Born-Oppenheimer molecular dynamics
(BOMD) can describe this energy transfer, BOMD is at present untractable for
reactions with reaction probabilities smaller than 1%. Here, it is shown that it
is possible to use a neural network potential to describe a polyatomic molecule
reacting on a mobile metal surface, with considerably reduced computational
effort compared to BOMD. The highly activated reaction of CHD3 on Cu(111)
is used as a test case for this method. It is observed that the reaction probability
is influenced considerably by dynamical effects such as the bobsled effect and
surface recoil. A special dynamical effect for CHD3 + Cu(111) is that a higher
vibrational efficacy is obtained for two quanta in the CH stretch mode than
for a single quantum.

https://doi.org/10.1021/acs.jpclett.9b00560
https://doi.org/10.1021/acs.jpclett.9b00560
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8.1 Introduction

Accurately describing molecule-metal surface reactions is of vital importance
for the understanding of heterogeneously catalyzed processes such as the
Haber-Bosch[1] and steam reforming processes[2]. Unfortunately, the com-
plexity of the interaction between molecules and metals limits the accuracy of
theoretical studies on these kinds of processes[3–8]. Often, chemically accu-
rate results are obtainable at high computational cost with Born-Oppenheimer
molecular dynamics (BOMD) combined with the so-called Specific Reaction
Parameter (SRP) approach[9–11]. However, the investigation of reactions
with low reactivity (< 1%) remains challenging due to the need for a large
number of trajectories in combination with a large computational cost[12].
Therefore, neural network approaches have recently been employed in order
to obtain results with the accuracy of BOMD using density functional theory
(DFT), but with a considerably smaller computational cost[13–16]. So far
these studies involved either diatomic molecules[13–16], or they neglected the
movement of surface atoms[17–21]. Very recently, a high-dimensional neural
network potential (HD-NNP) has been developed for a system in which a
linear triatomic molecule interacts with a metal surface, i.e., CO2 + Ni(100)[22],
while also including surface atom motion. The neglect of surface motion
can limit the accuracy of these studies due to the neglect of energy exchange
between the molecule and the surface atoms[4, 12, 15, 16, 23–28]. This lack
of energy exchange represents a severe approximation for the dynamics of
polyatomic molecules reacting on metal surfaces due to their high mass[29,
30]. A modified Shepard interpolation method[31] has also been used to
describe the potential of a polyatomic molecule reacting on a metal surface,
but again with the neglect of surface motion. Reactive force field fits have
been made that do include surface motion[32–35]. Although Busnengo and
coworkers have shown that these fits can be in good agreement with DFT[35],
it remains unclear whether these fits are also chemically accurate, i.e., whether
the root-mean-square error (RMSE) is lower than 4.2 kJ/mol for the dynami-
cally relevant part of the potential energy surface (PES). However, at the time
this work was performed, no neural network potential had been employed for
non-linear polyatomic molecules interacting with metal surfaces that explicitly
includes the effect of surface motion as well.

In this chapter, the focus is on the dissociative chemisorption of CHD3
on Cu(111) since this system exhibits a low reactivity[12], making reactive
BOMD studies untractable for most incidence energies achievable in molecular
beams. Moreover, high-quality graphene can be synthesized using methane
dissociation on copper[36–42], and this warrants additional study of the rate-
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controlling state, namely the breaking of the first CH bond. The Eley-Rideal
reaction of D with CD3 preadsorbed on Cu(111) has also been studied[43]. The
methane + Cu(111) system shows interesting dynamics in that the low reactiv-
ity of methane on Cu(111) is not only caused by a high barrier (167 kJ/mol),
but also by specific features of the PES such as the curvature of the minimum
energy path (MEP)[12] (see Chapter 7). For all of these reasons, the neural
network Behler-Parrinello approach[44, 45] has been applied for the first time
to a non-linear polyatomic molecule reacting on a metal surface, which makes
accurate simulations feasible while including surface motion, using CHD3 +
Cu(111) as an example.

