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A Protocol for the Global Sensitivity Analysis of Impact
Assessment Models in Life Cycle Assessment

S. Cucurachi,1,4 E. Borgonovo,2,∗ and R. Heijungs1,3

The life cycle assessment (LCA) framework has established itself as the leading tool for the
assessment of the environmental impact of products. Several works have established the need
of integrating the LCA and risk analysis methodologies, due to the several common aspects.
One of the ways to reach such integration is through guaranteeing that uncertainties in LCA
modeling are carefully treated. It has been claimed that more attention should be paid to
quantifying the uncertainties present in the various phases of LCA. Though the topic has
been attracting increasing attention of practitioners and experts in LCA, there is still a lack
of understanding and a limited use of the available statistical tools. In this work, we introduce
a protocol to conduct global sensitivity analysis in LCA. The article focuses on the life cycle
impact assessment (LCIA), and particularly on the relevance of global techniques for the
development of trustable impact assessment models. We use a novel characterization model
developed for the quantification of the impacts of noise on humans as a test case. We show
that global SA is fundamental to guarantee that the modeler has a complete understanding
of: (i) the structure of the model and (ii) the importance of uncertain model inputs and the
interaction among them.

KEY WORDS: Global sensitivity analysis; LCIA; life cycle assessment; risk analysis; uncertainty impor-
tance

1. INTRODUCTION

This work presents a protocol for performing
global sensitivity analysis (SA) within the life cy-
cle impact assessment (LCIA) phase of LCA.(1) The
work plays a bridging role between LCA and risk
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analysis and contributes to strengthening their inte-
gration. Such integration has been suggested in the
literature since the early 1990s(2–4) (see the detailed
literature review in Section 2.1). On the one hand, au-
thors have underlined the several common concep-
tual aspects between the two disciplines and the fact
that the frequent links and exchanges would be ripe
for mutual benefits. Both risk analysts and LCA prac-
titioners make use of quantitative models in applica-
tions that range, respectively, from the evaluation of
environmental and climate change policies(5–7) to the
sustainability assessment of products and services.(8)

Scott-Matthews and co-authors(9) state that risk ana-
lysts should seek LCA guidance in translating a risk
analysis into policy conclusions or even advice to
those at risk. Once the health risks from the expo-
sure to a certain stressor have been characterized and
quantified, in fact, it is necessary to go a step further
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in order to determine the policy implications of such
exposure, and in order to avoid simplifications. The
impact assessment phase of LCA, then, is fundamen-
tal to translate risks into policy actions and to guide
decision making, and it is at this stage, in particu-
lar, that the synergies between risk analysis and LCA
may be leveraged.

On the other hand, the literature in both fields
evidences the conceptual issues that such integration
poses and the fact that conceptual work is still needed
for LCA analysts to fully benefit from the method-
ological advances in risk analysis and, on the other
side, for risk analysts to be prepared for the new
challenges that LCA poses to risk analysis. We ad-
dress one of these challenges, namely, the need for
proper global sensitivity analysis in LCA as a way
to complement uncertainty quantification. However,
while the conceptual premise demonstrated by pre-
vious studies is that the treatment of uncertainty in
risk analysis applications can be transferred to LCA
studies as well, one soon realizes that the complexity
of LCA requires a deep understanding of the subject
for such an extension to retain its full meaning. In
this respect, the extension poses also a challenge to
traditional risk analysis practice and its solution has
the immediate result of making analysts more aware
of the potential but also of the limitations of tradi-
tional global sensitivity analysis methods when these
are confronted with new challenges.

