
Progressive Indexes
Timbó Holanda, P.T.

Citation
Timbó Holanda, P. T. (2021, September 21). Progressive Indexes. SIKS Dissertation Series.
Retrieved from https://hdl.handle.net/1887/3212937
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3212937
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3212937


CHAPTER 2

Background

In this chapter, we will cover the basic knowledge necessary to read this thesis. We will

start with an overview of Relational Database Systems (Section 1) and their physical

layout (Section 1.1). We continue with an overview of Interactive Exploratory Data

Analysis (Section 2) and give a general explanation of indexing techniques and how

they can be used to boost interactive exploratory queries (Section 3).

1 Relational Database Systems

Relational Database Systems (RDBMS) have been around since the early 70s. They

are essential to any application that must access persistent data. They implement

various techniques that guarantee data integrity, fast data access, transaction control

and overall facilitate the development of a new application. The programmer does not

need to worry about which data structures to represent his data, how to guarantee

ACID (Atomicity, Consistency, Isolation, Durability) properties, or protecting his data

against different types of corruption (e.g., hardware failures).

As an example, consider that a developer wants to create an online music store.

He must store information about artists (e.g., their name, year they started, their

country, and music style) and about their albums (e.g., album name, the year they

were released, and the artist that made it). A simple way of storing this data would be

to use text files (e.g., CSVs). However, the developer now has to implement methods

to scan and write these files while being smart enough to store them on efficient data

19



1. Relational Database Systems

structures. He also must use the correct algorithms to join the data in these files.

And must deal with representation issues (e.g., how to store an album made as a

collaboration of multiple artists?), transaction issues (e.g., what happens if two users

alter the file simultaneously?) and data corruption (e.g., what happens if we are

writing on the file and we experience a power shortage?). A more straightforward

solution is to use RDBMSs, since they are designed to tackle these problems.

1.1 Physical Layout

(a) Row-Store. (b) Column-Store.

Figure 2-1: Physical layout of relational databases.

RDBMSs do not store data as text files but rather as a table composed of n

columns, where every row of this table represents a different entity with values for each

of these columns (See Figure 2-1). An essential physical layout decision is choosing

how the data should be partitioned, and there are two primary ways of doing it, a

row-store or a column-store.

In the row-store model, data is partitioned in rows (i.e., the rows are stored

consecutively in memory). This model is preferred for transactional workloads (i.e.,

when most queries update only a few tuples) since individual rows can be fetched

computationally cheap. This model’s main disadvantage is when you must retrieve a

lot of data but not from all columns. Since rows are stored consecutively in memory,

you will fetch data from columns you are not interested in, essentially wasting time.

In a typical analytical scenario, the user is only interested in a small set of columns

from the table, making this format unfit for data analysis.

In the column-store model, data is partitioned per column (i.e., the columns are

stored consecutively in memory). This model is preferred for analytical queries since

it is cheap to fetch individual columns, resulting in immense savings on disk access

and memory bandwidth.

As an example, suppose our music-store table has 100 gigabytes of data, and

different from the Figure 2-1 it is composed of 100 columns, also assume that the

columns occupy the same amount of storage, 1 gigabyte per column. When executing an

20



Chapter 2. Background

analytical query interested in the number of albums released in 1980, the performance

would significantly differ depending on the layout. In a row store, reading one column

is equivalent to fetching all tuples, which at 100 megabytes per second (i.e., a typical

hard-disk transfer speed) would take us about 17 minutes. In a column store, the

same query can fetch the column that stores the albums’ release date separately, so

we only need to read 1 gigabyte of data, which takes about 10 seconds.

2 Interactive Exploratory Data Analysis

The workload from interactive data analysis is a type of analytical workload. The

data scientist inspects a massive amount of data by issuing selective analytical queries

(sometimes via a visualization tool) to test their hypothesis.