8.2 Method

8.2.1 Neural Network

In the HD-NNP, the total energy is evaluated as a sum of atomic contributions
that are dependent on their energetically relevant local environment, which is
described by many-body atom-centered symmetry functions[46] (see Section
2.3.2), of which the parameters are given in Section 8.A. In total, 38 000 DFT
data points were used to train the HD-NNP, of which 14 000 points were taken
from the BOMD study of Chapter 7. Points from the BOMD data set were
selected with the following procedure. All reacted and 50 scattered trajectories
were used from the BOMD study in Chapter 7, of which only 10% of the steps
in the trajectories have initially been selected. From those selected steps, it is
made sure that the methane geometry in a selected step is not too similar to
other previously selected steps. The acceptance criterium for this selection is
εmin = 0.2 Å, where

εj > εmin for j = 1, . . . , N (8.1)

εj =
√

∑
i

r2
i,j. (8.2)

The atoms of the methane molecule are indicated by i, all previous geometries
are indicated by j, and ri,j is the distance between atom i of the newly selected
geometry and atom j of a previous methane geometry j. This procedure
resulted in about 14 000 points in the training data set. Missing structures in the
training data set (about 21 500 ) were found by running MD on the incomplete
HD-NNP using the following procedure[45]. About 5000 trajectories were
calculated at 〈Ei〉 = 160 and 181 kJ/mol for laser-off conditions and ν1 = 2.
The neural network implementation would then identify extrapolation errors
during the MD, indicating structures that are missing in the training set. These
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missing structures were then added to the training set and this procedure
was repeated until the amount of extrapolation errors was considered small
enough (< 0.5%) and no longer affected the computed reaction probability.
During the process of identifying missing structures, about 20 points in the Van
der Waals well region were included as well. Also, 500 points from the elbow
plot showing the minimum barrier (see Chapter 7), and where all degrees
of freedom other than the molecule-surface distance Z and the length of the
dissociating CH-bond r are relaxed, were included (see Figure 8.3c). Finally,
vibrational modes were sampled in a random fashion according to a nozzle
temperature of 1200 K, on both an ideal and thermally distorted surface (but
note that the ideal surface still includes a lattice expansion corresponding to
the simulated surface temperature of 550 K) at random locations with respect
to the surface, resulting in 2000 points. Using the aforementioned procedures
a total number of 38 000 of points were obtained that formed the training
and testing data set. The total energy for all structures in the training and
testing data set obtained with both DFT and the HD-NNP are compared in
Figure 8.1, showing excellent agreement between the HD-NNP and direct DFT
calculations. The employed computational setup for the DFT calculations is
described in Section 7.2. Furthermore, for the neural network, two hidden
layers are used, each with 15 nodes. Finally, the training has been carried
out using the RuNNer code[47–49] and the MD has been performed with
LAMMPS[50, 51].

8.2.2 Molecular Initial Conditions

The initial translational energy distribution of the molecules has been simu-
lated according to experimental molecular beam parameters (stream velocities
and width parameters)[9], which are provided in Table 8.1. Experimental
beam parameters are available for nozzle temperatures lower than 900 K[9,
10], but here the choice was made to take the width parameter simply as
α = 0.05ν0, which is in reasonable agreement with experiment as can be seen
in Figure 8.2a. The width parameters for Tn = 950 and 1000 K were obtained
by extrapolating the experimental width parameters obtained by Utz and
co-workers[9]. Although α = 0.055ν0 would have been a better approximation
for ν0 < 4000 m/s, this does not have a large effect on the results presented in
this work. The stream velocities are obtained by fitting the experimental data
using a linear fit (see Figure 8.2b). The exception is the stream velocities for
Tn = 900 and 1000 K, for which the stream velocities previously used in the
BOMD study in Chapter 7 are taken.
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FIGURE 8.1: Total energy for all structures in the training (blue) and testing (red) data
set obtained with the HD-NNP and DFT. The total energy of the methane in the gas

phase with an ideal surface is taken as zero. The black line indicates x = y.