The first step is to identify the common link.
This is represented by the fact that, for the mod-
eling of impacts of a certain stressor, LCA stud-
ies rely on characterization models. Characterization
models are used to calculate science-based conver-
sion factors, to obtain the potential human health
and environmental impacts of the resources and re-
leases across a life cycle for a certain stressor (i.e., a
set of conditions that may lead to the impact).(10,11)

Indeed, such models deal with intricate complex
phenomena, need to capture elements that vary in
different time and space scales, and involve both
physical laws and socioeconomic aspects.(12) LCA
deals, in fact, with hundreds of potentially uncertain
elementary flows and processes, and the impact as-
sessment models used to characterize them (i.e., to
quantify their relative impacts and make them com-
parable) have increased in complexity, since they
now allow for the consideration of the spatial and
temporal variability of emissions.(13,14) For these rea-
sons, they are similar, in complexity, to integrated
assessment models used by other decision-support
tools in the environmental sciences (e.g., in climatic

change studies). Moreover, this way of proceeding
is similar to the modus operandi of quantitative
risk assessment in the nuclear, space, and chemical
sectors.(15–17) A first difficulty associated with LCA
is the cross-comparison and validation of the results
obtained. Even studies compliant with the ISO 14044
standard series on LCA(11) and dealing with identi-
cal systems showed large differences in the assessed
impacts.(18) However, the cross-validation of LCA
results is not always straightforward because assump-
tions are system- and context- specific. Therefore,
there is an urgent need for the LCA community
to utilize the appropriate sensitivity and uncertainty
analysis tools.

In this respect, we need to observe that the
importance of sensitivity analysis (SA) has been
agreed upon since the beginnings of the develop-
ment of LCA.(19) The ISO standard on LCA(11)

recommends performing a sensitivity check on the
data and methods as part of the evaluation of
the information that is used in a study. However,
the standard does not refer to a particular numerical
technique, nor direct the user to a particular ap-
proach or way the data should be perturbed, so that,
in the field of LCA there seems to be an overlap-
ping of concepts falling under the label of SA. Con-
versely, in the risk analysis literature, the issue of a
proper and consistent representation of uncertainty
has been a central topic since the seminal work of
Kaplan and Garrick(20) (see also Refs. 21 and 22
for a broad exposition). Refs. 12 and 23 to 32 are
a few representatives of a series of studies in which
methodological advances are obtained and applied
in areas ranging from waste disposal,(27) to hurricane
losses,(32) to climate change studies.(12)

Indeed, several studies in LCA apply one factor
at a time (OFAT) methods for SA. These methods
have been widely criticized in the literature for
two reasons.(33) First, OFAT approaches provide
a very limited inspection of the model input space
and deliver no indication about the presence of
interactions. Second, and most important, OFAT
methods do not account for uncertainty. These
methods rest on an intrinsically deterministic frame
that is inconsistent with the analysts’ degree of belief
in the presence of uncertainty. This way of proceed-
ing is not in line with the recent LCA literature
that underlines that, for the credibility of LCA, an
important aspect is that results are accompanied by
adequate uncertainty quantification,(34) so to best
inform the decision process.(35) Reap et al.(36,37) claim
that sensitivity and uncertainty analysis tools would
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improve the representativeness of the whole
framework. However, no shared protocol for the
performance of uncertainty and global SA in LCA
and, in particular, for the integration of global
SA techniques in the impact assessment phase is
available to date.(38)

To construct a protocol on how to regularly
conduct a SA in the impact assessment modeling
phase of LCA while accounting for the relevant
uncertainties, we proceed as follows. We cast global
SA techniques in the context of LCA characteriza-
tion models. We clarify the conceptual differences
between SA tools, relating them to the tools that
are used in current LCA practice. We introduce
SA settings(28) in the LCA context. We then define
a multistep protocol for the application of global
SA methods to LCIA models. The protocol starts
from the identification of the relevant uncertainties
and the assignment of distributions, continues with
the definition of SA settings, and ends with the
assessment of the decisionmaker’s confidence in the
estimates.

We illustrate the application of the protocol
to a recent LCA model developed to quantify the
impact on humans of noise.(39,40) Even though noise
is related to sound emissions that are nontoxic and
matter-less, noise may have serious health risks.
These include an increased risk of cardiovascular
diseases,(41–43) annoyance,(44) sleep disturbance,(45)

and other public health implications.(46–48) Noise is
the most lamented source of public complaints both
in the industrialized and industrializing world(49)

and high on the agenda of policymakers across
the world.(49,50) Two alternative configurations of
the same model, at a different level of complexity,
are analyzed using an ensemble of global sensi-
tivity analysis techniques. Numerical findings are
discussed in detail. Before concluding, we offer
a critical discussion about the proposed protocol,
discussion which is also aimed at highlighting the
lessons learned and the insights and limitations of
the approach that apply within the LCA framework,
but also outside it as well.

