
Progressive Indexes
Timbó Holanda, P.T.

Citation
Timbó Holanda, P. T. (2021, September 21). Progressive Indexes. SIKS Dissertation Series.
Retrieved from https://hdl.handle.net/1887/3212937

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3212937

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3212937

Progressive Indexes

Pedro Holanda

Progressive Indexes

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op dinsdag 21 september 2021

klokke 10:00 uur

door

Pedro Thiago Timbó Holanda
geboren te Fortaleza, Brazilië

in 1992

Promotiecommissie

Promotor: prof. dr. Stefan Manegold (CWI & Universiteit Leiden)
Copromotores: dr. Hannes Mühleisen (CWI & UvA)

prof. dr. Peter Boncz (CWI & VU)
Overige leden: prof. dr. Aske Plaat (Universiteit Leiden)

prof. dr. Thomas Bäck (Universiteit Leiden)

prof. dr. Yanlei Diao (École Polytechnique de Paris)
dr. Stratos Idreos (Harvard University)
dr. Eduardo Cunha de Almeida (UFPR)

The research reported in this thesis has been carried out within the Database Archi-

tectures group at Centrum Wiskunde & Informatica (CWI), the National Research

Institute for Mathematics and Computer Science in the Netherlands.

SIKS Dissertation Series No. 2021-21 The research reported in this thesis has been

carried out under the auspices of SIKS, the Dutch Research School for Information

and Knowledge Systems.

This research is financially supported by the Dutch funding agency NWO, under

project number 628.006.002 (the DAMIOSO project), in collaboration with Honda

Research Institute, Leiden University and Centrum Wiskunde & Informatica (CWI).

3

Acknowledgments

I want to thank my direct supervisor, Stefan Manegold. I must say that I feel like I

won the supervisor lottery. Stefan always gave me complete freedom to pursue any

path I wanted during my studies while encouraging me to see the weak points of any

ideas I had. To this day, I am still amazed by his ”eagle eyes” skill. His attention

to detail is awe-inspiring, and having the opportunity of having him review all my

papers, really enabled me to take them to the next level.

I want to acknowledge the impact that my co-supervisor, Hannes Mühleisen had

on my thesis and post-PhD career. He provided me with the opportunity to work

with him on DuckDB. It was one of the most fun projects I had during my Ph.D.

and helped me improve my programming skills. In the final months of my Ph.D.,

when learning I had the intention to continue in the Netherlands for a few more years,

Hannes also moved mountains to secure a post-doc position for me (on record time, I

must say).

I have a high debt with Mark Raasveldt. I was fortunate to have Mark as a

friend (and as a roommate for almost two years), and although we’ve been Ph.D.

students at the same time, the reality is that Mark was already on another level.

Living with him was an excellent opportunity to expand all the skill-set needed to be

a successful researcher. Not only was he always available for any presentation/writing

and programming questions I would have, but working with him was truly fun. With

Mark, not all were related to work. As my flatmate, he also introduced me to all the

greatness of Dutch culture (e.g., Febo, Action, New-Kids Turbo).

In the office, I was lucky enough to have the greatest officemate ever, Tim Gubner.

Tim, thanks for all the great times and for singing with me all the greatest hits of Jon

Lajoie, Tenacious D, and Backstreet Boys. I’m pleased that we could continue our

musical journey even after being asked if we were killing rats in the office (although

we were just singing slightly out of tune). I also think we still have the hidden

potential of revolutionizing the computer science field with all of our great research

ideas (e.g., Commie-coin, a communistic crypto-currency; DataBreaks: Breaks for

Fast Databases). Thank you for all the laughs, and I hope we get to share an office

again in the future!

During the Corona Pandemic, I was very thankful I managed to bring a little

”Brazilian Gang” into the Database Architectures group. Diego Tome and Matheus

Nerone helped me maintain my sanity throughout the whole of 2020 by having daily

coffee breaks, workouts, and video-game marathons. I think 2020 would be almost

unbearable without our activities. Besides all that, I also enjoyed working with

Matheus on the first few months of the pandemic. I think we both did a great job

motivating each other to finish off our multidimensional work, and I’m still impressed

with what he accomplished with his mad plotting skills.

I would also like to thank my friends that made my years in Amsterdam some of

the best years in my life. Especially Bianca Jabur (Kiki), Tijs Kramer, and George

Anastasiou, thanks for all the fun!

Last but not least, I would like to thank my family for their support in all of

my academic and life choices: my parents Tarcisio and Ana Holanda, and my sister

Camila Holanda.

Contents

1 Introduction 11

1 Data Analysis . 11

2 Interactive Data Analysis . 12

2.1 Index Creation Problem . 13

2.2 Research Questions . 15

3 Our Contributions . 16

4 Structure and Covered Publications 16

2 Background 19

1 Relational Database Systems . 19

1.1 Physical Layout . 20

2 Interactive Exploratory Data Analysis 21

3 Index Structures . 22

4 Index Selection Problem . 23

4.1 Automatic Index Selection . 24

4.2 Adaptive Index Creation . 24

3 Progressive Indexing 27

1 Introduction . 27

1.1 Contributions . 29

1.2 Outline . 29

2 Related Work . 29

2.1 Cracking Kernels . 30

7

2.2 Adaptive Indexing for Robustness 31

3 Progressive Indexing . 35

3.1 Progressive Quicksort . 37

3.2 Progressive Radixsort (MSD) 38

3.3 Progressive Bucktersort . 40

3.4 Progressive Radixsort (LSD) 42

4 Greedy Progressive Indexing . 43

4.1 Greedy Progressive Quicksort 44

4.2 Greedy Progressive Radixsort (MSD) 46

4.3 Greedy Progressive Bucketsort 47

4.4 Greedy Progressive Radixsort(LSD) 47

5 Experimental Analysis . 48

5.1 Setup. 48

5.2 Delta Impact . 50

5.3 Cost Model Validation . 53

5.4 Interactivity Threshold . 56

5.5 Varying Interactivity . 59

5.6 Adaptive Indexing Comparison 61

6 Summary . 66

4 Multidimensional Progressive Indexing 69

1 Introduction . 69

1.1 Contributions . 70

1.2 Outline . 70

2 Related Work . 71

2.1 Multidimensional Data Structures 71

2.2 Adaptive/Progressive Index 73

3 Multidimensional Progressive Indexing 75

3.1 Data Structure . 76

3.2 Creation Phase . 77

3.3 Refinement Phase . 80

3.4 Greedy Progressive Indexing 82

4 Experimental Analysis . 85

4.1 Setup. 85

4.2 Data Sets & Workloads . 86

4.3 Delta Impact . 87

8

4.4 Performance Comparison . 91

4.5 Impact of Dimensionality . 96

4.6 Full Scan Exceeding the Interactivity Threshold 97

5 Summary . 98

5 Progressive Merges 101

1 Introduction . 101

1.1 Contributions . 102

1.2 Outline . 102

2 Related Work . 102

2.1 Merge Complete (MC) . 103

2.2 Merge Gradual (MG) . 104

2.3 Merge Ripple (MR) . 104

3 Progressive Mergesort . 106

4 Experimental Analysis . 110

4.1 Setup . 111

4.2 Performance Comparison . 112

4.3 Varying Data Sizes . 113

4.4 Appends during Index Creation 115

5 Summary . 116

6 Big Picture 117

1 The Elephant In The Room . 117

2 Future Work . 118

2.1 Progressive Indexes . 118

2.2 Progressive Merges . 119

Summary 123

Samenvatting 125

Publications 127

9

CHAPTER 1

Introduction

1 Data Analysis

Data Analysis is the process where a scientist extracts valuable knowledge (e.g.,

data correlation, useful patterns, market trends) and uses this information to make

decisions.

Using the car industry as an example, car engineers generate random deformations

on car shapes to better understand how design changes affect aerodynamics. The

actual process of analyzing the generated simulation data is done by data scientists [33].

For example, the data scientists might learn that a slightly different position of the

car’s rear-view mirror might significantly impact its aerodynamics. This process

consists of generating random deformations to a car shape (i.e., slightly changing

x-y-z positions of the car model) and running it through computational fluid dynamic

simulations. Each simulation generates raw files consisting of many gigabytes of data.

Due to the data size, the data scientist must apply interactive data analysis techniques

to learn which modifications in the car’s shape improve its aerodynamics.

One major problem with this approach is that each simulation takes many hours to

be executed. One promising solution is to train a machine learning model to generate

the simulated data when receiving a car shape as input. Such a model is trained

over many gigabytes of already executed simulations and eliminates the necessity of

running simulations for new deformations [20, 19]. This type of data analysis pipeline

is relatively common in the industry and can be summarized into three main steps:

11

2. Interactive Data Analysis

1. Pre-Processing: In this step, data is generated, cleaned, and loaded in a

database management system (DBMS).

2. Interactive Data Analysis: In this step, the data scientist explores the data

sets to gain insights about the data.

3. Machine Learning Driven Analysis: A machine learning model is created

to accelerate data generation, classification, and prediction.

In this thesis, we focus on optimizations for Interactive Data Analysis. In the

following sections of this chapter, we will introduce this topic and present the research

questions explored in this thesis.

2 Interactive Data Analysis

Figure 1-1: Interactive Data Analysis Workflow

Data scientists perform exploratory data analysis to discover unexpected patterns

in large collections of data. This process is done with a hypothesis-driven trial-and-

error approach [52]. Figure 1-1 depicts the classical interactive data analysis problem.

The data scientists derive hypotheses and test them by querying segments that could

potentially provide insights. With this result, they refine their original hypotheses

and either zoom in on the same segment or move to a different one depending on the

insights gained.

12

Chapter 1. Introduction

In this workflow, the data scientist is always in the loop and depends on fast query

responses to perform interactive data analysis. The study by Liu et al. [41] shows that

any delay larger than 500ms (the “interactivity threshold”) significantly reduces the

rate at which users make observations and generate hypotheses.

When dealing with small data sets, providing answers within this interactivity

threshold is possible even when only performing full scans on the data. However,

exploratory data analysis is often performed on larger data sets as well. For example,

the SkyServer project [56] which maps the universe, consists of many terabytes of

data. This project has many interactive queries, with data scientists checking different

hypotheses on small segments of the sky. Due to the massive amount of data, answering

these queries under the interactive threshold by performing only full scans is unfeasible.

An essential optimization that these highly selective queries require is the ex-

ploitation of secondary index structures. Depending on the query’s selectivity, an

index structure can diminish the execution time in orders of magnitude, allowing for

responses in interactive times.

2.1 Index Creation Problem

Index creation is one of the major difficult decisions in database schema design [15].

Based on the expected workload, the database administrator (DBA) needs to decide

whether creating a specific index is worth the overhead in creating and maintaining it.

Creating indexes up-front is especially challenging in exploratory and interactive data

analysis, where queries are not known in advance, workload patterns change frequently,

and interactive responses are required. In these scenarios, data scientists load their

data and immediately want to start querying it without waiting for index construction.

Also, it is not certain whether or not creating an index is worth the investment at all.

We cannot be sure that the column will be queried frequently enough for the large

initial investment of creating a full index to pay off.

Despite these challenges, indexing remains crucial for improving database perfor-

mance. When no indexes are present, even simple point and range selections require

expensive full table scans. When these operations are performed on large data sets,

indexes are essential to ensure interactive query response times. Two main strategies

aim to release the DBA of having to choose which indexes to create manually. The

first step at automatizing the index creation problem was self-tuning tools. These

tools perform offline (i.e., indexes are created when the database is not being used)

and online (i.e., indexes are created while queries are executed) full index creation.

13

2. Interactive Data Analysis

The second step was adaptive indexing techniques which perform incremental index

creation (i.e., indexes are created partially during query execution).

Self-Tuning Tools

Self-tuning tools [1, 14, 58, 23, 13, 11, 44, 53] are pieces of software that gives hints to

the Database Administrator (DBA) on which indexes to create for a database. Those

hints are an attempt to find the optimal set of indexes given a query workload. These

tools consider the benefits of having an index versus the added costs of creating the

entire index and maintaining it during modifications to the database.

Self-tuning tools are very successful in traditional OLAP/data warehouse scenarios

(e.g., Producing reports). In these scenarios, there is a lot of workload knowledge,

the workloads do not change regularly, and the systems are idle off-working times to

perform full index creation.

However, these tools are not suitable for index creation in exploratory data analysis

due to four main reasons. (1) They require a priori knowledge of the expected workloads.

(2) They do not quickly adapt to frequently changing workloads. (3) They require idle

time to perform full index creation. (4) The data scientist must take the database

administrator’s role in analyzing the hints produced by the tools to decide which

indexes should be created ultimately.

Adaptive Indexing Techniques.

Adaptive indexing techniques such as database cracking [36, 21, 50, 49, 26, 35, 37,

47, 46, 25, 34, 29] are a more promising solution for the index creation problem in

interactive data analysis. They focus on automatically and incrementally building an

index as a side effect of querying the data. An index for a column is only initiated when

it is first queried. As the column is queried more, the index is refined until it eventually

approaches a full index’s performance. In this way, the cost of creating an index is

smeared out over the cost of querying the data many times, though not necessarily

equally, and there is a smaller initial overhead for starting the index creation.

Although adaptive indexing techniques can alleviate the shortcomings of self-tuning

tools, they introduce new issues that have not been completely tackled yet. (1) The

first query cost can be much higher than a simple full scan cost. (2) There is no

guarantee of robustness, and (3) There is no guarantee that the index will eventually

converge to a full index (i.e., index all points in the dataset).

First Query Cost. When executing a query on a column for which no index

14

Chapter 1. Introduction

has been created yet, a full copy of the data is performed to a secondary index

structure. After completing the copy, the data is then partitioned into one or more

pieces depending on the used adaptive technique. This process incurs a much higher

cost than simply scanning the data to answer the query.

Robustness. In general, adaptive indexing only refines pieces that are accessed.

When the same piece is constantly requested, its access time becomes similar to a full

index. However, as soon as the data scientist decides to query a less refined piece, the

query performance degrades, causing performance spikes.

This scenario is highly undesirable for the user since it brings unpredictability to

the query response time. Similar queries (i.e., queries that inspect the same amount

of data in a column) can have widely different response times.

Convergence. In general, only accessed data points are added to the index

structure. Although adaptive indexing can achieve near full index response time when

pieces are sufficiently refined, it will not guarantee a full index response time to any

filter predicates unless all data points were used as filter predicates.

2.2 Research Questions

Our research aims to investigate how indexes can be created and refined in a similar

process as adaptive indexing while inflicting a low indexing penalty on the initial

queries, enforcing a predictable query response time and with guaranteed full index

convergence. Ultimately, we envision an indexing technique, called Progressive Indexing

that mitigates these drawbacks from adaptive indexing by performing a more fine-

grained refinement and progressively converging to a full index.

We define our main research question as follows:

Research Problem 1 How can we create/refine indexes during query execution

with a low impact over initial queries, predictable query response time, and

guaranteed full index convergence?

Research Problem 2 How can we create progressive indexes for queries with filters

on multiple attributes?

Research Problem 3 How can we update progressive indexes while keeping pre-

dictable query performance and guaranteed full index convergence?

15

3. Our Contributions

3 Our Contributions

This thesis describes how to create progressive indexing techniques for both unidi-

mensional and multidimensional index structures. For each, we explore the current

state-of-the-art on adaptive indexing and attempt to improve the characteristics

defined in our main research question.

Its main contributions are as follows:

• Progressive Indexing (Chapter 3). We alter various sorting algorithms (i.e.,

Quicksort, Radixsort - Most Significant Digit, Radixsort - Least Significant

Digit, and Bucketsort Equiheight) to work progressively following a pre-defined

indexing budget.

• Greedy Progressive Indexing (Chapter 3). We define a cost model for

each Progressive Indexing algorithm that allows for automatic selection of the

indexing budget.

• Progressive KD-Tree (Chapter 4). We propose a multidimensional progres-

sive indexing, the Progressive KD-Tree, that progressively builds KD-Trees for

queries with filters in multiple dimensions.

• Greedy Progressive KD-Tree (Chapter 4). We define a cost model for

our Progressive KD-Tree algorithm, allowing for an automatic selection of the

indexing budget.

• Progressive Merges (Chapter 5). We define a new progressive indexing

technique used to merge appends into progressive indexes.

4 Structure and Covered Publications

Chapter 3 describes the progressive indexing techniques for Quicksort, Radixsort -

Most Significant Digit, Radixsort - Least Significant Digit, and Bucketsort Equiheight

in their traditional and greedy formats. This chapter is based on the following papers:

• Progressive Indexes: Indexing for Interactive Data Analysis [32].

Pedro Holanda, Mark Raasveldt, Stefan Manegold and Hannes Mühleisen

46th International Conference on Very Large Databases (VLDB 2020)

16

Chapter 1. Introduction

• Progressive Indices – Indexing Without Prejudice [28]. Pedro Holanda,

44th International Conference on Very Large Data Bases (VLDB 2018, PhD

Workshop)

Chapter 4 presents both traditional and greedy versions of multidimensional

progressive indexing, a technique based on quicksort and KD-Trees. This chapter is

based on the following papers:

• Multidimensional Adaptive & Progressive Indexes [43].

Matheus Nerone, Pedro Holanda, Eduardo Almeida and Stefan Manegold

37th IEEE International Conference on Data Engineering (ICDE 2021)

• Cracking KD-Tree: The First Multidimensional Adaptive Indexing [31].

Pedro Holanda, Matheus Nerone, Eduardo Almeida, and Stefan Manegold, 7th

International Conference on Data Science, Technology and Applications (DATA

2018, EDDY)

Chapter 5 describes Progressive Merges, a technique developed to progressively

merge batches of appends into progressive indexes without impacting the predictability

of the queries. This chapter is based on the following paper:

• Progressive Mergesort: Merging Batches of Appends into Progres-

sive Indexes [30]. Pedro Holanda and Stefan Manegold, 24th International

Conference on Extending Database Technology (EDBT 2021)

Finally, Chapter 6 summarizes the work done in progressive indexing, discusses its

challenges, and provides future work.

17

CHAPTER 2

Background

In this chapter, we will cover the basic knowledge necessary to read this thesis. We will

start with an overview of Relational Database Systems (Section 1) and their physical

layout (Section 1.1). We continue with an overview of Interactive Exploratory Data

Analysis (Section 2) and give a general explanation of indexing techniques and how

they can be used to boost interactive exploratory queries (Section 3).

1 Relational Database Systems

Relational Database Systems (RDBMS) have been around since the early 70s. They

are essential to any application that must access persistent data. They implement

various techniques that guarantee data integrity, fast data access, transaction control

and overall facilitate the development of a new application. The programmer does not

need to worry about which data structures to represent his data, how to guarantee

ACID (Atomicity, Consistency, Isolation, Durability) properties, or protecting his data

against different types of corruption (e.g., hardware failures).

As an example, consider that a developer wants to create an online music store.

He must store information about artists (e.g., their name, year they started, their

country, and music style) and about their albums (e.g., album name, the year they

were released, and the artist that made it). A simple way of storing this data would be

to use text files (e.g., CSVs). However, the developer now has to implement methods

to scan and write these files while being smart enough to store them on efficient data

19

1. Relational Database Systems

structures. He also must use the correct algorithms to join the data in these files.

And must deal with representation issues (e.g., how to store an album made as a

collaboration of multiple artists?), transaction issues (e.g., what happens if two users

alter the file simultaneously?) and data corruption (e.g., what happens if we are

writing on the file and we experience a power shortage?). A more straightforward

solution is to use RDBMSs, since they are designed to tackle these problems.

1.1 Physical Layout

(a) Row-Store. (b) Column-Store.

Figure 2-1: Physical layout of relational databases.

RDBMSs do not store data as text files but rather as a table composed of n

columns, where every row of this table represents a different entity with values for each

of these columns (See Figure 2-1). An essential physical layout decision is choosing

how the data should be partitioned, and there are two primary ways of doing it, a

row-store or a column-store.

In the row-store model, data is partitioned in rows (i.e., the rows are stored

consecutively in memory). This model is preferred for transactional workloads (i.e.,

when most queries update only a few tuples) since individual rows can be fetched

computationally cheap. This model’s main disadvantage is when you must retrieve a

lot of data but not from all columns. Since rows are stored consecutively in memory,

you will fetch data from columns you are not interested in, essentially wasting time.

In a typical analytical scenario, the user is only interested in a small set of columns

from the table, making this format unfit for data analysis.

In the column-store model, data is partitioned per column (i.e., the columns are

stored consecutively in memory). This model is preferred for analytical queries since

it is cheap to fetch individual columns, resulting in immense savings on disk access

and memory bandwidth.

As an example, suppose our music-store table has 100 gigabytes of data, and

different from the Figure 2-1 it is composed of 100 columns, also assume that the

columns occupy the same amount of storage, 1 gigabyte per column. When executing an

20

Chapter 2. Background

analytical query interested in the number of albums released in 1980, the performance

would significantly differ depending on the layout. In a row store, reading one column

is equivalent to fetching all tuples, which at 100 megabytes per second (i.e., a typical

hard-disk transfer speed) would take us about 17 minutes. In a column store, the

same query can fetch the column that stores the albums’ release date separately, so

we only need to read 1 gigabyte of data, which takes about 10 seconds.

2 Interactive Exploratory Data Analysis

The workload from interactive data analysis is a type of analytical workload. The

data scientist inspects a massive amount of data by issuing selective analytical queries

(sometimes via a visualization tool) to test their hypothesis.

Figure 2-2: Interactive Data Analysis Example [4]

In [4], Battle et al. present cross-filter applications as the classical scenario of

interactive data analysis. These applications consist of aggregate-filter-group queries

21

3. Index Structures

with users expecting almost immediate responses from the system.

Figure 2-2 depicts an example of a cross-filter application. It presents a dataset

that contains flight information with six different attributes. The idea is that the

data scientist can visualize each attribute as one of the histogram figures (e.g., the

distance in miles histogram presents, from our selected flight, the number of flights

that traveled a given amount of miles). The data scientist must interact with the

range slider on top, and these figures are automatically updated depending on the

filter’s new inputs. It is easy to imagine that it will be quite frustrating if these figures

are not immediately updated when changing the filter.

Since these workloads are dependent on a filter, when applying selective filters

(e.g., wanting to know the information of a small number of flights), aggressive data

skipping techniques like secondary index structures can significantly influence the

query performance.

Let’s go back to our music-store example from section 1.1, and let’s assume that

we want to know the quantity of all albums released in 1980 (also assuming that the

selectivity is around 0.1% of all our data). When no index is present, a full scan of

the column must be performed, which takes approximately 10 seconds. When using

an index, we can access just the data that match our filter. Hence we only scan 0.1%

of our data, with our query taking around 0.01 seconds to be fetched.

3 Index Structures

From our previous example, it becomes clear that, for highly selective queries (i.e.,

queries that filter most of the data), an index structure can significantly impact query

performance. This impact exists because index structures can skip data that is not

relevant to our query (i.e., not reading data that does not match our filter predicates).

Index structures come in all shapes and forms, covering different use cases. For

example, the Adaptive Radix Tree (ART) [2, 40, 8] is designed to produce a compact

index structure that is efficient for point-queries (i.e., queries with equality filters) and

updates. At the same time, the B+Tree [22, 60] is optimized to execute range queries

while not being as efficient as the ART for point-queries and updates.

Figure 2-3a depicts an example where the original data is composed of one column

with unordered integers, and Figure 2-3b depicts a B+tree index created on this

column. Note that the B+tree has the original data sorted in its leaves (i.e., red nodes)

while the inner-nodes (i.e., blue nodes) are used to navigate the tree efficiently. When

executing the following query SELECT SUM(R.C1) FROM R WHERE R.C1 BETWEEN 3

22

Chapter 2. Background

(a) Original Column (Column-Store). (b) B+-Tree Index.

Figure 2-3: Scan Vs Index.

AND 6, if we do not have an index, that means we must scan all the elements from

our original column. However, if a B+Tree exists, we can quickly navigate the inner

nodes and scan only the leaves with relevant data.

4 Index Selection Problem

A natural question arises after understanding the benefits of indexes. Why not create

all possible indexes to speed up all possible filter queries? Although indexes boost

query execution since they skip data that does not match filter predicates, they impost

three different penalties to the DBMS. Indexes have a creation cost, a maintenance

cost (i.e., every time an update happens, the index must be updated as well), and a

storage cost (i.e., secondary indexes materialize a copy of the original data). Hence,

the DBA must decide which indexes to create for a given database.

The DBA’s goal is to decide a set of indexes to create for a table that will execute

the workload as fast as possible while considering the amount of available memory.

To do so, the database administrator must follow four steps: (1) Identify a relevant

workload, (2) Create a search space with indexes that can potentially speed up this

workload, (3) Perform a careful analysis on the maintenance and speed up trade-offs,

(4) Assess the impact on the available memory.

Even when workloads are well known, selecting the optimal set of indexes is an

NP-Hard problem [15], since it represents an analysis on all possible combinations of

indexes that can be helpful to the workload. When the querying pattern is not known

in advance, optimal a-priori index creation is impossible. To facilitate this process,

two different types of solutions have been proposed. (1) automatic index selection and

(2) adaptive index creation.

23

4. Index Selection Problem

4.1 Automatic Index Selection

Automatic index selection techniques [1, 14, 58, 23, 13, 44, 53, 11] attempt to automa-

tize the index selection process either completely or by giving hints of what indexes to

create or drop to the DBA. In general, they work by capturing the workload, finding

a set of indexes that optimize it, and either suggesting them for the DBA to create or

by automatically creating them.

The process of finding a set of indexes can be driven by machine learning al-

gorithms [44], or by the what-if architecture [13]. In the what-if architecture, the

DBMS’ query optimizer is used to predict the workload boost and the extra costs of

maintaining and creating indexes using hypothetical indexes (i.e., it only creates the

index’s meta-data to force the optimizer to predict the costs if the index existed).

These solutions are well suited for the classical data warehouse scenario since the

data warehouse scenario has a well-defined workload that rarely changes and has

maintenance times (i.e., hours when the database is not being queried). The DBMS

can exploit the maintenance time to perform full index creation. Since self-tuning tools

can only be used when the system’s workload is stable and known, they present several

problems for interactive data analysis workloads. In an interactive environment, the

workload is unknown or rapidly changes beyond what is known upfront. Besides, there

is no specific idle time to invest in upfront full index creation. Hence automatic index

selection techniques do not offer much help.

4.2 Adaptive Index Creation

Adaptive indexing techniques are an alternative to a-priori index creation. Instead of

constructing the index upfront, the index is built as a by-product of querying the data.

These techniques are designed for scenarios where the workload is unknown, and there

is no idle time to invest in index creation. Their main goal is to smear out the high

investment of creating an up-front full index over the execution of several queries.

Database Cracking [36] (also known as “Standard Cracking”) is the original

adaptive indexing technique. It works by physically reordering the index while

processing queries. It consists of two data structures: a cracker column (i.e., a copy

of the original column) and a cracker index (i.e., a binary search tree that holds

information on where pieces offsets and maximum value).

Each incoming query cracks the column into smaller pieces and then updates the

cracker index concerning those pieces. As more queries are processed, the cracker

index converges towards a full index.

24

Chapter 2. Background

Figure 2-4: Standard Cracking executing filter C > 10 and C < 14.

Figure 2-4 depicts an example of standard cracking executing a query that requests

all values higher than 10 and lower than 14, and the original column has no index

yet. When this query is executed, it triggers the first step of database cracking, which

performs a full copy of the original column. After copying it to a structure called

cracker column, it performs two quick-sort iterations using, as quick-sort pivots, the

query predicates 10 and 14. This results in a cracker column cracked into three pieces.

Where Piece 1 has all elements up to our first query predicate (i.e., 10), Piece 2 all

elements between our query predicates (i.e., 10 and 14), and Piece 3 with all elements

above or equal to the second predicate (i.e., 14). The information regarding the pieces

(i.e., where each piece start and the highest element within that piece is stored in an

AVL-Tree [6] (i.e., a binary search tree with self-balancing properties) called cracker

index. When the next query is executed, the system can already take advantage of this

index (e.g., if a query only has one filter c > 18, only Piece 3 needs to be checked).