Figure 2-2: Interactive Data Analysis Example [4]

In [4], Battle et al. present cross-filter applications as the classical scenario of

interactive data analysis. These applications consist of aggregate-filter-group queries

21



3. Index Structures

with users expecting almost immediate responses from the system.

Figure 2-2 depicts an example of a cross-filter application. It presents a dataset

that contains flight information with six different attributes. The idea is that the

data scientist can visualize each attribute as one of the histogram figures (e.g., the

distance in miles histogram presents, from our selected flight, the number of flights

that traveled a given amount of miles). The data scientist must interact with the

range slider on top, and these figures are automatically updated depending on the

filter’s new inputs. It is easy to imagine that it will be quite frustrating if these figures

are not immediately updated when changing the filter.

Since these workloads are dependent on a filter, when applying selective filters

(e.g., wanting to know the information of a small number of flights), aggressive data

skipping techniques like secondary index structures can significantly influence the

query performance.

Let’s go back to our music-store example from section 1.1, and let’s assume that

we want to know the quantity of all albums released in 1980 (also assuming that the

selectivity is around 0.1% of all our data). When no index is present, a full scan of

the column must be performed, which takes approximately 10 seconds. When using

an index, we can access just the data that match our filter. Hence we only scan 0.1%

of our data, with our query taking around 0.01 seconds to be fetched.

3 Index Structures

From our previous example, it becomes clear that, for highly selective queries (i.e.,

queries that filter most of the data), an index structure can significantly impact query

performance. This impact exists because index structures can skip data that is not

relevant to our query (i.e., not reading data that does not match our filter predicates).

Index structures come in all shapes and forms, covering different use cases. For

example, the Adaptive Radix Tree (ART) [2, 40, 8] is designed to produce a compact

index structure that is efficient for point-queries (i.e., queries with equality filters) and

updates. At the same time, the B+Tree [22, 60] is optimized to execute range queries

while not being as efficient as the ART for point-queries and updates.

Figure 2-3a depicts an example where the original data is composed of one column

with unordered integers, and Figure 2-3b depicts a B+tree index created on this

column. Note that the B+tree has the original data sorted in its leaves (i.e., red nodes)

while the inner-nodes (i.e., blue nodes) are used to navigate the tree efficiently. When

executing the following query SELECT SUM(R.C1) FROM R WHERE R.C1 BETWEEN 3

22



Chapter 2. Background

(a) Original Column (Column-Store). (b) B+-Tree Index.

Figure 2-3: Scan Vs Index.

AND 6, if we do not have an index, that means we must scan all the elements from

our original column. However, if a B+Tree exists, we can quickly navigate the inner

nodes and scan only the leaves with relevant data.

4 Index Selection Problem

A natural question arises after understanding the benefits of indexes. Why not create

all possible indexes to speed up all possible filter queries? Although indexes boost

query execution since they skip data that does not match filter predicates, they impost

three different penalties to the DBMS. Indexes have a creation cost, a maintenance

cost (i.e., every time an update happens, the index must be updated as well), and a

storage cost (i.e., secondary indexes materialize a copy of the original data). Hence,

the DBA must decide which indexes to create for a given database.

The DBA’s goal is to decide a set of indexes to create for a table that will execute

the workload as fast as possible while considering the amount of available memory.

To do so, the database administrator must follow four steps: (1) Identify a relevant

workload, (2) Create a search space with indexes that can potentially speed up this

workload, (3) Perform a careful analysis on the maintenance and speed up trade-offs,

(4) Assess the impact on the available memory.

Even when workloads are well known, selecting the optimal set of indexes is an

NP-Hard problem [15], since it represents an analysis on all possible combinations of

indexes that can be helpful to the workload. When the querying pattern is not known

in advance, optimal a-priori index creation is impossible. To facilitate this process,

two different types of solutions have been proposed. (1) automatic index selection and

(2) adaptive index creation.

