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CHAPTER 4

Multidimensional Progressive Indexing

1 Introduction

As seen in the previous chapter, techniques like Adaptive Indexing [36, 50] and Progres-

sive Indexing (Chapter 3) aim to alleviate the index construction issue on exploratory

workloads by creating partial unidimensional indexes as a result of query processing.

In this way, indexes are automatically created without any human intervention and

incrementally refined towards a full index, the more the data is accessed. However,

these techniques have very limited use on a broad group of data sets since they only

target unidimensional workloads. For instance, the 1000 genomes project [16] has

human genetic information, the Power data set1 that contains sensor information from

a manufacturing installation, and the SkyServer data set [56] which maps the universe,

are some of many examples that perform multidimensional filtering.

Pavlovic et al. [45] published a study on multidimensional adaptive indexes, initially

testing a Space-Filling Curve strategy, where multiple dimensions are mapped to one

dimension. They used unidimensional adaptive indexing techniques on top of the

created map. However, the first queries’ indexing burden was too high, making this

approach unfeasible for interactive times. They later propose the QUASII index, a

d-level hierarchical structure that similarly partitions the data as the coarse granular

index strategy [50]. When accessing one piece, the data is continuously refined until

all pieces are smaller than a given size threshold. This strategy is much more efficient

1https://debs.org/grand-challenges/2012/
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1. Introduction

in smearing out the cost of index creation than the Space-Filling Curve Adaptive

Indexing. However, it results in two highly undesirable characteristics for exploratory

workloads. (1) Due to the continuous piece refinement, it heavily penalizes queries

when they first access one piece; (2) since the index prioritizes an aggressive refinement

only on areas targeted by the executing query, it is not robust against changes in the

access pattern, resulting in performance spikes if the workload suddenly accesses a

previously unrefined piece.

This chapter introduces two novel algorithms to tackle the problem of multidi-

mensional adaptive indexing under exploratory data analysis. (a) The Progressive

KD-Tree, inspired by fixed-delta progressive indexing, introduces a per-query indexing

budget that remains constant during query execution. Hence, a user-controlled amount

of indexing is done per query. (b) The Greedy Progressive KD-Tree uses a cost model

to automatically adapt the indexing budget to keep the per-query cost constant until

full index convergence, achieving a low variance per-query.

1.1 Contributions

The main contributions of this chapter are:

• We introduce a new progressive indexing approach for multidimensional work-

loads named Progressive KD-Tree.

• We present a cost model for our Progressive KD-Tree to enable an adaptive

indexing budget.

• We experimentally verify that our techniques improve total execution time, initial

query cost, robustness, and convergence compared with the state-of-the-art.

• We provide an Open-Source implementation2 of all techniques discussed in this

chapter.

1.2 Outline

This chapter is organized as follows. In Section 2, we investigate related research

that has been performed on multidimensional indexes. In Section 3, we describe our

novel Multidimensional Progressive Indexes. In Section 4, we perform a quantitative

assessment of each of the novel methods we introduce, and we compare them with

2Our implementations and benchmarks are available at https://github.com/pdet/

MultidimensionalAdaptiveIndexing and https://zenodo.org/record/3835562
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Chapter 4. Multidimensional Progressive Indexing

the state-of-the-art on multidimensional adaptive indexing under three real workloads

and eight synthetic workloads. Finally, in Section 5, we draw our conclusions.

2 Related Work

In the previous chapter we discussed how the selection of which indexes to create

has been a long-standing problem in database automatical physical design. However,

the selection of the indexes is just part of the problem. Another equally important

problem is selecting which data-structure to use since each structure is catered to

different workload patterns and data distributions. Multidimensional access methods

can be distinguished between point access methods (PAMs) and spatial access methods

(SAMs) [18]. Typically, PAMs aim at databases storing only points with support to

spatial searches on them, like KD-Trees, PH-Tree, and flat structures. The term point

refers to both locations in space and point objects stored in the database. SAMs,

like R-Trees and Z-Ordering, aim at extended objects (e.g., polygons in geographic

databases) while, like PAMs, also storing points [55].

In this section, we briefly discuss the state-of-the-art multidimensional index

structures.

2.1 Multidimensional Data Structures

R-Tree [24]

The R-Tree is an N-ary multidimensional tree that generalizes the B-Tree. Nodes

represent rectangles that bound the insertion points of data (i.e., coverage), and

different rectangles may overlap data. Like B-Trees, the insertions and deletions

require splitting and merging nodes to preserve height-balance with all leaves at the

same depth. The internal nodes keep a way of identifying a child node and representing

the boundaries of the entries in the child nodes, while the external nodes store the

data. The R-Tree has a variant, the R*-Tree [5], for read-mostly workloads that

balances the rectangle coverage and reduces overlapping.

VA File [61]

The VA File is a flat structure that divides an m-dimensional space in 2b rectangular

cells. Users assign b bits to be distributed over the m dimensions. A unique bit-string

of length b is set for each cell, and data objects use a hash method to find the spacial

position to each value (i.e., approximation by the bit-string).
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2. Related Work

KD-Tree [7]

The KD-Tree is a multidimensional binary search tree, where k is the number of

dimensions of the search space that are switched between tree levels. The performance

of KD-Trees is of great advantage as searches, insertions, and deletions of random nodes

present logarithmic complexity and search of t tuples present sub-linear complexity.

The nodes of the tree are insertion points. Therefore, the order of insertion shapes

the tree structure but increases the complexity of maintenance when tree re-balancing

is needed after deletion.

PH-Tree [63]

The PH-Tree implements a bit-string prefix sharing tree to reduce the space require-

ments compared to single key storage. The bit-string representation is used to navigate

the dimensions in a Quadtree, where the first bit of the index entry indicates the

position in the search space.

This approach is advantageous in data sets where data points are not evenly spread

and share many prefixes. Otherwise, spread out data with large number of dimensions

increases the number of nodes and the depth of the prefix tree, which also increases

the space requirements and the lookup time.

Flood [42]

Flood is a multidimensional learned index. The learning algorithm’s goal is to help to

tweak performance parameters of the index, like the layout of the index by choosing

between a grid of cells or columns (in a 2-D representation), the size of each cell, and

the sort order of each cell or column.

Discussion.

To compare these index structures, we must put them in the context of the data

exploration scenario. Although Flood has a significant advantage of finding an efficient

setup by searching the parameters’ space, it is not a good fit for our types of workloads

since it requires a considerable amount of time to be invested in model training (i.e.,

index creation). PH-Trees present efficient lookups, but they are catered to data

sets where data points are not evenly spread and share many prefixes. Finally, KD-

Trees, VA Files, and R*-Trees have been thoroughly examined, in the main memory

context, by Sprenger et al. [55]. The work concludes that the KD-Trees outperform

R*-Trees and VA Files due to its point storage design. VA-Files have even a more
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Chapter 4. Multidimensional Progressive Indexing

significant disadvantage for shifting access patterns, common in exploratory data

analysis, since it is a non-adaptive structure with a static number of bits assigned

per dimension. Considering each technique’s main drawbacks and advantages, we

decided to use a KD-Tree as our multidimensional index of choice for exploratory

data analysis, as a full index baseline and the index structure that holds the data for

our progressive solution. In summary, the reasons are its robust performance against

shifting workloads, different from VA Files and PH Trees, the higher performance

when compared to R*-Trees, and low index creation cost compared to Flood.