TABLE 8.1: Beam parameters that describe the simulated CHD3 velocity distribu-
tions. ν0 and α are determined through time-of-flight measurements for 900 K[9]. All
other parameters than 〈Ei〉 = 160.4 kJ/mol are not from experiment, but theoretical

estimates obtained by interpolation and extrapolation.

Tn (K) 〈Ei〉 kJ/mol ν0 (m/s) α (m/s)

400 83.4 2946.95 147.35
500 97.0 3177.70 158.89
600 111.6 3408.45 170.42
700 127.3 3639.20 181.96
800 143.9 3869.95 193.50
900* 160.4 4070.12 274.51
950 172.3 4216.08 300.00

1000 181.3 4320.12 324.01
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FIGURE 8.2: Width parameter α as a function of the stream velocity ν0 (a) and the
stream velocity ν0 as a function of the nozzle temperature Tn (b). Experimental
parameters[9] and parameters used in this work are indicated in blue and orange,

respectively. Theoretical parameters where α = 0.055ν0 are indicated in green.

8.3 Results

First, the accuracy of the HD-NNP is tested by comparing the 2D elbow plot
of methane on Cu(111) in which methane is fixed in all molecular coordinates
according to its TS geometry, as depicted in Figure 8.3a, except for ZC and r
(the distance between the carbon atom and surface, and the length of the dis-
sociating CH bond). The HD-NNP is compared directly with DFT calculations
in Figure 8.3b. Here, it can be seen that the HD-NNP reproduces the DFT data
remarkably well, even though points from the 2D cut are not included in the
data set. When the methane is relaxed in all degrees of freedom other than
r and Z (Figure 8.3c), the MEP lies slightly closer to the surface than to the
MEP of the constrained methane. Again, the HD-NNP reproduces the direct
DFT calculations quite well. Moreover, both the electronic and mechanical
coupling[30] are in good agreement with DFT (see Figure 8.3d,e), which means
that changes in the barrier height and geometry with respect to the motion
of the surface atom below the dissociating molecule are described correctly.
Furthermore, using 90% of the DFT data set as the training set and 10% as the
test set, the RMSE is 1.7 kJ/mol for the test set, which is well within chemical
accuracy (4.2 kJ/mol). (Note that all errors reported in this chapter are with
respect to the full system, i.e., the total energy.) The high fitting accuracy is
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also observed in Figure 8.4, where the distributions of the absolute error for the
training and test set are shown and the vast majority of the errors falls within
chemical accuracy. The total energy for all of the structures in the training and
test set obtained with the HD-NNP and direct DFT calculations is also shown
in Figure 8.1. Moreover, the RMSE for the forces in the test set is 2.3 kJ/mol/Å.
The RMSE of 1.7 kJ/mol is obtained here on the basis of 38 000 DFT points
for CHD3 + Cu(111), where the surface atoms are allowed to move. This
RMSE value compares well with the RMSE of 1.5 kJ/mol obtained for a recent
15D NN static surface PES for CHD3 + Ni(111), on the basis of 200 000 DFT
points[19, 28]. It should also be noted that the approximate modified general-
ized Langevin oscillator method used in Ref. [28] to effectively add surface
atom motion to the MD may run into problems if the molecule-metal surface
interaction depends on more than just one surface atom coordinate, as for
instance is the case for H2O + Ni(111)[52], and may be the case for methane
interacting with stepped metal surfaces[28].