The remainder of the article is organized as fol-
lows. Section 2 provides an overview of the available
SA techniques and gives some insight into the way
SA is defined and used in the field of LCA. In Sec-
tion 3, the settings are defined for a global SA de-
sign in the context of LCIA. The structure of the
noise LCIA model is here analyzed together with
the importance of its inputs. Section 4 discusses the
contribution of global SA for the LCA community.

Concluding remarks regarding the empowerment of
LCIA models close the article.

2. LITERATURE REVIEW

This literature review is divided into two main
parts. At first, we review the literature that estab-
lishes the link and integration between LCA and
risk analysis. We then explore sensitivity analysis
methods, with their state of the art in the two
disciplines.

2.1. LCA and Risk Analysis

After a series of autonomous applications in
the late 1960s and the un-concerted development in
the 1970s and 1980s, especially following the energy
crises, in the last three decades LCA has definitely es-
tablished itself as the central methodology for the de-
termination of the environmental impact of products,
thanks also to the availability of standard practices(11)

and handbooks.(51–53) In the late 1990s, several re-
search works identified the need for the integration
of LCA and risk analysis as a necessary path to im-
prove the support given by LCA to policy making.

The integration is bidirectional. In particular,
Owens(54) proposes a conceptual framework “where
risk assessment, LCA, and other procedures are
managed to provide concerted information.”(54, p. 364)

This intuition is brought forward in several subse-
quent works. Matthews et al.(9) advocate such inte-
gration, proposing the use of risk analysis and LCA
in combination. LCA helps, in fact, to support poli-
cymakers about the selection of alternatives to lower
a certain risk and allows estimating the impacts of a
certain product system without shifting the related
risks elsewhere in a life cycle. The results of LCA
studies allow a decisionmaker to consider the en-
vironmental risks associated with alternative prod-
uct systems, highlighting environmental hotspots
and providing a complementary perspective.(55,56)

Harwich et al.(57,58) propose for the field of LCA to
use uncertainty analysis techniques already in use in
the field of risk analysis. Cowell and co-authors(59)

discuss a common research agenda. As underlined
in their introduction to the special issue on life cy-
cle and risk analysis, Evans et al.(60) suggest that
both disciplines would benefit from this integra-
tion. A systematic approach for risk analysis in sup-
port to decision making in environmental decisions
supported by LCA is offered in Ref. 4. Roes(61) de-
scribes an integration of LCA and risk analysis in the
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evaluation of the environmental impact of the pro-
duction of organic chemicals by petrochemical pro-
cesses. The approach of Ref. 61 “combines classi-
cal risk assessment methods (largely based on toxi-
cology), as developed by the LCA community, with
statistics on technological disasters, accidents, and
work-related illnesses.”(61, p. 1311) Recent applications
have focused on the need to use LCA and risk anal-
ysis in combination in order to fully capture the po-
tential environmental and social impacts of emerging
technologies.(62–67)

In this work, we move along these lines, and
anew integrate the modeling phase of LCA with
methods developed in risk analysis for the global sen-
sitivity analysis of quantitative models.

2.2. The Sensitivity Analysis Setup

The SA standard setup is as follows. One con-
siders the relationship between a quantity of interest
(y) (model output) and a set of independent variables
(x):

y = g (x) , g : �X → R, (1)

where �X ⊆ R
k, with k denoting the number of

model inputs (i.e., the size of x). �X is the k-
dimensional domain of g and it is the Cartesian prod-
uct of the individual subsets of R over which each
model input is allowed to vary. The model is usually
implemented as a scientific code and helps the ana-
lyst to forecast the behavior of y given the values of
the model inputs x.