2.2 Adaptive/Progressive Index

In this section, we discuss the state-of-the-art adaptive indexing techniques that

produce multidimensional indexes.

Space Filling Curve Cracking [45]

Space Filling Curve Cracking uses a space-filling curve technique that preserves

proximity (e.g., Z-Order, Hilbert Curve) to map multiple dimensions into one dimension.

This additional step enables the use of unidimensional adaptive/progressive indexing

techniques. Later on, queries also must be translated to this unidimensional mapping.

QUASII [45]

Following the adaptive indexing philosophy, QUASII incrementally builds a multidi-

mensional index prioritizing refinement on queried pieces. One significant difference

compared to standard adaptive indexing techniques is that QUASII has a more ag-

gressive refinement behavior. When accessing a piece, it recursively refines it until its

size drops below a size threshold . QUASII pays higher refinement costs when a piece

is accessed the first time to yield fast query response time when frequently accessing

refined pieces.

Adaptive KD-Tree [43]

The Adaptive KD-Tree is a multidimensional adaptive indexing technique that follows

the same principles as Adaptive Indexing [36]: (1) It uses the query predicate as hints

as to what pieces of the data should be indexed, and (2) only indexes the necessary

pieces to answer the current query. Our index has two main canonical phases. The

initialization phase only happens when the first query selecting a group of non-indexed
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Initialized  
Table

6 5 0
3 9 1

16 4 2
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A B Off

Figure 4-1: Adaptive KD-Tree: The adaptation phase with query: 6 < A ≤ 13 AND
5 < B ≤ 8, and size threshold = 4.

columns is executed. In this phase, it creates a copy of the original table into our

index table. In the adaptation phase, it swaps rows in the index table to partition it

according to the query predicates.

Figure 4-1 depicts an example of the adaptation phase when executing the first

query with predicates 6 < A ≤ 13 AND 5 < B ≤ 8 with size threshold = 4. In the

first part of our example, we have our initialized index table equal to the original table.

In the second step, we start the adaptation phase by generating the attribute-value

pairs (A, 6), (B, 5), (A, 13), (B, 8) and partitioning the index table for each of those

pairs. In the example, the second step demonstrates the partition of pair (A, 6). We

swap the rows of our table, taking 6 as a pivot for the first column A, and insert in

the KD-Tree the pivot 6 with the position offset 6. In the third step, we partition the

pair (B, 5), where the table is pivoted in the second column B with pivot 5, later on

adding it to the KD-Tree. Note that we could perform this partitioning in both the

top (A ≤ 6) and bottom (A > 6) pieces of our table. However, since the Adaptive

KD-Tree only indexes the minimum to answer the query, we only refine the piece
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that potentially contains query answers (here, A > 6), leaving the piece that surely

contains no query answers (A ≤ 6) unchanged. A similar process is done for the next

pair (A, 13) depicted as the fourth step. At this step, the resulting piece size reaches

the size threshold , and no further partitioning happens for the last pair (B, 8).

Discussion.

Space-Filling Curve Cracking is the first attempt to perform adaptive indexing of

multiple columns. However, as demonstrated by Pavlovic et al. [45], mapping is

prohibitively expensive on the first query, excluding this strategy from truly adaptive

indexes. QUASII is a more promising solution since it features characteristics that

are similar to standard adaptive indexing techniques. However, QUASII’s aggressive

refinement strategy is undesirable in an adaptive indexing strategy hurting query

robustness. Besides, QUASII forces initial queries to pay an unnecessarily high

cost. The Adaptive KD-Tree has a less aggressive refinement strategy than QUASII.

However, it still does not present the required fined-grained indexing to mitigate

the robustness problem, as Progressive Indexing has. Finally, other techniques are

self-proclaimed multidimensional adaptive indexes, like AQWA [3] and SICC [59].

However, they do not focus on exploratory data analysis but rather on adaptive

indexing for data ingestion. The main goal of AQWA is to adjust for changes in

the data in a Hadoop distributed scenario. Simultaneously, SICC mainly focuses on

reducing “over-coverage” in entries of frequent data ingestion in streaming systems.

Hence, they do not focus on a low penalty for the initial queries, on robustness or

index convergence.

3 Multidimensional Progressive Indexing

The Progressive KD-Tree is a multidimensional progressive indexing technique inspired

by Progressive Quick-Sort (Chapter 3). Like one-dimensional progressive indexing

techniques, the main goals of Progressive KD-Tree are to limit the indexing penalty

imposed on the first query, achieve robust performance, and ensure deterministic

convergence towards a full index — irrespective of the actual query workload or data

distribution. We accomplish all three goals by indexing a fixed-size portion of the

data with each query, independent of the query predicates. The per-query indexing

budget (and hence overhead over a scan) and the convergence speed can be controlled

by a parameter δ that determines the fraction of the entire data set indexed with each

query. Opting for workload independence, we need to choose the partitioning pivots
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independent of the query predicates. We use the average value (arithmetic mean)

to yield a reasonably balanced KD-Tree, also with skewed data. Our experiments

in Section 4 show that determining the median to guarantee a perfectly balanced

KD-Tree is prohibitively expensive and does not pay off. The Progressive KD-Tree

follows two phases. In the initial creation phase, each query copies a δ fraction of the

data out-of-place to our index while pivoting on the first dimension’s average value.

After all data has been copied, in the subsequent refinement phase, queries further

split the existing pieces until their size drops below a size threshold . When all pieces

reach the qualifying size, we consider that the index has converged to a full index. A

fully-converged Progressive KD-Tree will have the same structure as a pre-built full

index KD-Tree using arithmetic means as partitioning pivots.

3.1 Data Structure

Listing 3 KD-Node for Progressive Indexing
1 template <typename T>

2 struct KDNode {

3 T key;

4 unsigned int discriminator_attribute;

5 struct KDNode* left_child;

6 struct KDNode* right_child;

7 unsigned int start;

8 unsigned int end;

9 unsigned int cur_start;

10 unsigned int cur_end;

11 unsigned int left_sum;

12 unsigned int right_sum;

13 };

Instead of using a standard KD-Tree node in our data structure, our Progressive

KD-Tree uses a slightly extended KD-Tree node structure, as depicted in Listing 3.