The goal is to make a HD-NNP with which it is possible to accurately evalu-
ate the energy and forces on the fly during MD simulations. Therefore, not only
incidence energies with low reaction probabilities (< 1%) are investigated, but
also regimes with higher reaction probabilities that are obtainable with BOMD
in order to test the validity of the results obtained with the HD-NNP. Figure
8.5 shows the results obtained for the dissociative chemisorption of CHD3 on
Cu(111) with MD using the HD-NNP and with BOMD[12] (see also Chapter 7
and Table 7.5), by simulating a molecular beam for the rovibrational ground
state and under laser-off and laser-on conditions. Under laser-off conditions
the molecular beam’s vibrational state population is sampled according to the
nozzle temperature. We also present results for the case that under laser-on
conditions the CH stretch mode ν1 is excited with one or two quanta. In
order to describe the reaction probability with good statistics, 10 000 - 110 000
quasiclassical trajectories were computed per incidence condition. Here, it can
be seen that at high incidence energy and for vibrationally excited methane,
for four sets of initial conditions resulting in reaction probabilities obtained
with BOMD, good agreement exists between BOMD and MD performed with
the HD-NNP (see also Table 8.2 and the statistical analysis in Section 8.C).
Moreover, reaction probabilities as low as 5× 10−5 have been computed with
the HD-NNP (Figure 8.5), which was previously not possible using accurate
methods. It is observed that at the highest incidence energy (181 kJ/mol) the
laser-off simulation yields a similar reaction probability as the ν1 = 1 simu-
lation, which is caused by the high amount of vibrational excitation in the
laser-off beam due to the high simulated nozzle temperature (Tn = 1000 K).
However, it should be noted that sticking probabilities computed for laser-off
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FIGURE 8.3: (a) TS geometry of methane on Cu(111), indicating the θ, β and γ angles
(see Section 7.3.1 for further explanation). (b) Elbow plot of methane on Cu(111) as a
function of ZC and r (distance between the carbon atom and surface, and the length
of the dissociating CH-bond, respectively), where other degrees of freedom are fixed
according to the TS. Contour lines are drawn at intervals of 10 kJ/mol between 0 and
200 kJ/mol. The blue and red lines are NN and DFT results, respectively. The circles
indicate the MEP. (c) Same as (b), but with all degrees of freedom of the methane
relaxed, except ZC and r. (d,e) Variation of the height (d) and location (e) of the barrier

as a function of the vertical displacement Q of the nearest top layer Cu atom.
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FIGURE 8.4: Distribution of absolute total
energy errors (kJ/mol) of the HD-NNP
compared to the DFT total energy. Blue
indicates the training set, whereas red in-
dicates the test set. The dashed line indi-
cates chemical accuracy, i.e., 4.2 kJ/mol.

TABLE 8.2: Reaction probabilities (PR) obtained with the HD-NNP and BOMD. The
error bars represent 68% confidence intervals.

〈Ei〉 (kJ/mol) Quantum state PR (HD-NNP) PR (BOMD)

160.4 ν1 = 1 0.0007± 0.0002 0.000± 0.001
160.4 ν1 = 2 0.0246± 0.0016 0.024± 0.005
181.3 ν1 = 1 0.0025± 0.0005 0.005± 0.002
181.3 ν1 = 2 0.0486± 0.0022 0.048± 0.007

conditions and nozzle temperatures higher than 650 K may be unreliable due
to intramolecular vibrational-energy redistribution among vibrational states
in which CD bends and stretches are excited[9].