2.3. Local Sensitivity Methods

In a local sensitivity analysis, the analyst is inter-
ested in obtaining the response of the output around
one point of interest in the model input space �X.
Typically, local sensitivity is performed varying one
model input at a time (referred to also as OFAT),
while the remaining model inputs are kept at a nom-
inal (or base case) value.(68) The perturbations of the
model inputs can be finite in Tornado diagrams(69)

and finite change sensitivity indices(16,70) or infinitesi-
mal, in differentiation-based methods.(71–73) A sensi-
tivity index Si is calculated through the use of a set
of partial derivatives of the output y, with respect to
each input xi:

Si = ∂g (x)
∂x

∣∣∣∣ . (2)

In Helton,(74) partial derivatives are normalized
by the nominal value of the factor or by its standard
deviation. For instance, if one writes:

Si = ∂y
∂xi

= ∂y
∂xi

x0
i

y0
, (3)

one obtains the elasticity of the model output with
respect to xi. These two sensitivity measures are par-
ticular cases of the differential importance measure
(see Ref. 75 for details).

Differentiation-based approaches compute a
value for the sensitivity index S around a fixed
nominal point x0 = (x0

1 , x0
2 , . . . , x0

k).(76) Thus, they
provide a very limited exploration of the input-
output space, if the analysis is limited at a point
of interest. Additionally, they ignore probabilistic
information in the presence of uncertainty. More
generally, because they are OFAT approaches,
they are not capable of quantifying the relevance
of potential interactions among model inputs.(12,77)

However, differentiation-based methods remain
appropriate in applications in which the analyst
wishes to study how small changes in the input xi af-
fect the model output around one or more points of
interest. When a better exploration of the model in-
put space is sought, then global sensitivity methods
are appropriate.

2.4. Global Sensitivity Methods

Global SA methods are used to investigate which
model inputs are the most influential in determining
the uncertainty of the output of a model, and, af-
ter uncertainty analysis, to obtain additional informa-
tion about the input-output mapping.(12) Global SA
methods allow the analysts to consider the behavior
of the model g(x) in the entire k-dimensional domain,
as well as the probability distributions specified to ad-
dress the variation of the model inputs. Thus, the for-
mal setting sees the enrichment of the model input
space �X with the probability space �X, B(�X), PX,
where the capital X denotes that the model inputs
are now random variables, PX denotes the probabil-
ity distribution that characterizes the analyst’s state
of knowledge about the model inputs, and B(�X) is
a Borel σ -algebra.

Global SA methods have become the gold stan-
dard of sensitivity analysis under uncertainty.(77) A
number of global SA techniques have been de-
veloped. Due to space limitations, we cannot pro-
vide a detailed overview of all methods. For broad
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reviews, we refer to Refs. 29, 78, and 79. For de-
tails on screening methods, we refer to Refs. 80 and
81, on nonparametric methods to Refs. 82–84, and
on expected value of information-based methods to
Refs. 85–87. We analyze here in detail the sensitiv-
ity measures we are to use in this work, namely,
variance-based and distribution-based methods.

As for variance-based techniques, assuming that
g(x) in Equation (1) is an integrable function on
(�X, B(�X), PX), and if PX is a product measure,
(i.e., we assume that the model inputs are indepen-
dent), then the following expansion of g(x) holds:(88)

y = g (x) = g0 +
n∑

i=1

gi (xi ) +
n∑

i< j

gi, j (xi , xj )

+ . . . + g1,2,...,k (x1, x2, . . . , xk) , (4)

where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g0 = ∫
...

∫
�X

g(x)dPX = E[g(x)]

gi (xi ) = E[g(x)|Xi = xi ] − g0

gi, j (xi , xj ) = E[g(x)|Xi = xi , Xj = xj ]
−gi (xi ) − g j (xj ) − g0

...