The standard elements are a key, a discriminator attribute, and two pointers for the

left and right children (Lines 3-6). Since partitioning a single piece (i.e., splitting a

single node) can take multiple queries, we cannot simply keep a single offset pointing

to the final pivot location. Instead, we need to store the offsets marking the boundaries

of the piece at hand (Lines 7-8) as well as the offsets marking the progress of the

pivoting so far (Lines 9-10). Once a piece has been fully pivoted, the latter two offsets

are identical and mark the pivot’s location. In lines 11-12, we define the variables
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that sum the value of the next to-be-partitioned dimension. We use these values to

calculate the average of each piece for the next dimension, for example, the left pivot

is left sum
cur start−start .
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Figure 4-2: Progressive KD-Tree with index budget δ = 0.5 and size threshold = 2.
Four queries submitted in the workload.

3.2 Creation Phase

The creation phase copies the data from the original column into our index while

filtering and pivoting it on that column’s average value. The filtering process is similar

to the Adaptive KD-Tree piece scan when copying and pivoting a dimension of the

data. We create a candidate list to keep track of elements that qualify its filters.

This candidate list is subsequently refined when copying and pivoting the remaining

dimensions.

Figure 4-2 depicts an example of the creation phase in the iterations Create 1

and Create 2. In the Create 1 iteration, we allocate an uninitialized table in DSM

format, with columns A and B, having the same size as the original table columns. We

77



3. Multidimensional Progressive Indexing

start partitioning in the first dimension A. Unlike the Adaptive KD-Tree, the pivot

selection is not impacted by the query predicates. We use the average of that piece’s

dimension, which is calculated during data loading. In the example, the average value

of the whole column A is 9. We then scan the original table and copy the first N ∗ δ
rows to either the top or the bottom of the index, depending on how they compare

to the pivot. In our example, we index half of our table, since δ = 0.5. In this step,

we also search for any elements that fulfill the query predicate. Afterward, we scan

the not-yet-indexed fraction of the original table to answer the query completely. In

subsequent iterations, as depicted in Create 2, we scan either the top, bottom, or both

pieces of the index based on how the query predicate relates to the chosen pivot. In

our example, the running query has a filter 3 < A ≤ 8, and we only need to scan the

upper piece of our index. Finally, we copy and pivot the other half of our table to our

index.

Listing 4 details the creation phase. In lines 2-13, we initialize all necessary

variables to compute our candidate list and store elements in the correct position

related to the pivot. In lines 2-5, we select the original column, index column, and

the query pivots for the dimension discriminated by the root node. In lines 6-7, we

create the variables that hold the offsets of both upper and bottom indexed pieces

and update the root.cur start and root.cur end after finishing the execution. Line

8 stores an offset to the original table that indicates the last row that was indexed.

Line 9 subtracts from our budget the amount of data that will be indexed in this

iteration. Lines 11-13 initialize the candidate list that will result from the creation

phase and the go down bit vector that for each row keeps track of whether pivoting

moves that row to the top part or bottom part of the refined piece. In lines 14-24, the

copied elements are indexed, inserting them to either top or bottom of the index while

checking if their values match the query predicates (Lines 15 and 16). One might

note that all the code is predicated. We avoid branches that could lead to non-robust

(i.e., highly varying execution times) due to branch mis-predictions [48, 10]. In line

25, we omit from this listing the code that propagates the pivoting to the remaining

dimensions. This code sweeps over each remaining column’s respective piece and uses

the go down bit vector as set in line 21 to assign each value to the top part or bottom

part of the refined piece. The code performs a similar operation to the one described

in lines 14-24, with three main differences. First, we do not push elements into the

candidate list but rather manage the ones in there while checking for matches in the

next dimensions. Second, instead of the pivot comparison, we use the information

in the go down bit vector to place the elements in the column properly. Third, for
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Listing 4 Code Snippet of the Creation Phase

1 template <class OPL,class OPR> create(Query &q, int& budget) {

2 col = orig_tbl.columns[root.dim];

3 idx_c = table.columns[root.dim];

4 l = q[root.dim].low

5 h = q[root.dim].high

6 low_pos = root.cur_start;

7 high_pos = root.cur_end;

8 c_pos = root.cur_start + root.end - root.cur_end;

9 n_idx = min(c_pos + budget, root.end);

10 budget -= n_idx - c_pos;

11 bit_idx = 0;

12 CandidateList cl;

13 BitVec go_down = BitVec(n_idx-c_pos);

14 for (i = c_pos; i < n_idx; i++) {

15 mtch = OPL(col[i],l) & OPR(col[i],h);

16 cl.maybe_push_back(i,mtch);

17 big_pvt = (col[i] >= root.key);

18 sml_pvt = 1 - big_pvt;

19 idx_c[low_pos] = col[i];

20 idx_c[high_pos] = col[i];

21 go_down.set(bit_idx++, sml_pvt);

22 low_pos += sml_pvt;

23 high_pos -= big_pvt;

24 }

25 ...

26 root.cur_start = low_pos;

27 root.cur_end = high_pos;

28 return cl;

29 }

the first dimension after the root.dim we update root.left sum and root.right sum

according to the go down bit vector. After indexing all dimensions, in line 26-27, we

update the root offsets, and in line 28, we return the created candidate list that refers

to the δ fraction of the table. Hence, the function that calls the create method still

checks the not-yet-indexed fraction of the original table and the previously indexed

bottom/top index pieces accordingly.
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3.3 Refinement Phase

With the original table no longer required to compute queries, we now perform index

lookups. While doing these lookups, we further refine the index pieces until they all

have become smaller than a given size threshold, progressively converging towards a

full KD-Tree. We focus on refining pieces of the index required for query processing

(i.e., pieces containing query pivots). If these pieces are fully refined (i.e., the pieces

containing query pivots children reach a size below size threshold) and the indexing

budget is not over, refinement is continued on a size priority, refining the largest piece

first. The refinement is done by recursively performing quicksort operations to swap

rows inside the index. Like the creation phase, we also keep track of the sum left and

right children of the indexed piece, which is later used as pivots for the children. After

all the refinement for that query is completed, we perform a similar index lookup and

piece scan as the Adaptive KD-Tree. The only difference is that we need to also take

into account pieces where pivoting is not finished.

Figure 4-2 depicts an example of the refinement phase. In our example, the running

query has the filters 10 < A ≤ 20 and 7 < B ≤ 9. A lookup in the index indicates

a scan of the bottom piece, and hence that is the piece to be refined on dimension

B. We use root .right sum
root .end−root .current end

value as the pivot. In the example, the pivot is the

value 8. With δ = 0.5, we are capable of fully refining that piece around 8. Due to our

size threshold = 2, we mark the bottom piece as finished, and no further refinement

occurs.

Query Execution

In this section, we describe how we use the Progressive KD-Tree during query execution.