23



4. Index Selection Problem

4.1 Automatic Index Selection

Automatic index selection techniques [1, 14, 58, 23, 13, 44, 53, 11] attempt to automa-

tize the index selection process either completely or by giving hints of what indexes to

create or drop to the DBA. In general, they work by capturing the workload, finding

a set of indexes that optimize it, and either suggesting them for the DBA to create or

by automatically creating them.

The process of finding a set of indexes can be driven by machine learning al-

gorithms [44], or by the what-if architecture [13]. In the what-if architecture, the

DBMS’ query optimizer is used to predict the workload boost and the extra costs of

maintaining and creating indexes using hypothetical indexes (i.e., it only creates the

index’s meta-data to force the optimizer to predict the costs if the index existed).

These solutions are well suited for the classical data warehouse scenario since the

data warehouse scenario has a well-defined workload that rarely changes and has

maintenance times (i.e., hours when the database is not being queried). The DBMS

can exploit the maintenance time to perform full index creation. Since self-tuning tools

can only be used when the system’s workload is stable and known, they present several

problems for interactive data analysis workloads. In an interactive environment, the

workload is unknown or rapidly changes beyond what is known upfront. Besides, there

is no specific idle time to invest in upfront full index creation. Hence automatic index

selection techniques do not offer much help.

4.2 Adaptive Index Creation

Adaptive indexing techniques are an alternative to a-priori index creation. Instead of

constructing the index upfront, the index is built as a by-product of querying the data.

These techniques are designed for scenarios where the workload is unknown, and there

is no idle time to invest in index creation. Their main goal is to smear out the high

investment of creating an up-front full index over the execution of several queries.

Database Cracking [36] (also known as “Standard Cracking”) is the original

adaptive indexing technique. It works by physically reordering the index while

processing queries. It consists of two data structures: a cracker column (i.e., a copy

of the original column) and a cracker index (i.e., a binary search tree that holds

information on where pieces offsets and maximum value).

Each incoming query cracks the column into smaller pieces and then updates the

cracker index concerning those pieces. As more queries are processed, the cracker

index converges towards a full index.

24



Chapter 2. Background

Figure 2-4: Standard Cracking executing filter C > 10 and C < 14.

Figure 2-4 depicts an example of standard cracking executing a query that requests

all values higher than 10 and lower than 14, and the original column has no index

yet. When this query is executed, it triggers the first step of database cracking, which

performs a full copy of the original column. After copying it to a structure called

cracker column, it performs two quick-sort iterations using, as quick-sort pivots, the

query predicates 10 and 14. This results in a cracker column cracked into three pieces.

Where Piece 1 has all elements up to our first query predicate (i.e., 10), Piece 2 all

elements between our query predicates (i.e., 10 and 14), and Piece 3 with all elements

above or equal to the second predicate (i.e., 14). The information regarding the pieces

(i.e., where each piece start and the highest element within that piece is stored in an

AVL-Tree [6] (i.e., a binary search tree with self-balancing properties) called cracker

index. When the next query is executed, the system can already take advantage of this

index (e.g., if a query only has one filter c > 18, only Piece 3 needs to be checked).

After the first query, the pieces are refined even further by performing new quick-sort

iterations with pivots equal to the currently executing filter predicates.

While database cracking accomplishes its mission of constructing an index as a

by-product of querying, it suffers from several problems that make it unsuitable for

interactive data analysis: (1) it adds a significant overhead over naive scans in the first

25



4. Index Selection Problem

iterations of the algorithm, (2) the performance of cracking is not robust, as sudden

changes in workload cause spikes in performance, and (3) convergence towards a full

index is slow and workload-dependent.

There is a large body of work on extending and improving database cracking.

These improvements include better convergence towards a full index [21, 50], more

predictable performance [49, 26], more efficient tuple reconstruction [35, 37, 50], better

CPU utilization [46], other cracking engines [47, 25], predictive query processing [57],

using modern hardware to boost query execution [39], using mediocre elements as

cracking pivots [62], creating multidimensional adaptive indexes [45], generalizing

database cracking [49] and handling updates [34, 29].

26