(5)

In the above equalities, the univariate functions
gi(xi) represent the first-order effects, namely, the
part of the response of g(x) due to the individual
variation of xi. Similarly, the gi, j (xi , xj ) functions ac-
count for the residual interaction between pairs of
variables; etc.(77)

If, in addition, we assume that g(x) is square inte-
grable, by the orthogonality of the functions in Equa-
tion (5), we obtain the complete ANOVA decompo-
sition of the variance of g(x):(88)

V [y] =
n∑

s=1

n∑
i1<i2...<is

Vi1,...,iS, (6)

where

V =
g2∫

(x) dx − g0
2,

Vi1,...,iS =
g2∫

i1,...,iS

(xi1 , xi2 , . . . , xis ) dxi1 . . . dxis . (7)

Of particular interest are the first and total or-
der sensitivity measures. The first-order indices are
defined, independently in:(24,89,90)

SFIRST
i = Vi

V[y]
= (V[E(Y |Xl )])

V[y]
. (8)

They account for expected reduction in variance
of the model output when Xi = xi . We note that
if the model output is additive, that is, if g(x) =∑k

j=1 h j (xj ), where h j (xj ) is a univariate function of
Xj , then:

k∑
j=1

Vj = 1, (9)

that is, a model is additive if the sum of the first-order
sensitivity indices is unity. The total order sensitivity
indices are defined by:

STOT AL
i = (E[V(Y |X−i )])

V[y]
(10)

with the symbol x−i denoting the fact that all vari-
ables are fixed but xi. STOT AL

i represents the portion
of the variance of the model output contributed by
Xi individually and through all its interactions with
the remaining model inputs.

The presence of interactions indicates that the
model is nonadditive, that is, its response is not the
direct sum of the effects of the individual model input
variations. In that case, the total order sensitivity in-
dices equal the first-order indices. Knowledge of the
first and total order indices allows analysts to obtain
information about a structural feature of the model
input output mapping.

One of the key assumptions for Equations (4),
(5), (6), and (7) is that the model inputs are inde-
pendent random variables. Under correlations, the
interpretation of Vi remains as the percentage of
model output variance that is reduced when we fix
Xi , although this does not correspond anymore to
the functional contribution of Xi .5 If correlations
are present, Bedford(91) shows that the variance de-
composition loses uniqueness and the value of the
sensitivity indices becomes dependent on the lexi-
cographical ordering of the variables. Oakley and
O’Hagan(92) highlight that the tidy correspondence
of the functional and variance decompositions is
lost. This has led authors to introduce sensitivity
measures that, while looking at the entire domain,
naturally accommodate correlations among model
inputs. We consider here moment-independent (also
called distribution-based) sensitivity measures. The
key intuition of distribution-based sensitivity mea-
sures is to measure the discrepancy between a) FY(y),
which represents the degree of belief about Y, and

5The field of variance-based sensitivity measures under correla-
tions is an ongoing active field of research, with several authors
proposing alternative approaches.(134,135)
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b) FY|Xi =xi (y), which represents the degree of belief
about Y when we receive information that Xi = xi .
Then, one can consider the quantity:

δi = E[d
{

FY (y) , FY|Xi (y)
}
], (11)

where d{FY(y), FY|Xi (y)} is a chosen separation mea-
surement between the conditional and uncondi-
tional model output distribution. d{·, ·} determines
the so-called inner statistic of the global sensitivity
measure.(93)

Depending on the chosen separation measure-
ment, d{·, ·}, one obtains a specific sensitivity mea-
sure. For instance, for first-order variance-based
sensitivity measures, the inner statistics is obtained
setting:

d
{

FY (y) , FY|Xi (y)
} = E[(Y − μY)2|Xi = xi ]

−E[(Y − μY|Xi )
2|Xi = xi ],

(12)

where μY, μY|Xi are, respectively, the mean and con-
ditional mean of the model output.