After the first query, the pieces are refined even further by performing new quick-sort

iterations with pivots equal to the currently executing filter predicates.

While database cracking accomplishes its mission of constructing an index as a

by-product of querying, it suffers from several problems that make it unsuitable for

interactive data analysis: (1) it adds a significant overhead over naive scans in the first

25

4. Index Selection Problem

iterations of the algorithm, (2) the performance of cracking is not robust, as sudden

changes in workload cause spikes in performance, and (3) convergence towards a full

index is slow and workload-dependent.

There is a large body of work on extending and improving database cracking.

These improvements include better convergence towards a full index [21, 50], more

predictable performance [49, 26], more efficient tuple reconstruction [35, 37, 50], better

CPU utilization [46], other cracking engines [47, 25], predictive query processing [57],

using modern hardware to boost query execution [39], using mediocre elements as

cracking pivots [62], creating multidimensional adaptive indexes [45], generalizing

database cracking [49] and handling updates [34, 29].

26

CHAPTER 3

Progressive Indexing

1 Introduction

Data scientists perform exploratory data analysis to discover unexpected patterns in

large collections of data. This process is done with a hypothesis-driven trial-and-error

approach [52]. They query data segments that could potentially provide insights, test

their hypothesis, and either zoom in on the same segment or move to a different one

depending on the insights gained.

Fast responses to queries are crucial to allow for interactive data exploration. The

study by Liu et al. [41] shows that any delay larger than 500ms (the “interactivity

threshold”) significantly reduces the rate at which users make observations and

generate hypotheses. When dealing with small data sets, providing answers within

this interactivity threshold is possible without utilizing indexes. However, exploratory

data analysis is often performed on larger data sets as well. In these scenarios, indexes

are required to speed up query response times.

Index creation is one of the major difficult decisions in database schema design [15].

Based on the expected workload, the database administrator (DBA) needs to decide

whether creating a specific index is worth the overhead in creating and maintaining

it. Creating indexes up-front is especially challenging in exploratory and interactive

data analysis, where queries are not known in advance, workload patterns change

frequently, and interactive responses are required. In these scenarios, data scientists

load their data and immediately want to start querying it without waiting for index

27

1. Introduction

construction. In addition, it is also not certain whether or not creating an index

is worth the investment at all. We cannot be sure that the column will be queried

frequently enough for the large initial investment of creating a full index to pay off.

In spite of these challenges, indexing remains crucial for improving database

performance. When no indexes are present, even simple point and range selections

require expensive full table scans. When these operations are performed on large

data sets, indexes are essential to ensure interactive query response times. Two main

strategies aim to release the DBA of having to choose which indexes to create manually.

(1) Automated index selection techniques [1, 14, 58, 23, 13, 11, 44, 53] accomplish

this by attempting to find the optimal set of indexes given a query workload, taking

into account the benefits of having an index versus the added costs of creating the

entire index and maintaining it during modifications to the database. However, these

techniques require a priori knowledge of the expected workloads and do not work well

when the workload is not known or changes frequently. Hence they are not suitable

for interactive data exploration.

(2) Adaptive Indexing techniques such as Database Cracking [36, 21, 50, 49, 26,

35, 37, 47, 46, 25, 34, 29] are a more promising solution. They focus on automatically

and incrementally building an index as a side effect of querying the data. An index

for a column is only initiated when it is first queried. As the column is queried more,

the index is refined until it eventually approaches a full index’s performance. In this

way, the cost of creating an index is smeared out over the cost of querying the data

many times, though not necessarily equally, and there is a smaller initial overhead

for starting the index creation. However, since the index is refined only in the areas

targeted by the workload, convergence to a full index is not guaranteed, and partitions

can have different sizes. The query’s performance degrades when a less refined part of

the index is queried, resulting in performance spikes whenever the workload changes.

In this chapter, we introduce a new incremental indexing technique called Progres-

sive Indexing. It differs from other indexing solutions in that the indexing budget (i.e.,

the amount of time spent on index creation and refinement) can be controlled. We

provide two indexing budget flavors: a fixed indexing budget, where the user defines a

fixed amount of time to spend on indexing per query, and an adaptive indexing budget,

where the indexing budget is adapted so that the total time spent on query execution

remains constant. We refer to the fixed indexing budget as Progressive Indexing

and the adaptive indexing budget as Greedy Progressive Indexing. As a result, both

Progressive Indexing and Greedy Progressive Indexing complements existing automatic

indexing techniques by offering predictable performance and deterministic convergence

28

Chapter 3. Progressive Indexing

independent of the workload.

1.1 Contributions

The main contributions of this chapter are:

• We introduce several novels Progressive Indexing techniques and investigate

their performance, convergence, and robustness in the face of various realistic

synthetic workload patterns and real-life workloads.

• We provide a cost model for each of the Progressive Indexing techniques. The

cost models are used to adapt the indexing budget automatically.

• We experimentally verify that the Progressive Indexing techniques we propose

provide robust and predictable performance and convergence regardless of the

workload or data distribution.

• We provide a decision tree to assist in choosing an indexing technique for a given

scenario.

• We provide Open-Source implementations of each of the techniques we describe

and their benchmarks.1

1.2 Outline

This chapter is organized as follows. Section 2 depicts related research performed on

automatic/adaptive index creation. In Section 3, we describe our novel Progressive

Indexing techniques and discuss their benefits and drawbacks. Section 4 describes

the cost-models used to adapt our indexing budget automatically. In Section 5, we

perform an experimental evaluation of each of the novel methods we introduce, and

we compare them against Adaptive Indexing techniques. Finally, in Section 6 we draw

our conclusions and present a decision tree to assist in choosing which Progressive

Indexing technique to use.

2 Related Work

In this section, we discuss the state-of-the-art of Adaptive Indexing in terms of

performance and robustness. Section 2.1 we discuss possible cracking kernels to get

1Our implementations and benchmarks are available at https://github.com/pdet/

ProgressiveIndexing

29

https://github.com/pdet/ProgressiveIndexing
https://github.com/pdet/ProgressiveIndexing

2. Related Work

the partitioning as fast as possible. In Section 2.2 we discuss three different Adaptive

Indexing algorithms that attempt to improve cracking’s robustness problem.

2.1 Cracking Kernels

A cracking kernel [47, 25] is the central part of how the partitioning of a piece is

done. This section focuses on two partitioning kernels. First, we present the branching

kernel, which uses if-else clauses to decide when to swap elements. Second, we describe

the predicated kernel that uses predication to avoid branch mispredictions.

Branching Kernel

The branching kernel is the one used in the Standard Cracking implementation and

has a clear inspiration from quicksort’s partitioning [27]. Listing 1 depicts the kernel

for the integer data type. It receives as input the array, the pivot, and the boundaries

of the partition posL and posR. The algorithm, inspects all vector elements, and

increase posL in case the element data[posL] is less than the pivot and increases posR

in case the element data[posR] is greater than or equal to the pivot. In other words,

it simply moves the cursors if the elements are already in the correct position in

reference to the pivot. If it finds both data[posL] and data[posR] that are not in the

correct position, it swaps them and move the cursors. The main problem with this

kernel is that swapping the data in the if-else clauses causes an increase in branch

mispredictions and an overall decrease in performance, as demonstrated in Boncz et

al. [10].

Listing 1 Branching Kernel

1 void branching_kernel(int& data, int pivot, size_t posL, size_t posR){

2 while (posL < posR){

3 if (data[posL] < pivot){

4 posL++;

5 }

6 else if (data[posR]>= pivot{

7 posR--;

8 }

9 else{

10 swap(data[posL++],data[posR--])

11 }

12 }

13 }

30

Chapter 3. Progressive Indexing

Predicated Kernel

The predicated kernel removes the if-else clauses to avoid branch misprediction costs.

Listing 2 demonstrates the predicated kernel for integers. Like the branching kernel,

we iterate over the vector. In lines 3 and 4, we store the values we will inspect in

this iteration. Lines 5,6, and 7 store integers that inform if a given element must be

swapped. For example, if data[posL] is lower than pivot, that means that data[posL] is

already in its correct position, hence the start has to swap variable will hold 0. Lines 8

- 11 effectively swap the data and modify the cursors with respect on the information

in the start has to swap, end has to swap, and has to swap variables. The predicated

kernel has an extremely predictable cost since it will always execute the same code,

independent of branches.

Listing 2 Predicated Kernel

1 void predicated_kernel(int& data, int pivot, size_t posL, size_t posR){

2 while (posL < posR){

3 int l_value = data[posL];

4 int r_value = data[posR];

5 int start_has_to_swap = l_value >= pivot;

6 int end_has_to_swap = r_value < pivot;

7 int has_to_swap = start_has_to_swap * end_has_to_swap;

8 data[posR] = !has_to_swap * l_value + has_to_swap * r_value;

9 data[posL] = !has_to_swap * r_value + has_to_swap * l_value;

10 posL+= !start_has_to_swap + has_to_swap;

11 posR -= !end_has_to_swap + has_to_swap;

12 }

13 }

2.2 Adaptive Indexing for Robustness

Stochastic Cracking [26]

Stochastic Cracking minimizes the unforeseen performance issues from cracking. In-

stead of using query predicates as pivots, a random element from the to-be-cracked

piece is used as the partitioning pivot. Hence this decreases the workload dependency

from cracking.

Figure 3-1 depicts an example of Stochastic Cracking. From our example, the

cracker column is initially unpartitioned. When executing the first query that requests

all elements greater than 15, a random element from the column is selected as a pivot.

31

2. Related Work

Figure 3-1: Standard Cracking executing two queries.

In our example, the element 7, the column is then partitioned around 7, and both

pieces must be scanned to answer the query. When query 2 is executed requesting

all elements between 5 and 15, Piece 1 is pivoted with an element within the piece,

in this case, 4, and the same happens with Piece 2, with pivot 16 being selected to

partition it. After finishing the partition, only piece 2 (i.e., all elements over 4) and

piece 3 (i.e., all elements higher than 7 and lower or equal to 16) must be scanned.

Not using the filter predicates as query pivots can result in the execution engine

reading more data than necessary even after the partitioning for that query. However,

sudden changes in the workload pattern will not have the same impact as in Standard

Cracking.

Progressive Stochastic Cracking [26]

Progressive Stochastic Cracking progressively performs Stochastic Cracking. It takes

two input parameters, the size of the L2 cache and the number of swaps allowed in

one iteration (i.e., a percentage of the total column size). When performing Stochastic

Cracking, Progressive Stochastic Cracking will only perform at most the maximum

allowed number of swaps on pieces larger than the L2 cache. If the piece fits into the

32

Chapter 3. Progressive Indexing

L2 cache, it will always perform a complete crack of the piece.

Figure 3-2: Progressive Stochastic Cracking with maximum swaps = 2 and L2 Cache
Size = 8kb.

Figure 3-2 depicts an example of Progressive Stochastic Cracking, where the L2

Cache Size fits two integers and the at most two swaps can be performed per query.

Like Stochastic Cracking, the pivots are also selected randomly from within the piece

that will be partitioned. In our first query, the pivot chosen is 7. The difference is

that when executing this query, we stop pivoting after swapping two elements. When

executing Query 2, we finish the partition with pivot 7 before picking new pivots.

Coarse-Granular Index [50]

The Coarse-Granular Index improves Stochastic Cracking’s robustness by creating k

partitions when the first query is executed using equal-width binning. It also allows

for creating any number of partitions instead of limiting the number of partitions to

two, letting the DBA decide on k , choosing between the trade-off of the higher cost of

the first query versus building a more robust index.

Figure 3-3 depicts an example of the Coarse-Granular Index set to create four

partitions. When executing the first query, the algorithm will perform 3 cracking

33

2. Related Work

Figure 3-3: Coarse Granular-Index creating k = 4 partitions in the first query.

iterations from the equi-width binning (i.e., since our data goes from 1 to 20, that

means the pivots will be 5,10, and 15). After it, a standard Stochastic Cracking

iteration happens. At that point, it is only necessary to check Piece 4 since it holds

all elements over 15. A random pivot from within the piece is selected, in this case,

16, and the query answer is produced.

Adaptive Adaptive Indexing [49]

Adaptive Adaptive Indexing is a general-purpose algorithm for Adaptive Indexing. It

has multiple parameters tuned to mimic the data access of different Adaptive Indexing

techniques (e.g., Database Cracking, Sideways Cracking, Hybrid Cracking). It also

uses radix partitioning and exploits software-managed buffers using nontemporal

streaming stores to achieve better performance [51].

34

Chapter 3. Progressive Indexing

�
�
�
�
�

⇢

�
�
�
�

�
�
�
�

⇢

After 3 Queries After 4 Queries After 10 Queries

�

�
�
�
�

�

⇢

�

Figure 3-4: Creation phase of Progressive Indexing.

3 Progressive Indexing

In this section, we introduce Progressive Indexing. The core features of Progressive

Indexing are that (1) the indexing overhead per query is controllable, both in terms

of time and memory requirements, (2) it offers robust performance and deterministic

convergence regardless of the underlying data distribution, workload patterns, or query

selectivity, and (3) the indexing budget can be automatically tuned so more expensive

queries spend less extra time on indexing while cheaper queries spend more. To allow

for robust query execution times regardless of the data, we avoid branches in the code

and use predication when possible [48, 10].

As a result of the small initial cost, Progressive Indexing occurs without significantly

impacting worst-case query performance. Even if the column is only queried once,

only a small penalty is incurred. On the other hand, if the column is queried hundreds

of times, the index will reliably converge towards a full index, and queries will be

answered at the same speed as with an a-priori built full index.

All Progressive Indexing algorithms progress through three canonical phases to

eventually converge to a full B+-tree index: the creation phase, the refinement phase,

and the consolidation phase. Each phase’s work can be divided between multiple

queries, keeping the extra indexing effort per query strictly limited.

35

3. Progressive Indexing

Creation Phase. The creation phase progressively builds an initial “crude”

version of the index by adding another δ fraction of the original column to the index

with each query. Query execution during the creation phase is performed in three

steps(visualized in Figure 3-4):

1. Perform an index lookup on the ρ fraction of the data that has already been

indexed;

2. Scan the not-yet-indexed 1− ρ fraction of the original column;

and while doing so,

3. Expand the index by another δ fraction of the total column.

As the index grows and the fraction ρ of the indexed data increases, an ever-

smaller fraction of the base column has to be scanned, progressively improving query

performance. Once all the base column data has been added to the index, the creation

phase is followed by the refinement phase.

Refinement Phase. With the base column no longer required to answer queries,

we only perform lookups into the index to answer queries. While doing these lookups,

we further refine the index, progressively converging towards a fully ordered index.

In the refinement phase, we focus on refining parts of the index required for query

processing. After these parts have been refined, the refinement process starts processing

the neighboring parts. Once the index is fully ordered, the refinement phase is followed

by the consolidation phase.

Consolidation Phase. With the index fully ordered, we progressively construct

a B+-tree from it since a B+-Tree provides better data locality and thus is more

efficient than binary search when executing very selective queries. Once the B+-tree

is completed, we use it exclusively to answer all subsequent queries. The consolidation

phase is the same for all progressive algorithms. All algorithms end their refinement

phase with a sorted array. The B+-tree is then constructed on top of that sorted array

in a bottom-up fashion. Figure 3-5 depicts an example of the construction phase for

Progressive Quicksort in the right-most part of the figure labeled Consolidation. In

this example, the B+-Tree stored 4 elements per node. Hence we start constructing

the last level of the inner nodes pointing to one element every four elements. In this

case, the B+-Tree nicely ends with one inner node that is also the root. However,

if there were more elements, we would fully construct this level, link all nodes, and

proceed to the upper level and repeat this strategy.

36

Chapter 3. Progressive Indexing

In the following section, we discuss the details of four different Progressive Indexing

implementations. Section 3.1 describes Progressive Quicksort as a progressive version

of quicksort, aiming to achieve good performance independent of query patterns and

data distributions. In Section 3.2 we present Progressive Radixsort - Most Significant

Digit as the radixsort algorithm this index is based on, we expect good performance

over uniform distributions. In Section 3.3 we present Progressive Bucketsort, inspired

by bucketsort equi-height, which is expected to present excellent performance with

highly skewed data distributions. Finally, in Section 3.4 we present Progressive

Radixsort - Least Significant Digit, where we aim to optimize for workloads that

contain only point queries.

3.1 Progressive Quicksort

Figure 3-5 depicts snapshots of the creation phase, the refinement phase, and the

consolidation phase of Progressive Quicksort. We discuss the creation and refinement

phases in detail in the following paragraphs.

16
19

7

1
4

1313

1

14

8

9
11

1

6
3

6
3
16
13
2
1
8
19
7
12
11
4
9
14

Original
Column

A ≤ 10

10 < A

6

16

2

U
ni

ni
tia

liz
ed

Initialize

3
2

8
9
14
11
12
13

Initialize 2

A ≤ 10

10 < A

A ≤ 7

7 < A

A ≤ 15

15 < A

Refinement

Pi
vo

t=
10

Pi
vo

t=
15

Pi
vo

t=
7

14
13

4
6

1
2
3

7
8

12

16
19

Consolidation
So

rte
d

1
6
11
14

B+
 T

re
e

A ≤ 10

10 < A Pi
vo

t=
10

7

6
3
2

4
9

11
12
19

16

Figure 3-5: Progressive Quicksort.

37

3. Progressive Indexing

Creation Phase

In the first iteration, we allocate an uninitialized column of the same size as the

original column and select a pivot. The pivot is selected by taking the average value

of the smallest and largest value of the column. In Figure 3-5, pivot 10 is the average

of 1 and 19. If sufficient statistics are available, the median value of the column could

be used instead. Unlike Adaptive Indexing, the pivot selection is not impacted by the

query predicates. We then scan the original column and copy the first N ∗ δ elements

to either the top or bottom of the index, depending on their relation to the pivot. In

this step, we also search for any elements that fulfill the query predicate and afterward

scan the not-yet-indexed 1− ρ fraction of the column to compute the complete answer

to the query. In subsequent iterations, we scan either the top, bottom, or both parts

of the index based on how the query predicate relates to the chosen pivot.

Refinement Phase

We refine the index by recursively continuing the quicksort in-place in the separate

sections. The refinement consists of swapping elements in-place inside the index around

the pivots of the different segments. When the pivoting of a segment is completed, we

recursively continue the quicksort in the child segments. We maintain a binary tree

of the pivot points. In this tree’s nodes, we keep track of the pivot points and how

far along the pivoting process we are. To do an index lookup, we use this binary tree

to find the array sections that could match the query predicate and only scan those,

effectively reducing the amount of data to be accessed even when the full pivoting has

not been completed yet.

When we reach a node that is smaller than the L1 cache, we sort the entire node

instead of recursing any further. After sorting a node entirely, we mark it as sorted.

When two children of a node are sorted, the entire node itself is sorted, and we can

prune the child nodes. As the algorithm progresses, leaf nodes will keep on being

sorted and pruned until only a single fully sorted array remains.

3.2 Progressive Radixsort (MSD)

Figure 3-6 depicts snapshots of the creation phase, the refinement phase, of Progressive

Radixsort (MSD). We discuss both phases in detail in the following paragraphs.

38

Chapter 3. Progressive Indexing

11

4

1

13

8

14

11

3

16

16

13

3

19

8

14
14

1

6
3
14
13
2
1
8
19
7
12
11
4
16
9

6

2

Initialize Refinement

00
…

13

11

1
7

6
3
2

4

12

9

01
…

10
…

11
…

U
ni

ni
tia

liz
ed

19

00
.

01
.

10
.

11
.

1

2
4
6
7

00
.

01
.

10
.

11
.

9

12

00
…

01
…

10
…

Refinement

13

8

14

11

3

00
.

01
.

10
.

11
.

1

2
4
6
7

00
.

01
.

10
.

11
.

9

12

9

16

13

6

2
3

7
8

12

14

19

Original
Column

Figure 3-6: Progressive Radixsort (MSD).

Creation Phase

In the creation phase of Progressive Radixsort, we perform the radixsort partitioning

into buckets located in separate memory regions. We start by allocating b empty

buckets. Then, while scanning the original column, we place N ∗ δ elements into the

buckets based on their most significant log2 b bits. We then scan the remaining 1− ρ
fraction of the base column. In subsequent iterations, we scan the [0, b] buckets that

could potentially contain elements matching the query predicate to answer the query

in addition to scanning the remainder of the base column.

Bucket Count. Radix clustering performs a random memory access pattern that

randomly writes in b output buckets. To avoid excessive cache- and TLB-misses,

assuming that each bucket is at least of the size of a memory page, the number b of

buckets, and thus the number of randomly accessed memory pages, should not exceed

the number of cache lines and TLB entries, whichever is smaller [9]. Since our machine

has 512 L1 cache lines and 64 TLB entries, we use b = 64 buckets.

Bucket Layout. To avoid allocating large regions of sequential data for every

bucket, the buckets are implemented as a linked list of blocks of memory that each

39

3. Progressive Indexing

hold up to sb elements. When a block is filled, another block is added to the list,

and elements will be written to that block. This adds some overhead over sequential

reads/writes as for every sb elements there will be a memory allocation and random

access, and for every element that is added, the bounds of the current block have to

be checked.

Refinement Phase

In the refinement phase, all elements in the original column have been appended to

the buckets. In this phase, we recursively partition by the next set of log2 b most

significant digits. For each of the buckets, this results in creating another set of b

buckets in each of the refinement phases, for a total of b∗b buckets in the second phase.

To avoid the overhead of managing these buckets to become bigger than the overhead

of actually performing the radix partitioning, we avoid re-partitioning buckets that fit

into the L1 cache and instead immediately insert the values of these buckets in sorted

order into the final sorted array, as shown in Figure 3-6. As the buckets themselves are

ordered (i.e., for two buckets bi and bi+1, we know ei < ei+1∀ei ∈ bi, ei+1 ∈ bi+1), we

know the position of each bucket in the final sorted array without having to consider

any elements in the other buckets.

We keep track of the buckets using a tree in which the nodes point towards either

the leaf buckets or towards a position in the final sorted array if the leaf buckets have

already been merged in there. This tree is used to answer queries on the intermediate

structure. When we get a query, we look up which buckets we have to scan based

on the query predicates’ most significant bits. We then scan the buckets or the final

index, where required.

When the first iteration of the refinement phase is completed, we recursively

continue with the next set of log2 b most significant digits until all the elements have

been merged and sorted into the final index. At that point, we construct our B+-tree

index from the single fully sorted array.

3.3 Progressive Bucktersort

Progressive Bucketsort (Equi-Height) is very similar to Progressive Radixsort (MSD).

The main difference is in the way the initial partitions (buckets) are determined.

Instead of radix clustering, which is fast but yields equally sized partitions only with

uniform data distributions, we perform a value-based range partitioning to yield

equally sized partitions also with skewed data, at the expense that determining the

40

Chapter 3. Progressive Indexing

13
14
16

8
7

16

3
4
6

11

4

19

13

7
6

9

4
6

1
2

6
3
14
13
2
1
8
19
7
12
11
4
16
9

Original
Column

3

1

Initialize Refinement

2
3

12

19

Refinement

A<
5

9

11

3
2
1

8

12

14
A<

5 A < 3

3<=A

5<
=A

<1
0

10
<=

A<
14

14
<=

A<
20

2
1

A < 5

5<=A

U
ni

ni
tia

liz
ed

So
rte

d

A < 10

10<=A

13
14

5<
=A

<1
0

10
<=

A<
14

14
<=

A<
20 So

rte
d

A < 8

8<=A

A < 5

5<=A

Figure 3-7: Progressive Bucket Sort

bucket that a value belongs to is more expensive. Figure 3-7 depicts a snapshot of

the creation phase and two snapshots of the refinement phase. In the following, we

discuss these two phases in detail.

Bucket Count. To optimize for writing and reading from the buckets, our

implementation of Progressive Bucketsort uses 64 buckets, as discussed in Section 3.2.

Creation Phase

Progressive Bucketsort operates in a very similar way to Progressive Radixsort (MSD).

Instead of choosing the bucket an element belongs to based only on the most significant

bits, the bucket is chosen based on a set of bounds that more-or-less evenly divide

the set elements into the separate buckets. These bounds can be obtained either in

the scan to answer the first query or from existing statistics in the database (e.g., a

histogram).

41

3. Progressive Indexing

Refinement Phase

In the refinement phase, all elements in the original column have been appended to the

buckets. We then merge the buckets into a single sorted array. Unlike with Progressive

Radixsort (MSD), we do not recursively keep on using Progressive Bucketsort. This

is because the overhead of finding and maintaining the equi-height bounds for each

sub-bucket is too large. Instead, we sort the individual buckets into the final sorted list

using Progressive Quicksort. Using a progressive algorithm to sort individual buckets

protects us from performance spikes caused by sorting large buckets.

The buckets are merged into the final sorted index in order. As such, we always

have a single iteration of Progressive Quicksort active at a time in which we are

performing swaps. After all the buckets have been merged and sorted into the final

index, we have a single fully sorted array from which we can construct our B+-tree

index.

3.4 Progressive Radixsort (LSD)

9

19
3

137

13
6

14

1

6

2

6
3
14
13
2
1
8
19
7
12
11
4
16
9

Original
Column Initialize Refinement Refinement

…
00

8

13

2
3

…
00

…
01

…
10

…
11

14

…
01

…
10

…
113

1

19

12

11

4
16

9

.0
0.

.
.0

1.
.

.1
0.

.
.1

1.
.

8

12

4

16

6

0…
.

1…
.

4

8

16

6

12
13

.0
0.

.
.0

1.
.

.1
0.

.
.1

1.
.

1

14

2

7

11

16
19

1
2
3
4
6

Figure 3-8: Progressive Radixsort (LSD).

42

Chapter 3. Progressive Indexing

Progressive Radixsort Least Significant Digits (LSD) performs a progressive radix

clustering on the least significant bits during the creation and refinement phase.

Figure 3-8 depicts a snapshot of the creation phase and two snapshots of the refinement

phase. In the following, we discuss these two phases in detail.

Bucket Count. To optimize for writing and reading from the buckets, our

implementation of Progressive Radixsort (LSD) uses 64 buckets, as discussed in

Section 3.2.

Creation Phase

This algorithm’s creation phase is similar to the creation phase of Progressive Radixsort

(MSD), except that we partition elements based on the least-significant bits instead of

the most-significant bits. We can use the buckets created to speed up point queries

because we only need to scan the bucket in which the query value falls. However,

unlike the buckets created for the Progressive Radixsort (MSD) and Progressive

Bucketsort, these intermediate buckets cannot be used to speed up range queries in

many situations. Because the elements are inserted based on their least-significant bits,

the buckets do not form a value-based range-partitioning of the data. Consequently,

we will have to scan many buckets, depending on the domain covered by the range

query.

Refinement Phase

In the refinement phase, we move elements from the current set of buckets to a new set

of buckets based on the next set of significant bits. We repeat this process until the

column is sorted. How many iterations this takes depends on the bucket count and the

column’s value domain, which we obtain from the [min,max] values. We can compute

the amount of required iterations with the formula dlog2(max−min)/log2(b)e. For

example, for a column with values in the range of [0, 216) and 64 buckets, the amount

of iterations required before convergence is dlog2(216)/log2(64)e = 3.

4 Greedy Progressive Indexing

The value of δ determines how much time is spent constructing the index and hence

determines the indexing budget. Greedy Progressive Indexing allows the user to select

between setting either a fixed indexing budget or an adaptive indexing budget. For

the fixed indexing budget, the user provides the desired indexing budget tbudget to

43

4. Greedy Progressive Indexing

Table 3.1: Parameters for Greedy Progressive Quicksort Cost Model.
System ω cost of sequential page read (s)

κ cost of sequential page write (s)
φ cost of random page access (s)
γ elements per page

Data set N number of elements in the data set
& Query α % of data scanned in partial index
Index δ % of data to-be-indexed

ρ % of data already indexed
Progressive Quicksort h height of the binary search tree
Progressive b number of buckets
Radixsort sb max elements per bucket block

τ cost of memory allocation (s)
B+-Tree β tree fanout

spend on indexing for the first query. We then select the value of δ based on this

budget and use that δ for the remainder of the workload. The adaptive indexing

budget allows the user to specify the desired indexing budget for the first query tbudget.