The dynamical simulations in this chapter show that the reaction of methane
is promoted both by translational and vibrational energy. Plotting the reaction
probability as a function of the total energy (vibrational + translational en-
ergy) shows that putting vibrational energy into the reaction is almost equally
or more efficient than increasing the translational energy, depending on the
amount of quanta in the ν1 CH stretch mode (see Figure 8.5b). The vibrational
efficacy is equal to or larger than 0.8, which can be expected for such a late
barrier system[53] combined with an MEP of the shape shown in Figure 8.3b,c,
causing incoming molecules having to react over considerably higher barriers
because they run off the MEP ("the bobsled effect"[54, 55]). This could play a
large role at catalytic conditions, where graphene is produced from methane
using very high temperatures (> 1200 K)[36, 41] and thus vibrational excita-
tion is prevalent. Interestingly, the vibrational efficacy[56, 57] for the excitation
from the ν1 = 1 to ν1 = 2 overtone (ην1=2,1 = 1.7) is considerably higher than
that for the excitation from the ground state to ν1 = 1 (ην1=1,0 = 0.8). To
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FIGURE 8.5: (a) Initial state-selected and molecular beam sticking probabilities of
CHD3 on Cu(111) as a function of the translational energy for a surface temperature
of 550 K. Simulations for laser-off (red), rovibrational ground state (blue), ν1 = 1
(orange) and ν1 = 2 (green), where the circles and diamonds are HD-NNP and BOMD
results, respectively. (b) Same as panel a, but here the reaction probability is shown
as a function of the total energy (vibrational + translational energy). (c) Simulations
for ν1 = 2 with (blue solid line with circles) and without surface motion, where the
orange squares with a dashed line indicate an ideal surface and the green diamonds
with a dotted line indicate a thermally distorted surface. The error bars represent 68%

confidence intervals.
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FIGURE 8.6: Distributions of the height of
the carbon atom when a CH-bond disso-
ciates (i.e., r = r‡) for ν1 = 2 at various
incidence energies (numbers are in kJ/-
mol). The TS geometry value for ZC is

indicated by the dashed line.

the best of our knowledge, a higher vibrational efficacy for an overtone has
not been observed before[56–60]. In Figure 8.6, it is observed that when the
incidence energy decreases, for ν1 = 2, reacted trajectories follow the MEP
more closely. Furthermore, an increase of vibrational energy causes reacting
trajectories to follow the MEP more closely as well (see Figure 8.7a). The
dynamical effect (see Figure 8.7b) is that, because a higher incidence energy
is needed to overcome the barrier for a low ν1, for low ν1 the carbon atom
smashes into the repulsive wall. The hydrogen atom moves out while the
carbon atom is still close to the surface, and therefore a higher barrier needs to
be overcome (see Figure 8.7). Hence, a higher vibrational efficacy is observed
for ν1 = 2 since the bobsled effect will be less prominent and thus lower
barriers need to be overcome.

It has been already noted that the reaction probabilities at high incidence
energy obtained with the HD-NNP are in good agreement with BOMD. How-
ever, the validity of the quasi-classical approximation for the low reaction
probabilities needs to be tested by comparison to experiment due to the pos-
sibility of quantum effects, and potential problems with zero-point energy
violation, even though it has been shown that at elevated surface temperature
the reaction of methane happens in a "classical over the barrier fashion" with
assistance of surface atom motion and without the need for tunneling[4, 61].

The main goal of applying the Behler-Parrinello method to polyatomic
molecules is to be able to include explicitly surface motion. Therefore, to
evaluate the effect of surface motion, reaction probabilities for ν1 = 2 have also
been computed using a static surface model, where the surface was kept in its
ideal relaxed static configuration (note that the lattice expansion corresponding
to a surface temperature of 550 K was kept). This effectively removes energy
transfer between the molecule and the surface and the corrugation in barrier
heights and positions related to surface motion. Reaction probabilities for this
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FIGURE 8.7: (a) Distributions of the height of the carbon (ZC) when a CH bond
dissociates, i.e., r = r‡, for the rovibrational ground state, ν1 = 1, and ν1 = 2 at
incidence energies with comparable reaction probabilities (about 0.03%). The TS
geometry value for ZC is indicated by the dashed line. (b) Elbow plot of methane on
Cu(111) obtained with the HD-NNP, where ZC and r (distance between the carbon
atom and surface, and the length of the dissociating CH-bond, respectively) are
variable and all other degrees of freedom are relaxed. Contour lines are drawn at
intervals of 10 kJ/mol between 0 and 180 kJ/mol. Typical trajectories that go on to
react for P = 0.03% are indicated by the blue (ground state), orange (ν1 = 1) and