Setting:

d
{

FY (y) , FY|Xi (y)
} = 1

2

∫

�Y

| fY(y) − fY|Xi (y)|dy

(13)

and averaging over the marginal distribution of Xi ,
we obtain the δB importance measure:(94)

δB
i = 1

2
E

⎡
⎣1

2

∫

�Y

| fY(y) − fY|Xi (y)|dy

⎤
⎦ . (14)

By setting

δKS
i = E

{
supy

∣∣FY (y) − F(Y|Xi ) (y)
∣∣} , (15)

and

δKU
i = E

{
supy

∣∣FY (y) − F(Y|Xi ) (y)
∣∣

+ supy
∣∣F(Y|Xi ) (y) − FY (y)

∣∣} , (16)

one sensitivity measures that measure separation be-
tween cumulative distribution functions using the
Kolmogorov-Smirnov and Kuiper metrics. For the
interpretations of these measures, we refer to Bau-
cells and Borgonovo.(95) These three sensitivity mea-
sures share the following properties: (1) they are well
posed in the presence of correlations;( 2) they do not
depend on a particular moment of the model out-
put distribution; (3) they are normalized between 0
and 1, (4) they are equal to zero if and only if Y

is independent of Xi, and (5) they are invariant to
monotonic transformation of the output. This last
property is particularly convenient when estimation
is of concern.(93)

2.5. Estimation and Global Sensitivity
Analysis Settings

The computational cost for computing all Vi1,...,iS

in the variance decomposition of Equation (6) strictly
following their definition equals N2(2k − 1), where
N is the Monte Carlo (MC) sample size. This cost
makes the calculation rapidly infeasible as N or k in-
crease. However, it has been drastically reduced over
the last years in a series of works.(96–99) The algorithm
in Ref. 98 estimates all first and total order indices at
a computational cost of N(k + 2) model runs. More-
over, using the given data logic, (99,100) one obtains all
sensitivity measures for individual model inputs at a
cost of N model runs, which is the minimal cost within
a MC framework. The given data estimation is based
on a sequence of partitions of the same data set and is
not related to a specific design. In this work, we profit
from this fact and use the same data set generated for
estimating all first and total order to estimate from it
distribution-based sensitivity measures.

Finally, we need to conclude this review of global
SA with an important methodological concept for
sensitivity analysis introduced in Refs. 28 and 101.
For a correct result interpretation and communica-
tion of sensitivity analysis results, it is recommended
to clearly frame up front the sensitivity analysis ex-
ercise. In global SA, this is accomplished using the
concept of SA setting.(28,101) A setting is a formula-
tion of the SA goal that allows the analyst to frame
the sensitivity exercise in order to identify the most
suitable techniques to obtain the desired quantita-
tive insights.(12,77,102) In the literature, several SA set-
tings have been defined: factor prioritization, factor
fixing, model structure, and sign of change.(77,94) In
this work, we discuss the meaningful settings in the
context of LCA.

2.6. Uncertainty Quantification in LCA: State
of the Art

The distinction that the SA community adopts
between local and global approaches has not yet
become a standard in the LCA community. Nev-
ertheless, a series of methodological papers have
formalized the use of uncertainty evaluation and
propagation techniques in LCA. These techniques
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serve in some cases the same goal of local SA and
global SA without, however, directly contemplating
the use of similar tools or jargon.

Among these quantitative tools, we may dis-
tinguish three main complementary numerical ap-
proaches that have been proposed in LCA:(103)

� uncertainty or error propagation(104,105) or un-
certainty analysis,(106) defined as the systematic
study of the propagation of uncertainty from in-
put uncertainties to output uncertainties;

� perturbation analysis,(106,107) or marginal
analysis,(104,108) oriented at analyzing how much
small marginal perturbation of the model inputs
propagate as smaller or larger deviations of the
resulting output;

� key-issues analysis(19) or uncertainty
importance,(13,103) defined as the identification
of the most influential input that determines
the output uncertainty, on which one should
focus research efforts to obtain more accurate
results.

Looking at the definition of local SA and global
SA (Sections 2.3 and 2.4), perturbation analysis cor-
responds conceptually to a local OFAT approach,
while uncertainty importance may be considered as
a possible class of global SA. According to data
availability and according to the focus that a study
has, a combination of these techniques may be
used. In combination with these techniques, a MC
simulation(109) is usually carried out, either using sub-
jective uncertainty estimates, or using uncertainty es-
timates gathered from the analysis of data.