The first query will then execute in time tadaptive = tscan + tbudget. After the first query,

the value of δ will be adapted such that the query cost will stay equivalent to tadaptive

until the index is converged.

Cost Model. We use a cost model to determine how much time we can spend on

indexing when working with the adaptive indexing budget. The cost model takes into

account the query predicates, the selectivity of the query and the state of the index in

a way that is not sensitive to different data distributions or querying patterns and

does not rely on having any statistics about the data available.

4.1 Greedy Progressive Quicksort

The parameters of the Greedy Progressive Quicksort cost model are summarized in

Table 3.1.

Creation Phase

The total time taken in the creation phase is the sum of (1) the scan time of the

base table, (2) the index lookup time, and (3) the additional indexing time. The scan

time is given by multiplying the number of pages we need to scan (N
γ

) by the amount

of time it takes for a sequential page access (ω), resulting in tscan = ω ∗ N
γ

. The

pivoting time (i.e., index construction time) consists of scanning the base table pages

and writing the pivoted elements to the result array. The pivoting time is therefore

44

Chapter 3. Progressive Indexing

obtained by multiplying the time it takes to scan and write a page sequentially (κ+ω)

by the number of pages we need to write, resulting in tpivot = (κ+ ω) ∗ N
γ

.

The total time taken for the initial indexing process is given by multiplying the

scan time by the fraction of the base table we need to scan. Initially, we need to scan

the entire base table, but as the fraction of indexed data (ρ) increases, we need to scan

less. Instead, we scan the index to answer the query. The amount of data we need

to scan in the index depends on how the query predicates relate to the pivot. The

fraction of data that we need to scan is given by α and can be computed for a given

set of query predicates. The total fraction of the data that we scan is 1− ρ+ α− δ.
The fraction of the data that we index in each step is δ. Hence the total time taken is

given by ttotal = (1− ρ+ α− δ) ∗ tscan + δ ∗ tpivot.
Indexing Budget. In this phase, we set delta such that δ =

tbudget
tpivot

. For the fixed

indexing budget, we select this δ for the first query and keep on using this δ for the

remainder of the workload. For the adaptive indexing budget, we use this formula to

select the δ for each query.

Refinement Phase

In the refinement phase, we no longer need to scan the base table. Instead, we only

need to scan the fraction α of the data in the index. However, we now need to (1)

traverse the binary tree to figure out the bounds of α, and (2) swap elements in-place

inside the index instead of sequentially writing them to refine the index. The cost for

traversing the binary tree is given by the height of the binary tree h times the cost of

a random page access φ, resulting in tlookup = h ∗ φ. For the swapping of elements,

we perform predicated swapping to allow for a constant cost regardless of how many

elements we need to swap. Therefore the cost for swapping is equivalent to the cost

of sequential writing (i.e., tswap = κ ∗ N
γ

). The total cost in this phase is therefore

equivalent to ttotal = tlookup + α ∗ tscan + δ ∗ tswap.
Indexing Budget. In this phase, we set delta such that δ =

tbudget
tswap

for the

adaptive indexing budget.

Consolidation Phase

In the consolidation phase, we use binary search in the sorted array until the B+-Tree

levels are complete. This results in tlookup = log2 (n) ∗ φ. To construct the B+-Tree,

we copy every β element from one level to the next. Therefore the cost of copying the

elements is the cost of access a random element from the current level and sequentially

45

4. Greedy Progressive Indexing

write it to the next, defined by tcopy = Ncopy ∗ κ ∗ γ The total cost in this phase is

equivalent to ttotal = tlookup + α ∗ tscan + δ ∗ tcopy.
Indexing Budget. In this phase, we set delta such that δ =

tbudget
tcopy

for the

adaptive indexing budget.

4.2 Greedy Progressive Radixsort (MSD)

This section describes the cost model for both the creation and refinement phases of

Greedy Progressive Radixsort (MSD). The consolidation phase follows the same cost

model as described in Section 4.1. The parameters are summarized in Table 3.1.

Creation Phase

In the creation phase, the total time taken is the sum of (1) the scan time of the base

table, (2) the index lookup time, and (3) the time it takes to add elements to buckets.

The scan time of the base table is equivalent to the scan time (tscan) given in Section 3.1.

Scanning the buckets for the already indexed data has equivalent performance to

performing a sequential scan plus the random accesses we need to perform every sb

elements, hence the scan time of the buckets is equivalent to tbscan = tscan + φ ∗ N
sb

. As

we determine which bucket an element belongs to only based on the most significant

bits, finding the relevant bucket for an element can be done using a single bitshift. As

we chose the bucket count such that all bucket regions can fit in cache, the cost of

writing elements to buckets is equivalent to sequentially writing them (κ). We need

to perform a memory allocation every sb entries, which has a cost of τ . This results

in a total cost of bucketing equal to tbucket = (κ+ ω) ∗ N
γ

+ τ ∗ N
sb

. The total cost is

therefore ttotal = (1− ρ− δ) ∗ tscan + α ∗ tbscan + δ ∗ tbucket.
Indexing Budget. In this phase, we set delta such that δ =

tbudget
tbucket

. For the fixed

indexing budget, we select this δ for the first query and keep on using this δ for the

remainder of the workload. For the adaptive indexing budget, we use this formula to

select the δ for each query.

Refinement Phase

The total time taken for a query is the sum of (1) the time taken to scan the

required buckets to answer the query predicates and (2) the time taken to perform

the radix partitioning of the elements. The time taken to scan the buckets is the

same as in the creation phase, α ∗ tbscan. The time taken for the radix partitioning is

tbucket = (κ+ ω) ∗ N
γ

+ τ ∗ N
sb

. The total cost is therefore ttotal = α ∗ tbscan + δ ∗ tbucket.

46

Chapter 3. Progressive Indexing

Indexing Budget. In this phase, we set delta such that δ =
tbudget
tbucket

for the

adaptive indexing budget.

4.3 Greedy Progressive Bucketsort

In this section, we describe the cost model for the creation phase of Greedy Progressive

Bucketsort. The refinement and consolidation phases follow the same cost model

described in Section 4.1. The parameters are summarized in Table 3.1.

Creation Phase

In the creation phase, the cost of the algorithm is identical to that of Progressive

Radixsort (MSD) except that determining which element a bucket belongs to now

requires us to perform a binary search on the bucket boundaries, costing an additional

log2 b time per element we bucket. This results in the following cost for the initial

indexing process ttotal = (1− ρ− δ) ∗ tscan + α ∗ tbscan + δ ∗ log2 b ∗ tbucket.
Indexing Budget. In this phase, we set delta such that δ =

tbudget
log2 b∗tbucket

. For the

fixed indexing budget, we select this δ for the first query and keep on using this δ for

the remainder of the workload. For the adaptive indexing budget, we use this formula

to select the δ for each query.

4.4 Greedy Progressive Radixsort(LSD)

This section describes the cost model for both the creation and refinement phases of

Greedy Progressive Radixsort (LSD). The consolidation phase follows the same cost

model as described in Section 4.1. The parameters are summarized in Table 3.1.

Creation Phase

The cost model for the Progressive Radixsort (LSD) is also equivalent to the cost

model of the Progressive Radixsort (MSD), except the value of α is likely to be higher

for range queries (depending on the query predicates) as the elements that answer

the query predicate are spread in more buckets. As scanning the buckets is slower

than scanning the original column, we also have a fallback when α == ρ we scan the

original column instead of using the buckets to answer the query.

47

5. Experimental Analysis

Refinement Phase

In this phase, we scan α fraction of the original buckets to answer the query and move

δ fraction of the elements into the new set of buckets. This results in the following

cost for the refinement process: ttotal = α ∗ tbscan + δ ∗ tbucket.
Indexing Budget. In this phase, we set delta as δ =

tbudget
tbucket

for the adaptive

indexing budget.

5 Experimental Analysis

In this section, we evaluate the proposed Progressive Indexing methods and the

performance characteristics they exhibit. In addition, we provide a comparison of the

performance of the proposed methods with Adaptive Indexing methods.

5.1 Setup.

We implemented all our Progressive Indexing algorithms in a stand-alone program

written in C++. We included implementations of the Adaptive Indexing algorithms

provided by the authors and implemented an adaptive cracking kernel algorithm that

picks the most efficient kernel when executing a query, following the decision tree

from Haffner et al. [25]. Both the Progressive Indexing algorithms and the existing

techniques were compiled with GNU g++ version 7.2.1 using optimization level -O3.

All experiments were conducted on a machine equipped with 256 GB of main memory

and an 8-core Intel Xeon E5-2650 v2 CPU @ 2.6 GHz with 20480 KB L3 cache.

Workloads

In the performance evaluation, we use two data sets a real data set called Skyserver

and a synthetic data set.

Skyserver

The Sloan Digital Sky Survey2 is a project that maps the universe. The data set

and interactive data exploration query logs are publicly available via the SkyServer3

website. Similar to Halim et al. [26] we focus the benchmark on the range queries that

are applied on the Right Ascension column of the PhotoObjAll table. The data set

2https://www.sdss.org/
3http://skyserver.sdss.org/

48

https://www.sdss.org/
http://skyserver.sdss.org/

Chapter 3. Progressive Indexing

(a) Data Distribution

0

108

0 50000 100000 150000

Query (#)

Q
ue

ry
 R

an
ge

(b) Workload

Figure 3-9: Skyserver

contains almost 600 million tuples, with around 160, 000 range queries that focus on

specific sections of the domain before moving to different areas. The data and the

workload distributions are shown in Figure 3-9.

Synthetic

Figure 3-10: Synthetic Workloads [26].

Synthetic. The synthetic data set is composed of two data distributions, consisting

of 108 or 109 8-byte integers distributed in the range of [0, n), i.e., for 109 the values

are in the range of [0, 109). We use two different data sets. The first one is composed

of unique integers that are uniformly distributed. In contrast, the second one follows

a skewed distribution with non-unique integers where 90% of the data is concentrated

in the middle of the [0, n) range. The synthetic workload consists of 106 queries in the

form SELECT SUM(R.A) FROM R WHERE R.A BETWEEN V1 AND V2. The values for V1

and V2 are chosen based on the workload pattern. The different workload patterns

and their mathematical description are depicted in Figure 3-10.

49

5. Experimental Analysis

5.2 Delta Impact

The δ parameter determines the performance characteristics shown by the Progressive

Indexing algorithms. For δ = 0, no indexing is performed, meaning that algorithms

resort to performing full scans on the data, never converging to a full index. For

δ = 1, the entire creation phase will be completed immediately during the first query

execution. Between these two extremes, we are interested in seeing how different

values of the δ parameter influence the performance characteristics of the different

algorithms.

To measure the impact of different δ parameters on the different algorithms, we

execute the SkyServer workload using a δ ∈ [0.005, 1]. We measure the time taken for

the first query, the number of queries until pay-off, the number of queries necessary

for full convergence, and the total time spent executing the entire workload.

First Query.

● ●
●

●

●

●

●

●

●

●

●

●

●

3

6

9

12

0.01 0.10 1.00

δ

Q
ue

ry
 T

im
e

(s
)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

Figure 3-11: First Query.

Figure 3-11 shows the performance of the first query for varying values of δ. The

first query’s performance degrades as δ increases since each query does extra work

proportional to δ. For every algorithm, however, the amount of extra work done

differs.

We can see that Bucketsort is impacted the most by increasing δ. This is because

determining which bucket an element falls into costs O(log b) time, followed by a

random write for inserting the element into the bucket. Radixsort, despite its similar

nature to Bucketsort, is impacted much less heavily by an increased δ. This is because

determining which bucket an element falls into costs constant O(1) time. Quicksort

50

Chapter 3. Progressive Indexing

experiences the lowest impact from an increasing δ, as elements are always written to

only two memory locations (the top and bottom of the array), the extra sequential

writes are not very expensive.

Pay-Off.

Figure 3-12: Pay-Off.

Figure 3-12 shows the number of queries required until the Progressive Indexing

technique becomes worth the investment (i.e., the query number q for which
∑

q tprog ≤∑
q tscan) for varying values of δ. We observe that with a very small δ, it takes many

queries until the indexing pays off. While a small δ ensures low first query costs, it

significantly limits the progress of index-creation per query, and consequently, the

speed-up of query processing. With increasing δ, the number of queries required until

pay-off quickly drops to a stable level.

We see that Radixsort (LSD) needs a very high amount of queries to pay-off for

low values of δ. This is because the intermediate index cannot accelerate range queries

until the index fully converges. When the value of δ is high, the index converges faster

and can be utilized to answer range queries earlier. Quicksort also has a high time to

pay-off with a low delta because the intermediate index can only be used to accelerate

range queries that do not contain the pivots. Hence in the early stages of the index,

the table often needs to be scanned. Bucketsort and Radixsort (MSD) do not suffer

from these problems. Hence they pay-off fast even with lower values for δ.

Convergence.

The δ parameter affects the convergence speed towards a full index. When δ = 0, the

index will never converge, and a higher value for δ will cause the index to converge

51

5. Experimental Analysis

●

●

●
● ● ● ●●●●●●●0

1000

2000

3000

4000

5000

0.01 0.10 1.00

δ

Q
ue

ry
 N

um
be

r
(#

)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

Figure 3-13: Convergence.

faster as more work is done per query on building the index.

Figure 3-13 shows the number of queries required until the index converges towards

a full index. We see that Radixsort converges the fastest, even with a low δ. It is

followed by Quicksort and then Bucketsort.

The reason Radixsort converges in so few iterations is because it uses radix

partitioning, which means that after dlog2(n)/log2(b)e = dlog2(109)/log2(64)e = 5

partitioning rounds the index is fully converged. Bucketsort uses Quicksort pivoting,

which requires more passes over the data.

Cumulative Time.

●
●

● ● ● ● ●●●●●●●

0

250

500

750

0.01 0.10 1.00

δ

To
ta

l T
im

e
(s

)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

Figure 3-14: Total Time.

As we have seen before, a high value for δ means that more time is spent constructing

the index, meaning that the index converges towards a full index faster. While earlier

52

Chapter 3. Progressive Indexing

queries take longer with a higher value of δ, subsequent queries take less time. Another

interesting measurement is the cumulative time spent on answering a large number of

queries. Does the increased investment in index creation earlier on pay off in the long

run?

Figure 3-14 depicts the cumulative query cost. We can see that a higher value of δ

leads to a lower cumulative time. Converging towards a full index requires the same

amount of time spent constructing the index, regardless of the value of δ. However,

when δ is higher, that work is spent earlier on (during fewer queries), and queries can

benefit from the constructed index earlier.

Progressive Quicksort and Radixsort (LSD) perform poorly when the delta is low.

For Quicksort, this is because it will take many queries to finish our pivoting in one

element. While in Radixsort (LSD), the intermediate index that is created cannot

be effectively used to answer range queries before it fully converges, meaning a long

time until convergence results in poor cumulative time. Progressive Bucketsort and

Radixsort (MSD) perform better than Progressive Quicksort for all values of δ, with

Radixsort (MSD) slightly outperforming Bucketsort.

Another observation here is that the cumulative time converges rather quickly

with an increasing delta. The cumulative time with δ = 0.25 and δ = 1 are almost

identical for all algorithms, while the penalization of the initial query continues to

increase significantly (recall Figure 3-11).

5.3 Cost Model Validation

For both the fixed indexing budget and the adaptive indexing budget of Greedy

Progressive Indexing, we need the cost models presented in Section 4 to estimate the

actual query processing and index creation costs. For the fixed indexing budget, we

need the cost model to compute the initial value of δ based on the desired indexing

budget. For the adaptive indexing budget, we need the cost model to adapt the value

of δ for each query to the current minimum query cost.

In this set of experiments, we experimentally validate our cost models. To use the

cost models in practice, we need to obtain values for all of the constants used, such as

the scanning speed and the cost of a cache miss. Since these constants depend on the

hardware, we perform these operations when the program starts up and measure how

long it takes to perform these operations. The measured values are then used as the

constants in our cost model.

53

5. Experimental Analysis

Fixed Indexing Budget.

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e
(s

)

Measured
Cost Model

(a) G. P. Quicksort.

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e
(s

)

Measured
Cost Model

(b) G. P. Radixsort (MSD).

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e
(s

)

Measured
Cost Model

(c) G. P. Radixsort (LSD).

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e
(s

)

Measured
Cost Model

(d) G. P. Bucketsort.

Figure 3-15: SkyServer Workload with Fixed Indexing Budget (all axes in log scale)

Before diving into the details of choosing a variable δ per query for the adaptive

indexing budget, we first experimentally validate our cost models. We run the

SkyServer benchmark with a constant δ = 0.25 for the entire query sequence and

compare the measured execution times with the times predicted by our cost models.

Figure 3-15 shows the results for all four Greedy Progressive Indexing techniques

we propose. The graphs depict the individual phases of our algorithms (cf., Section 3)

and show that significant improvements in query performance happen mainly with

the transition from one phase to the next. Given that δ determines the fraction of

data that is to be considered for index refinement with each query (rather than a

fraction of the full scan cost), the different techniques depict different per query cost,

depending on the respective index refinement operations performed as well as the

efficiency of the respective partially built indexes. The graphs also show that our cost

54

Chapter 3. Progressive Indexing

models predict the actual costs well, accurately predicting each phase transition and

the point when the full index has been finalized, and no further indexing is required.

adaptive indexing budget.

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e
(s

)

Measured
Cost Model

(a) G. P. Quicksort.

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)
T

im
e

(s
)

Measured
Cost Model

(b) G. P. Radixsort (MSD).

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e
(s

)

Measured
Cost Model

(c) G. P. Radixsort (LSD).

1e−05

1e−03

1e−01

1e+01

1 10 100 1000

Query (#)

T
im

e
(s

)

Measured
Cost Model

(d) G. P. Bucketsort.

Figure 3-16: SkyServer Workload with adaptive indexing budget (all axes in log scale)

With our cost models validated, we now run the SkyServer benchmark with all

four Greedy Progressive Indexing techniques with the adaptive indexing budget. We

select tbudget = 0.2 ∗ tscan, i.e., the indexing budget is selected as 20% of the full scan

cost. Figure 3-16 depicts the results of this experiment for each of the algorithms.

In all graphs, we observe that the total execution time stays close to constant at a

high level, matching the given budget until the index is fully built, and no further

refinement is required.

In Figure 3-16a, the measured and predicted time are shown for the Greedy

Progressive Quicksort algorithm. Initially, the cost model accurately predicts the

55

5. Experimental Analysis

performance of the algorithm. However, close to convergence, the cost model predicts

a slightly higher execution time. As the pieces become smaller, they start fitting inside

the CPU caches entirely, which results in faster swaps than predicted by our cost

model.

In Figure 3-16b, the measured and predicted time are shown for the Greedy

Progressive Radixsort (MSD) algorithm. In the initialization phase, the cost model

matches the measured time initially, but the measured time slightly decreases below

the cost model as the initialization progresses. This is because the data distribution is

relatively skewed, which results in the same buckets being scanned for every query,

which will then be cache resident and faster than predicted. In the refinement phase,

there are some minor deviations from the cost model caused by smaller radix partitions

fitting in CPU caches, which our cost model does not accurately predict.

In Figure 3-16c, the measured and predicted time are shown for the Greedy

Progressive Radixsort (LSD) algorithm. The cost model accurately predicts the

performance of the initialization and refinement phases of the algorithm but results in

several spikes later in the refinement phase. These spikes occur because the workload

we are using consists of very wide range queries. These range queries can only take

advantage of the LSD index depending on the exact range queries issued. Thus, certain

queries can be answered much faster using the index, whereas others cannot use the

index at all. As our cost model is pessimistic, this results in the measured time being

faster than the predicted time.

In Figure 3-16d, the measured and predicted time are shown for the Greedy

Progressive Bucketsort algorithm. In the initialization phase, the cost model closely

matches the measured time. After it, Greedy Progressive Quicksort is used to merge

the different buckets into a single sorted array. The different iterations of Greedy

Progressive Quicksort each have small downwards spikes when the pieces start fitting

inside the CPU caches.

5.4 Interactivity Threshold

In the previous workload, we have shown our cost models’ effectiveness at staying

on a specific interactivity threshold. In this experiment, we want to show how the

algorithms perform at different interactivity thresholds based on the full scan cost. In

this experiment, we show three different scenarios: (1) the interactivity threshold is

below the full scan cost, (2) the interactivity threshold is above the full scan cost, and

(3) the interactivity threshold decreases with the number of queries issued.

56

Chapter 3. Progressive Indexing

Threshold Below Full Scan Cost.

In the first scenario, the initial runs will always be above the interactivity threshold

as even the full scan cannot reach it. In this scenario, we start by setting δ to 0.25.

In Section 5.2 we determined this provides a fast convergence rate while not heavily

penalizing the initial queries. After the index has reached the state where it can

answer queries below the interactivity threshold, δ is set such that the query cost

stays on the interactivity threshold until convergence.

●

Index
 0.000003s

Threshold
 (80% Scan)

 0.56s

0 100 200 300 400 500

Query (#)

Q
ue

ry
 T

im
e

(s
)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

Figure 3-17: Threshold of 80% Scan Cost (Y-Axis in log scale)

Figure 3-17 shows the results for this experiment. We can see that all queries start

above the interactivity threshold, after which they gradually move towards it. The

Greedy Progressive Quicksort and Radixsort (MSD) quickly reach the interactivity

threshold. The Radixsort (LSD) takes the longest to reach it. This is because the

wide range queries cannot take advantage of the LSD radix index structure to speed

up answering the queries. However, because it stays on the δ of 0.25 the longest, i.e.,

it performs more indexing work with more initial queries, it does converge the fastest.

Figure 3-18 shows the time spent on indexing versus the time spent on query

processing for the Greedy Progressive Quicksort in this scenario. At the start, a

significant amount of time is spent on indexing as the interactivity threshold cannot

be reached yet. After the index is sufficiently converged, the interactivity threshold

can be reached, and the fixed δ = 0.25 is replaced by a variable per-query δ as

discussed in Section 5.2, which is initially rather small given that the time budget

between query processing cost and interactivity threshold is small. As more data gets

indexed, the query processing cost gradually decreases. Consequently, δ is gradually

57

5. Experimental Analysis

●

0.0

0.2

0.4

0.6

0 100 200 300

Query (#)

Q
ue

ry
 T

im
e

(s
)

● Index Creation
Query Processing

Figure 3-18: Progressive Quicksort - Query Processing vs. Index Creation

increased, allowing to spend more time on index creation per query until the index

fully converges.

Threshold Above Full Scan Cost.

In the second scenario, all the greedy algorithms can stay on the interactivity threshold

above the full scan cost. The only difference is the time until convergence for each of

the algorithms. These differ based on how much extra time we can spend on index

creation, which depends on how much the interactivity threshold is above the full

scan cost. For this reason, we performed two separate experiments, one where the

interactivity threshold is 1.2x the full scan cost and one where it is 2x the full scan

cost.

Figure 3-19 shows the experiment results where the threshold is 1.2x the scan cost.

In this experiment, the Radixsort (MSD) converges the fastest, and the Radixsort

(LSD) converges the slowest. This is because the intermediate index created by the

Radixsort (LSD) cannot be effectively used to speed up the range queries, and the

δ will stay at a fixed low number until convergence. As the interactivity threshold

is so close to a full scan, this value will be very low. The other indexes can use the

intermediate index to speed up the query processing, resulting in an increasing δ that

improves convergence time.

Figure 3-20 shows the results of the experiment where the threshold is 2x the

scan cost. In this experiment, the Radixsort (LSD) converges the fastest. While

the intermediate index still cannot speed up the query, as the full scan only takes

58

Chapter 3. Progressive Indexing

●

Index
 0.000003s

Threshold
 (120% Scan)

 0.84s

0 100 200 300 400 500

Query (#)

Q
ue

ry
 T

im
e

(s
)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

Figure 3-19: Threshold of 120% Scan Cost (Y-Axis in log scale)

●

Index
 0.000003s

Threshold
 (200% Scan)

 1.4s

0 100 200 300

Query (#)

Q
ue

ry
 T

im
e

(s
)

● P. Bucket
P. Quick
P. Radix (LSD)
P. Radix (MSD)

Figure 3-20: Threshold of 200% Scan Cost (Y-Axis in log scale)

up half the interactivity threshold, the amount of time spent on index refinement

is significantly higher than in the previous experiment for all algorithms. As the

Progressive Radixsort (LSD) has the fastest convergence, as shown in Figure 3-13, it

is now the fastest converging algorithm.

5.5 Varying Interactivity

So far, we have used the same fixed interactivity threshold for all queries. Fully

exploiting the time budget between this threshold and pure query processing cost for

index creation ensures faster convergence towards a full index. However, it also results

59

5. Experimental Analysis

in a rather discrete behavior: All initial queries (including index refinement) take as

long as allowed by the interactivity threshold. Once the full index is entirely built,

query times abruptly drop to the optimal times using the index. This behavior might

not always be desirable. Instead, a more gradual convergence of the query execution

times from the given interactivity threshold to the optimal case might be preferred,

possibly at the expense of slightly slower convergence.

0.00

0.25

0.50

0.75

1.00

0 200 400 600

Query (#)

T
im

e
(s

)

Exponential
Linear

Figure 3-21: Exponential and Linear Decay

We can mimic such behavior by monotonously decreasing the interactivity threshold

with the query sequence, ensuring that at any time, the interactivity threshold remains

high enough so that the queries can be completed within that threshold. Again,

using our cost model, we can automatically determine the respective values for δ. We

perform two experiments using linear and exponential decay formulas to model the

decreasing the interactivity threshold depicted in Figure 3-21.

For the linear decay, we set our formula as tq = I − r ∗ q where I is the initial

interactivity threshold, tq is the total time spent on query number q, and r is the

decreasing ratio. We use the following formula to calculate the decay ratio r = − tFI−I
n

where tFI is the estimated full index time and n is the amount of queries until

convergence to time tFI . For this experiment, we use Progressive Quicksort with

n = 200 and the initial interactivity threshold set to 1.2x the full scan time. We can

see that we can gradually push down the execution time as the index converges by

gradually decreasing the interactivity threshold.

For the exponential decay, we use the exponential decay formula tq = I(1− r)q. To

determine r, we use the following formula r = 1− n

√
tFI
I

. For this experiment, we use

Progressive Quicksort with n = 300 and the initial interactivity threshold set to 1.2x

60

Chapter 3. Progressive Indexing

the full scan time. Like the linear decay, we can see that the measured time closely

follows the interactivity threshold.

5.6 Adaptive Indexing Comparison

In this section, we will be comparing the greedy Progressive Indexing techniques with

existing Adaptive Indexing techniques. In particular, we focus on Standard Cracking

(STD), Stochastic Cracking (STC), progressive Stochastic Cracking (PSTC), Coarse

Granular Index (CGI), and Adaptive Adaptive Indexing (AA).

The implementations for the Full Index, Standard Cracking, Stochastic Cracking,

and Coarse Granular Index were inspired by the work done in Schuhknecht et al. [50]4.

The implementation for Progressive Stochastic Cracking was inspired by the work

done in Halim et al. [26]5. Progressive Stochastic Cracking is run with the allowed

swaps set to 10% of the base column. The implementation for the Adaptive Adaptive

Indexing algorithm has been provided to us by the authors of the Adaptive Adaptive

Indexing work [49], and we use the manual configuration suggested in their paper.

We compare all the Progressive Indexing techniques that we have introduced in

this work: Greedy Progressive Quicksort (PQ), Greedy Progressive Bucketsort (PB),

Greedy Progressive Radixsort LSD (PLSD), and Greedy Progressive Radixsort MSD

(PMSD). For each of the techniques, we use an adaptive indexing budget where we set

tbudget = 0.2 ∗ tscan, i.e., the cost of each query will be equivalent to 1.2 ∗ tscan until

convergence.

For reference, we also include the timing results when only performing full scans

on the data (FS) and when constructing a full index immediately on the first query

(FI). The full scan implementation uses predication to avoid branches, and the full

index bulk loads the data into a B+-tree, after which the B+-tree is used to answer

subsequent queries.