In the next paragraphs, we describe the two primary operations, the Index Lookup

and the Piece Scan.

Index Lookup. After performing the necessary index creation for the query, we

perform an index lookup followed by the scan of all pieces that fit our query predicates.

The index lookup starts from the root of the KD-Tree and recursively traverses the tree

depending on how the query relates to the current node key. In Figure 4-3 we depict

an example of the entire search process for predicates 6 < A ≤ 15 AND 0 < B ≤ 5.

The search method starts by comparing the root of the tree that indexes column A on

key 6, with the range 6 < A ≤ 15. We need to check the root’s right child since both

predicate boundaries are greater than the node (i.e., where all elements on A > 6 are

stored.). We now compare the range 0 < B ≤ 5 to the node that indexes column
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Figure 4-3: A search with predicates 6 < A ≤ 15 AND 0 < B ≤ 5 in the Adaptive
KD-Tree.

B on key 5. Note that this time, the predicate boundaries are lower or equal to the

node’s key. Hence, we only need to check its left child. Finally, since the left child is

null, we scan the piece starting on offset 5 until offset 9.

Piece Scan. The index lookup returns a list of pieces that we scan to answer

the query. For each piece, we have a pair of offsets indicating where they begin and

end and information of which predicates still need to be checked. For example, in

Figure 4-3, on the rightmost column, the index would have returned one piece, with

offsets 5 and 9. For this piece, we know that all elements in there are 6 < A and B ≤ 5.

Hence, we do not need to apply the lower and higher query predicates of attributes A

and B, respectively. However, whenever the index does not match our query predicates

exactly, we need to perform a multidimensional conjunctive selection on one or more

pieces. There are, in general, two ways to perform multidimensional conjunctive

selections in column stores. (1) We perform the selection on each column individually,

creating an intermediate result per column as (candidate) list of IDs (or as bit-vector).

Later, intersecting all lists (or and-ing all bit-vectors) to yield the final result. (2) We
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perform the selection over one column, creating an intermediate (candidate) list of IDs

(or as bit-vector). Then we use this candidate list (or bit-vector) to test the selection

predicate on the next column only for those tuples that qualified with the first column

and create a revised candidate list (or bit-vector) as an intermediate result reflecting

both selections. We continue accordingly for all remaining columns. Option (1) is

advantageous for low selectivities since they focus on sequential scans over the whole

data set, while option (2) presents the best performance over high selectivities since,

except the first column, we only check elements that qualify. Hence, in all our scans,

we use option (2) with a candidate list to achieve the best performance.

Interactivity Threshold.

The user must provide the Progressive KD-Tree with an interactivity time threshold

τ and a δ. We distinguish two situations depending on the full scan costs. (1) If a

simple scan of the entire table does not exceed τ , we use the cost model, presented in

the next section, to calculate a δ′ such that the first query (incl. indexing a δ′ fraction

of the data) does not exceed τ . We then use δ = min(δ, δ′) for all queries, ensuring

that none exceeds τ . (2) If a simple scan of the entire table does exceed τ , we use

the user-provided δ until the KD-Tree is sufficiently built such that the scan cost

per query drops below τ . Then, we calculate a δ′ as in situation (1) and proceed as

described above.

3.4 Greedy Progressive Indexing

While the δ parameter of Progressive KD-Tree allows us to control both the per-query

indexing effort (and hence overhead) and the speed of convergence towards a full index,

there is a mutual trade-off. The smaller δ, the lower the overhead, but the slower the

convergence; the larger δ, the faster the convergence, but the higher the overhead.

Let tscan denote the time to scan the entire data set, tbudget denote the time it

takes to pivot/refine a δ fraction of the data set, t′i denote the net query execution

time (i.e., without refining the index) of the ith query Qi given the current state of

the index, and ti = t′i + tbudget denote the gross execution time (i.e., incl. refining the

index) of the ith query Qi given the current state of the index. The gross execution

time ti of each query with Progressive KD-Tree is bounded by ttotal = tscan + tbudget ,

i.e., ti ≤ ttotal . While this is a tight bound for the first query (t′0 = tscan ⇒ t0 = ttotal),

it gets looser the more queries are being processed and the more of the index is partly

constructed, as then the partial index is likely to let queries become faster than a scan
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System ω cost of sequential page read (s)
κ cost of sequential page write (s)
φ cost of random page access (s)
σ cost of random write (s)
γ elements per page

Data set N number of elements in the data set
& Query α % of data scanned in partial index

d number of dimensions

Index δ % of data to-be-indexed
ρ % of data already indexed
h height of the KD-Tree

Table 4.1: Parameters for Progressive Indexing Cost Model.

(t′i < tscan ⇒ ti < ttotal).

While generally decreasing, t′i, and hence ti, can still vary significantly until the

index is fully built.

We propose Greedy Progressive KD-Tree as a refinement of Progressive KD-Tree to

ensure that, until the index is fully created, each query Qi has the same gross execution

time ti = t0 = ttotal , i.e., exploits the full difference between ttotal and t′i for indexing.

In this way, we speed-up convergence without increasing total query execution time.

To do so, we introduce a cost model that estimates the net execution time t′i for

each query Qi and calculates its maximum indexing budget as t′budget ,i = ttotal − t′i,
from which we derive δ′i for each Qi. The first query uses the user-provided δ, i.e.,

δ′0 = δ ⇒ t′budget ,0 = tbudget .

Cost Model.

The cost model considers the query and the state of the index in a way that is not

affected by different data distributions, workload patterns, or query selectivities. In a

nutshell, our cost model can tell how much data will be scanned, hence yielding a con-

servative δ′i that guarantees that our query cost will never exceed ttotal . A conservative

δ′i means the highest possible δ′i in the worst-case, where any construction or refinement

does not boost the current query execution. However, if the query execution finishes

below the ttotal limit, we perform one extra step called the reactive phase to perform

an extra indexing until fully consuming the ttotal limit. The parameters of the Greedy

Progressive KD-Tree cost model are summarized in Table 4.1.
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Creation Phase

The total time taken in the creation phase is the sum of (1) the index lookup time

(i.e., time to access the root node and decide if we scan the top/bottom of our table),

(2) the indexing time, and (3) the original table scan.

(1) To calculate the index lookup time, we need to account for the node access and

the top/bottom access of each column of our table, where we perform two random

accesses 2 ∗ φ ,one for the root and one to access the indexed table’s first column,

and α∗N
γ

for the total data we must scan. Since our data has d dimensions, we must

account one random access for the additional columns and multiply the sequential

scan by d− 1. The index lookup time is tlookup = 2 ∗φ+ α∗N
γ

+ (d− 1) ∗φ. Simplifying

to tlookup = α∗N
γ

+ (d+ 1) ∗ φ.