green (ν1 = 2) lines. The black square indicates the highest point along the MEP.
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frozen surface are a factor 2 higher than those when surface motion is allowed
(see Figure 8.5c). Furthermore, when the distortions of a hot surface are
included while still excluding surface motion, i.e., modeling a static thermally
disordered surface (similar to the so-called static corrugation model[62]),
reaction probabilities are increased by 50% compared to the frozen ideal
surface at low incidence energies. At high incidence energies, no difference
is observed between the results for the static ideal and the distorted surface,
with the latter including the effect of the electronic coupling (or the so-called
β-coupling)[30]. The observation that explicitly including surface motion at
these high incidence energies lowers the reaction probabilities suggests that
the reaction probabilities are decreased due to energy transfer to the surface
atoms as the molecule first impacts on the surface (Figure 8.7b) and possibly
also due to surface recoil (mechanical coupling)[4, 30]. Because the surface
recoil effect (which is due to surface atom vibrational averaging) tends to be
small[30], it is suspected that the energy transfer is most important. This effect
can only be addressed with explicit modeling of the surface motion and not
by the sudden and energy averaging methods typically used with quantum
dynamics simulations[30].

8.4 Conclusions

In this chapter the Behler-Parrinello approach is used to develop an HD-NNP
that describes a polyatomic molecule reacting on a mobile metal surface, i.e.,
CHD3 + Cu(111). The HD-NNP is found to be in good agreement with DFT,
which means that MD can be performed with the accuracy of BOMD but
with a considerably lower computational effort. Using this HD-NNP, reaction
probabilities as low as 5× 10−5 have been obtained, which are untractable with
previous accurate methods such as BOMD, while including surface motion. It
is found that vibrational excitation plays a major role in the reactivity, where
the overtone has a higher vibrational efficacy than the fundamental vibrational
excitation. Moreover, allowing energy transfer from the molecule to the surface
atoms considerably reduces the overall reactivity. Hence, surface motion
needs to be included explicitly in simulations in order to obtain quantitative
results for molecular beam simulations of methane reacting on copper. More
work is still required to investigate the effect of surface temperature on the
reaction of CHD3 on Cu(111), since only one surface temperature (550 K) is
addressed. Finally, the quasi-classical approximation needs to be tested for
low reaction probabilities by comparison to experiments due to the possibility
of quantum effects and zero-point energy violation. However, this would not
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be an intrinsic problem of the HD-NNP as good agreement with DFT has been
shown.
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Appendix

8.A Symmetry Functions

The parameters used for the radial and angular symmetry functions are given
in Tables 8.A.1 and 8.A.2, and the cut-off radius Rc = 13 a0. Note that η = 0
for all angular symmetry functions.

8.B Elbow Plots

Due to the difficulty of relaxing the methane geometry in 13 degrees of free-
dom, a smoothing function was used for the elbow plot in Figure 8.3c and
8.7b. Figure 8.B.1 shows the elbow plot obtained with the HD-NNP in Figure
8.3c without smoothing, where the HD-NNP and direct DFT calculations are
still in good agreement.

Furthermore, Figure 8.B.2 shows the elbow plots for methane on Cu(111)
and Ni(111)[9]. The obtained MEPs seem very similar, where the main differ-
ence is that on Ni(111) the barrier is earlier and the barrier height is lower than
on Cu(111). However, when the energy along the MEP is taken into account
as well (see Figure 8.B.3), it is observed that the MEP of Cu(111) is much more
repulsive. Therefore, methane needs a considerably higher energy in order to
overcome the barrier, causing trajectories in general to experience the bobsled
effect.