In the LCA practice, in the few cases where an
explicit reference to SA is done, this refers to the
comparison of alternative scenarios built varying a
set of model inputs around their mean, or built by
comparing results obtained using different input val-
ues obtained from the literature for selected model
inputs, thus to what has been defined as perturba-
tion or marginal analysis, both of which are formally
OFAT approaches.(34,110) Following the OFAT ap-
proach, it is up to the practitioner to decide which
model input to change and by which amount,(13)

which may, in turn, lead to misleading results if the
scope of the analysis is to assign a measure of impor-
tance to the model inputs.

Imbeault-Tétreault and colleagues(111)

analyze the output of the LCIA phases,
considering log-normally distributed model
inputs from the ecoinvent database.(112) For each

considered impact category, the analysis aims at
defining the model inputs that are likely to be the
most influential on the output. The analysis is defined
as sensitivity, and corresponds to the definition of al-
ternative scenarios and the calculation of sensitivity
coefficients using an OFAT approach.

Geldermann et al.(113) use a set of sensitivity in-
tervals and weights stemming from the use of multi-
criteria decision analysis and the fuzzy outranking
technique to conduct SA. In Ref. 114, changes in
input data of ±1% and ±10% are applied and the
impact of inputs on the output are calculated based
on subjectively defined qualitative sensitivity indica-
tors (e.g., low sensitivity, very high sensitivity). Ar-
dente and colleagues,(115) who state that SA can be
applied with arbitrarily selected ranges of variation,
perform the analysis on the input data of a study on
a solar thermal collector. Based on an investigation
of the literature, they define alternative scenarios
for the key processes of the life cycle (e.g., alterna-
tive electricity consumption scenarios, or transporta-
tion scenarios with minimum, average, and maximum
values).

Zhou and Schoenung(116) define a framework
with the application of quality management tools
(e.g., process mapping, prioritization matrix) and sta-
tistical methods (e.g., multi-attribute analysis, cluster
analysis) to study the technology of a computer
display. Alternative weighting schemes are used as a
basis of a SA, which consist, for each impact category
considered in the study, in the tabular comparison
of the contribution of each impact category to the
total impact. Alternative scenarios are defined as SA
also in Ref. 117, which presents as SA the change
in impact scores from the variation of single model
inputs in four main phases of the life cycle of a
wind turbine, namely, maintenance, manufacturing,
dismantling, and recycling. Ranges are selected
in the contour of the mean of each model input
considered.

In the LCA model development field, the work
of Verones et al.(118) uses SA for the statistical
analysis of regionalized fate factors developed for the
evaluation of consumptive water use. Once again the
SA corresponds to the identification of alternative
scenarios, built varying local characteristics in a de-
fined range (e.g., underlying area, hydraulic proper-
ties), and to the comparison of the newly obtained
fate factor to those obtained in a base average case.

In Padey et al.,(38) we find the first available study
that uses global SA to identify key model inputs ex-
plaining the impact variability of wind power systems



364 Cucurachi, Borgonovo, and Heijungs

over their entire life cycle. This work represents the
only documented case of the explicit use of a global
SA technique in the field of LCA.

3. GLOBAL SA AND IMPACT ASSESSMENT
MODELS: A PROTOCOL AND AN
APPLICATION TO AN LCA NOISE IMPACT
ASSESSMENT MODEL

3.1. LCA as a Complex Model: Interpretation of
Techniques Currently in Use

At different stages of an LCA study, uncertainty
may be analyzed and propagated. Focusing on the
LCI and LCIA phases, one may be interested in un-
derstanding the uncertainty that propagates from the
inventory to the impact scores, and to understand
which of the model inputs are important in determin-
ing the uncertainty of the output.

Considering a full set of processes and economic
flows that are used in LCA, the output variance could
well be the result of the variance of thousands of
terms. Uncertainty importance or key issues analysis,
as defined in Ref. 103, respond to the impossibility of
defining a distribution function for the thousands un-
certain model inputs of the equation that should be
considered, due simply to a lack of sufficient data.
In such case, a global SA as formally defined may
not be performed without running the risk of obtain-
ing unrepresentative results. However, this condition
does not hold true for the LCIA phase of LCA, in
which the LCIA model developer typically has a full
visibility over the model inputs and the input-output
mapping. In such a case, it is possible, by analyzing
the data at hand (e.g., a deposition map, an elevation
map), to identify the distribution for the model inputs
and apply a global SA approach. Therefore, for the
case of characterization models, it is recommendable
to use global SA techniques, which allow fully eval-
uating the complex nonlinear, nonmonotonic models
that are used in LCA.