Metrics. The metrics that we are interested in are the time taken for the first

query, the number of queries required until convergence, the robustness of each of the

algorithms, and the cumulative response time. The robustness we compute by taking

the variance of the first 100 query times.

61

5. Experimental Analysis

Table 3.2: SkyServer Results
Index First Q Convergence Robustness Cumulative

FS 0.75 x 0 118743.7
FI 34.10 1 x 121.4

STD 5.26 x 0.290 1082.2
STC 4.99 x 0.250 245.6

PSTC 4.89 x 0.240 254.5
CGI 5.71 x 0.320 1008.9
AA 8.50 x 0.800 188.4
PQ 0.90 150 0.002 202.9

PMSD 0.90 119 0.030 157.5
PLSD 0.81 368 3.4e-05 377.4

PB 0.83 138 0.009 166.4

SkyServer Workload

In this part of the experiments section, we execute the full SkyServer workload using

different indexing techniques. The results for each of the indexing techniques are

shown in Table 3.2. The algorithms have been divided into three sections: the baseline,

the Adaptive Indexing techniques, and the Progressive Indexing techniques.

The results for the baseline techniques are not very surprising. The full scan

method is the most robust, as we use predication, and no index is constructed. The

cost of each query is identical. The full scan method is also the cheapest method for the

first query’s cost as no time is spent on indexing at all. The full scan, however, takes

significantly longer to answer the full workload than the other methods. Answering

the full workload takes almost 30 hours, whereas all the other techniques finish the

entire workload under 20 minutes. The full index lies at the other extreme. It takes

50x longer to answer the first query while the index is being constructed. However, it

has the lowest cumulative time as the index can quickly answer all of the remaining

queries.

For the Adaptive Indexing techniques, we can see that their first query cost is

significantly lower than that of a full index but still significantly higher than that of a

full scan. Each of the Adaptive Indexing methods performs a significant amount of

work copying the data and cracking the index on the first query, resulting in a very

high cost for the first query. They do achieve a significantly faster cumulative time

than the full scans. However, in sum, they take longer than the full index to answer

the workload. Standard Cracking and Coarse Granular Indexing perform particularly

4https://infosys.uni-saarland.de/publications/uncracked_pieces_sourcecode.zip
5https://github.com/felix-halim/scrack

62

https://infosys.uni-saarland.de/publications/uncracked_pieces_sourcecode.zip
https://github.com/felix-halim/scrack

Chapter 3. Progressive Indexing

poorly because of the workload’s sequential nature, as shown in Figure 3-9. Stochastic

Cracking and Adaptive Indexing perform better as they do not choose the pivots

based on the query predicates. Adaptive Adaptive Indexing has the best cumulative

performance, consistent with the results in Schuhknecht et al. [49].

The Progressive Indexing methods all have approximately the same cost for the

first query, which is 1.2x the scan cost. This is by design as we set the indexing

budget tbudget = 0.2 ∗ tscan for each of the algorithms. The main difference between

the algorithms is the robustness and the time until convergence. As we are executing

range queries, the Radixsort LSD performs the worst. The LSD partitioning cannot

help answer the range queries, and hence, the intermediate index does not speed up

the workload before convergence. Radixsort MSD performs the best, as the data set

is rather uniformly distributed. The radix partitioning works to efficiently create a

partitioning of the data, which can be immediately utilized to speed up subsequent

queries. For each of the Progressive Indexing methods, we see that they converge

relatively early in the workload. As we have set every query to take 1.2 ∗ tscan until

convergence, a significant amount of time can be spent on constructing the index for

each query, especially in later queries when the intermediate index can already be used

to obtain the answer efficiently. We also note that the Progressive Indexing methods

have a significantly higher robustness score than the Adaptive Indexing methods.

Progressive Indexing presents up to 4 orders of magnitude lower query variance when

compared to the Adaptive Indexing techniques. This is achieved by our cost model

balancing the per query execution cost to be (almost) the same until convergence,

while Adaptive Indexing suffers from many performance spikes.

●

Index
 (0.000003)

1.2x Scan
 (0.9)

10 1000

Query (#)

Q
ue

ry
 T

im
e

(lo
g(

s)
)

● AA Idx
P. Quick
P. Stc 10%

Figure 3-22: Progressive Quicksort vs Adaptive Indexing. (all axes in log scale)

63

5. Experimental Analysis

The execution time for each of the queries in the SkyServer workload is shown in

Figure 3-22. For clarity, we focus on the best Adaptive Indexing methods (Adaptive

Adaptive Indexing in terms of cumulative time, and Progressive Stochastic 10% in

terms of first query cost and robustness) and Progressive Quicksort. We can see

that both the Adaptive Indexing methods start with a significantly higher first query

cost and then fall quickly. Neither of them sufficiently converges, however, and both

continue to have many performance spikes. On the other hand, Progressive Quicksort

starts at the specified budget and maintains that query cost until convergence, after

which the cost drops to the cost of a full index.

Synthetic Workloads

In this part of our experiments, we execute all synthetic workloads described in

Section 5.1. All results are presented in tables. Each table is divided into four parts,

each representing one set of experiments. The first three are on data with 108 elements

and use random distribution, skewed distribution, and only point queries, respectively.

The final one is on 109 elements on random distribution. With the exception of point

queries and the ZoomIn and SeqZoomIn workloads, all queries have 0.1 selectivities.

From the Adaptive Indexing techniques, Adaptive Adaptive Indexing presents the

best cumulative time. Hence we select it for comparison. As previously, we set the

indexing budget tbudget = 0.2 ∗ tscan for each Progressive Indexing algorithm.

Table 3.3 depicts the cost of the first query for all algorithms. All Progressive

Indexing algorithms present a similar first query cost, which accounts for approximately

1.2x the scan cost, as chosen in our setup. Adaptive Indexing has a higher cost due to

the complete copy of the data and its full partition step in the first query. In general,

Progressive Indexing has one order of magnitude faster first query cost than Adaptive

Indexing.

Table 3.4 depicts the cumulative time of fully executing each workload. We can see

that Progressive Indexing outperforms Adaptive Indexing in most workloads under

uniform random data, except for the skewed and the periodic workload. This comes

with no surprise since Adaptive Indexing techniques have been designed to refine, and

boost access, to frequently accessed parts of the data. From the progressive algorithms,

radixsort (MSD) is the fastest since radixsort can outperform other techniques under

randomly distributed data.

For the skewed distribution, Adaptive Indexing outperforms Progressive Indexing

in almost all workloads due to its refinement strategy. However, Progressive Indexing

outperforms Adaptive Indexing for ZoomIn/Out workloads since each query accesses a

64

Chapter 3. Progressive Indexing

Table 3.3: First query cost
Workload PQ PB PLSD PMSD AA

U
n
if
or
m

R
an

d
om

SeqOver 0.15 0.15 0.14 0.14 1.4
ZoomOutAlt 0.15 0.15 0.14 0.14 1.4

Skew 0.15 0.15 0.14 0.14 1.4
Random 0.15 0.15 0.14 0.14 1.4

SeqZoomIn 0.15 0.15 0.14 0.14 1.4
Periodic 0.15 0.15 0.14 0.14 1.4

ZoomInAlt 0.15 0.15 0.14 0.14 1.4
ZoomIn 0.15 0.15 0.14 0.14 1.4

S
ke
w
ed

SeqOver 0.15 0.15 0.14 0.14 1.5
ZoomOutAlt 0.15 0.15 0.14 0.13 1.5

Skew 0.15 0.15 0.14 0.13 1.5
Random 0.15 0.15 0.13 0.13 1.5

SeqZoomIn 0.15 0.15 0.14 0.13 1.5
Periodic 0.15 0.15 0.14 0.13 1.5

ZoomInAlt 0.15 0.15 0.14 0.14 1.5
ZoomIn 0.15 0.15 0.14 0.14 1.5

P
oi
n
t
Q
u
er
y

SeqOver 0.15 0.15 0.21 0.14 1.4
ZoomOutAlt 0.15 0.15 0.21 0.14 1.4

Skew 0.15 0.15 0.21 0.14 1.4
Random 0.15 0.15 0.21 0.14 1.4
Periodic 0.15 0.15 0.21 0.14 1.4

ZoomInAlt 0.15 0.15 0.21 0.14 1.4

10
9

SeqOver 1.5 1.5 1.4 1.7 13.9
Skew 1.5 1.5 1.4 1.7 13.8

Random 1.5 1.5 1.4 1.7 25.4

different partition in different boundaries of the data, which leads to Adaptive Indexing

accessing large unrefined pieces in the initial queries. From the progressive algorithms,

bucketsort presents the fastest times since it generates equal-sized partitions for skewed

data distributions.

For point queries, radixsort (LSD) outperforms all algorithms in all workloads

since its intermediate index can be used early on to accelerate point queries.

Finally, for the 109 data size, Progressive Indexing manages to outperform adaptive

indexing even for the skewed workload. The key difference here is that the chunks

of unrefined data are bigger, and Progressive Indexing actually spends the time fully

converging them into small pieces. At the same time, Adaptive Indexing must manage

larger pieces of data.

Table 3.5 presents the robustness of the indexing algorithms. Progressive Indexing

presents up to four orders of magnitudes less variance than Adaptive Indexing. This is

due to the design characteristic of Progressive Indexing to inflict a controlled indexing

65

6. Summary

Table 3.4: Cumulative Time
Workload PQ PB PLSD PMSD AA

U
n
if
or
m

R
a
n
d
om

SeqOver 19.0 17.9 48.2 16.2 20.7
ZoomOutAlt 20.7 28.3 59.5 26.7 22.1

Skew 18.8 17.7 48.1 15.9 10.1
Random 24.7 22.8 53.1 21.1 29.1

SeqZoomIn 22.0 20.9 53.5 19.3 21.1
Periodic 23.3 22.0 63.9 20.4 18.4

ZoomInAlt 20.8 23.3 54.2 21.6 21.7
ZoomIn 167.0 165.0 210.0 164.0 277.0

S
ke
w
ed

SeqOver 21.8 30.0 59.7 21.7 17.5
ZoomOutAlt 21.5 30.2 64.4 63.7 41.1

Skew 17.4 15.3 45.5 17.3 5.7
Random 24.0 21.6 51.5 23.8 23.9

SeqZoomIn 23.3 21.2 52.6 23.1 18.3
Periodic 23.3 21.3 64.2 23.3 17.0

ZoomInAlt 22.2 25.1 54.8 21.8 33.5
ZoomIn 938.0 919.0 934.0 917.0 1655.0

P
oi
n
t
Q
u
er
y

SeqOver 16.7 15.7 13.2 14.0 15.1
ZoomOutAlt 17.7 15.8 13.0 14.0 15.5

Skew 16.6 15.5 12.7 13.7 5.6
Random 18.4 16.5 13.6 14.7 14.4
Periodic 16.8 15.7 13.0 14.3 5.7

ZoomInAlt 17.7 15.9 13.2 14.1 15.2

10
9

SeqOver 516 493 924 480 653
Skew 538 513 885 487 582

Random 773 718 1579 692 1104

penalty. For uniform random and skewed distributions, radixsort LSD presents the

least variance. This is due to the cost model noticing that the intermediate index

created by LSD cannot be used to boost query access, hence knowing the precise

cost of executing the query (i.e., a full scan cost). However, for point queries, the

intermediate index from LSD can already be used, which reduces the cost model

accuracy.

6 Summary

This chapter introduces Progressive Indexing, a novel incremental indexing technique

that offers robust and predictable query performance under different workloads. Pro-

gressive techniques perform indexing within an interactivity threshold and provide a

balance between fast convergence towards a full index together with a small perfor-

mance penalty for the initial queries. We propose four different Progressive Indexing

66

Chapter 3. Progressive Indexing

Table 3.5: Robustness
Workload PQ PB PLSD PMSD AA

U
n
if
or
m

R
an

d
om

SeqOver 2.4e-04 5.8e-04 2.2e-05 2.1e-04 0.02
ZoomOutAlt 1.7e-04 6.0e-04 2.1e-05 2.1e-04 0.02
Skew 2.5e-04 6.2e-04 2.9e-05 2.3e-04 0.02
Random 2.1e-04 6.5e-04 2.3e-05 2.0e-04 0.02
SeqZoomIn 2.3e-04 5.5e-04 2.6e-05 2.1e-04 0.02
Periodic 2.4e-04 6.6e-04 1.9e-05 2.1e-04 0.02
ZoomInAlt 2.4e-04 5.4e-04 2.2e-05 2.1e-04 0.02
ZoomIn 2.3e-04 3.8e-04 3.1e-05 1.4e-04 0.02

S
ke
w
ed

SeqOver 3.7e-04 7.5e-04 1.6e-05 2.5e-03 0.03
ZoomOutAlt 3.1e-04 7.6e-04 1.4e-05 2.7e-04 0.03
Skew 3.5e-04 7.9e-04 1.4e-05 2.5e-03 0.03
Random 3.4e-04 7.8e-04 1.9e-05 2.5e-03 0.03
SeqZoomIn 3.6e-04 8.5e-04 1.4e-05 2.5e-03 0.03
Periodic 3.2e-04 8.2e-04 1.5e-05 2.4e-03 0.03
ZoomInAlt 3.4e-04 7.5e-04 1.4e-05 2.5e-03 0.02
ZoomIn 1.9e-05 2.3e-04 1.4e-05 1.4e-03 0.02

P
oi
n
t
Q
u
er
y

SeqOver 2.4e-04 7.0e-04 1.5e-03 2.2e-04 0.02
ZoomOutAlt 1.8e-04 6.3e-04 1.6e-03 2.1e-04 0.02
Skew 2.6e-04 6.8e-04 1.6e-03 2.3e-04 0.02
Random 2.2e-04 6.6e-04 1.6e-03 2.5e-04 0.02
Periodic 2.2e-04 6.8e-04 1.1e-03 2.1e-04 0.02
ZoomInAlt 2.3e-04 6.8e-04 1.5e-03 3.3e-04 0.02

10
9

SeqOver 0.02 0.03 2.8e-04 0.04 2.1
Skew 8.1e-03 0.03 1.0e-04 0.03 2.1
Random 0.01 0.03 2.4e-04 0.02 7.0

techniques and develop cost models for all of them that allow automatic tuning of

the budget. We show how they perform with both real and synthetic workloads

and compare their performance against Adaptive Indexing techniques. Based on

Figure 3-23: Progressive Indexing Decision Tree.

each algorithm’s main characteristics and the results of our experimental evaluation,

we conclude our work with the decision tree shown in Figure 3-23, which provides

recommendations on which technique to use in different situations. In this chapter,

we only present an algorithm to index unidimensional columns. However, queries

frequently have filters on multiple columns. In the next chapter, we will describe how

67

6. Summary

to create a Progressive Index that indexes multiple dimensions.

68

CHAPTER 4

Multidimensional Progressive Indexing

1 Introduction

As seen in the previous chapter, techniques like Adaptive Indexing [36, 50] and Progres-

sive Indexing (Chapter 3) aim to alleviate the index construction issue on exploratory

workloads by creating partial unidimensional indexes as a result of query processing.

In this way, indexes are automatically created without any human intervention and

incrementally refined towards a full index, the more the data is accessed. However,

these techniques have very limited use on a broad group of data sets since they only

target unidimensional workloads. For instance, the 1000 genomes project [16] has

human genetic information, the Power data set1 that contains sensor information from

a manufacturing installation, and the SkyServer data set [56] which maps the universe,

are some of many examples that perform multidimensional filtering.

Pavlovic et al. [45] published a study on multidimensional adaptive indexes, initially

testing a Space-Filling Curve strategy, where multiple dimensions are mapped to one

dimension. They used unidimensional adaptive indexing techniques on top of the

created map. However, the first queries’ indexing burden was too high, making this

approach unfeasible for interactive times. They later propose the QUASII index, a

d-level hierarchical structure that similarly partitions the data as the coarse granular

index strategy [50]. When accessing one piece, the data is continuously refined until

all pieces are smaller than a given size threshold. This strategy is much more efficient

1https://debs.org/grand-challenges/2012/

69

1. Introduction

in smearing out the cost of index creation than the Space-Filling Curve Adaptive

Indexing. However, it results in two highly undesirable characteristics for exploratory

workloads. (1) Due to the continuous piece refinement, it heavily penalizes queries

when they first access one piece; (2) since the index prioritizes an aggressive refinement

only on areas targeted by the executing query, it is not robust against changes in the

access pattern, resulting in performance spikes if the workload suddenly accesses a

previously unrefined piece.

This chapter introduces two novel algorithms to tackle the problem of multidi-

mensional adaptive indexing under exploratory data analysis. (a) The Progressive

KD-Tree, inspired by fixed-delta progressive indexing, introduces a per-query indexing

budget that remains constant during query execution. Hence, a user-controlled amount

of indexing is done per query. (b) The Greedy Progressive KD-Tree uses a cost model

to automatically adapt the indexing budget to keep the per-query cost constant until

full index convergence, achieving a low variance per-query.

1.1 Contributions

The main contributions of this chapter are:

• We introduce a new progressive indexing approach for multidimensional work-

loads named Progressive KD-Tree.

• We present a cost model for our Progressive KD-Tree to enable an adaptive

indexing budget.

• We experimentally verify that our techniques improve total execution time, initial

query cost, robustness, and convergence compared with the state-of-the-art.

• We provide an Open-Source implementation2 of all techniques discussed in this

chapter.

1.2 Outline

This chapter is organized as follows. In Section 2, we investigate related research

that has been performed on multidimensional indexes. In Section 3, we describe our

novel Multidimensional Progressive Indexes. In Section 4, we perform a quantitative

assessment of each of the novel methods we introduce, and we compare them with

2Our implementations and benchmarks are available at https://github.com/pdet/

MultidimensionalAdaptiveIndexing and https://zenodo.org/record/3835562

70

https://github.com/pdet/MultidimensionalAdaptiveIndexing
https://github.com/pdet/MultidimensionalAdaptiveIndexing
https://zenodo.org/record/3835562

Chapter 4. Multidimensional Progressive Indexing

the state-of-the-art on multidimensional adaptive indexing under three real workloads

and eight synthetic workloads. Finally, in Section 5, we draw our conclusions.

2 Related Work

In the previous chapter we discussed how the selection of which indexes to create

has been a long-standing problem in database automatical physical design. However,

the selection of the indexes is just part of the problem. Another equally important

problem is selecting which data-structure to use since each structure is catered to

different workload patterns and data distributions. Multidimensional access methods

can be distinguished between point access methods (PAMs) and spatial access methods

(SAMs) [18]. Typically, PAMs aim at databases storing only points with support to

spatial searches on them, like KD-Trees, PH-Tree, and flat structures. The term point

refers to both locations in space and point objects stored in the database. SAMs,

like R-Trees and Z-Ordering, aim at extended objects (e.g., polygons in geographic

databases) while, like PAMs, also storing points [55].

In this section, we briefly discuss the state-of-the-art multidimensional index

structures.

2.1 Multidimensional Data Structures

R-Tree [24]

The R-Tree is an N-ary multidimensional tree that generalizes the B-Tree. Nodes

represent rectangles that bound the insertion points of data (i.e., coverage), and

different rectangles may overlap data. Like B-Trees, the insertions and deletions

require splitting and merging nodes to preserve height-balance with all leaves at the

same depth. The internal nodes keep a way of identifying a child node and representing

the boundaries of the entries in the child nodes, while the external nodes store the

data. The R-Tree has a variant, the R*-Tree [5], for read-mostly workloads that

balances the rectangle coverage and reduces overlapping.

VA File [61]

The VA File is a flat structure that divides an m-dimensional space in 2b rectangular

cells. Users assign b bits to be distributed over the m dimensions. A unique bit-string

of length b is set for each cell, and data objects use a hash method to find the spacial

position to each value (i.e., approximation by the bit-string).

71

2. Related Work

KD-Tree [7]

The KD-Tree is a multidimensional binary search tree, where k is the number of

dimensions of the search space that are switched between tree levels. The performance

of KD-Trees is of great advantage as searches, insertions, and deletions of random nodes

present logarithmic complexity and search of t tuples present sub-linear complexity.

The nodes of the tree are insertion points. Therefore, the order of insertion shapes

the tree structure but increases the complexity of maintenance when tree re-balancing

is needed after deletion.

PH-Tree [63]

The PH-Tree implements a bit-string prefix sharing tree to reduce the space require-

ments compared to single key storage. The bit-string representation is used to navigate

the dimensions in a Quadtree, where the first bit of the index entry indicates the

position in the search space.

This approach is advantageous in data sets where data points are not evenly spread

and share many prefixes. Otherwise, spread out data with large number of dimensions

increases the number of nodes and the depth of the prefix tree, which also increases

the space requirements and the lookup time.

Flood [42]

Flood is a multidimensional learned index. The learning algorithm’s goal is to help to

tweak performance parameters of the index, like the layout of the index by choosing

between a grid of cells or columns (in a 2-D representation), the size of each cell, and

the sort order of each cell or column.

Discussion.

To compare these index structures, we must put them in the context of the data

exploration scenario. Although Flood has a significant advantage of finding an efficient

setup by searching the parameters’ space, it is not a good fit for our types of workloads

since it requires a considerable amount of time to be invested in model training (i.e.,

index creation). PH-Trees present efficient lookups, but they are catered to data

sets where data points are not evenly spread and share many prefixes. Finally, KD-

Trees, VA Files, and R*-Trees have been thoroughly examined, in the main memory

context, by Sprenger et al. [55]. The work concludes that the KD-Trees outperform

R*-Trees and VA Files due to its point storage design. VA-Files have even a more

72

Chapter 4. Multidimensional Progressive Indexing

significant disadvantage for shifting access patterns, common in exploratory data

analysis, since it is a non-adaptive structure with a static number of bits assigned

per dimension. Considering each technique’s main drawbacks and advantages, we

decided to use a KD-Tree as our multidimensional index of choice for exploratory

data analysis, as a full index baseline and the index structure that holds the data for

our progressive solution. In summary, the reasons are its robust performance against

shifting workloads, different from VA Files and PH Trees, the higher performance

when compared to R*-Trees, and low index creation cost compared to Flood.

2.2 Adaptive/Progressive Index

In this section, we discuss the state-of-the-art adaptive indexing techniques that

produce multidimensional indexes.

Space Filling Curve Cracking [45]

Space Filling Curve Cracking uses a space-filling curve technique that preserves

proximity (e.g., Z-Order, Hilbert Curve) to map multiple dimensions into one dimension.

This additional step enables the use of unidimensional adaptive/progressive indexing

techniques. Later on, queries also must be translated to this unidimensional mapping.

QUASII [45]

Following the adaptive indexing philosophy, QUASII incrementally builds a multidi-

mensional index prioritizing refinement on queried pieces. One significant difference

compared to standard adaptive indexing techniques is that QUASII has a more ag-

gressive refinement behavior. When accessing a piece, it recursively refines it until its

size drops below a size threshold . QUASII pays higher refinement costs when a piece

is accessed the first time to yield fast query response time when frequently accessing

refined pieces.

Adaptive KD-Tree [43]

The Adaptive KD-Tree is a multidimensional adaptive indexing technique that follows

the same principles as Adaptive Indexing [36]: (1) It uses the query predicate as hints

as to what pieces of the data should be indexed, and (2) only indexes the necessary

pieces to answer the current query. Our index has two main canonical phases. The

initialization phase only happens when the first query selecting a group of non-indexed

73

2. Related Work

Initialized
Table

6 5 0
3 9 1

16 4 2
13 2 3
2 8 4
1 11 5
8 7 6

19 19 7
7 12 8

12 20 9
11 3 10
4 6 11
9 16 12

14 2 13
Q: 6 < A ≤ 13

AND 5 < B ≤ 8

Adapt
(A, 6)

A ≤ 6

6 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
8 7 6
19 19 7
7 12 8
12 20 9
11 3 10
16 4 11
9 16 12
14 2 13

Adapt
(B, 5)

A ≤ 6

6 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
14 2 6
16 4 7
11 3 8
12 20 9
7 12 10
19 19 11
9 16 12
8 7 13

B ≤ 5

5 < B

Adapt
(A, 13)

A B A B A BOff Off Off

A ≤ 6

6 < A

B ≤ 5

5 < B

A ≤ 13

13 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
14 2 6
16 4 7
11 3 8
12 20 9
7 12 10
9 16 11
8 7 12
19 19 13

A B Off

Figure 4-1: Adaptive KD-Tree: The adaptation phase with query: 6 < A ≤ 13 AND
5 < B ≤ 8, and size threshold = 4.

columns is executed. In this phase, it creates a copy of the original table into our

index table. In the adaptation phase, it swaps rows in the index table to partition it

according to the query predicates.

Figure 4-1 depicts an example of the adaptation phase when executing the first

query with predicates 6 < A ≤ 13 AND 5 < B ≤ 8 with size threshold = 4. In the

first part of our example, we have our initialized index table equal to the original table.

In the second step, we start the adaptation phase by generating the attribute-value

pairs (A, 6), (B, 5), (A, 13), (B, 8) and partitioning the index table for each of those

pairs. In the example, the second step demonstrates the partition of pair (A, 6). We

swap the rows of our table, taking 6 as a pivot for the first column A, and insert in

the KD-Tree the pivot 6 with the position offset 6. In the third step, we partition the

pair (B, 5), where the table is pivoted in the second column B with pivot 5, later on

adding it to the KD-Tree. Note that we could perform this partitioning in both the

top (A ≤ 6) and bottom (A > 6) pieces of our table. However, since the Adaptive

KD-Tree only indexes the minimum to answer the query, we only refine the piece

74

Chapter 4. Multidimensional Progressive Indexing

that potentially contains query answers (here, A > 6), leaving the piece that surely

contains no query answers (A ≤ 6) unchanged. A similar process is done for the next

pair (A, 13) depicted as the fourth step. At this step, the resulting piece size reaches

the size threshold , and no further partitioning happens for the last pair (B, 8).

Discussion.

Space-Filling Curve Cracking is the first attempt to perform adaptive indexing of

multiple columns. However, as demonstrated by Pavlovic et al. [45], mapping is

prohibitively expensive on the first query, excluding this strategy from truly adaptive

indexes. QUASII is a more promising solution since it features characteristics that

are similar to standard adaptive indexing techniques. However, QUASII’s aggressive

refinement strategy is undesirable in an adaptive indexing strategy hurting query

robustness. Besides, QUASII forces initial queries to pay an unnecessarily high

cost. The Adaptive KD-Tree has a less aggressive refinement strategy than QUASII.

However, it still does not present the required fined-grained indexing to mitigate

the robustness problem, as Progressive Indexing has. Finally, other techniques are

self-proclaimed multidimensional adaptive indexes, like AQWA [3] and SICC [59].

However, they do not focus on exploratory data analysis but rather on adaptive

indexing for data ingestion. The main goal of AQWA is to adjust for changes in

the data in a Hadoop distributed scenario. Simultaneously, SICC mainly focuses on

reducing “over-coverage” in entries of frequent data ingestion in streaming systems.

Hence, they do not focus on a low penalty for the initial queries, on robustness or

index convergence.

3 Multidimensional Progressive Indexing

The Progressive KD-Tree is a multidimensional progressive indexing technique inspired

by Progressive Quick-Sort (Chapter 3). Like one-dimensional progressive indexing

techniques, the main goals of Progressive KD-Tree are to limit the indexing penalty

imposed on the first query, achieve robust performance, and ensure deterministic

convergence towards a full index — irrespective of the actual query workload or data

distribution. We accomplish all three goals by indexing a fixed-size portion of the

data with each query, independent of the query predicates. The per-query indexing

budget (and hence overhead over a scan) and the convergence speed can be controlled

by a parameter δ that determines the fraction of the entire data set indexed with each

query. Opting for workload independence, we need to choose the partitioning pivots

75

3. Multidimensional Progressive Indexing

independent of the query predicates. We use the average value (arithmetic mean)

to yield a reasonably balanced KD-Tree, also with skewed data. Our experiments

in Section 4 show that determining the median to guarantee a perfectly balanced

KD-Tree is prohibitively expensive and does not pay off. The Progressive KD-Tree

follows two phases. In the initial creation phase, each query copies a δ fraction of the

data out-of-place to our index while pivoting on the first dimension’s average value.