(2) The indexing time (i.e., index construction time) consists of scanning the base

table pages and writing the pivoted elements to the result array. The indexing time

is calculated by multiplying the time it takes to scan and write a page sequentially

(κ + ω) by the number of pages we need to write summed with the access of each

dimension, resulting in tindexing = (κ+ ω) ∗ N∗δ
γ

+ (d− 1) ∗ φ.

(3) The original table scan, is given by sequentially reading all not-yet-indexed

data. The total fraction of the data that remains unindexed is 1− ρ− δ, hence the

scan time of the original table is given by tscan = (1−ρ−δ)
γ
∗ ω.

The total time taken for the creation phase is the sum of all three steps, hence

ttotal = tlookup + tindexing + tscan and we set δ =
tbudget

(κ+ω)∗N
γ
+(d−1)∗φ .

Refinement Phase

In the refinement phase, we no longer need to scan the base table. Instead, we only

need to scan the fraction α of the data in the index. However, we now need to (1)

traverse the KD-Tree to figure out the bounds of α, and (2) swap elements in-place

inside the index instead of sequentially writing them to refine the index. The height

h times the cost of random page access φ gives the cost for traversing the KD-Tree,

resulting in tlookup = h ∗ φ. For the swapping of elements, we perform predicated

(i.e., branch-free) swapping [10] to allow for a constant cost regardless of how many

elements we need to swap. The total swap cost is the number of elements we can

swap times the cost of swapping them, which is two random writes multiplied by the

d dimensions, i.e., tswap = N ∗ δ ∗ 2 ∗ d ∗ σ. The total cost in this phase is therefore

equivalent to ttotal = tlookup + α ∗ tscan + tswap. Finally, we set δ =
tbudget
N∗2∗d∗σ for the

adaptive indexing budget.
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Interactivity Threshold

With Greedy Progressive KD-Tree, in addition to the mandatory interactivity time

threshold τ , the user can additionally provide a “penalty” budget δ or a limit x of

queries. We distinguish two situations, depending on the full scan cost. (1) If tscan < τ ,

we set ttotal = τ , i.e., ensure that no query exceeds τ , and use our cost model to

calculate all tbudget ,i and δ′i (incl. the first query’s tbudget ,0 and δ′0) as described above. In

this case, we ignore the also provided δ or x. (2) If tscan ≥ τ , we distinguish two cases.

(2a) In case the user provided a “penalty” budget δ, we start with ttotal = tscan + tbudget

with δ, and use our cost model to calculate all tbudget ,i and δ′i until the KD-Tree is

sufficiently built such that the scan cost per query drop below τ .

(2b) In case the user provided a limit x of queries, we use our cost model to

calculate the amount of indexing that is required to build a partial KD-Tree such that

the remaining scan cost per query is less than τ , distribute this indexing work over x

queries, and calculate how much indexing budget tbudget++ is needed for each query.

With this, we proceed as in (2a) for the first x queries. In both cases, (2a) & (2b), we

then proceed with the user-provided τ as in situation (1).

4 Experimental Analysis

In this section, we provide a quantitative assessment of our proposed progressive

indexes. This section is divided into four parts. First, we define all real and synthetic

data sets and workloads used in our assessment. Second, we analyze the impact of

δ on the Progressive KD-Tree in terms of first query cost, pay-off, time until full

convergence, and total time. Third, we provide an in-depth performance comparison

of our proposed progressive indexes and analyze their behavior under three real and

eight synthetic workloads. We also provide comparisons with the state-of-the-art on

multidimensional adaptive indexes QUASII (Q) and Adaptive KD-Tree (AKD). We

use two variations of a full KD-Tree index as a baseline. The first one using the

average value of a piece as the pivot (AvgKD), and the second one using medians

(MedKD). Finally, we study our algorithms’ behavior when the full scan cost is higher

than the interactivity threshold.

4.1 Setup.

All indexes were implemented in a stand-alone C++ program. All the data is 4-

byte floating-point numbers stored in a columnar format (i.e., DSM). The code was
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Figure 4-4: Visual representation of the different synthetic workloads.

compiled using GNU g++ version 9.2.1 with optimization level -O3. All experiments

were conducted on a machine with 256 GB of main memory, an Intel Xeon E5-2650

with 2.0 GHz clock, and 20 MB of L3 cache size.

4.2 Data Sets & Workloads

We use four different data sets in our assessment.

Power. The power benchmark consists of sensor data collected from a manufac-

turing installation, obtained from the DEBS 2012 challenge3. The data set has three

dimensions and 10 million tuples. The workload consists of random close-range queries

on each dimension, a total of 3000 queries.

Skyserver. The Sloan Digital Sky Survey is a project to map the universe. Their

data and queries are publicly available at their website4. The data set we use here

consists of two columns, ra and dec, from the photoobjall table with approximately 69

million tuples. The workload consists of 100,000 real range queries executed on those

two attributes.

Genomics. The 1000 Genomes Project collects data regarding human genomes.

It consists of 10 million genomes, described in 19 dimensions. The workload consists

of 100 queries constructed by bio-informaticians.

Uniform. It follows a uniform data distribution for each attribute in the table,

consisting of 4-byte floating-point numbers in the range of [0, N), where N is the

experiment’s number of tuples. We use eight different synthetic workloads in our

performance comparison, similar to those described in Chapter 3 but extended for

3https://debs.org/grand-challenges/2012/
4http://skyserver.sdss.org
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the multidimensional case. Figure 4-4 depicts a two-dimensional example of these

workloads with the mathematical formulas used to generate them. In addition to these

workloads, we propose a new one, called shifting. The shifting workload represents

a common scenario in data exploration where the columns being queried change

constantly (e.g., the data scientist executes ten queries on three columns, which

leads him to investigate the other three columns, and so forth). When generating

a synthetic workload, we take as a parameter the overall query selectivity σ. To

keep σ constant, regardless of the number d of dimensions used, we set the per-

dimension selectivity with d dimensions to σd = d
√
σ; e.g., for σ = 1%, we get

σ2 = 10%, σ4 = 31%, σ6 = 46%, σ8 = 56%.

4.3 Delta Impact

The parameter δ defines a percentage of the total amount of our data that is pivoted

per query. If δ = 0, no indexing is performed, hence only full scans are executed,

and the index will never converge. On the other hand, if δ = 1, the creation phase

completes in the first query, with the data fully pivoted once in the first dimension. In

this section, we explore how δ impacts our index in terms of the burden on the first

query, how many queries it takes for the index to pay-off when compared to a full scan,

how much time it takes until full index convergence, and the impacts on cumulative

time for the entire workload. We use a uniform data set and workload, with 30 million

rows, d ∈ {2, 4, 6, 8} columns, and 1000 queries with 1% selectivity. We test with

multiple δ values, ranging from 0.1 to 1. Where applicable, we compare Progressive

KD-Tree (PKD) with Adaptive KD-Tree (AKD), QUASII (Q), Average/Median KD-

Tree (AvgKD/MedKD), Full Scan (FS). Both Average and Median KD-Tree are built

using the attribute order given by the table schema.