8.C Statistical Analysis

A statistical analysis is performed in order to see whether the HD-NNP and
BOMD reaction probabilities are in agreement. Fischer’s exact test[63] is used
to evaluate a null hypothesis, which is defined here as PHD-NNP = PBOMD.
The results obtained both with the HD-NNP and BOMD using a significance
level of α = 0.05 are in agreement, hence, the conclusion is that the reaction
probabilities obtained with the HD-NNP and BOMD are in agreement.
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TABLE 8.A.1: Parameters used for the radial symmetry functions (see Eq. 2.38)
describing the interaction of the reference atom (Ref.) with its neighbouring atoms

(Neighb.) within the cut-off radius.

Ref. Neighb. η Ref. Neighb. η Ref. Neighb. η

H C 0 Cu C 0 C H 0
H C 0.007 Cu C 0.007 C H 0.007
H C 0.018 Cu C 0.018 C H 0.018
H C 0.036 Cu C 0.035 C H 0.036
H C 0.068 Cu C 0.065 C H 0.068
H C 0.13 Cu C 0.12 C H 0.13
H C 0.27 Cu C 0.24 C H 0.27
H C 0.7 Cu C 0.55 C H 0.7

H H 0 Cu H 0 C Cu 0
H H 0.007 Cu H 0.007 C Cu 0.007
H H 0.018 Cu H 0.018 C Cu 0.018
H H 0.035 Cu H 0.035 C Cu 0.035
H H 0.065 Cu H 0.068 C Cu 0.065
H H 0.12 Cu H 0.13 C Cu 0.12
H H 0.24 Cu H 0.27 C Cu 0.24
H H 0.55 Cu H 0.7 C Cu 0.55

H Cu 0 Cu Cu 0
H Cu 0.007 Cu Cu 0.007
H Cu 0.018 Cu Cu 0.018
H Cu 0.035 Cu Cu 0.035
H Cu 0.068 Cu Cu 0.065
H Cu 0.13 Cu Cu 0.12
H Cu 0.27 Cu Cu 0.24
H Cu 0.7 Cu Cu 0.55
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TABLE 8.A.2: Parameters used for the angular symmetry functions (see Eq. 2.39)
describing the interaction of the reference atom (Ref.) with its neighbouring atoms

(Neighb. 1 and 2) within the cut-off radius.

Ref. Neighb. 1 Neighb. 2 λ ζ Ref. Neighb. 1 Neighb. 2 λ ζ Ref. Neighb. 1 Neighb. 2 λ ζ

H H H 1 5 Cu Cu Cu 1 1
H H H 1 7.5 Cu Cu Cu 1 1.7
H H H 1 12 Cu Cu Cu 1 3
H H H 1 20 Cu Cu Cu 1 6
H H H 1 40 Cu Cu Cu 1 15

Cu Cu Cu 1 68
H H H -1 1.3 Cu Cu Cu -1 1
H H H -1 1.9 Cu Cu Cu -1 1.7
H H H -1 2.8 Cu Cu Cu -1 3
H H H -1 4.3 Cu Cu Cu -1 6
H H H -1 7 Cu Cu Cu -1 15

H H C 1 9 Cu Cu C 1 1
H H C 1 13 Cu Cu C 1 1.7
H H C 1 21 Cu Cu C 1 3
H H C 1 38 Cu Cu C 1 6
H H C 1 80 Cu Cu C 1 15

Cu Cu C 1 68
H H C -1 1 Cu Cu C -1 1
H H C -1 1.3 Cu Cu C -1 1.7
H H C -1 1.8 Cu Cu C -1 3
H H C -1 2.5 Cu Cu C -1 6
H H C -1 3.5 Cu Cu C -1 15