After all data has been copied, in the subsequent refinement phase, queries further

split the existing pieces until their size drops below a size threshold . When all pieces

reach the qualifying size, we consider that the index has converged to a full index. A

fully-converged Progressive KD-Tree will have the same structure as a pre-built full

index KD-Tree using arithmetic means as partitioning pivots.

3.1 Data Structure

Listing 3 KD-Node for Progressive Indexing
1 template <typename T>

2 struct KDNode {

3 T key;

4 unsigned int discriminator_attribute;

5 struct KDNode* left_child;

6 struct KDNode* right_child;

7 unsigned int start;

8 unsigned int end;

9 unsigned int cur_start;

10 unsigned int cur_end;

11 unsigned int left_sum;

12 unsigned int right_sum;

13 };

Instead of using a standard KD-Tree node in our data structure, our Progressive

KD-Tree uses a slightly extended KD-Tree node structure, as depicted in Listing 3.

The standard elements are a key, a discriminator attribute, and two pointers for the

left and right children (Lines 3-6). Since partitioning a single piece (i.e., splitting a

single node) can take multiple queries, we cannot simply keep a single offset pointing

to the final pivot location. Instead, we need to store the offsets marking the boundaries

of the piece at hand (Lines 7-8) as well as the offsets marking the progress of the

pivoting so far (Lines 9-10). Once a piece has been fully pivoted, the latter two offsets

are identical and mark the pivot’s location. In lines 11-12, we define the variables

76

Chapter 4. Multidimensional Progressive Indexing

that sum the value of the next to-be-partitioned dimension. We use these values to

calculate the average of each piece for the next dimension, for example, the left pivot

is left sum
cur start−start .

12
191313

1

14

8
1

3
6
3
16
13
2
1
8
19
7
12
11
4
9
14

Original
Table

A ≤ 9

9 < A

6

16

2

U
ni

ni
tia

liz
ed

Create 1

14
11
13
16

Create 2

B ≤ 8

8 < B

Refine
Pivot=9

A ≤ 9

9 < A

7

6
3
2

4
9

11
12
19

16

5
9
4
2
8
11
7
19
12
20
3
6
16
2

2
4

5
9
8

11

2

11

2

7
12

5
9
8

6
16

3
20
19

4

A ≤ 9

9 < A

20
19

2
3
2
4

Fi
ni

sh
ed2

4
Q: 6 < A ≤ 13

AND 5 < B ≤ 8

A B

Q: 3 < A ≤ 8
AND 2 < B ≤ 4

Q: 10 < A ≤ 20
AND 7 < B ≤ 9

A B A B A B

Q: 11 < A ≤ 15
AND 2 < B ≤ 4

1
8
7

6
3
2

4
9

11
7

12

5
9
8

6
16

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Off
0
1
2
3
4
5
6
7
8
9
10
11
12
13

Off
Pivot=9

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Off
Pivot=8

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Off

8 7

Figure 4-2: Progressive KD-Tree with index budget δ = 0.5 and size threshold = 2.
Four queries submitted in the workload.

3.2 Creation Phase

The creation phase copies the data from the original column into our index while

filtering and pivoting it on that column’s average value. The filtering process is similar

to the Adaptive KD-Tree piece scan when copying and pivoting a dimension of the

data. We create a candidate list to keep track of elements that qualify its filters.

This candidate list is subsequently refined when copying and pivoting the remaining

dimensions.

Figure 4-2 depicts an example of the creation phase in the iterations Create 1

and Create 2. In the Create 1 iteration, we allocate an uninitialized table in DSM

format, with columns A and B, having the same size as the original table columns. We

77

3. Multidimensional Progressive Indexing

start partitioning in the first dimension A. Unlike the Adaptive KD-Tree, the pivot

selection is not impacted by the query predicates. We use the average of that piece’s

dimension, which is calculated during data loading. In the example, the average value

of the whole column A is 9. We then scan the original table and copy the first N ∗ δ
rows to either the top or the bottom of the index, depending on how they compare

to the pivot. In our example, we index half of our table, since δ = 0.5. In this step,

we also search for any elements that fulfill the query predicate. Afterward, we scan

the not-yet-indexed fraction of the original table to answer the query completely. In

subsequent iterations, as depicted in Create 2, we scan either the top, bottom, or both

pieces of the index based on how the query predicate relates to the chosen pivot. In

our example, the running query has a filter 3 < A ≤ 8, and we only need to scan the

upper piece of our index. Finally, we copy and pivot the other half of our table to our

index.

Listing 4 details the creation phase. In lines 2-13, we initialize all necessary

variables to compute our candidate list and store elements in the correct position

related to the pivot. In lines 2-5, we select the original column, index column, and

the query pivots for the dimension discriminated by the root node. In lines 6-7, we

create the variables that hold the offsets of both upper and bottom indexed pieces

and update the root.cur start and root.cur end after finishing the execution. Line

8 stores an offset to the original table that indicates the last row that was indexed.

Line 9 subtracts from our budget the amount of data that will be indexed in this

iteration. Lines 11-13 initialize the candidate list that will result from the creation

phase and the go down bit vector that for each row keeps track of whether pivoting

moves that row to the top part or bottom part of the refined piece. In lines 14-24, the

copied elements are indexed, inserting them to either top or bottom of the index while

checking if their values match the query predicates (Lines 15 and 16). One might

note that all the code is predicated. We avoid branches that could lead to non-robust

(i.e., highly varying execution times) due to branch mis-predictions [48, 10]. In line

25, we omit from this listing the code that propagates the pivoting to the remaining

dimensions. This code sweeps over each remaining column’s respective piece and uses

the go down bit vector as set in line 21 to assign each value to the top part or bottom

part of the refined piece. The code performs a similar operation to the one described

in lines 14-24, with three main differences. First, we do not push elements into the

candidate list but rather manage the ones in there while checking for matches in the

next dimensions. Second, instead of the pivot comparison, we use the information

in the go down bit vector to place the elements in the column properly. Third, for

78

Chapter 4. Multidimensional Progressive Indexing

Listing 4 Code Snippet of the Creation Phase

1 template <class OPL,class OPR> create(Query &q, int& budget) {

2 col = orig_tbl.columns[root.dim];

3 idx_c = table.columns[root.dim];

4 l = q[root.dim].low

5 h = q[root.dim].high

6 low_pos = root.cur_start;

7 high_pos = root.cur_end;

8 c_pos = root.cur_start + root.end - root.cur_end;

9 n_idx = min(c_pos + budget, root.end);

10 budget -= n_idx - c_pos;

11 bit_idx = 0;

12 CandidateList cl;

13 BitVec go_down = BitVec(n_idx-c_pos);

14 for (i = c_pos; i < n_idx; i++) {

15 mtch = OPL(col[i],l) & OPR(col[i],h);

16 cl.maybe_push_back(i,mtch);

17 big_pvt = (col[i] >= root.key);

18 sml_pvt = 1 - big_pvt;

19 idx_c[low_pos] = col[i];

20 idx_c[high_pos] = col[i];

21 go_down.set(bit_idx++, sml_pvt);

22 low_pos += sml_pvt;

23 high_pos -= big_pvt;

24 }

25 ...

26 root.cur_start = low_pos;

27 root.cur_end = high_pos;

28 return cl;

29 }

the first dimension after the root.dim we update root.left sum and root.right sum

according to the go down bit vector. After indexing all dimensions, in line 26-27, we

update the root offsets, and in line 28, we return the created candidate list that refers

to the δ fraction of the table. Hence, the function that calls the create method still

checks the not-yet-indexed fraction of the original table and the previously indexed

bottom/top index pieces accordingly.

79

3. Multidimensional Progressive Indexing

3.3 Refinement Phase

With the original table no longer required to compute queries, we now perform index

lookups. While doing these lookups, we further refine the index pieces until they all

have become smaller than a given size threshold, progressively converging towards a

full KD-Tree. We focus on refining pieces of the index required for query processing

(i.e., pieces containing query pivots). If these pieces are fully refined (i.e., the pieces

containing query pivots children reach a size below size threshold) and the indexing

budget is not over, refinement is continued on a size priority, refining the largest piece

first. The refinement is done by recursively performing quicksort operations to swap

rows inside the index. Like the creation phase, we also keep track of the sum left and

right children of the indexed piece, which is later used as pivots for the children. After

all the refinement for that query is completed, we perform a similar index lookup and

piece scan as the Adaptive KD-Tree. The only difference is that we need to also take

into account pieces where pivoting is not finished.

Figure 4-2 depicts an example of the refinement phase. In our example, the running

query has the filters 10 < A ≤ 20 and 7 < B ≤ 9. A lookup in the index indicates

a scan of the bottom piece, and hence that is the piece to be refined on dimension

B. We use root .right sum
root .end−root .current end

value as the pivot. In the example, the pivot is the

value 8. With δ = 0.5, we are capable of fully refining that piece around 8. Due to our

size threshold = 2, we mark the bottom piece as finished, and no further refinement

occurs.

Query Execution

In this section, we describe how we use the Progressive KD-Tree during query execution.

In the next paragraphs, we describe the two primary operations, the Index Lookup

and the Piece Scan.

Index Lookup. After performing the necessary index creation for the query, we

perform an index lookup followed by the scan of all pieces that fit our query predicates.

The index lookup starts from the root of the KD-Tree and recursively traverses the tree

depending on how the query relates to the current node key. In Figure 4-3 we depict

an example of the entire search process for predicates 6 < A ≤ 15 AND 0 < B ≤ 5.

The search method starts by comparing the root of the tree that indexes column A on

key 6, with the range 6 < A ≤ 15. We need to check the root’s right child since both

predicate boundaries are greater than the node (i.e., where all elements on A > 6 are

stored.). We now compare the range 0 < B ≤ 5 to the node that indexes column

80

Chapter 4. Multidimensional Progressive Indexing

Q: 6 < A ≤ 15
AND 0 < B ≤ 5

A ≤ 6

6 < A

B ≤ 5

5 < B

A ≤ 13

13 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
14 2 6
16 4 7
11 3 8
12 20 9
7 12 10
9 16 11
8 7 12
19 19 13

A B Off

A ≤ 6

6 < A

B ≤ 5

5 < B

A ≤ 13

13 < A

6 5 0
3 9 1
4 6 2
1 11 3
2 8 4
13 2 5
14 2 6
16 4 7
11 3 8
12 20 9
7 12 10
9 16 11
8 7 12
19 19 13

A B Off

Figure 4-3: A search with predicates 6 < A ≤ 15 AND 0 < B ≤ 5 in the Adaptive
KD-Tree.

B on key 5. Note that this time, the predicate boundaries are lower or equal to the

node’s key. Hence, we only need to check its left child. Finally, since the left child is

null, we scan the piece starting on offset 5 until offset 9.

Piece Scan. The index lookup returns a list of pieces that we scan to answer

the query. For each piece, we have a pair of offsets indicating where they begin and

end and information of which predicates still need to be checked. For example, in

Figure 4-3, on the rightmost column, the index would have returned one piece, with

offsets 5 and 9. For this piece, we know that all elements in there are 6 < A and B ≤ 5.

Hence, we do not need to apply the lower and higher query predicates of attributes A

and B, respectively. However, whenever the index does not match our query predicates

exactly, we need to perform a multidimensional conjunctive selection on one or more

pieces. There are, in general, two ways to perform multidimensional conjunctive

selections in column stores. (1) We perform the selection on each column individually,

creating an intermediate result per column as (candidate) list of IDs (or as bit-vector).

Later, intersecting all lists (or and-ing all bit-vectors) to yield the final result. (2) We

81

3. Multidimensional Progressive Indexing

perform the selection over one column, creating an intermediate (candidate) list of IDs

(or as bit-vector). Then we use this candidate list (or bit-vector) to test the selection

predicate on the next column only for those tuples that qualified with the first column

and create a revised candidate list (or bit-vector) as an intermediate result reflecting

both selections. We continue accordingly for all remaining columns. Option (1) is

advantageous for low selectivities since they focus on sequential scans over the whole

data set, while option (2) presents the best performance over high selectivities since,

except the first column, we only check elements that qualify. Hence, in all our scans,

we use option (2) with a candidate list to achieve the best performance.

Interactivity Threshold.

The user must provide the Progressive KD-Tree with an interactivity time threshold

τ and a δ. We distinguish two situations depending on the full scan costs. (1) If a

simple scan of the entire table does not exceed τ , we use the cost model, presented in

the next section, to calculate a δ′ such that the first query (incl. indexing a δ′ fraction

of the data) does not exceed τ . We then use δ = min(δ, δ′) for all queries, ensuring

that none exceeds τ . (2) If a simple scan of the entire table does exceed τ , we use

the user-provided δ until the KD-Tree is sufficiently built such that the scan cost

per query drops below τ . Then, we calculate a δ′ as in situation (1) and proceed as

described above.

3.4 Greedy Progressive Indexing

While the δ parameter of Progressive KD-Tree allows us to control both the per-query

indexing effort (and hence overhead) and the speed of convergence towards a full index,

there is a mutual trade-off. The smaller δ, the lower the overhead, but the slower the

convergence; the larger δ, the faster the convergence, but the higher the overhead.

Let tscan denote the time to scan the entire data set, tbudget denote the time it

takes to pivot/refine a δ fraction of the data set, t′i denote the net query execution

time (i.e., without refining the index) of the ith query Qi given the current state of

the index, and ti = t′i + tbudget denote the gross execution time (i.e., incl. refining the

index) of the ith query Qi given the current state of the index. The gross execution

time ti of each query with Progressive KD-Tree is bounded by ttotal = tscan + tbudget ,

i.e., ti ≤ ttotal . While this is a tight bound for the first query (t′0 = tscan ⇒ t0 = ttotal),

it gets looser the more queries are being processed and the more of the index is partly

constructed, as then the partial index is likely to let queries become faster than a scan

82

Chapter 4. Multidimensional Progressive Indexing

System ω cost of sequential page read (s)
κ cost of sequential page write (s)
φ cost of random page access (s)
σ cost of random write (s)
γ elements per page

Data set N number of elements in the data set
& Query α % of data scanned in partial index

d number of dimensions

Index δ % of data to-be-indexed
ρ % of data already indexed
h height of the KD-Tree

Table 4.1: Parameters for Progressive Indexing Cost Model.

(t′i < tscan ⇒ ti < ttotal).

While generally decreasing, t′i, and hence ti, can still vary significantly until the

index is fully built.

We propose Greedy Progressive KD-Tree as a refinement of Progressive KD-Tree to

ensure that, until the index is fully created, each query Qi has the same gross execution

time ti = t0 = ttotal , i.e., exploits the full difference between ttotal and t′i for indexing.

In this way, we speed-up convergence without increasing total query execution time.

To do so, we introduce a cost model that estimates the net execution time t′i for

each query Qi and calculates its maximum indexing budget as t′budget ,i = ttotal − t′i,
from which we derive δ′i for each Qi. The first query uses the user-provided δ, i.e.,

δ′0 = δ ⇒ t′budget ,0 = tbudget .

Cost Model.

The cost model considers the query and the state of the index in a way that is not

affected by different data distributions, workload patterns, or query selectivities. In a

nutshell, our cost model can tell how much data will be scanned, hence yielding a con-

servative δ′i that guarantees that our query cost will never exceed ttotal . A conservative

δ′i means the highest possible δ′i in the worst-case, where any construction or refinement

does not boost the current query execution. However, if the query execution finishes

below the ttotal limit, we perform one extra step called the reactive phase to perform

an extra indexing until fully consuming the ttotal limit. The parameters of the Greedy

Progressive KD-Tree cost model are summarized in Table 4.1.

83

3. Multidimensional Progressive Indexing

Creation Phase

The total time taken in the creation phase is the sum of (1) the index lookup time

(i.e., time to access the root node and decide if we scan the top/bottom of our table),

(2) the indexing time, and (3) the original table scan.

(1) To calculate the index lookup time, we need to account for the node access and

the top/bottom access of each column of our table, where we perform two random

accesses 2 ∗ φ ,one for the root and one to access the indexed table’s first column,

and α∗N
γ

for the total data we must scan. Since our data has d dimensions, we must

account one random access for the additional columns and multiply the sequential

scan by d− 1. The index lookup time is tlookup = 2 ∗φ+ α∗N
γ

+ (d− 1) ∗φ. Simplifying

to tlookup = α∗N
γ

+ (d+ 1) ∗ φ.

(2) The indexing time (i.e., index construction time) consists of scanning the base

table pages and writing the pivoted elements to the result array. The indexing time

is calculated by multiplying the time it takes to scan and write a page sequentially

(κ + ω) by the number of pages we need to write summed with the access of each

dimension, resulting in tindexing = (κ+ ω) ∗ N∗δ
γ

+ (d− 1) ∗ φ.

(3) The original table scan, is given by sequentially reading all not-yet-indexed

data. The total fraction of the data that remains unindexed is 1− ρ− δ, hence the

scan time of the original table is given by tscan = (1−ρ−δ)
γ
∗ ω.

The total time taken for the creation phase is the sum of all three steps, hence

ttotal = tlookup + tindexing + tscan and we set δ =
tbudget

(κ+ω)∗N
γ
+(d−1)∗φ .

Refinement Phase

In the refinement phase, we no longer need to scan the base table. Instead, we only

need to scan the fraction α of the data in the index. However, we now need to (1)

traverse the KD-Tree to figure out the bounds of α, and (2) swap elements in-place

inside the index instead of sequentially writing them to refine the index. The height

h times the cost of random page access φ gives the cost for traversing the KD-Tree,

resulting in tlookup = h ∗ φ. For the swapping of elements, we perform predicated

(i.e., branch-free) swapping [10] to allow for a constant cost regardless of how many

elements we need to swap. The total swap cost is the number of elements we can

swap times the cost of swapping them, which is two random writes multiplied by the

d dimensions, i.e., tswap = N ∗ δ ∗ 2 ∗ d ∗ σ. The total cost in this phase is therefore

equivalent to ttotal = tlookup + α ∗ tscan + tswap. Finally, we set δ =
tbudget
N∗2∗d∗σ for the

adaptive indexing budget.

84

Chapter 4. Multidimensional Progressive Indexing

Interactivity Threshold

With Greedy Progressive KD-Tree, in addition to the mandatory interactivity time

threshold τ , the user can additionally provide a “penalty” budget δ or a limit x of

queries. We distinguish two situations, depending on the full scan cost. (1) If tscan < τ ,

we set ttotal = τ , i.e., ensure that no query exceeds τ , and use our cost model to

calculate all tbudget ,i and δ′i (incl. the first query’s tbudget ,0 and δ′0) as described above. In

this case, we ignore the also provided δ or x. (2) If tscan ≥ τ , we distinguish two cases.

(2a) In case the user provided a “penalty” budget δ, we start with ttotal = tscan + tbudget

with δ, and use our cost model to calculate all tbudget ,i and δ′i until the KD-Tree is

sufficiently built such that the scan cost per query drop below τ .

(2b) In case the user provided a limit x of queries, we use our cost model to

calculate the amount of indexing that is required to build a partial KD-Tree such that

the remaining scan cost per query is less than τ , distribute this indexing work over x

queries, and calculate how much indexing budget tbudget++ is needed for each query.

With this, we proceed as in (2a) for the first x queries. In both cases, (2a) & (2b), we

then proceed with the user-provided τ as in situation (1).

4 Experimental Analysis

In this section, we provide a quantitative assessment of our proposed progressive

indexes. This section is divided into four parts. First, we define all real and synthetic

data sets and workloads used in our assessment. Second, we analyze the impact of

δ on the Progressive KD-Tree in terms of first query cost, pay-off, time until full

convergence, and total time. Third, we provide an in-depth performance comparison

of our proposed progressive indexes and analyze their behavior under three real and

eight synthetic workloads. We also provide comparisons with the state-of-the-art on

multidimensional adaptive indexes QUASII (Q) and Adaptive KD-Tree (AKD). We

use two variations of a full KD-Tree index as a baseline. The first one using the

average value of a piece as the pivot (AvgKD), and the second one using medians

(MedKD). Finally, we study our algorithms’ behavior when the full scan cost is higher

than the interactivity threshold.

4.1 Setup.

All indexes were implemented in a stand-alone C++ program. All the data is 4-

byte floating-point numbers stored in a columnar format (i.e., DSM). The code was

85

4. Experimental Analysis

Figure 4-4: Visual representation of the different synthetic workloads.

compiled using GNU g++ version 9.2.1 with optimization level -O3. All experiments

were conducted on a machine with 256 GB of main memory, an Intel Xeon E5-2650

with 2.0 GHz clock, and 20 MB of L3 cache size.

4.2 Data Sets & Workloads

We use four different data sets in our assessment.

Power. The power benchmark consists of sensor data collected from a manufac-

turing installation, obtained from the DEBS 2012 challenge3. The data set has three

dimensions and 10 million tuples. The workload consists of random close-range queries

on each dimension, a total of 3000 queries.

Skyserver. The Sloan Digital Sky Survey is a project to map the universe. Their

data and queries are publicly available at their website4. The data set we use here

consists of two columns, ra and dec, from the photoobjall table with approximately 69

million tuples. The workload consists of 100,000 real range queries executed on those

two attributes.

Genomics. The 1000 Genomes Project collects data regarding human genomes.

It consists of 10 million genomes, described in 19 dimensions. The workload consists

of 100 queries constructed by bio-informaticians.

Uniform. It follows a uniform data distribution for each attribute in the table,

consisting of 4-byte floating-point numbers in the range of [0, N), where N is the

experiment’s number of tuples. We use eight different synthetic workloads in our

performance comparison, similar to those described in Chapter 3 but extended for

3https://debs.org/grand-challenges/2012/
4http://skyserver.sdss.org

86

Chapter 4. Multidimensional Progressive Indexing

the multidimensional case. Figure 4-4 depicts a two-dimensional example of these

workloads with the mathematical formulas used to generate them. In addition to these

workloads, we propose a new one, called shifting. The shifting workload represents

a common scenario in data exploration where the columns being queried change

constantly (e.g., the data scientist executes ten queries on three columns, which

leads him to investigate the other three columns, and so forth). When generating

a synthetic workload, we take as a parameter the overall query selectivity σ. To

keep σ constant, regardless of the number d of dimensions used, we set the per-

dimension selectivity with d dimensions to σd = d
√
σ; e.g., for σ = 1%, we get

σ2 = 10%, σ4 = 31%, σ6 = 46%, σ8 = 56%.

4.3 Delta Impact

The parameter δ defines a percentage of the total amount of our data that is pivoted

per query. If δ = 0, no indexing is performed, hence only full scans are executed,

and the index will never converge. On the other hand, if δ = 1, the creation phase

completes in the first query, with the data fully pivoted once in the first dimension. In

this section, we explore how δ impacts our index in terms of the burden on the first

query, how many queries it takes for the index to pay-off when compared to a full scan,

how much time it takes until full index convergence, and the impacts on cumulative

time for the entire workload. We use a uniform data set and workload, with 30 million

rows, d ∈ {2, 4, 6, 8} columns, and 1000 queries with 1% selectivity. We test with

multiple δ values, ranging from 0.1 to 1. Where applicable, we compare Progressive

KD-Tree (PKD) with Adaptive KD-Tree (AKD), QUASII (Q), Average/Median KD-

Tree (AvgKD/MedKD), Full Scan (FS). Both Average and Median KD-Tree are built

using the attribute order given by the table schema.

First Query

The first query cost is the cost of fully scanning the data with the addition of copying

and pivoting a δ-fraction of the data. Figure 4-5 depicts the first query cost over

varying δ for multiple columns. With Progressive KD-Tree, the cost increases linearly

as we increase δ, and hence the amount of indexed data, with the impact being larger,

the more columns are involved, i.e., the more data needs to be copied. With δ = 0, the

first query merely performs a Full Scan. The first query cost for Adaptive KD-Tree is

about the same as for Progressive KD-Tree with δ ∈ [0.6, 0.7]. The first query cost of

QUASII is significantly higher than those of both Adaptive and Progressive KD-Tree

87

4. Experimental Analysis

Q AKD
FS 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
10

0.5

1

1.5

2

2.5

3 8 cols
6 cols
4 cols
2 cols

Fi
rs

t
Q

ue
ry

 C
os

t
[s

]

(PKD) Delta
Figure 4-5: First query cost.

due to the more intensive refinement work of QUASII. For Average KD-Tree and

Median KD-Tree, the first query costs grow linearly with the number of columns. We

omit them from Figure 4-5 as building the entire index is far more expensive than any

query shown there.

Pay-Off

In this experiment, we define pay-off as the number q of queries required until investing

in incrementally building the Progressive KD-Tree pays off compared to performing only

full scans without indexing, i.e., the smallest q for which
∑q

i=0 ti,progKD ≤
∑q

i=0 ti,FScan .

Figure 4-6 depicts the pay-off for multiple dimensions. While a small δ limits the

indexing impact over the initial queries, it also limits and the indexing progress. For

workloads with high per-column selectivity, this results in the queries being capable of

taking advantage of the little index progress early on. However, in a workload with

a low per-column selectivity (e.g., with 8 columns, we need a per-column selectivity

of 56% to yield an overall query selectivity of 1%), this results in the queries not

being able to take advantage of the indexing early on. For example, with δ = 0.1,

it takes 10 queries to pivot the first node fully. Since in our experiment, we use a

uniform data set, and the Progressive KD-Tree uses averages as pivots, that results in

a pivot that partitions the data on two pieces with approximately 50% of the total

data. In the case of an 8-dimensional workload with per-column selectivity of 56%, the

88

Chapter 4. Multidimensional Progressive Indexing

M
edKD

AvgKD
Q AKD
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
5

10
15
20
25
30
35
40 8 cols

6 cols
4 cols
2 cols

#
Q

ue
ri
es

(PKD) Delta

Figure 4-6: #Queries until Pay-off.

workload cannot take advantage of the index for the first 10 queries. Hence, the initial

queries always perform index creation and full scans, resulting in a higher pay-off

when compared to lower per-column selectivities. Furthermore, a higher δ reduces

the limitation on the index progress, creating an index that can boost queries early

on and diminishing the number of queries for the pay-off. Regarding the minimal

indexing for the given workload, Adaptive KD-Tree pays-off as early as the quickest

variant of Progressive KD-Tree (δ = 0.1).

Convergence

The convergence is defined as the time, in seconds, it takes for the Progressive KD-

Tree to fully index the data and achieve the same query performance as the Average

KD-Tree. Figure 4-7 depicts the convergence for multiple dimensions. The time to

converge increases with the number of dimensions because the average query time

also increases. However, since δ determines a percentage of the data that is indexed

per query, the number of dimensions has no impact on the number of queries to

converge. For example, with δ = 0.1, the number of queries to converge is about 100,

independent of the number of columns.

89

4. Experimental Analysis

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
10

10

20

30

40

50

60
8 cols
6 cols
4 cols
2 cols

(PKD) Delta

Ti
m

e
[s

]

Figure 4-7: Time until Convergence.

M
edKD

AvgKD
Q AKD
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

20

40

60

80

100

120 Total
After
8 cols
6 cols
4 cols
2 cols

Ti
m

e
[s

]

(PKD) Delta

Figure 4-8: Cumulative time (1000 queries).

Cumulative Time

In Figure 4-8, downward-pointing triangles (“Total”) mark the cumulative times to

execute the entire workload of 1000 queries, while upward-pointing triangles (“After”)

mark the cumulative times for only the tail of the workload after the index is fully built

and used for optimal query performance, i.e., no further index refinement is performed.

90

Chapter 4. Multidimensional Progressive Indexing

The shaded range between both indicates the cumulative time until the index is fully

built. Progressive KD-Tree takes at most 103 queries to converge to a full index with

δ = 0.1, or even as a mere 10 queries with δ = 1. Consequently, 90% (δ = 0.1) to

99% (δ = 1) of the 1000 queries in the workload benefit from the fully-built index,

accounting for the majority of the cumulative execution time due to their number

rather than per-query time. Only between 1% (δ = 1) and 10% (δ = 0.1) of the

workload contribute to progressively constructing the index. For the non-progressive

techniques, we only show the “Total” workload time without breaking it down into

before and after convergence. Adaptive KD-Tree and QUASII never converge in this

experiment, while Average KD-Tree and Median KD-Tree converge with the first

query by design. Overall, with δ ≥ 0.2, Progressive KD-Tree yields about the same

total workload time as the non-progressive techniques. Only in the 8-dimensional

scenario, QUASII and Adaptive KD-Tree outperform Progressive KD-Tree.

