
Progressive Indexes
Timbó Holanda, P.T.

Citation
Timbó Holanda, P. T. (2021, September 21). Progressive Indexes. SIKS Dissertation Series.
Retrieved from https://hdl.handle.net/1887/3212937
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3212937
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3212937


CHAPTER 6

Big Picture

This chapter discusses the main challenges of implementing Progressive Indexing in a

database system and points out future work for the general area of incremental indexes.

We also dive in specifically on unidimensional Progressive Indexing, multidimensional

Progressive Indexing, and Progressive Merges.

1 The Elephant In The Room

The fact of the matter is, no database system took into production Adaptive Indexing,

even though the first paper of Adaptive Indexing, Cracking the Database Store[38]

dates from 2005. Some of the reasons, like unpredictable query response times, high

penalty over initial queries, and lack of full index convergence, have been mitigated

with the Progressive Indexing approach. However, other issues permeate adaptive and

progressive indexes that make it unlikely for them to be picked up by a production-

ready database system.

Tuple Reconstruction In most of the Adaptive/Progressive Indexing experi-

ments, the columns must be grouped in advance when constructing the index structure,

which leads to a lack of usability of the index. At the same time, real-life queries

tend to filter and project over different groups of columns. For the unidimensional

adaptive/progressive index, this problem is obvious. Only one column is indexed

when selecting any other column. We must perform tuple reconstruction, which hides

any potential benefit from having the data skipping from the index, except for point

117



2. Future Work

queries and high selective queries that would not be classified as Analytical Processing.

Multidimensional Adaptive/Progressive Indexing presents the same problem since it

only groups the data if they have filters. Hence selections on columns that are not

being filtered would have to perform tuple reconstruction. One way of mitigating the

tuple reconstruction would be to create the index by not only copying the filtered

columns but the whole table. Of course, this presents problems in itself since it will

cause a storage blow-up (i.e., now every index must own a copy of the full table) and

increase the updates’ costs.

Overhead of Storage/Maintenance Every query with a filter will produce

either a unidimensional or a multidimensional Adaptive/Progressive Indexing, depend-

ing on the number of filters the query has. In the worst case, at some point, every

column will have a unidimensional index created, and one multidimensional index will

be created for every unique combination of multidimensional filters. This, of course,

will cause a storage blow-up and a maintenance overhead that will make it impossible

to use these techniques on a real exploratory dataset.

Is there hope? We believe that the next step to the grand area of Adaptive/Pro-

gressive Indexes is to move from secondary index creation to Adaptive/Progressive

Table Partitioning. The basic idea is to perform the partitioning used to create indexes

and reorganize the table’s data instead of creating a secondary index structure. This

would increase the usability of the data reorganization since the multidimensional

indexes will suffer from tuple reconstruction costs when accessing non-indexed tuples.

2 Future Work

In this section, we will present potential future research directions in the area of

Progressive Indexes. We split up this section by Progressive Indexes and Progressive

Merges.

2.1 Progressive Indexes

We point out the following as the main aspects to be explored in Progressive Indexes

future work:

• Approximate Query Processing. One could also resort to using approximate

query processing techniques [12] to allow for a faster convergence (i.e., by

spending less time scanning data for the query, we can invest more time indexing

data). We can then build a progressive index as a by-product of the approximate

118



Chapter 6. Big Picture

query processing, leading to better accuracy and faster responses as the data is

queried more often.

• Indexing Methods. Other techniques can be adapted to work progressively

with different benefits. For example, instead of constructing the complete hash

table, we only insert n∗δ elements and scan the column’s remainder. The partial

hash table can be used to answer point queries on the indexed part of the data.

Another example is column imprints [54] where instead of immediately building

imprints for the entire column, only build them for the first fraction δ of the

data.

• Interleaving Progressive Strategies. As depicted in our decision tree, dif-

ferent progressive strategies can be more efficient in different scenarios. When

the indexing budget is small, the indexes can take longer to converge fully.

This longer period increases the chances of sudden changes in the workload

patterns before the index is fully built. Detecting these changes and changing

the progressive strategy on the fly can be beneficial for these cases.

• Indexing Structures. Different data structures can be used to exploit modern

hardware and boost access to more selective queries. In chapter 3, we choose

to progressively build a B+-Tree in our consolidation phase. However, other

structures like the ART-tree [40] can also be built progressively, with more

careful considerations on their creation costs and query performance.

• Complex Database Operations. Much like regular indexes, progressive

indexes could also be used for other database operations such as joins and

aggregations.

2.2 Progressive Merges

In chapter 5 we introduce a novel algorithm for merging appends into progressive

indexes. The work has still several engineering and research steps that must be taken

as future work:

• Integrating Merge Ripple With Progressive Indexing. In our experi-

ments, we compare against adaptive indexing using the merge gradual/com-

plete/ripple algorithms. However, this comparison would be even more significant

if these algorithms were implemented directly into Progressive Indexing. For

119



2. Future Work

example, if the main index algorithm is Progressive Quicksort, by using an

AVL-Tree, similar merge algorithms could be used.

• Refinement Method. In chapter 5, we only use Progressive Quicksort as our

refinement strategy within Progressive Mergesort. However, in the Progressive

Indexing work, it is demonstrated that different Progressive Indexing algorithms

can present better performance depending on the data distribution and workload.

With mergesort, we can select a different algorithm for each chunk in the

refinement step. Deciding which algorithm to use could drastically improve

performance.

• Merge Strategy. Deciding when to merge and which arrays to merge can be

beneficial to the cumulative cost of the workload since there is a trade-off on

the random access versus merging costs (i.e., keeping many smaller arrays or

frequently merging them in order to maintain only a small number of bigger

arrays). An algorithm that takes that this trade-off into consideration is left as

future work.

• Greedy Progressive Mergesort. Our current implementation of Progressive

Mergesort relies on a fixed δ for the entire workload. The development of a

cost-model to the merge phase will integrate it with greedy Progressive Indexing

algorithms. Hence, as future work, a greedy version of our Progressive Mergesort

can bring even fewer performance spikes to our algorithm.

• Handling Updates. We describe how to efficiently merge appends since these

are the most common types of updates in interactive data analysis. However,

although deletes and updates are not frequent, they might still occur. Therefore

Progressive Mergesort must be capable of properly handling them.

• Multidimensional Updates. Until now, we only focused on unidimensional

Progressive Indexing. However, multidimensional Progressive Indexing [43]

was recently proposed to efficiently index columns for queries with multiple

selective filters. In this algorithm, a KD-Tree is used to store and navigate the

partitions created by Progressive Indexing. To support updates on this structure,

Progressive Mergesort must be extended to consider the KD-Tree nodes to merge

multiple batches of updates correctly.

• Real Benchmarks. The Sloan Digital Sky Survey 1 is an open-source project

1https://www.sdss.org/

120

https://www.sdss.org/


Chapter 6. Big Picture

that maps the universe with an open data set and interactive-exploratory query

logs. Capturing the updates on this database can represent real patterns of

updates on interactive data.

121