First Query

The first query cost is the cost of fully scanning the data with the addition of copying

and pivoting a δ-fraction of the data. Figure 4-5 depicts the first query cost over

varying δ for multiple columns. With Progressive KD-Tree, the cost increases linearly

as we increase δ, and hence the amount of indexed data, with the impact being larger,

the more columns are involved, i.e., the more data needs to be copied. With δ = 0, the

first query merely performs a Full Scan. The first query cost for Adaptive KD-Tree is

about the same as for Progressive KD-Tree with δ ∈ [0.6, 0.7]. The first query cost of

QUASII is significantly higher than those of both Adaptive and Progressive KD-Tree
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Figure 4-5: First query cost.

due to the more intensive refinement work of QUASII. For Average KD-Tree and

Median KD-Tree, the first query costs grow linearly with the number of columns. We

omit them from Figure 4-5 as building the entire index is far more expensive than any

query shown there.

Pay-Off

In this experiment, we define pay-off as the number q of queries required until investing

in incrementally building the Progressive KD-Tree pays off compared to performing only

full scans without indexing, i.e., the smallest q for which
∑q

i=0 ti,progKD ≤
∑q

i=0 ti,FScan .

Figure 4-6 depicts the pay-off for multiple dimensions. While a small δ limits the

indexing impact over the initial queries, it also limits and the indexing progress. For

workloads with high per-column selectivity, this results in the queries being capable of

taking advantage of the little index progress early on. However, in a workload with

a low per-column selectivity (e.g., with 8 columns, we need a per-column selectivity

of 56% to yield an overall query selectivity of 1%), this results in the queries not

being able to take advantage of the indexing early on. For example, with δ = 0.1,

it takes 10 queries to pivot the first node fully. Since in our experiment, we use a

uniform data set, and the Progressive KD-Tree uses averages as pivots, that results in

a pivot that partitions the data on two pieces with approximately 50% of the total

data. In the case of an 8-dimensional workload with per-column selectivity of 56%, the
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Figure 4-6: #Queries until Pay-off.

workload cannot take advantage of the index for the first 10 queries. Hence, the initial

queries always perform index creation and full scans, resulting in a higher pay-off

when compared to lower per-column selectivities. Furthermore, a higher δ reduces

the limitation on the index progress, creating an index that can boost queries early

on and diminishing the number of queries for the pay-off. Regarding the minimal

indexing for the given workload, Adaptive KD-Tree pays-off as early as the quickest

variant of Progressive KD-Tree (δ = 0.1).

Convergence

The convergence is defined as the time, in seconds, it takes for the Progressive KD-

Tree to fully index the data and achieve the same query performance as the Average

KD-Tree. Figure 4-7 depicts the convergence for multiple dimensions. The time to

converge increases with the number of dimensions because the average query time

also increases. However, since δ determines a percentage of the data that is indexed

per query, the number of dimensions has no impact on the number of queries to

converge. For example, with δ = 0.1, the number of queries to converge is about 100,

independent of the number of columns.
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Figure 4-7: Time until Convergence.
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Figure 4-8: Cumulative time (1000 queries).

Cumulative Time

In Figure 4-8, downward-pointing triangles (“Total”) mark the cumulative times to

execute the entire workload of 1000 queries, while upward-pointing triangles (“After”)

mark the cumulative times for only the tail of the workload after the index is fully built

and used for optimal query performance, i.e., no further index refinement is performed.
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The shaded range between both indicates the cumulative time until the index is fully

built. Progressive KD-Tree takes at most 103 queries to converge to a full index with

δ = 0.1, or even as a mere 10 queries with δ = 1. Consequently, 90% (δ = 0.1) to

99% (δ = 1) of the 1000 queries in the workload benefit from the fully-built index,

accounting for the majority of the cumulative execution time due to their number

rather than per-query time. Only between 1% (δ = 1) and 10% (δ = 0.1) of the

workload contribute to progressively constructing the index. For the non-progressive

techniques, we only show the “Total” workload time without breaking it down into

before and after convergence. Adaptive KD-Tree and QUASII never converge in this

experiment, while Average KD-Tree and Median KD-Tree converge with the first

query by design. Overall, with δ ≥ 0.2, Progressive KD-Tree yields about the same

total workload time as the non-progressive techniques. Only in the 8-dimensional

scenario, QUASII and Adaptive KD-Tree outperform Progressive KD-Tree.

Picking a Delta (δ).

For exploratory data analysis, our indexes must not impose a high burden over the

initial queries while still paying off their investments quickly and preferably converging

fast and presenting a low total cost. Taking these objectives in mind, we select a

δ = 0.2 for our performance comparisons. It offers a sharp decrease in total cost and

convergence compared to δ = 0.1, without a significant increase in cost in the first

query.

4.4 Performance Comparison

In the remainder of the experimental section, we will focus on comparing the

performance of the Progressive KD-Tree (PKD) and the Greedy Progressive KD-

Tree (GPKD) with the state-of-the-art. In particular, we compare it with QUASII (Q),

Adaptive KD-Tree (AKD), and two KD-Tree full-index implementations, the Average

KD-Tree (AvgKD) that uses the average value of pieces as pivots and the median

KD-Tree (MedKD) that uses the median values as pivots. We also test a Full Scan (FS)

implementation using candidate lists as the baseline.

We verify four main characteristics that are desirable in indexing approaches for

multidimensional exploratory data analysis. (1) The first query cost. (2) The number

of queries executed, so the investment performed on index creation pays-off. (3) The

workload robustness. (4) The total workload cost. To evaluate our indexes, we execute

all workloads as described in Section 4.2.
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We execute the real workloads as given. For the Synthetic workloads, we generate

d = 8 dimensions, with 300 million tuples for Uniform, Skewed, SequentialZoom, and

50 million tuples for all others. All queries have σ = 1% overall selectivity, while

the per-dimension selectivity for all columns is σ8 = 56%. The only exception is the

sequential workload, where we only generate two dimensions with σ2 = 0.1%. This

is because, with the sequential workload, query ranges must not overlap; with more

than two attributes, the per attribute selectivity is too big, and using query selectivity

σ = 1% would yield only 10 disjoint queries. Hence, we decrease overall selectivity to

σ = 0.0001%, which yields 1000 disjoint queries.

We use size threshold = 1024 tuples as a minimum partition size for all indexes.

Unless stated otherwise, all progressive indexing experiments use an interactivity

threshold equal to the first query cost of PKD with δ = 0.2.

First Query.

MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

50
M

Unif(8) 20.20 12.46 5.11 3.07 1.36 1.36 0.91
Skewed(8) 20.23 12.48 6.25 3.49 1.26 1.26 0.82

Zoom(8) 20.28 12.68 6.13 3.24 1.32 1.31 0.84
Prdc(8) 20.17 12.42 6.99 6.94 0.99 1.00 0.60

SeqZoom(8) 19.98 12.42 5.23 2.90 1.42 1.41 0.93
AltZoom(8) 20.18 12.43 6.98 6.93 0.99 1.00 0.60

Shift(8) 20.20 12.46 5.11 3.07 1.36 1.36 0.91
Seq (2) 15.88 8.30 4.01 0.68 0.26 0.26 0.19

R
ea

l Power 1.52 0.83 0.33 0.23 0.08 0.08 0.06
Genomics 2.58 2.62 1.25 0.99 0.27 0.27 0.03
Skyserver 14.31 6.84 1.19 0.63 0.36 0.35 0.26

30
0M

Unif(8) 146.72 83.91 37.25 20.93 8.17 8.17 5.47
Skewed(8) 146.80 84.01 43.06 21.24 7.94 7.96 5.12

SeqZoom(8) 146.87 84.36 35.93 18.08 8.84 8.83 6.41

Table 4.2: First query response time (Seconds).

Table 4.2 depicts the first query cost of all algorithms on all workloads. The

Median KD-Tree and the Average KD-Tree present the highest times on the first

query since they create a full index when we query a group of columns for the first

time. The Median KD-Tree usually presents a higher cost since finding the median of

a piece is more costly than finding the average value. The adaptive indexes are up to

one order of magnitude cheaper than the full indexes since they only index a focused

region necessary to answer the query. QUASII has a more aggressive partitioning
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algorithm than the Adaptive KD-Tree (for example, in the first query of the uniform

workload, the Adaptive KD-Tree creates 161 nodes while QUASII creates 13,480)

and, thus, ends up being a factor 2 slower in the first query evaluation. Finally, both

progressive indexing solutions have the same time on the first query since they execute

it with the same δ. They impose the smallest burden on the first query and are up to

one order of magnitude faster than the adaptive indexing solutions.

Pay-off.

MedKD AvgKD Q AKD PKD(.2) GPKD(.2)

50
M

Unif(8) 22.19 13.57 11.12 6.83 31.41 22.88
Skewed(8) 23.67 14.42 9.90 5.44 36.06 28.06

Zoom(8) 31.25 18.54 6.19 3.26 39.50 30.19
Prdc(8) 22.00 13.47 7.08 7.09 29.14 22.53

SeqZoom(8) 21.22 13.20 5.27 2.91 32.00 24.39
AltZoom(8) 21.53 13.15 8.12 7.57 19.15 26.46

Shift(8) 2094.98 1319.28 1085.27 26.34 1152.43 1263.61
Seq (2) 15.89 8.30 4.07 51.17 1.93 7.62

R
ea

l Power 1.79 0.96 0.81 0.41 1.04 1.80
Genomics 6.41 6.49 9.06 6.09 16.16 17.69
Skyserver 14.32 6.84 1.24 0.75 2.91 9.40

30
0M

Unif(8) 154.82 87.70 74.92 40.52 197.89 160.04
Skewed(8) 159.33 88.26 65.96 32.97 229.73 180.63

SeqZoom(8) 151.92 91.32 36.17 18.17 185.14 155.27

Table 4.3: Pay-off (Seconds).

Table 4.3 depicts the time it takes for the investment spent on index creation to

pay-off when compared to a full scan. For the full index approaches, the Average

KD-Tree presents a smaller pay-off than the Median KD-Tree due to a lower cost

on index creation while maintaining a similar cost on index lookup. In the adaptive

solutions, the Adaptive KD-Tree has the lowest pay-off, not only when compared to

QUASII, but overall, this is a direct result of its core design of only indexing the

pieces necessary for the executing query. At the same time, QUASII performs a more

aggressive refinement strategy that increases its pay-off. The Adaptive KD-Tree has

the worst pay-off in the sequential workload, which represents its worst-case scenario.

Finally, the progressive solutions present the highest pay-off in general. However,

it is important to notice that we picked our δs optimizing for a low burden in the

first query. Since most experiments are with 8 columns, as depicted in Figure 4-6

to optimize for a low pay-off we would need to use larger δs. One can notice that
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the progressive solutions perform the best on the sequential workload due to the low

number of columns benefiting from the small δ. One can notice that for the Shift(8)

workload, no algorithm besides the Adaptive KD-Tree pays-off due to the low number

of queries executed before shifting the columns we are looking into. Figure 4-9 depicts
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Figure 4-9: Cumulative response time.
Genomics, first 30 queries.

the cumulative response time of the first 30 queries in the Genomics Benchmark.

Compared to full indexes, both adaptive and progressive indexes take longer to pay-off

and achieve full index response time. This is due to the full indexes having a low first

query cost, as discussed in the first query sub-section.

Robustness.

To calculate the robustness, we check the variance in per-query cost, for the first 50

queries or up to full index convergence. For full indexes, the variance is 0 because

it fully converges in the first query. Table 4.4 depicts the robustness of all adaptive

and progressive algorithms. The Adaptive KD-Tree is as robust as QUASII. The

progressive indexing solutions are the most robust options, with up to 3 orders of

magnitude lower variance than the adaptive indexing approaches, with the Greedy

Progressive KD-Tree always being the most robust, with a constant per-query cost

until convergence due to its cost model adaptive δ (Fig. 4-10).
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Q AKD PKD(.2) GPKD(.2)

50
M

Unif(8) 6E-01 2E-01 9E-02 1E-03
Skewed(8) 8E-01 2E-01 8E-02 2E-03

Zoom(8) 7E-01 2E-01 8E-02 1E-03
Prdc(8) 1E+00 9E-01 4E-02 6E-04

SeqZoom(8) 5E-01 2E-01 1E-01 2E-03
AltZoom(8) 1E+00 9E-01 8E-02 6E-04

Shift(8) 2E+00 9E-01 3E-02 1E-03
Seq (2) 3E-01 3E-03 1E-03 8E-05

R
ea

l Power 3E-03 1E-03 6E-04 3E-05
Genomics 2E-01 6E-02 1E-02 9E-04
Skyserver 4E-02 8E-03 4E-03 2E-04

30
0M

Unif(8) 3E+01 1E+01 4E+00 3E-02
Skewed(8) 4E+01 9E+00 3E+00 3E-02

SeqZoom(8) 3E+01 6E+00 4E+00 5E-02

Table 4.4: Query time variance (smaller is better).
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Figure 4-10: Per query response time.
Uniform(8), first 50 queries.

Total Response Time.