Picking a Delta (δ).

For exploratory data analysis, our indexes must not impose a high burden over the

initial queries while still paying off their investments quickly and preferably converging

fast and presenting a low total cost. Taking these objectives in mind, we select a

δ = 0.2 for our performance comparisons. It offers a sharp decrease in total cost and

convergence compared to δ = 0.1, without a significant increase in cost in the first

query.

4.4 Performance Comparison

In the remainder of the experimental section, we will focus on comparing the

performance of the Progressive KD-Tree (PKD) and the Greedy Progressive KD-

Tree (GPKD) with the state-of-the-art. In particular, we compare it with QUASII (Q),

Adaptive KD-Tree (AKD), and two KD-Tree full-index implementations, the Average

KD-Tree (AvgKD) that uses the average value of pieces as pivots and the median

KD-Tree (MedKD) that uses the median values as pivots. We also test a Full Scan (FS)

implementation using candidate lists as the baseline.

We verify four main characteristics that are desirable in indexing approaches for

multidimensional exploratory data analysis. (1) The first query cost. (2) The number

of queries executed, so the investment performed on index creation pays-off. (3) The

workload robustness. (4) The total workload cost. To evaluate our indexes, we execute

all workloads as described in Section 4.2.

91

4. Experimental Analysis

We execute the real workloads as given. For the Synthetic workloads, we generate

d = 8 dimensions, with 300 million tuples for Uniform, Skewed, SequentialZoom, and

50 million tuples for all others. All queries have σ = 1% overall selectivity, while

the per-dimension selectivity for all columns is σ8 = 56%. The only exception is the

sequential workload, where we only generate two dimensions with σ2 = 0.1%. This

is because, with the sequential workload, query ranges must not overlap; with more

than two attributes, the per attribute selectivity is too big, and using query selectivity

σ = 1% would yield only 10 disjoint queries. Hence, we decrease overall selectivity to

σ = 0.0001%, which yields 1000 disjoint queries.

We use size threshold = 1024 tuples as a minimum partition size for all indexes.

Unless stated otherwise, all progressive indexing experiments use an interactivity

threshold equal to the first query cost of PKD with δ = 0.2.

First Query.

MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

50
M

Unif(8) 20.20 12.46 5.11 3.07 1.36 1.36 0.91
Skewed(8) 20.23 12.48 6.25 3.49 1.26 1.26 0.82

Zoom(8) 20.28 12.68 6.13 3.24 1.32 1.31 0.84
Prdc(8) 20.17 12.42 6.99 6.94 0.99 1.00 0.60

SeqZoom(8) 19.98 12.42 5.23 2.90 1.42 1.41 0.93
AltZoom(8) 20.18 12.43 6.98 6.93 0.99 1.00 0.60

Shift(8) 20.20 12.46 5.11 3.07 1.36 1.36 0.91
Seq (2) 15.88 8.30 4.01 0.68 0.26 0.26 0.19

R
ea

l Power 1.52 0.83 0.33 0.23 0.08 0.08 0.06
Genomics 2.58 2.62 1.25 0.99 0.27 0.27 0.03
Skyserver 14.31 6.84 1.19 0.63 0.36 0.35 0.26

30
0M

Unif(8) 146.72 83.91 37.25 20.93 8.17 8.17 5.47
Skewed(8) 146.80 84.01 43.06 21.24 7.94 7.96 5.12

SeqZoom(8) 146.87 84.36 35.93 18.08 8.84 8.83 6.41

Table 4.2: First query response time (Seconds).

Table 4.2 depicts the first query cost of all algorithms on all workloads. The

Median KD-Tree and the Average KD-Tree present the highest times on the first

query since they create a full index when we query a group of columns for the first

time. The Median KD-Tree usually presents a higher cost since finding the median of

a piece is more costly than finding the average value. The adaptive indexes are up to

one order of magnitude cheaper than the full indexes since they only index a focused

region necessary to answer the query. QUASII has a more aggressive partitioning

92

Chapter 4. Multidimensional Progressive Indexing

algorithm than the Adaptive KD-Tree (for example, in the first query of the uniform

workload, the Adaptive KD-Tree creates 161 nodes while QUASII creates 13,480)

and, thus, ends up being a factor 2 slower in the first query evaluation. Finally, both

progressive indexing solutions have the same time on the first query since they execute

it with the same δ. They impose the smallest burden on the first query and are up to

one order of magnitude faster than the adaptive indexing solutions.

Pay-off.

MedKD AvgKD Q AKD PKD(.2) GPKD(.2)

50
M

Unif(8) 22.19 13.57 11.12 6.83 31.41 22.88
Skewed(8) 23.67 14.42 9.90 5.44 36.06 28.06

Zoom(8) 31.25 18.54 6.19 3.26 39.50 30.19
Prdc(8) 22.00 13.47 7.08 7.09 29.14 22.53

SeqZoom(8) 21.22 13.20 5.27 2.91 32.00 24.39
AltZoom(8) 21.53 13.15 8.12 7.57 19.15 26.46

Shift(8) 2094.98 1319.28 1085.27 26.34 1152.43 1263.61
Seq (2) 15.89 8.30 4.07 51.17 1.93 7.62

R
ea

l Power 1.79 0.96 0.81 0.41 1.04 1.80
Genomics 6.41 6.49 9.06 6.09 16.16 17.69
Skyserver 14.32 6.84 1.24 0.75 2.91 9.40

30
0M

Unif(8) 154.82 87.70 74.92 40.52 197.89 160.04
Skewed(8) 159.33 88.26 65.96 32.97 229.73 180.63

SeqZoom(8) 151.92 91.32 36.17 18.17 185.14 155.27

Table 4.3: Pay-off (Seconds).

Table 4.3 depicts the time it takes for the investment spent on index creation to

pay-off when compared to a full scan. For the full index approaches, the Average

KD-Tree presents a smaller pay-off than the Median KD-Tree due to a lower cost

on index creation while maintaining a similar cost on index lookup. In the adaptive

solutions, the Adaptive KD-Tree has the lowest pay-off, not only when compared to

QUASII, but overall, this is a direct result of its core design of only indexing the

pieces necessary for the executing query. At the same time, QUASII performs a more

aggressive refinement strategy that increases its pay-off. The Adaptive KD-Tree has

the worst pay-off in the sequential workload, which represents its worst-case scenario.

Finally, the progressive solutions present the highest pay-off in general. However,

it is important to notice that we picked our δs optimizing for a low burden in the

first query. Since most experiments are with 8 columns, as depicted in Figure 4-6

to optimize for a low pay-off we would need to use larger δs. One can notice that

93

4. Experimental Analysis

the progressive solutions perform the best on the sequential workload due to the low

number of columns benefiting from the small δ. One can notice that for the Shift(8)

workload, no algorithm besides the Adaptive KD-Tree pays-off due to the low number

of queries executed before shifting the columns we are looking into. Figure 4-9 depicts

0 5 10 15 20 25
0
1
2
3
4
5
6
7
8

AvgKD MedKD AKD Q
PKD(.2) GPKD(.2) FS

Ti
m

e
(S

ec
on

ds
)

Figure 4-9: Cumulative response time.
Genomics, first 30 queries.

the cumulative response time of the first 30 queries in the Genomics Benchmark.

Compared to full indexes, both adaptive and progressive indexes take longer to pay-off

and achieve full index response time. This is due to the full indexes having a low first

query cost, as discussed in the first query sub-section.

Robustness.

To calculate the robustness, we check the variance in per-query cost, for the first 50

queries or up to full index convergence. For full indexes, the variance is 0 because

it fully converges in the first query. Table 4.4 depicts the robustness of all adaptive

and progressive algorithms. The Adaptive KD-Tree is as robust as QUASII. The

progressive indexing solutions are the most robust options, with up to 3 orders of

magnitude lower variance than the adaptive indexing approaches, with the Greedy

Progressive KD-Tree always being the most robust, with a constant per-query cost

until convergence due to its cost model adaptive δ (Fig. 4-10).

94

Chapter 4. Multidimensional Progressive Indexing

Q AKD PKD(.2) GPKD(.2)

50
M

Unif(8) 6E-01 2E-01 9E-02 1E-03
Skewed(8) 8E-01 2E-01 8E-02 2E-03

Zoom(8) 7E-01 2E-01 8E-02 1E-03
Prdc(8) 1E+00 9E-01 4E-02 6E-04

SeqZoom(8) 5E-01 2E-01 1E-01 2E-03
AltZoom(8) 1E+00 9E-01 8E-02 6E-04

Shift(8) 2E+00 9E-01 3E-02 1E-03
Seq (2) 3E-01 3E-03 1E-03 8E-05

R
ea

l Power 3E-03 1E-03 6E-04 3E-05
Genomics 2E-01 6E-02 1E-02 9E-04
Skyserver 4E-02 8E-03 4E-03 2E-04

30
0M

Unif(8) 3E+01 1E+01 4E+00 3E-02
Skewed(8) 4E+01 9E+00 3E+00 3E-02

SeqZoom(8) 3E+01 6E+00 4E+00 5E-02

Table 4.4: Query time variance (smaller is better).

0 5 10 15 20 25 30 35 40 45

0.1

1

10

Q AKD PKD(.2) GPKD(.2)

Ti
m

e
(s

ec
on

ds
)

Figure 4-10: Per query response time.
Uniform(8), first 50 queries.

Total Response Time.

Table 4.5 depicts the total response time of all benchmarks. The Progressive Indexing

approaches have a very similar response time compared to the full indexes due to their

design characteristics prioritizing robustness and convergence over total response time,

which is reinforced by the low δ picked for the experiments. Adaptive indexing always

95

4. Experimental Analysis

MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

50
M

Unif(8) 109.7 101.4 95.6 74.3 122.6 109.9 857.5
Skewed(8) 147.6 138.3 107.6 43.1 160.8 151.1 856.6

Zoom(8) 52.0 40.9 11.4 7.1 58.5 51.6 687.1
Prdc(8) 85.8 73.6 61.9 229.9 93.3 86.4 807.7

SeqZoom(8) 31.0 24.2 8.2 4.5 46.6 34.1 499.6
AltZoom(8) 44.0 34.2 18.9 22.4 53.4 48.3 747.0

Shift(8) 2095.0 1319.3 1085.3 775.5 1152.4 1263.6 885.5
Seq (2) 15.9 8.3 6.0 102.9 7.8 7.6 332.6

R
ea

l Power 26.0 24.4 24.6 31.3 25.0 24.7 164.6
Genomics 10.9 10.9 10.6 7.3 16.2 17.7 16.1
Skyserver 16.0 14.1 6.9 12.0 10.7 10.4 20186.5

30
0M

Unif(8) 468.8 366.9 422.9 352.0 558.4 472.7 5423.8
Skewed(8) 581.9 399.8 521.0 195.2 674.9 595.9 5367.1

SeqZoom(8) 183.0 122.5 48.7 24.5 277.3 186.0 3221.2

Table 4.5: Total response time (Seconds).

has the lowest total response time due to its high focus on refining pieces requested by

the currently executing query. The Adaptive KD-Tree presents the fastest results for

most of the workloads. The exception is for highly skewed workloads (e.g., Alternating

Zoom and SkyServer), which is due to QUASII’s extra refinement paying-off almost

immediately, and in the Periodic and Sequential Benchmarks.

The Sequential benchmark emulates the worst-case scenario for the Adaptive

KD-Tree, where the KD-Tree ends up almost equal to a linked list. This happens

due to blindly adapting using the query predicates and because the KD-Tree has no

self-balancing mechanism.

The Shifting benchmark also presents a peculiar result. The only index with a faster

response time than the full scan is the Adaptive KD-Tree, with its workload-dependent

refinement approach quickly paying off for such a small window of queries.

4.5 Impact of Dimensionality

In this section, we evaluate how the number of dimensions affects the performance

of each technique. We experiment with a uniform workload of 1000 queries with 1%

selectivity on a uniform data set with 2, 4, 8, and 16 columns. Table 4.6 depicts

the first query cost, time to pay-off, time until convergence, robustness, and total

execution time for each index. Similar to the results presented in the previous section,

the Average KD-Tree has the upper hand in terms of total cost and number of queries

until pay-off, while the Progressive KD-Trees are the most robust with a predictable

96

Chapter 4. Multidimensional Progressive Indexing

MedKD AvgKD Q AKD PKD(.2) GPKD(.2) FS

U
n
if

(2
)

First Query 15.94 8.35 2.89 1.05 0.55 0.54 0.52
PayOff 16.05 8.40 5.56 1.63 1.94 8.18 -

Convergence - - * * 9.68 7.78 -
Robustness - - 0.20 0.02 0.01 0.00 -

Time 19.08 11.49 10.76 9.34 12.75 11.24 425.34

U
n
if

(4
)

First Query 17.13 9.56 3.14 1.65 0.83 0.82 0.65
PayOff 17.33 9.66 5.80 3.26 4.65 11.40 -

Convergence - - * * 14.47 10.66 -
Robustness - - 0.20 0.08 0.03 0.00 -

Time 25.27 17.72 17.13 18.32 22.32 19.39 614.59

U
n
if

(8
)

First Query 20.20 12.46 5.11 3.07 1.36 1.36 0.91
PayOff 22.19 13.57 11.12 6.83 31.41 22.88 -

Convergence - - * * 38.02 21.34 -
Robustness - - 0.60 0.20 0.09 0.00 -

Time 109.69 101.41 95.59 74.27 122.60 109.90 857.54

U
n
if

(1
6)

First Query 45.10 36.99 29.19 10.85 2.07 2.05 1.30
PayOff 223.96 173.06 50.65 35.64 183.21 185.68 -

Convergence - - * * 96.14 74.17 -
Robustness - - 20.00 3.00 0.03 0.08 -

Time 1054.69 1023.24 461.45 260.02 1026.44 1029.89 1258.90

Table 4.6: Performance difference on Uniform benchmark with different number of
attributes.

convergence. One can notice that as the number of dimensions increases, the difference

in total time and pay-off between the Adaptive Indexing solutions and the Progressive

Indexing increases drastically. This happens due to the convergence principle of

progressive indexing, which causes it to behave similarly to a full index.

4.6 Full Scan Exceeding the Interactivity Threshold

Figure 4-11 depicts the behavior of the Adaptive KD-Tree (AKD), the Progressive

KD-Tree (PKD), and both options for the Greedy Progressive KD-Tree, with a fixed

number of queries as input (GPFQ) and a fixed penalty (GPFP). For this experiment,

we set our interactive threshold to 0.5s, approximately half the cost of a full scan.

AKD performs the necessary indexing as a pre-processing step during the first query.

Hence its first query is one order of magnitude more expensive than a full scan. Due

to this investment, all remaining queries are under the threshold. PKD starts with

the user-provided δ of 0.2 and gradually reaches a scan cost below the interactivity

threshold. At that point, it calculates a new δ′, which gradually converges to a full

97

5. Summary

10 20 30 40 50 60 70 80 90 100

0.1

1

10

FS GPFQ(10) GPFP(0.2) PKD(0.2)
AKD Threshold

Query Number

Ti
m

e
(s

ec
on

ds
)

Figure 4-11: Adaptive and Progressive KD-Tree with scans costs exceeding the
interactivity threshold; first 100 queries.

index. Both GPFQ and GPFP have similar behavior. They start at a cost higher

than the interactivity threshold, have a sudden drop to the threshold cost, and later

one more drop until full convergence. For GPFQ, this first drop happens after ten

queries, as requested by the user, at the expense of slightly higher first query costs

than GPFP. GPFP uses an indexing penalty of δ = 0.2, and only drops once pieces

are small enough, slightly later than GPFQ.

5 Summary

This chapter extended existing work on multidimensional adaptive indexing by in-

troducing two new progressive indexing algorithms. We showed that our algorithms

are superior compared with state-of-the-art multidimensional indexing in various real

and synthetic workloads. In summary, both Progressive KD-Tree’s present the lowest

penalty on the initial queries, with the Greedy Progressive KD-Tree yielding the fastest

convergence and best robustness. In general, which technique to use depends on the

properties desired by the user. If the ultimate goal is the total cost, the Adaptive

KD-Tree is the algorithm of choice. However, in exploratory data analysis, where we

want to keep the impact on initial queries low, and we want a constant query response

time without performance spikes, Greedy Progressive KD-Tree is the logical choice.

Up to this point in this thesis, we explored how to create uni and multidimensional

98

Chapter 4. Multidimensional Progressive Indexing

Progressive Indexes. However, these indexes assume that the data is immutable (i.e.,

no appends or updates happen). In the next chapter, we propose one new progressive

algorithm designed to merge updates into Progressive Indexes.

99

CHAPTER 5

Progressive Merges

1 Introduction

The major drawback of Progressive Indexes is that they are only designed for static

databases. However, in the interactive data analysis scenario, the data is not static

but rather frequently updated with batches of data that must be appended. If we take

the flight dataset example presented in Chapter 2 we can consider the scenario where

batches of data are regularly appended since new flights happen all the time (e.g.,

either data is appended every few minutes, hours, days, depending on how critical is

to analyze recent data).

One way of adapting the current Progressive Indexing strategy to support updates

is to use the techniques developed for merging updates on Adaptive Indexes since they

produce similar intermediate incremental indexes. However, these merging techniques

follow Adaptive Indexing’s philosophy of lazy query execution, drastically decreasing

robustness (i.e., it creates performance spikes that vary the per-query response time

in orders of magnitudes up and down), with no guaranteed convergence and high

penalties for larger batches of appends.

In this chapter, we introduce Progressive Mergesort. Progressive Mergesort is

designed to efficiently merge batches of appends while following Progressive Indexing’s

core design decisions. It presents a low-query impact even for large batches, high

robustness, and guaranteed convergence (i.e., all elements are merged into one array).

101

2. Related Work

1.1 Contributions

The main contributions of this chapter are:

• We introduce a novel Progressive Indexing technique that focuses on merging

batches of appends into our main Progressive Indexing run.

• We experimentally verify that the Progressive Mergesort provides a more robust,

predictable, and faster performance through various batch sizes and update

frequencies.

• We provide Open-Source implementations of Progressive Mergesort.1

1.2 Outline

This chapter is organized as follows. In Section 2, we investigate related research

on updating Adaptive Indexes, called Adaptive Merges. In Section 3, we describe

our novel Progressive Mergesort technique and discuss its benefits and drawbacks.

In Section 4, we perform an experimental evaluation of each of the novel methods

we introduce, and we compare it against adaptive merging techniques. Finally, in

Section 5 we draw our conclusions.

2 Related Work

There are three main algorithms designed to efficiently merge appends into adaptive

indexes [34], the Merge Complete, Merge Gradual, and Merge Ripple, and we will refer

to these algorithms as Adaptive Merges from now on. They follow the same philosophy

of Adaptive Indexing by only merging appends when necessary. They differ from each

other in terms of what data they will merge and how they merge it. In the following

subsections, we overview each algorithm and present an example of their execution.

Besides the strategies to efficiently merge appends into the index’s column, Holanda et

al. [29] presents a strategy to prune cold data from the cracker index to boost updates.

However, we do not explore this strategy in this work since it directly goes against

our full convergence philosophy.

102

Chapter 5. Progressive Merges

Figure 5-1: Merge Complete on query A ¡ 8

2.1 Merge Complete (MC)

This algorithm completely merges the full Appends vector into the Cracker Column

as soon as a query requests data that is also present in the Appends vector.

Figure 5-1 depicts an example of merge complete executing the query A < 8. In

our example, the column is already partitioned around three pivot points 8, 10, and

14. Since the appends vector contains element 6 (i.e., an element that qualifies the

query), the whole appends vector is merged. The first step of the merge is to resize

our cracker column to cracker column.size() + appends.size(), followed by a copy of

the appends elements to the end of the column and the deletion of the appends vector.

Then we must swap the newly added elements that are in the wrong piece to their

correct piece. In this case, elements 6, 8, and 11 are swapped with elements in the

current piece’s border with the last piece. After performing the swaps, we update

the cracker index pointer for 14 to point at the correct place, considering the newly

inserted elements. This process is repeated until all inserted elements are placed in

the correct pieces. In our example, we perform 6 swaps, and we update all 3 nodes of

1Our implementations and benchmarks are available at https://github.com/pdet/

ProgressiveMergesort

103

https://github.com/pdet/ProgressiveMergesort
https://github.com/pdet/ProgressiveMergesort

2. Related Work

our cracker index. At the end of the execution, the appends list is empty.

2.2 Merge Gradual (MG)

Figure 5-2: Merge Gradual on query A ¡ 8

Merge Gradual differs from Merge Complete concerning the amount of data merged

per query. It only merges elements that qualify for the currently executing query.

Figure 5-2 presents the algorithm executing the A < 8 query in the same cracker

column as before. A binary search using the query predicates is performed in the

Appends vector. The elements that qualify for the query, in this case only the value

6, are merged to the cracker index. As before, value 6 is initially placed at the end

of the cracker column and erased from the appends vector. Value 6 is then swapped

until it reaches its correct piece, with the nodes in the cracker index being updated

accordingly. Note that 3 swaps are done in this case, all 3 nodes from the cracker

index are updated, and 25% of the values in the appends vector are merged.

2.3 Merge Ripple (MR)

Merge Ripple (MR) Like Merge Complete, the Merge Ripple algorithm only merges

the elements that qualify for the query predicates. They differ on how they merge

them. In the Merge Ripple, instead of resizing the Cracker Column and appending

104

Chapter 5. Progressive Merges

Figure 5-3: Merge Ripple on query A ¡ 8

the element to its end as its first step, it starts by swapping the to-be inserted element

with the first element in the next greater-neighboring piece from its correct piece.

Figure 5-3 depicts an example of Merge Ripple executing the query A < 8. In our

example, the column is already partitioned around three pivot points (8, 10, 14), and

the appends array contains four values (6, 8, 11, 17). Since we only need to insert

element 6 from the appends array, we perform a cracker index lookup and identify

the element’s piece (i.e., the first piece holding 6, 4, 2, and 7). We then go to the

successor piece (i.e., piece 2 with elements 8 and 9) and swap the first element of that

piece (8) with the element in our appends (6). After that, we only need to update the

cracker index node that points to the value 8. In this case, we only had to perform 1

swap and update 1 node in the cracker. However, our append list remains with the

same size it had at the start of the algorithm. Merge Ripple performs fewer swaps and

updates than the previous algorithms while merging the necessary amount of data to

our index.

Discussion. The Merge Complete algorithm presents the highest convergence

since it fully merges the appends list whenever the appends vector has elements

that qualify for the query. However, it will potentially present high-performance

spikes when performing such merges. The Merge Ripple is expected to present lower

performance spikes since it only merges what is necessary, avoiding column resizes,

105

3. Progressive Mergesort

swaps, and index node updates. However, it also presents a slow convergence and

can present large performance spikes when the workload shifts to a piece where many

elements must be merged. The Merge Gradual seems to be the best balance between

robustness and convergence, but robustness issues similar to the Merge Ripple are

still expected. Another major problem of these algorithms is the necessity of having

a fully sorted appends list to merge the data efficiently. In the original paper, only

small batches were used in the experiments. However, when facing large appends, the

necessary a-priori sort of the append list will present a major performance bottleneck.

3 Progressive Mergesort

Progressive Mergesort is a Progressive Indexing technique inspired by the mergesort

algorithm [17] and used for merging appends into the main Progressive Indexing

structure. It follows the three pillars of progressive indexes: (1) low impact on

query execution, (2) robust performance, and (3) guaranteed convergence. It relies

on an index-budget δ that represents the percentage of the indexed per-query data,

guaranteeing that the same amount of effort will be distributed for the entire workload.

In practice, during query execution, the δ defined for our Progressive Indexing

algorithm is used for both the main index structure and Progressive Mergesort.

Progressive Mergesort follows two distinct canonical phases, the refinement phase

and the merge phase described in this section.

Refinement. In the refinement phase, we can use any of the other proposed

Progressive Indexing algorithms, getting the most performance depending on data

distribution and workload. Our budget is used as described in chapter 3 depending

on the algorithm executing the refinement. In this work, we decided to experiment

with Progressive Quicksort as our algorithm of choice. Utilizing the other algorithms

is left as an engineering exercise for future work.

Merge. At the end of the refinement phase of any Progressive Indexing algorithm,

the result is a sorted list. When all merge chunks are fully sorted, we progressively

merge them into one sorted chunk. We perform a progressive two-way merge in order

to merge these chunks.

Figure 5-4 depicts a high-level concept of Progressive Mergesort. In this figure,

red vectors are completely unsorted vectors, yellow are partially sorted vectors, and

green are completely sorted. We start with our main index structure only partially

sorted and with a new batch of appends.

It starts with the refinement phase. At this step, any Progressive Indexing technique

106

Chapter 5. Progressive Merges

Figure 5-4: Progressive Mergesort

can be used and will continue their execution until reaching completely sorted lists.

When all chunks are entirely sorted, the second phase of Progressive Mergesort starts.

Here, the Appends arrays are progressively merged into one array. One might note

that new batches can be introduced while other batches are already being refined. In

this case, a Progressive Mergesort run will be initiated to newly appended chunks.

All these chunks use the same δ as our main progressive index but normalized to the

chunk size. Only when the original Progressive Indexing column and the appends are

fully sorted (i.e., we have one sorted column for the Progressive Indexing and one

sorted column for all the appends) and the appends have the same or bigger size as

the Progressive Indexing column we merge them.

Figure 5-5 depicts an example of Progressive Mergesort with delta = 0.5. We start

with two batches of updates. In the initial iterations, we execute Progressive Quicksort

as the refinement phase. In Refine (1), a Progressive Quicksort iteration is initiated

for each chunk, since δ = 0.5 both iterations index half of each chunk around one pivot.

In Refine (3) both Progressive Quicksort iterations ended, and both chunks are fully

107

3. Progressive Mergesort

Figure 5-5: Progressive Mergesort Example (δ = 0.5)

sorted. Hence we will start the merge phase of Progressive Mergesort in the following

query. In Merge (1) we start to merge both lists using a two-way merge algorithm,

and we stop when the resulting list is half complete due to our delta. For the chunks

that are being merged, we must store the offsets where we stopped merging. Finally,

in Merge (2) we end the merge phase with one completely sorted append list and

delete the previous chunks.

Query Processing. When executing a query on a column with Progressive

Indexing, we might encounter several arrays (i.e., the original Progressive Indexing

column and batches of appends that started to be refined but are not yet merged)

with different levels of refinement.

During the query execution, each array must be checked to return the elements

that fit the query predicates. If the array is already fully sorted, a binary search will

be executed to return the result. Otherwise, the array will be at some step of the

refinement phase. Hence a lookup on the binary tree is necessary to return the offsets

that match the query predicates.

When to Merge. In this work, we decided to first completely merge all appends

into one, fully sorted, append array. If this array has a size equal to or bigger than the

108

Chapter 5. Progressive Merges

current Progressive Indexing column, we merge both. This decision was made to avoid

frequent resizes of large arrays (e.g., if we merged the Progressive Indexing column

with every append first, this would result in a resize for the progressive column at

every batch, which would be prohibitively expensive).

However, this decision is not necessarily optimal for all workloads. Having multiple

arrays increase the random access to respond to the workload while diminishing

the merge costs creating a trade-off depending on when and how these merges are

performed. Creating an algorithm that decides when is the appropriate moment to

merge these different arrays and which arrays should be merged is out of this chapter’s

scope, and we leave it as future work.