H Cu H 1 1 Cu H H 1 1 C H H 1 1.2
H Cu H 1 1.7 Cu H H 1 1.7 C H H 1 1.8
H Cu H 1 3 Cu H H 1 3 C H H 1 3
H Cu H 1 6 Cu H H 1 6 C H H 1 5.3
H Cu H 1 15 Cu H H 1 15 C H H 1 10
H Cu H 1 68 Cu H H 1 68
H Cu H -1 1 Cu H H -1 1 C H H -1 5
H Cu H -1 1.7 Cu H H -1 1.27 C H H -1 8
H Cu H -1 3 Cu H H -1 1.65 C H H -1 13
H Cu H -1 6 Cu H H -1 2.15 C H H -1 23
H Cu H -1 15 Cu H H -1 2.9 C H H -1 50
H Cu H -1 68 Cu H H -1 4

H Cu C 1 1 Cu H C 1 1 C H Cu 1 1
H Cu C 1 1.7 Cu H C 1 1.7 C H Cu 1 1.7
H Cu C 1 3 Cu H C 1 3 C H Cu 1 3
H Cu C 1 6 Cu H C 1 6 C H Cu 1 6
H Cu C 1 15 Cu H C 1 15 C H Cu 1 15
H Cu C 1 68 Cu H C 1 68 C H Cu 1 68
H Cu C -1 1 Cu H C -1 1 C H Cu -1 1
H Cu C -1 1.27 Cu H C -1 1.27 C H Cu -1 1.27
H Cu C -1 1.65 Cu H C -1 1.65 C H Cu -1 1.65
H Cu C -1 2.15 Cu H C -1 2.15 C H Cu -1 2.15
H Cu C -1 2.9 Cu H C -1 2.9 C H Cu -1 2.9
H Cu C -1 4 Cu H C -1 4 C H Cu -1 4

H Cu Cu 1 1 Cu Cu H 1 1 C Cu Cu 1 1
H Cu Cu 1 1.7 Cu Cu H 1 1.7 C Cu Cu 1 1.7
H Cu Cu 1 3 Cu Cu H 1 3 C Cu Cu 1 3
H Cu Cu 1 6 Cu Cu H 1 6 C Cu Cu 1 6
H Cu Cu 1 15 Cu Cu H 1 15 C Cu Cu 1 15
H Cu Cu 1 68 Cu Cu H 1 68 C Cu Cu 1 68
H Cu Cu -1 1 Cu Cu H -1 1 C Cu Cu -1 1
H Cu Cu -1 1.27 Cu Cu H -1 1.7 C Cu Cu -1 1.27
H Cu Cu -1 1.65 Cu Cu H -1 3 C Cu Cu -1 1.65
H Cu Cu -1 2.15 Cu Cu H -1 6 C Cu Cu -1 2.15
H Cu Cu -1 2.9 Cu Cu H -1 15 C Cu Cu -1 2.9
H Cu Cu -1 4 Cu Cu H -1 68 C Cu Cu -1 4
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FIGURE 8.B.1: Elbow plot of methane on Cu(111) obtained with the HD-NNP with
(red) and without (blue) smoothing, where ZC and r (distance between the carbon
atom and surface, and the length of the dissociating CH bond, respectively) are
variable. Contour lines are drawn at intervals of 10 kJ/mol between 0 and 200 kJ/mol.
The circles indicate the MEP and the black squares indicate the highest point along

the MEPs.
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FIGURE 8.B.2: (a) Elbow plot of methane on Cu(111) obtained with the HD-NNP,
where Z and r (distance between the carbon atom and surface, and the length of the
dissociating CH bond, respectively) are variable and all other degrees of freedom are
relaxed. Contour lines are drawn at intervals of 10 kJ/mol between 0 and 180 kJ/mol.
The white circles indicate the MEP and the black square indicates the highest point
along the MEP. (b) Same as (a) but for methane on Ni(111)[9]. (c) The MEPs for (a)

(blue) and (b) (red).
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FIGURE 8.B.3: Minimum energy
path of methane on Cu(111) (blue)
and Ni(111) (red) as a function of
the reaction coordinate s. The black
squares indicate indicate the highest

points along the MEPs.
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