Table 4.5 depicts the total response time of all benchmarks. The Progressive Indexing

approaches have a very similar response time compared to the full indexes due to their

design characteristics prioritizing robustness and convergence over total response time,

which is reinforced by the low δ picked for the experiments. Adaptive indexing always
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MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

50
M

Unif(8) 109.7 101.4 95.6 74.3 122.6 109.9 857.5
Skewed(8) 147.6 138.3 107.6 43.1 160.8 151.1 856.6

Zoom(8) 52.0 40.9 11.4 7.1 58.5 51.6 687.1
Prdc(8) 85.8 73.6 61.9 229.9 93.3 86.4 807.7

SeqZoom(8) 31.0 24.2 8.2 4.5 46.6 34.1 499.6
AltZoom(8) 44.0 34.2 18.9 22.4 53.4 48.3 747.0

Shift(8) 2095.0 1319.3 1085.3 775.5 1152.4 1263.6 885.5
Seq (2) 15.9 8.3 6.0 102.9 7.8 7.6 332.6

R
ea

l Power 26.0 24.4 24.6 31.3 25.0 24.7 164.6
Genomics 10.9 10.9 10.6 7.3 16.2 17.7 16.1
Skyserver 16.0 14.1 6.9 12.0 10.7 10.4 20186.5

30
0M

Unif(8) 468.8 366.9 422.9 352.0 558.4 472.7 5423.8
Skewed(8) 581.9 399.8 521.0 195.2 674.9 595.9 5367.1

SeqZoom(8) 183.0 122.5 48.7 24.5 277.3 186.0 3221.2

Table 4.5: Total response time (Seconds).

has the lowest total response time due to its high focus on refining pieces requested by

the currently executing query. The Adaptive KD-Tree presents the fastest results for

most of the workloads. The exception is for highly skewed workloads (e.g., Alternating

Zoom and SkyServer), which is due to QUASII’s extra refinement paying-off almost

immediately, and in the Periodic and Sequential Benchmarks.

The Sequential benchmark emulates the worst-case scenario for the Adaptive

KD-Tree, where the KD-Tree ends up almost equal to a linked list. This happens

due to blindly adapting using the query predicates and because the KD-Tree has no

self-balancing mechanism.

The Shifting benchmark also presents a peculiar result. The only index with a faster

response time than the full scan is the Adaptive KD-Tree, with its workload-dependent

refinement approach quickly paying off for such a small window of queries.

4.5 Impact of Dimensionality

In this section, we evaluate how the number of dimensions affects the performance

of each technique. We experiment with a uniform workload of 1000 queries with 1%

selectivity on a uniform data set with 2, 4, 8, and 16 columns. Table 4.6 depicts

the first query cost, time to pay-off, time until convergence, robustness, and total

execution time for each index. Similar to the results presented in the previous section,

the Average KD-Tree has the upper hand in terms of total cost and number of queries

until pay-off, while the Progressive KD-Trees are the most robust with a predictable
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MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

U
n
if

(2
)

First Query 15.94 8.35 2.89 1.05 0.55 0.54 0.52
PayOff 16.05 8.40 5.56 1.63 1.94 8.18 -

Convergence - - * * 9.68 7.78 -
Robustness - - 0.20 0.02 0.01 0.00 -

Time 19.08 11.49 10.76 9.34 12.75 11.24 425.34

U
n
if

(4
)

First Query 17.13 9.56 3.14 1.65 0.83 0.82 0.65
PayOff 17.33 9.66 5.80 3.26 4.65 11.40 -

Convergence - - * * 14.47 10.66 -
Robustness - - 0.20 0.08 0.03 0.00 -

Time 25.27 17.72 17.13 18.32 22.32 19.39 614.59

U
n
if

(8
)

First Query 20.20 12.46 5.11 3.07 1.36 1.36 0.91
PayOff 22.19 13.57 11.12 6.83 31.41 22.88 -

Convergence - - * * 38.02 21.34 -
Robustness - - 0.60 0.20 0.09 0.00 -

Time 109.69 101.41 95.59 74.27 122.60 109.90 857.54

U
n
if

(1
6)

First Query 45.10 36.99 29.19 10.85 2.07 2.05 1.30
PayOff 223.96 173.06 50.65 35.64 183.21 185.68 -

Convergence - - * * 96.14 74.17 -
Robustness - - 20.00 3.00 0.03 0.08 -

Time 1054.69 1023.24 461.45 260.02 1026.44 1029.89 1258.90

Table 4.6: Performance difference on Uniform benchmark with different number of
attributes.

convergence. One can notice that as the number of dimensions increases, the difference

in total time and pay-off between the Adaptive Indexing solutions and the Progressive

Indexing increases drastically. This happens due to the convergence principle of

progressive indexing, which causes it to behave similarly to a full index.

4.6 Full Scan Exceeding the Interactivity Threshold

Figure 4-11 depicts the behavior of the Adaptive KD-Tree (AKD), the Progressive

KD-Tree (PKD), and both options for the Greedy Progressive KD-Tree, with a fixed

number of queries as input (GPFQ) and a fixed penalty (GPFP). For this experiment,

we set our interactive threshold to 0.5s, approximately half the cost of a full scan.

AKD performs the necessary indexing as a pre-processing step during the first query.

Hence its first query is one order of magnitude more expensive than a full scan. Due

to this investment, all remaining queries are under the threshold. PKD starts with

the user-provided δ of 0.2 and gradually reaches a scan cost below the interactivity

threshold. At that point, it calculates a new δ′, which gradually converges to a full
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Figure 4-11: Adaptive and Progressive KD-Tree with scans costs exceeding the
interactivity threshold; first 100 queries.

index. Both GPFQ and GPFP have similar behavior. They start at a cost higher

than the interactivity threshold, have a sudden drop to the threshold cost, and later

one more drop until full convergence. For GPFQ, this first drop happens after ten

queries, as requested by the user, at the expense of slightly higher first query costs

than GPFP. GPFP uses an indexing penalty of δ = 0.2, and only drops once pieces

are small enough, slightly later than GPFQ.

5 Summary

This chapter extended existing work on multidimensional adaptive indexing by in-

troducing two new progressive indexing algorithms. We showed that our algorithms

are superior compared with state-of-the-art multidimensional indexing in various real

and synthetic workloads. In summary, both Progressive KD-Tree’s present the lowest

penalty on the initial queries, with the Greedy Progressive KD-Tree yielding the fastest

convergence and best robustness. In general, which technique to use depends on the

properties desired by the user. If the ultimate goal is the total cost, the Adaptive

KD-Tree is the algorithm of choice. However, in exploratory data analysis, where we

want to keep the impact on initial queries low, and we want a constant query response

time without performance spikes, Greedy Progressive KD-Tree is the logical choice.

Up to this point in this thesis, we explored how to create uni and multidimensional
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Progressive Indexes. However, these indexes assume that the data is immutable (i.e.,

no appends or updates happen). In the next chapter, we propose one new progressive

algorithm designed to merge updates into Progressive Indexes.
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