Listing 5 depicts a C++ like implementation of Progressive Mergesort. The

Progressive Mergesort has as its input a vector of columns representing the chunks

that are being refined, a Column representing the current set of updates, a double with

the delta, the query predicates, the result structure, a pointer to the merge column,

and a parameter indicating the minimum size the update column must have before

entering the refinement phase. In the first for loop (lines 5-11), we iterate through all

chunks and execute the query on each chunk. On line 6, we normalize our delta to

the size of the chunk. Line 7 executes a Progressive Quicksort call that refines and

returns the filtered elements of that chunk. These elements are then merged into our

result structure. While checking each chunk, we also check if they are all sorted since

we only start the merge phase after all chunks are already sorted.

In the second for loop (lines 12-15), we check if any of the elements in our current

update column qualifies for the range query. If so, we add it to the result structure.

In the first if (lines 16-20), we initiate a merge of the two last chunks in our

vector if no merge is currently happening and all chunks are sorted. The second if

(lines 21-29) performs the actual merge, we calculate a normalized budget for the

size of the merge column and progressively build it. Lines 33-37 check if the merge is

already finished. If it is already done, we delete the merged chunks from our chunk

vector and add the newly merged chunk to the vector. We also set the pointer to the

merge column to null to indicate that we can initiate other merges.

The final if (lines 30-34) check if the updates column has reached a size bigger

than the minimum necessary for it to become a chunk. If so, we initiate a Progressive

Quicksort refinement that will be refined in the following queries. We add it to our

chunk vector and create a new update column to hold the next appends.

109

4. Experimental Analysis

Listing 5 Progressive Mergesort Body

1 void progressive_mergesort(vector<Column>& chunks, Column& updates,

2 double delta,Query query,Result& result,MergeColumn* merge_column,

3 size_t min_update_size){

4 bool all_sorted = true;

5 for (auto& c: chunks){

6 auto budget = c.size()*delta;

7 result.merge(chunk->execute(query,budget));

8 if (!c.sorted){

9 all_sorted = false;

10 }

11 }

12 for (auto&u:updates){

13 int match = query.match(u);

14 result.maybe_push_back(u, match);

15 }

16 if (!merge_column && all_sorted && chunks.size() > 1){

17 auto l = chunks.size() - 2;

18 auto r = chunks.size() - 1;

19 merge_column = new MergeColumn(chunks[l],chunks[r]);

20 }

21 if (merge_column){

22 auto budget = merge_column.size()*delta;

23 merge_column.merge(budget);

24 if (merge_column.finished()){

25 chunks.erase(chunks.begin()+l,chunks.begin()+r+1);

26 chunks.insert(chunks.begin,merge_column);

27 merge_column = nullptr;

28 }

29 }

30 if (updates->size > min_update_size){

31 auto pq = new ProgressiveQuicksort(updates);

32 chunks.push_back(pq);

33 updates = new Column();

34 }

35 }

4 Experimental Analysis

This section provides an experimental evaluation of Progressive Mergesort and com-

pares it with the Adaptive Merges techniques.

110

Chapter 5. Progressive Merges

4.1 Setup

We implemented the Progressive Mergesort algorithm and the Adaptive Merges in a

stand-alone program written in C++. The Progressive Mergesort uses Progressive

Quicksort in its refinement phase.

Compilation. This application was compiled with GNU g++ version 7.2.1 using

optimization level -O3.

Machine. All experiments were conducted on a machine equipped with 256 GB

main memory and an 8-core Intel Xeon E5-2650 v2 CPU @ 2.6 GHz with 20480 KB

L3 cache.

Appends. All experiments have three parameters regarding the appends, (1) the

batch size that represents the size of a batch of appends, (2) the frequency which

represents an interval of queries where a new batch of appends is executed, and (3)

start after that describes how many queries need to be executed before the first append

happens. With these three parameters we calculate the number of appends that will

be executed total appends = total queries−start after
frequency

∗ batch size, and divide our data

set into the original column set that represents our initially loaded column and the

appends set that represent the appends that will be inserted.

Data set. We generate a synthetic data set composed of N+total appends unique

8-byte integers, with N ∈ {107, 108, 109} and representing the original column size.

After generating the data set, we shuffle it following a uniform-random distribution

and divide it into our original column and a list of appends.

Workload. Unless stated otherwise, all experiments consist of a synthetic workload

with 104 queries in the form SELECT SUM(R.A) FROM R WHERE R.A BETWEEN V1 AND

V2. A random value is selected for V1 and V2 = V1 + (N + total appends) ∗ 1%.

Configuration. We experiment with 3 main configurations.

• High Frequency Low Volume (HFLV): A batch of appends with batch size =

0.001% ∗N executed every 10 queries.

• Medium Frequency Medium Volume (MFMV): A batch of appends with batch size =

0.01% ∗N executed every 100 queries.

• Low Frequency High Volume (LFHV): A batch of appends with batch size =

0.1% ∗N executed every 1000 queries.

111

4. Experimental Analysis

4.2 Performance Comparison

In this work, we decided to use the Adaptive Merges algorithms only with Adap-

tive Indexing due to the increased complexity of implementing them to work with

Progressive Indexing and leave this task as an engineering exercise for future work.

Since the base indexing algorithm is different for the Adaptive Merges and Progressive

Mergesort, we decided to start appending data after 1000 queries to have refined

indexes and better isolate the actual append cost from early index creation. Hence we

avoid the noise of partitioning the original column and focus on the actual merges

from the appends. Our Progressive Mergesort uses a fixed δ of 0.1 in all experiments.

(a) HFLV (b) MFMV

(c) LFHV

Figure 5-6: Progressive Mergesort and Adaptive Merges (N = 107 and start after =
1000)

Figure 5-6 depicts a per-query performance comparison of Progressive Mergesort

and Adaptive Merges. This experiment uses a data set with N = 107 and runs all

three configurations described in the previous section. We continue this section by

describing two observations present in all experiments, (1) regarding the column resizes

and (2) an overall query robustness analysis.

Resizes. In all three configurations, HFLV, MFMV, and LFHV, we can notice

that all three Adaptive Merges present a performance spike right after the start of

112

Chapter 5. Progressive Merges

the updates around query 1000. The main reason for this spike is the need to resize

the Cracker Column when appending new data. Since this resize reserves two times

the space of the original Cracker Column, it only happens once. It is also possible to

notice that with Merge Ripple, the spike occurs 100 queries later than Merge Complete

and Merge Gradual. This is because Merge Ripple avoids resizing the Cracker Column

by swapping the data from the Appends and the column with the actual resize only

happening when we are in the last piece. This problem does not exist with Progressive

Mergesort since we perform a vector.reserve() to allocate memory to the merge vector,

and filling out the merge vector is completed over multiple queries.

Robustness. The Merge Complete presents the lowest robustness from all

algorithms. Whenever a merge happens, it has a big spike upwards since it completely

merges it. Merge Gradual is the second-worst. Since it completely merges all elements

that qualify the predicate, it does not have one big performance spike, spreading those

merges through many queries. This is particularly visible in Figure 5-6c that depicts

the low-frequency high volume experiment (i.e., at every 1000 queries, a batch of size

104 is inserted. One can see that at every 1000 queries, there is an upwards spike that

slowly decreases for 500 queries and then has a slop down since most of the Appends

array was merged by that point. From the Adaptive Merges, the Merge Ripple presents

the least variance. All queries slightly increase their cost with increasing updates.

Finally, the Progressive Mergesort presents the lowest variance, with no performance

spikes up.

One can notice that all algorithms present spikes downwards at the same queries

overall three configurations. These are caused by noise due to the way we select our

query predicates to fix our workload selectivity. Since we create our second query

predicate as V2 = V1 + (N + total appends) ∗ 1%. Queries might not have exactly

1% selectivity if the data is not completely merged in the column. Since the figures

are with the y-axis in log scale, small differences in the selectivity produce these

downwards performance spikes.

4.3 Varying Data Sizes

Table 5.1 depicts the total execution cost for the workload, excluding the initial 1000

queries. On all experiments, Progressive Mergesort presented approximately 2x better

performance than the best performing Adaptive Merge algorithm. The main reason

for this performance difference is that all Merge Adaptive algorithms must keep the

appends sorted to merge them efficiently. This problem impacts Merge Ripple the

113

4. Experimental Analysis

Workload MC MG MR PM

10
7

HFLV 2.72 3.52 2.57 1.07
MFMV 2.18 3.39 2.45 1.07
LFHV 2.00 2.55 2.34 1.06

10
8

HFLV 22.76 26.16 26.61 10.64
MFMV 20.25 26.14 25.19 10.72
LFHV 22.14 22.42 23.89 10.63

10
9

HFLV 209.25 221.67 295.39 104.77
MFMV 206.39 219.39 267.94 104.96
LFHV 197.89 200.62 250.62 103.95

Table 5.1: Cumulative Time (s)

most since it tends to keep a larger appends array due to its lazier merging property.

That means that a larger array must be re-sorted at every append insertion. One

might notice that the results of Adaptive Merges seem to directly contradict Idreos

et al. [34], where Merge Ripple was the best performing algorithm of the three. The

HFLV with N = 107 is the only experiment with the same parameters as the original

paper and showcases a similar result, with Merge Ripple being the fastest of the

Adaptive Merges. However, as discussed before, with larger appends Merge Ripple

starts to lose its benefit of fewer swaps to keep the append vector sorted.

One other interesting result is the variance in the total cost depending on the

configuration of the workload. The Adaptive Merges algorithms present a much higher

variance than Progressive Mergesort for the same data size. This is more prominent

with larger data sizes. Taking N = 109 as an example, Merge Complete presents a

variance of 11.36s, Merge Gradual of 21.05s, Merge Ripple of 44.72s, and Progressive

Mergesort of 1.01s.

Compared to the Adaptive Merges algorithms, Progressive Mergesort has a very

low variance from configurations at the same data size. This is due to the Progressive

Mergesort algorithm not performing a complete sort in the append list but rather

properly refining and merging it depending on their data size.

Table 5.2 depicts the order of magnitude of each workload’s query variance on

all 3 data sizes. We only calculate the query variance after executing the first 1000

queries. Note that the lower the variance, the more robust the algorithm is. As

expected, Merge Complete presents the lowest robustness since it completely merges

the Appends array to the Cracker Column causing a huge performance spike. The

Merge Gradual and Merge Ripple are better than the Merge Complete since they only

merge tuples that qualify the query predicates. Progressive Mergesort presents the

highest robustness due to its indexing budget, effectively offering more fine-grained

114

Chapter 5. Progressive Merges

Workload MC MG MR PM

10
7

HFLV e-07 e-07 e-07 e-10
MFMV e-06 e-07 e-07 e-10
LFHV e-06 e-07 e-07 e-10

10
8

HFLV e-05 e-05 e-05 e-07
MFMV e-05 e-05 e-05 e-07
LFHV e-04 e-05 e-05 e-07

10
9

HFLV e-03 e-03 e-03 e-06
MFMV e-03 e-03 e-03 e-06
LFHV e-02 e-03 e-03 e-06

Table 5.2: Robustness (Orders of Magnitude)

control over the stream of queries.

4.4 Appends during Index Creation

To perform a fair comparison of the Adaptive Merges and Progressive Mergesort, we

only initiated the updates after 1000 queries to minimize the initial index creation

cost of Adaptive Indexing and Progressive Indexing. However, after 1000 queries, the

Progressive Indexing is already fully converged (i.e., the main index is a sorted list).

In this experiment, we want to evaluate Progressive Mergesort’s impact during

Progressive Indexing’s creation phase (i.e., Initialization and Refinement phases). In

our setup, we use a dataset with N = 107, a workload with 1% selectivity and 200

queries, and three different update setups. All update setups start at the first query

and perform appends at every ten queries. They differ on the batches’ size, with

batches of size 100, 1000, and 10000.

Figure 5-7 depicts the per-query cost for the 200 queries. The height of the

performance spikes are strongly correlated to the batch sizes, with larger batches

introducing a higher spike. This happens due to our strategy using a fixed delta (i.e.,

a % of the total size of the data that is indexed per-query) for the entire workload.

Hence the more data we ingest, the actual per-query cost will increase since the data

size increases. One way of minimizing this issue is to extend the cost models proposed

in chapter 3 to automatically generate a value for δ to reduce query variance. We

leave that algorithm as an exercise for future work.

115

5. Summary

Figure 5-7: Progressive Mergesort before index convergence.

5 Summary

This chapter introduces the Progressive Mergesort, a novel progressive algorithm

used to merge batches of appends. We compare it to the state-of-the-art merging

algorithms from adaptive indexing techniques and show how they perform under

multiple synthetic benchmarks. Our solution is more robust and faster than the

state-of-the-art.

116

CHAPTER 6

Big Picture

This chapter discusses the main challenges of implementing Progressive Indexing in a

database system and points out future work for the general area of incremental indexes.

We also dive in specifically on unidimensional Progressive Indexing, multidimensional

Progressive Indexing, and Progressive Merges.

1 The Elephant In The Room

The fact of the matter is, no database system took into production Adaptive Indexing,

even though the first paper of Adaptive Indexing, Cracking the Database Store[38]

dates from 2005. Some of the reasons, like unpredictable query response times, high

penalty over initial queries, and lack of full index convergence, have been mitigated

with the Progressive Indexing approach. However, other issues permeate adaptive and

progressive indexes that make it unlikely for them to be picked up by a production-

ready database system.

Tuple Reconstruction In most of the Adaptive/Progressive Indexing experi-

ments, the columns must be grouped in advance when constructing the index structure,

which leads to a lack of usability of the index. At the same time, real-life queries

tend to filter and project over different groups of columns. For the unidimensional

adaptive/progressive index, this problem is obvious. Only one column is indexed

when selecting any other column. We must perform tuple reconstruction, which hides

any potential benefit from having the data skipping from the index, except for point

117

2. Future Work

queries and high selective queries that would not be classified as Analytical Processing.

Multidimensional Adaptive/Progressive Indexing presents the same problem since it

only groups the data if they have filters. Hence selections on columns that are not

being filtered would have to perform tuple reconstruction. One way of mitigating the

tuple reconstruction would be to create the index by not only copying the filtered

columns but the whole table. Of course, this presents problems in itself since it will

cause a storage blow-up (i.e., now every index must own a copy of the full table) and

increase the updates’ costs.

Overhead of Storage/Maintenance Every query with a filter will produce

either a unidimensional or a multidimensional Adaptive/Progressive Indexing, depend-

ing on the number of filters the query has. In the worst case, at some point, every

column will have a unidimensional index created, and one multidimensional index will

be created for every unique combination of multidimensional filters. This, of course,

will cause a storage blow-up and a maintenance overhead that will make it impossible

to use these techniques on a real exploratory dataset.

Is there hope? We believe that the next step to the grand area of Adaptive/Pro-

gressive Indexes is to move from secondary index creation to Adaptive/Progressive

Table Partitioning. The basic idea is to perform the partitioning used to create indexes

and reorganize the table’s data instead of creating a secondary index structure. This

would increase the usability of the data reorganization since the multidimensional

indexes will suffer from tuple reconstruction costs when accessing non-indexed tuples.

2 Future Work

In this section, we will present potential future research directions in the area of

Progressive Indexes. We split up this section by Progressive Indexes and Progressive

Merges.

2.1 Progressive Indexes

We point out the following as the main aspects to be explored in Progressive Indexes

future work:

• Approximate Query Processing. One could also resort to using approximate

query processing techniques [12] to allow for a faster convergence (i.e., by

spending less time scanning data for the query, we can invest more time indexing

data). We can then build a progressive index as a by-product of the approximate

118

Chapter 6. Big Picture

query processing, leading to better accuracy and faster responses as the data is

queried more often.

• Indexing Methods. Other techniques can be adapted to work progressively

with different benefits. For example, instead of constructing the complete hash

table, we only insert n∗δ elements and scan the column’s remainder. The partial

hash table can be used to answer point queries on the indexed part of the data.

Another example is column imprints [54] where instead of immediately building

imprints for the entire column, only build them for the first fraction δ of the

data.

• Interleaving Progressive Strategies. As depicted in our decision tree, dif-

ferent progressive strategies can be more efficient in different scenarios. When

the indexing budget is small, the indexes can take longer to converge fully.

This longer period increases the chances of sudden changes in the workload

patterns before the index is fully built. Detecting these changes and changing

the progressive strategy on the fly can be beneficial for these cases.

• Indexing Structures. Different data structures can be used to exploit modern

hardware and boost access to more selective queries. In chapter 3, we choose

to progressively build a B+-Tree in our consolidation phase. However, other

structures like the ART-tree [40] can also be built progressively, with more

careful considerations on their creation costs and query performance.

• Complex Database Operations. Much like regular indexes, progressive

indexes could also be used for other database operations such as joins and

aggregations.

2.2 Progressive Merges

In chapter 5 we introduce a novel algorithm for merging appends into progressive

indexes. The work has still several engineering and research steps that must be taken

as future work:

• Integrating Merge Ripple With Progressive Indexing. In our experi-

ments, we compare against adaptive indexing using the merge gradual/com-

plete/ripple algorithms. However, this comparison would be even more significant

if these algorithms were implemented directly into Progressive Indexing. For

119

2. Future Work

example, if the main index algorithm is Progressive Quicksort, by using an

AVL-Tree, similar merge algorithms could be used.

• Refinement Method. In chapter 5, we only use Progressive Quicksort as our

refinement strategy within Progressive Mergesort. However, in the Progressive

Indexing work, it is demonstrated that different Progressive Indexing algorithms

can present better performance depending on the data distribution and workload.

With mergesort, we can select a different algorithm for each chunk in the

refinement step. Deciding which algorithm to use could drastically improve

performance.

• Merge Strategy. Deciding when to merge and which arrays to merge can be

beneficial to the cumulative cost of the workload since there is a trade-off on

the random access versus merging costs (i.e., keeping many smaller arrays or

frequently merging them in order to maintain only a small number of bigger

arrays). An algorithm that takes that this trade-off into consideration is left as

future work.

• Greedy Progressive Mergesort. Our current implementation of Progressive

Mergesort relies on a fixed δ for the entire workload. The development of a

cost-model to the merge phase will integrate it with greedy Progressive Indexing

algorithms. Hence, as future work, a greedy version of our Progressive Mergesort

can bring even fewer performance spikes to our algorithm.

• Handling Updates. We describe how to efficiently merge appends since these

are the most common types of updates in interactive data analysis. However,

although deletes and updates are not frequent, they might still occur. Therefore

Progressive Mergesort must be capable of properly handling them.

• Multidimensional Updates. Until now, we only focused on unidimensional

Progressive Indexing. However, multidimensional Progressive Indexing [43]

was recently proposed to efficiently index columns for queries with multiple

selective filters. In this algorithm, a KD-Tree is used to store and navigate the

partitions created by Progressive Indexing. To support updates on this structure,

Progressive Mergesort must be extended to consider the KD-Tree nodes to merge

multiple batches of updates correctly.

• Real Benchmarks. The Sloan Digital Sky Survey 1 is an open-source project

1https://www.sdss.org/

120

https://www.sdss.org/

Chapter 6. Big Picture

that maps the universe with an open data set and interactive-exploratory query

logs. Capturing the updates on this database can represent real patterns of

updates on interactive data.

121

Summary

Interactive exploration of large volumes of data is increasingly common, as data

scientists attempt to extract interesting information from large opaque data sets. This

scenario presents a difficult challenge for traditional database systems, as (1) nothing

is known about the query workload in advance, (2) the query workload is constantly

changing, and (3) the system must provide interactive responses to the issued queries.

This environment is challenging for index creation, as traditional database indexes

require upfront creation, hence a priori workload knowledge, to be efficient.

In this work, we introduce Progressive Indexing, a novel performance-driven index-

ing technique that focuses on automatic index creation while providing interactive

response times to incoming queries. Its design allows queries to have a limited budget

to spend on index creation. The indexing budget is automatically tuned to each query

before query processing. This allows for systems to provide interactive answers to

queries during index creation while being robust against various workload patterns

and data distributions.

We develop progressive algorithms to index one and multiple dimensions. In

addition, we introduce Progressive Merges, a robust algorithm that merges appends

into our Progressive Indexes without penalizing single queries.

123

Samenvatting

Interactieve verkenning van grote hoeveelheden gegevens komt steeds vaker voor, omdat

datawetenschappers proberen interessante informatie te extraheren uit grote complexe

gegevenssets. Dit scenario vormt een uitdaging voor traditionele databasesystemen,

aangezien (1) er van tevoren niets bekend is over de query-workload, (2) de query-

workload voortdurend verandert, en (3) het systeem interactieve antwoorden moet

geven op de uitgegeven queries. Deze omgeving is een uitdaging voor het maken van

indexen, aangezien traditionele database-indexen vooraf moeten worden gemaakt, en

dus a priori kennis van de werkbelasting nodig hebben, om efficiënt te zijn.

In dit werk introduceren we Progressive Indexing, een nieuwe prestatiegerichte

indexeringstechniek die zich richt op het automatisch bouwen van indexen en tegelijker-

tijd interactieve reactietijden biedt op inkomende vragen. Dankzij het ontwerp kunnen

zoekopdrachten een beperkt budget hebben om te besteden aan het maken van

indexen. Het indexeringsbudget wordt automatisch afgestemd op elke query voordat

de query wordt verwerkt. Hierdoor kunnen systemen interactieve antwoorden geven

op vragen tijdens het maken van een index, terwijl ze robuust zijn tegen verschillende

werkbelastingpatronen en gegevensverdelingen.

We ontwikkelen progressieve algoritmen om één en meerdere dimensies te indexeren.

Daarnaast introduceren we Progressive Merges, een robuust algoritme dat toevoegingen

in onze progressieve indexen samenvoegt zonder afzonderlijke zoekopdrachten te

bestraffen.

125

Publications

This thesis is based on the following set of publications:

• Progressive Mergesort: Merging Batches of Appends into Progressive
Indexes, Pedro Holanda and Stefan Manegold, 24th International Conference
on Extending Database Technology (EDBT 2021)

• Multidimensional Adaptive & Progressive Indexes, Matheus Nerone,
Pedro Holanda, Eduardo Almeida and Stefan Manegold, 37th International
Conference on Data Engineering (ICDE 2021)

• Progressive Indexes: Indexing for Interactive Data Analysis, Pedro
Holanda, Mark Raasveldt, Stefan Manegold and Hannes Mühleisen, 46th Inter-
national Conference on Very Large Data Bases (VLDB 2020)

• Cracking KD-Tree: The First Multidimensional Adaptive Indexing.,
Pedro Holanda, Matheus Nerone, Eduardo Almeida, and Stefan Manegold, 7th
International Conference on Data Science, Technology and Applications (DATA
2018, EDDY)

• Progressive Indices – Indexing Without Prejudice., Pedro Holanda, 44th
International Conference on Very Large Data Bases (VLDB 2018, PhD Work-
shop)

Further set of publications not included in this thesis:

• Relational Queries with a Tensor Processing Unit, Pedro Holanda and

Hannes Mühleisen, ACM International Conference on Management of Data

(SIGMOD 2019, DaMoN)

127

Summary

• devUDF: Increasing UDF development efficiency through IDE Inte-

gration. It works like a PyCharm!, Mark Raasveldt, Pedro Holanda and

Stefan Manegold, 22nd International Conference on Extending Database Tech-

nology (EDBT 2019, Demo Track)

• Fair Benchmarking Considered Difficult:Common Pitfalls In Database

Performance Testing., Mark Raasveldt, Pedro Holanda, Tim Gubner, and

Hannes Mühleisen, ACM International Conference on Management of Data

(SIGMOD 2018, DbTest)

• Deep Integration of Machine Learning Into Column Stores, Mark

Raasveldt, Pedro Holanda, Hannes Mühleisen and Stefan Manegold, 21st Inter-

national Conference on Extending Database Technology (EDBT 2018)

• Don’t Hold My UDFs Hostage - Exporting UDFs For Debugging

Purposes, Pedro Holanda, Mark Raasveldt and Martin Kersten, 32nd Simpósio

Brasileiro de Bancos de Dados (SBBD 2017)

128

Curriculum Vitae

Pedro Thiago Timbó Holanda geboren op 30 July 1992 te Fortaleza/Brazilië.

2021 - Current Post-Doc
Database Architectures group
Centrum van Wiskunde & Informatica (CWI)
Supervised by Hannes Mühleisen

2017 - 2021 PhD Candidate
Database Architectures group
Centrum van Wiskunde & Informatica (CWI)
Supervised by Stefan Manegold, Hannes Mühleisen and Peter Boncz

2019 - 2019 PhD Intern
Data Management, Exploration and Mining group
Microsoft Research Institute

2014 - 2016 Master of Science
Computing Science
Universidade Federal do Paraná
Supervised by Eduardo C. de Almeida

2010 - 2014 Bachelor of Science
Computer Science
Universidade Federal do Ceará

129

Bibliography

[1] S. Agrawal, S. Chaudhuri, and V. R. Narasayya. Automated Selection of Ma-

terialized Views and Indexes in SQL Databases. In Proceedings of the 26th

International Conference on Very Large Data Bases, VLDB ’00, pages 496–505,

San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[2] V. Alvarez, S. Richter, X. Chen, and J. Dittrich. A comparison of adaptive radix

trees and hash tables. In 2015 IEEE 31st International Conference on Data

Engineering, pages 1227–1238. IEEE, 2015.

[3] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani, H. Elmeleegy,

and T. Qadah. Aqwa: adaptive query workload aware partitioning of big spatial

data. PVLDB, 8(13):2062–2073, 2015.

[4] L. Battle, P. Eichmann, M. Angelini, T. Catarci, G. Santucci, Y. Zheng, C. Binnig,

J.-D. Fekete, and D. Moritz. Database benchmarking for supporting real-time

interactive querying of large data. In Proceedings of the 2020 ACM SIGMOD

International Conference on Management of Data, pages 1571–1587, 2020.

[5] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The r*-tree: An

efficient and robust access method for points and rectangles. SIGMOD Rec.,

19(2):322–331, 1990.

[6] J. Bell and G. Gupta. An evaluation of self-adjusting binary search tree techniques.

Software: Practice and Experience, 23(4):369–382, 1993.

131

Bibliography

[7] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Commun. ACM, 18(9):509–517, Sept. 1975.

[8] R. Binna, E. Zangerle, M. Pichl, G. Specht, and V. Leis. Hot: A height opti-

mized trie index for main-memory database systems. In Proceedings of the 2018

International Conference on Management of Data, pages 521–534, 2018.

[9] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized

for the new bottleneck: Memory access. In VLDB’99, Proceedings of 25th

International Conference on Very Large Data Bases, September 7-10, 1999,

Edinburgh, Scotland, UK, pages 54–65, 1999.

[10] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query

Execution. In Cidr, volume 5, pages 225–237, 2005.

[11] N. Bruno. Automated Physical Database Design and Tunning. CRC-Press, 2011.

[12] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate query

processing using wavelets. The VLDB Journal—The International Journal on

Very Large Data Bases, 10(2-3):199–223, 2001.

[13] S. Chaudhuri and V. Narasayya. AutoAdmin “What-if” Index Analysis Utility.

ACM SIGMOD Record, 27(2):367–378, 1998.

[14] S. Chaudhuri and V. R. Narasayya. An Efficient, Cost-Driven Index Selection

Tool for Microsoft SQL Server. In VLDB, volume 97, pages 146–155, 1997.

[15] D. Comer. The Difficulty of Optimum Index Selection. ACM Transactions on

Database Systems (TODS), 3(4):440–445, 1978.

[16] . G. P. Consortium et al. A global reference for human genetic variation. Nature,

526(7571):68–74, 2015.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

algorithms. MIT press, 2009.

[18] V. Gaede and O. Günther. Multidimensional access methods. ACM Comput.

Surv., 30(2):170–231, 1998.

[19] T. Georgiou, S. Schmitt, T. Bäck, N. Pu, W. Chen, and M. Lew. Comparison

of deep learning and hand crafted features for mining simulation data. In ICPR

2020). IEEE, 2020.

132

Bibliography

[20] T. Georgiou, S. Schmitt, M. Olhofer, Y. Liu, T. Bäck, and M. Lew. Learning

fluid flows. In 2018 International Joint Conference on Neural Networks (IJCNN),

pages 1–8. IEEE, 2018.

[21] G. Graefe and H. Kuno. Self-selecting, self-tuning, incrementally optimized

indexes. In Proceedings of the 13th International Conference on Extending

Database Technology, pages 371–381. ACM, 2010.

[22] G. Graefe and H. Kuno. Modern b-tree techniques. In 2011 IEEE 27th Interna-

tional Conference on Data Engineering, pages 1370–1373. IEEE, 2011.

[23] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index Selection for

OLAP. In Data Engineering, 1997. Proceedings. 13th International Conference

on, pages 208–219. IEEE, 1997.

[24] A. Guttman. R-trees: A dynamic index structure for spatial searching. In

SIGMOD, pages 47–57, 1984.

[25] I. Haffner, F. M. Schuhknecht, and J. Dittrich. An Analysis and Comparison of

Database Cracking Kernels. In Proceedings of the 14th International Workshop

on Data Management on New Hardware, DAMON ’18, pages 10:1–10:10, New

York, NY, USA, 2018. ACM.

[26] F. Halim, S. Idreos, P. Karras, and R. H. Yap. Stochastic Database Cracking:

Towards Robust Adaptive Indexing in Main-Memory Column-Stores. PVLDB,

5(6):502–513, 2012.

[27] C. A. Hoare. Quicksort. The Computer Journal, 5(1):10–16, 1962.

[28] P. Holanda. Progressive indices: Indexing without prejudice. In PhD@ VLDB,

2018.

[29] P. Holanda and E. C. de Almeida. SPST-Index: A Self-Pruning Splay Tree Index

for Caching Database Cracking. In EDBT, pages 458–461, 2017.

[30] P. Holanda and S. Manegold. Progressive mergesort: Merging batches of appends

into progressive indexes. EDBT, 2021.

[31] P. Holanda, M. Nerone, E. C. de Almeida, and S. Manegold. Cracking kd-tree:

The first multidimensional adaptive indexing (position paper). In DATA, pages

393–399, 2018.

133

Bibliography

[32] P. Holanda, M. Raasveldt, S. Manegold, and H. Mühleisen. Progressive indexes:

indexing for interactive data analysis. PVLDB, 12(13):2366–2378, 2019.

[33] HRI, LIACS, and CWI. Damioso: Data mining on high volume simulation output,

2020.

[34] S. Idreos, M. L. Kersten, and S. Manegold. Updating a Cracked Database. In

Proceedings of the 2007 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’07, pages 413–424, New York, NY, USA, 2007. ACM.

[35] S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing Tuple Reconstruction

in Column-stores. SIGMOD, pages 297–308, 2009.

[36] S. Idreos, M. L. Kersten, S. Manegold, et al. Database Cracking. In CIDR,

volume 3, pages 1–8, 2007.

[37] S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging What’s Cracked,

Cracking What’s Merged: Adaptive Indexing in Main-Memory Column-Stores.

PVLDB, 4(9):586–597, 2011.

[38] M. L. Kersten, S. Manegold, et al. Cracking the database store. In CIDR,

volume 5, pages 4–7. Citeseer, 2005.

[39] E. Leal and L. Gruenwald. A study on database cracking with gpus. ADMS 2019,

2019.

[40] V. Leis, A. Kemper, and T. Neumann. The adaptive radix tree: Artful indexing

for main-memory databases. In ICDE, pages 38–49. IEEE, 2013.

[41] Z. Liu and J. Heer. The Effects of Interactive Latency on Exploratory Visual

Analysis. Visualization and Computer Graphics, IEEE Transactions on, 20:2122–

2131, 12 2014.

[42] V. Nathan, J. Ding, M. Alizadeh, and T. Kraska. Learning multi-dimensional

indexes. CoRR, 2019.

[43] M. Nerone, P. Holanda, E. C. De Almeida, and S. Manegold. Multidimensional

adaptive and progressive indexes. In IEEE International Conference on Data

Engineering (ICDE), 2021.

134

Bibliography

[44] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C. Mowry,

M. Perron, I. Quah, et al. Self-Driving Database Management Systems. In CIDR,

2017.

[45] M. Pavlovic, D. Sidlauskas, T. Heinis, and A. Ailamaki. Quasii: query-aware

spatial incremental index. In EDBT, pages 325–336, 2018.

[46] E. Petraki, S. Idreos, and S. Manegold. Holistic Indexing in Main-memory Column-

stores. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pages 1153–1166. ACM, 2015.

[47] H. Pirk, E. Petraki, S. Idreos, S. Manegold, and M. Kersten. Database Cracking:

Fancy Scan, not Poor Man’s Sort! In Proceedings of the Tenth International

Workshop on Data Management on New Hardware, page 4. ACM, 2014.

[48] K. A. Ross. Conjunctive selection conditions in main memory. In Proceedings of

the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, June 3-5, Madison, Wisconsin, USA, pages 109–120, 2002.

[49] F. M. Schuhknecht, J. Dittrich, and L. Linden. Adaptive adaptive indexing.

ICDE, 2018.

[50] F. M. Schuhknecht, A. Jindal, and J. Dittrich. The Uncracked Pieces in Database

Cracking. PVLDB, 7(2):97–108, 2013.

[51] F. M. Schuhknecht, P. Khanchandani, and J. Dittrich. On the surprising difficulty

of simple things: the case of radix partitioning. PVLDB, 8(9):934–937, 2015.

[52] T. Sellam, E. Müller, and M. Kersten. Semi-Automated Exploration of Data

Warehouses. In CIKM, pages 1321–1330, 10 2015.

[53] A. Sharma, F. M. Schuhknecht, and J. Dittrich. The Case for Automatic

Database Administration using Deep Reinforcement Learning. arXiv preprint

arXiv:1801.05643, 2018.

[54] L. Sidirourgos and M. Kersten. Column Imprints: A Secondary Index Structure. In

Proceedings of the 2013 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’13, pages 893–904, New York, NY, USA, 2013. ACM.

[55] S. Sprenger, P. Schäfer, and U. Leser. Multidimensional range queries on modern

hardware. In SSDBM, pages 4:1–4:12, 2018.

135

Bibliography

[56] A. S. Szalay, J. Gray, A. R. Thakar, P. Z. Kunszt, T. Malik, J. Raddick,

C. Stoughton, and J. vandenBerg. The SDSS skyserver: public access to the

sloan digital sky server data. In SIGMOD, pages 570–581, 2002.

[57] E. Teixeira, P. Amora, and J. C. Machado. Metisidx-from adaptive to predictive

data indexing. In EDBT, pages 485–488, 2018.

[58] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley. DB2 Advisor: An

Optimizer Smart Enough to Recommend Its Own Indexes. In Data Engineering,

2000. Proceedings. 16th International Conference on, pages 101–110. IEEE, 2000.

[59] S. Wang, D. Maier, and B. C. Ooi. Fast and adaptive indexing of multi-dimensional

observational data. PVLDB, 2016.

[60] Z. Wang, A. Pavlo, H. Lim, V. Leis, H. Zhang, M. Kaminsky, and D. G. Andersen.

Building a bw-tree takes more than just buzz words. In Proceedings of the 2018

International Conference on Management of Data, pages 473–488, 2018.

[61] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance

study for similarity-search methods in high-dimensional spaces. In VLDB, vol-

ume 98, pages 194–205, 1998.

[62] F. Zardbani, P. Afshani, and P. Karras. Revisiting the theory and practice of

database cracking. In EDBT, pages 415–418, 2020.

[63] T. Zäschke, C. Zimmerli, and M. C. Norrie. The ph-tree: a space-efficient storage

structure and multi-dimensional index. In SIGMOD, pages 397–408, 2014.

136

Siks Dissertation Series

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in

Latent Gaussian Models
02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Op-

erational Semantics of an Organization-Oriented Programming Language
03 Jan Martijn van der Werf (TUE), Compositional Design and Verification

of Component-Based Information Systems
04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analy-

sis and empirical evaluation of temporal-difference
05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increas-

ing the Performance of an Emerging Discipline.
06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural

Heritage
07 Yujia Cao (UT), Multimodal Information Presentation for High Load

Human Computer Interaction
08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented

Dialogues
09 Tim de Jong (OU), Contextualised Mobile Media for Learning

10 Bart Bogaert (UvT), Cloud Content Contention

11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI

Perspective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining

13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for

Airport Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Mar-

kets

137

Bibliography

15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link

Evidence for Information Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different Complexity

17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and

Relatedness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games

19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles

20 Qing Gu (VU), Guiding service-oriented software engineering - A view-

based approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-

Oriented Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description and Access

23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social

Media
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coor-

dination with Virtual Humans On Specifying, Scheduling and Realizing

Multimodal Virtual Human Behavior
25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models

for Trust Dynamics
26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication -

Emotion Regulation and Involvement-Distance Trade-Offs in Embodied

Conversational Agents and Robots
27 Aniel Bhulai (VU), Dynamic website optimization through autonomous

management of design patterns
28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query

Context and Document Structure
29 Faisal Kamiran (TUE), Discrimination-aware Classification

30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling

the mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches

for Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Map-

ping of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions

34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and

Game-theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training

36 Erik van der Spek (UU), Experiments in serious game design: a cognitive

approach

138

Bibliography

37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications

for Preference Learning and Supervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization

39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games

40 Viktor Clerc (VU), Architectural Knowledge Management in Global Soft-

ware Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access

Control
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribu-

tion
43 Henk van der Schuur (UU), Process Improvement through Software Opera-

tion Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces

45 Herman Stehouwer (UvT), Statistical Language Models for Alternative

Sequence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-

based Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent

Support of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive

Artificial Listening Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken

dialogues: design aspects influencing interaction quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda

02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human

and Ambient Agent Models
03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software

Repositories
04 Jurriaan Souer (UU), Development of Content Management System-based

Web Applications
05 Marijn Plomp (UU), Maturing Interorganisational Information Systems

06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in

Research Networks
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring

Agent-based Models of Human Performance under Demanding Conditions
08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories

09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-

Aware Service Platforms

139

Bibliography

10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia

Environment
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Prepro-

cessing, Discovery, and Diagnostics
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in

Semantic Web Information Systems
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions

of emotion during playful interactions
14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Adap-

tive Web-based Systems
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Inte-

grated Internal and Social Dynamics of Cognitive and Affective Processes.
16 Fiemke Both (VU), Helping people by understanding them - Ambient

Agents supporting task execution and depression treatment
17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business

Process Compliance
18 Eltjo Poort (VU), Improving Solution Architecting Practices

19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business

Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust

Paradigm for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information

Retrieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare

grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Ex-

ploring the Neurophysiology of Affect during Human Media Interaction
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken

Document Retrieval
25 Silja Eckartz (UT), Managing the Business Case Development in Inter-

Organizational IT Projects: A Methodology and its Application
26 Emile de Maat (UVA), Making Sense of Legal Text

27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation &

Brain-Computer Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering Women

29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval

30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflec-

tive Decision Making
31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher

Order Cognitive Skills Improvement, Building Capacity and Infrastructure

140

Bibliography

32 Wietske Visser (TUD), Qualitative multi-criteria preference representation

and reasoning
33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)

34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applica-

tions
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of

Controllers in Swarm- and Modular Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Mod-

eling Processes
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architec-

ture Creation
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary

Algorithms
39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks

40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia

41 Sebastian Kelle (OU), Game Design Patterns for Learning

42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learn-

ing
43 Withdrawn

44 Anna Tordai (VU), On Combining Alignment Techniques

45 Benedikt Kratz (UvT), A Model and Language for Business-aware Trans-

actions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data

for Statistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and

Predicting Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series

Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics

of reinforcement learning algorithms in strategic interactions
50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Sys-

tems Engineering
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical

framework with a case study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support

02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store

Database Technology for Efficient and Scalable Stream Processing
03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics

04 Chetan Yadati (TUD), Coordinating autonomous planning and scheduling

141

Bibliography

05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns

06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries

for a Data Warehouse Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences

08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for opponent

agents in fighter pilot simulators
09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods

and Applications
10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework

for Service Design.
11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization

in Overlay Services
12 Marian Razavian (VU), Knowledge-driven Migration to Services

13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of inte-

grated IT-based homecare services to support independent living of elderly
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning

Learning
15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applica-

tions
16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-

agent deliberation
17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart

Electricity Grid
18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification

19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Schedul-

ing
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for

Information Retrieval
21 Sander Wubben (UvT), Text-to-text generation by monolingual machine

translation
22 Tom Claassen (RUN), Causal Discovery and Logic

23 Patricio de Alencar Silva (UvT), Value Activity Monitoring

24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learn-

ing
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Sup-

port. A new way of representing and implementing clinical guidelines in a

Decision Support System
26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare

Service Provisioning

142

Bibliography

27 Mohammad Huq (UT), Inference-based Framework Managing Data Prove-

nance
28 Frans van der Sluis (UT), When Complexity becomes Interesting: An

Inquiry into the Information eXperience
29 Iwan de Kok (UT), Listening Heads

30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management:

Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering

Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Net-

working in a Lifelong Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging

Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search

35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction

36 Than Lam Hoang (TUe), Pattern Mining in Data Streams

37 Dirk Börner (OUN), Ambient Learning Displays

38 Eelco den Heijer (VU), Autonomous Evolutionary Art

39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of

Enterprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games

41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic

Systems: A Knowledge Engineering Perspective on Qualitative Reasoning
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning

43 Marc Bron (UVA), Exploration and Contextualization through Interaction

and Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data

02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain

Modeling Method
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search

Behavior and Solutions
04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies

and interface design - Three studies on children’s search performance and

evaluation
05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic

Capability
06 Damian Tamburri (VU), Supporting Networked Software Development

07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior

143

Bibliography

08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous

Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Repre-

sentation and Computation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks

11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social

Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous

Vehicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change:

Models and Applications in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information

15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Func-

tioning in Complex Socio-Technical Systems: Applications in Safety and

Healthcare
16 Krystyna Milian (VU), Supporting trial recruitment and design by auto-

matically interpreting eligibility criteria
17 Kathrin Dentler (VU), Computing healthcare quality indicators automati-

cally: Secondary Use of Patient Data and Semantic Interoperability
18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of

Dynamic Agent Organizations
19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and

Quantitative Evaluation and Tool Support
20 Mena Habib (UT), Named Entity Extraction and Disambiguation for

Informal Text: The Missing Link
21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments

22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-

supported scenario-based training
23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big

Data Era
24 Davide Ceolin (VU), Trusting Semi-structured Web Data

25 Martijn Lappenschaar (RUN), New network models for the analysis of

disease interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop

27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy

and Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching

29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software

30 Peter de Cock (UvT), Anticipating Criminal Behaviour

144

Bibliography

31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manu-

facturing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data

33 Tesfa Tegegne (RUN), Service Discovery in eHealth

34 Christina Manteli (VU), The Effect of Governance in Global Software

Development: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware

Design Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured

Process Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying

38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better:

improving usability through post-processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital

40 Walter Omona (RUN), A Framework for Knowledge Management Using

ICT in Higher Education
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in

News Text
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance

Models
43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method

Increments
44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel: Intelligence-

gestuurde politiezorg in gebiedsgebonden eenheden.
45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based

Approach
46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy,

Diversity
47 Shangsong Liang (UVA), Fusion and Diversification in Information Re-

trieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in

Crisis Response
02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in

Customs Controls
03 Twan van Laarhoven (RUN), Machine learning for network data

04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments

05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding

06 Farideh Heidari (TUD), Business Process Quality Computation - Comput-

ing Non-Functional Requirements to Improve Business Processes

145

Bibliography

07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis

08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for

designing and evaluating organizational interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support

Systems
10 Henry Hermans (OUN), OpenU: design of an integrated system to support

lifelong learning
11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A

study of computing bisimulation and joins
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The

Effect of Context on Scientific Collaboration Networks
13 Giuseppe Procaccianti (VU), Energy-Efficient Software

14 Bart van Straalen (UT), A cognitive approach to modeling bad news

conversations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Doc-

umentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot

Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Proper-

ties, Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in

Asymmetric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners

20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordi-

nation
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online

Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks

23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage

24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical

Search Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection

26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by

Semantics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores

28 Janet Bagorogoza (TiU), Knowledge Management and High Performance;

The Uganda Financial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-

Player and Two-Player Domains

146

Bibliography

30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in

E-Learning
31 Yakup Koç (TUD), On the robustness of Power Grids

32 Jerome Gard (UL), Corporate Venture Management in SMEs

33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources

34 Victor de Graaf (UT), Gesocial Recommender Systems

35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Per-

ception and Effects in Human Robot Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines

02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews

through decision support: prescribing a better pill to swallow
03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowl-

edge Worker Support
04 Laurens Rietveld (VU), Publishing and Consuming Linked Data

05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and

an Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment

07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual

training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical

Social Networks from Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on

Cultural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms

11 Anne Schuth (UVA), Search Engines that Learn from Their Users

12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-

Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Devel-

opment in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization

15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,

Algorithms and Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn

from Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms

18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web

19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data

20 Daan Odijk (UVA), Context & Semantics in News & Web Search

147

Bibliography

21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces:

Automatic Analysis of Player Behavior in the Interactive Tag Playground
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging

Systems
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval

24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data;

An Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Search-

ing and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational

Models to Study the Role of Human Awareness and Control in Behavioural

Choices, with Applications in Aviation and Energy Management Domains
27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media

28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A

study on epidemic prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems

- Markets and prices for flexible planning
30 Ruud Mattheij (UvT), The Eyes Have It

31 Mohammad Khelghati (UT), Deep web content monitoring

32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability

Risks for Crisis Organisations
33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from

just one example
34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Anal-

ysis, and Enactment
35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classifi-

cation and Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interac-

tion behavior optimized for robot-specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and

computational inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art

& Interaction Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interper-

sonal Style Selection for an Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design

41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance

148

Bibliography

42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of

Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management:

From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration

45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control

46 Jorge Gallego Perez (UT), Robots to Make you Happy

47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic

innovation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned

49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-

Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Opera-

tional Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime

02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian

Networks using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Ap-

proach with Autonomous Products and Reconfigurable Manufacturing

Machines
04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store

05 Mahdieh Shadi (UVA), Collaboration Behavior

06 Damir Vandic (EUR), Intelligent Information Systems for Web Product

Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly

08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health

Insurance Data using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational

Perspective on Variation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior

11 Florian Kunneman (RUN), Modelling patterns of time and emotion in

Twitter #anticipointment
12 Sander Leemans (TUE), Robust Process Mining with Guarantees

13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of

social touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling

Player Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction

149

Bibliography

16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern

Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution

18 Ridho Reinanda (UVA), Entity Associations for Search

19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in

Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge

Sharing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious

Gaming (A Play on Worlds)

22 Sara Magliacane (VU), Logics for causal inference under uncertainty

23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces

24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning

25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guide-

lines, with applications to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond

to human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social

Robots: People’s Preferences, Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts

29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Perfor-

mance: A Moderated Mediation Model of Social Innovation, and Enterprise

Governance of IT”
30 Wilma Latuny (UvT), The Power of Facial Expressions

31 Ben Ruijl (UL), Advances in computational methods for QFT calculations

32 Thaer Samar (RUN), Access to and Retrievability of Content in Web

Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Docu-

mentation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics

35 Martine de Vos (VU), Interpreting natural science spreadsheets

36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from

High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation

Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications

39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system

and compressive sensing methods to increase noise robustness in ASR

150

Bibliography

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration

of Human Control in Relation to Emotions, Desires and Social Support

For applications in human-aware support systems
41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration

of Mental Processes and a Smart Environment to Provide Support for a

Healthy Lifestyle
42 Elena Sokolova (RUN), Causal discovery from mixed and missing data

with applications on ADHD datasets
43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval

44 Garm Lucassen (UU), Understanding User Stories - Computational Lin-

guistics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement

46 Jan Schneider (OU), Sensor-based Learning Support

47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration

48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations

02 Felix Mannhardt (TUE), Multi-perspective Process Mining

03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling,

Model-Driven Development of Context-Aware Applications, and Behavior

Prediction
04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams

in Data-Centric Engineering Tasks
05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Infor-

mation Seeking Process
06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of

Socio-Technical Systems
07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems

08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems

09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations

10 Julienka Mollee (VUA), Moving forward: supporting physical activity

behavior change through intelligent technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collab-

orative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining

13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future

14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor

Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure

151

Bibliography

16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a

group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering

18 Henriette Nakad (UL), De Notaris en Private Rechtspraak

19 Minh Duc Pham (VUA), Emergent relational schemas for RDF

20 Manxia Liu (RUN), Time and Bayesian Networks

21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and

playing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the Spread

of Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-

Autonomous Telepresence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections

26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motiva-

tional Messages for Behavior Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software

Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and

how they make you feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech

30 Wouter Beek, The ”K” in ”semantic web” stands for ”knowledge”: scaling

semantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems.

A graph-based approach to RTB system classification
02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations

for Assessing Class Size Uncertainty
03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases:

Extracting Event Data from Real Life Data Sources
04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data

05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data

06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked

Cultural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms

08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision

Processes
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy efficiency

in software systems

152

Bibliography

10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Alloca-

tion and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner

Behavioral Engagement in MOOCs
12 Jacqueline Heinerman (VU), Better Together

13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content

Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner

Behavior & Improving Learning Outcomes in Massive Open Online Courses
15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and

Partially Observable Environments
16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral

Constraint (OCBC) Models

17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts

18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication

19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents

20 Chide Groenouwe (UU), Fostering technically augmented human collective

intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery

and Design Pattern Detection
22 Martin van den Berg (VU),Improving IT Decisions with Enterprise Archi-

tecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Veri-

fication
24 Anca Dumitrache (VU), Truth in Disagreement - Crowdsourcing Labeled

Data for Natural Language Processing
25 Emiel van Miltenburg (VU), Pragmatic factors in (automatic) image de-

scription
26 Prince Singh (UT), An Integration Platform for Synchromodal Transport

27 Alessandra Antonaci (OUN), The Gamification Design Process applied to

(Massive) Open Online Courses

28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to

prepare airline pilots for critical situations
29 Daniel Formolo (VU), Using virtual agents for simulation and training of

social skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems

31 Milan Jelisavcic (VU), Alive and Kicking: Baby Steps in Robotics

32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelli-

gence in Games

153

Bibliography

33 Anil Yaman (TUE), Evolution of Biologically Inspired Learning in Artificial

Neural Networks
34 Negar Ahmadi (TUE), EEG Microstate and Functional Brain Network

Features for Classification of Epilepsy and PNES
35 Lisa Facey-Shaw (OUN), Gamification with digital badges in learning

programming
36 Kevin Ackermans (OUN), Designing Video-Enhanced Rubrics to Master

Complex Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs

38 Akos Kadar (OUN), Learning visually grounded and multilingual represen-

tations

2020 01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Be-

haviour
02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Prob-

abilistic Graphical Models
03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language

Understanding
04 Maarten van Gompel (RUN), Context as Linguistic Bridges

05 Yulong Pei (TUE), On local and global structure mining

06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during

Requirements Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OUN), Towards a software architecture for reusable

game components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo

Tree Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality

for Digital Humanities Research
10 Alifah Syamsiyah (TUE), In-database Preprocessing for Process Mining

11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data Augmentation-

Methods for Long-Tail Entity Recognition Models
12 Ward van Breda (VU), Predictive Modeling in E-Mental Health: Exploring

Applicability in Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal

Mixing Evolutionary Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational

Databases
15 Konstantinos Georgiadis (OUN), Smart CAT: Machine Learning for Con-

figurable Assessments in Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling

154

Bibliography

17 Daniele Di Mitri (OUN), The Multimodal Tutor: Adaptive Feedback from

Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets

with Uncertainties: Electricity Markets in Renewable Energy Systems
19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems

20 Albert Hankel (VU), Embedding Green ICT Maturity in Organisations

21 Karine da Silva Miras de Araujo (VU), Where is the robot?: Life as it

could be
22 Maryam Masoud Khamis (RUN), Understanding complex systems imple-

mentation through a modeling approach: the case of e-government in

Zanzibar
23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach

to studying writing processes using keystroke logging
24 Lenin da Nobrega Medeiros (VUA/RUN), How are you feeling, human?

Towards emotionally supportive chatbots
25 Xin Du (TUE), The Uncertainty in Exceptional Model Mining

26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-

Based mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an

educational context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Train-

ing complex skills with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference

30 Bob Zadok Blok (UL), Creatief, Creatieve, Creatiefst

31 Gongjin Lan (VU), Learning better – From Baby to Better

32 Jason Rhuggenaath (TUE), Revenue management in online markets: pric-

ing and online advertising
33 Rick Gilsing (TUE), Supporting service-dominant business model evalua-

tion in the context of business model innovation
34 Anna Bon (MU), Intervention or Collaboration? Redesigning Information

and Communication Technologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Pro-

duction

2021 01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for

Social Interaction in Public Space
02 Rijk Mercuur (TUD), Simulating Human Routines:Integrating Social Prac-

tice Theory in Agent-Based Models
03 Seyyed Hadi Hashemi (UVA), Modeling Users Interacting with Smart

Devices

155

Bibliography

04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive

learning analytics for self-regulated learning
05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems

06 Daniel Davison (UT), ”Hey robot, what do you think?” How children learn

with a social robot
07 Armel Lefebvre (UU), Research data management for open science

08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming

on Computational Thinking
09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic

and Non-Verbal Robots to Promote Children s Collaboration Through

Play
10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning

11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic

Vision
12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs

13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding

and Facilitating Predictability for Engagement in Learning
14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their

Support
15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Re-

source Re-Configurations through the Business Services Paradigm
16 Esam A. H. Ghaleb (UM), BIMODAL EMOTION RECOGNITION FROM

AUDIO-VISUAL CUES
17 Dario Dotti (UM), Human Behavior Understanding from motion and bodily

cues using deep neural networks
18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making

Tools and Formal Systems - Facilitating the Construction of Bayesian

Networks and Argumentation Frameworks
19 Roberto Verdecchia (VU), Architectural Technical Debt: Identification and

Management
20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided

Exposure Bias in Recommender Systems

156

	Introduction
	Data Analysis
	Interactive Data Analysis
	Index Creation Problem
	Research Questions

	Our Contributions
	Structure and Covered Publications

	Background
	Relational Database Systems
	Physical Layout

	Interactive Exploratory Data Analysis
	Index Structures
	Index Selection Problem
	Automatic Index Selection
	Adaptive Index Creation

	Progressive Indexing
	Introduction
	Contributions
	Outline

	Related Work
	Cracking Kernels
	Adaptive Indexing for Robustness

	Progressive Indexing
	Progressive Quicksort
	Progressive Radixsort (MSD)
	Progressive Bucktersort
	Progressive Radixsort (LSD)

	Greedy Progressive Indexing
	Greedy Progressive Quicksort
	Greedy Progressive Radixsort (MSD)
	Greedy Progressive Bucketsort
	Greedy Progressive Radixsort(LSD)

	Experimental Analysis
	Setup.
	Delta Impact
	Cost Model Validation
	Interactivity Threshold
	Varying Interactivity
	Adaptive Indexing Comparison

	Summary

	Multidimensional Progressive Indexing
	Introduction
	Contributions
	Outline

	Related Work
	Multidimensional Data Structures
	Adaptive/Progressive Index

	Multidimensional Progressive Indexing
	Data Structure
	Creation Phase
	Refinement Phase
	Greedy Progressive Indexing

	Experimental Analysis
	Setup.
	Data Sets & Workloads
	Delta Impact
	Performance Comparison
	Impact of Dimensionality
	Full Scan Exceeding the Interactivity Threshold

	Summary

	Progressive Merges
	Introduction
	Contributions
	Outline

	Related Work
	Merge Complete (MC)
	Merge Gradual (MG)
	Merge Ripple (MR)

	Progressive Mergesort
	Experimental Analysis
	Setup
	Performance Comparison
	Varying Data Sizes
	Appends during Index Creation

	Summary

	Big Picture
	The Elephant In The Room
	Future Work
	Progressive Indexes
	Progressive Merges

	Summary
	Samenvatting
	Publications