The characterization models and resulting char-
acterization factors are often a major source of un-
certainty for LCA studies.(119) Yet this is a topic that
has not attracted sufficient attention from the field of
LCA, and especially among model developers. To-
gether with the evaluation of how to propagate un-
certainty in characterization models, an accurate SA
should be conducted and documented. In this study,
we focus on the development phase of an impact as-
sessment model and we limit the focus to uncertainty
about the way the interaction between technosphere

and biosphere has been modeled.(120) We focus here
on how to identify the sources of such uncertainties
in the input model inputs, on how to classify them
in terms of statistical importance, and on how to ap-
portion the total uncertainty of the output to each of
the inputs that are used in characterization models to
calculate characterization factors.

3.2. Global Sensitivity Analysis Settings for
Characterization Models

In this section, we demonstrate the use of global
SA to develop and study a characterization model in
LCIA. The protocol here proposed is applicable to
all other parts of the LCA framework that require
the use of complex nonlinear integrated assessment
models, as well as to other models used in the en-
vironmental sciences. We propose a combination of
global SA techniques to be applied in the study of
impact assessment models developed for LCIA, with
particular attention to the case of newly developed
impact categories.

As a starting point for the protocol, let us con-
sider the characterization model ϑ, represented in
Fig. 1, as part of the impact assessment phase of
LCA.(11)

The characterization model is a function of a
series of model inputs (e.g., effect factor, fate fac-
tor, damage factor; see Ref. 121), which are, in turn,
dependent on the stressor-specific components that
characterize a certain impact category (e.g., temper-
ature, deposition, concentration).

We may define a generic characterization model
for a generic impact category c:

Qcs = ϑc(x), (17)

where ϑc represents the nonlinear function represent-
ing the characterization model for impact category c,
per stressor s, and Qcs is the characterization factor,
which is a function of a variety of model inputs x.

At this stage, the LCA analyst may consider a
generic ϑ that represents a generic characterization
model, of which one wants to understand the be-
havior and study the structure, without any a priori
physical assumption(122) on the nature of the model
input-output relationships. We consider all model in-
puts that influence the characterization model and
are part of its structure. The following steps may be
considered as a paradigm of action for any character-
ization model in LCIA (see Fig. 2).

The protocol in Fig. 2 nests model development
with uncertainty analysis and global SA. In the model
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Fig. 1. Characterization model and LCIA global SA in the LCA framework.

development phase, the LCA analysis identifies the
uncertain model inputs (step 1a in Fig. 2), and iden-
tifies the input-output programming of the LCIA
characterization model (1b; i.e., the LCIA model
input-output relationships).

Step 2 deals with what is commonly identified
as uncertainty analysis (or uncertainty propagation).
The analyst identifies the probability distribution
functions for the uncertain model inputs (2a). In
LCIA, the distributions can be obtained from expert
opinions or from available data (which can be col-
lected either in the literature, or from the analysis
of spatially-explicit data in GIS collected during the
model development exercise). A MC sample of the
model inputs is generated (2b). This generation can
be obtained using a crude MC generator. However,
for a more efficient exploration of the model input
space, a Latin hypercube or a quasi-random design is
preferred (the reader is referred to Refs. 26 and 123–

125 for additional details). The following step (2c)
consists of the evaluation of the model in correspon-
dence with the generated sample to obtain the model
output distribution.

In step 3, the analyst establishes the sensi-
tivity analysis settings, that is, she formulates the
sensitivity questions and identifies the sensitivity
measures for obtaining the consistent answers. If
computational time allows, the model can be run ac-
cording to specific designs to obtain the appropriate
sensitivity measures. Otherwise, the data set gener-
ated by MC simulation is postprocessed to obtain
the required sensitivity measures. Before coming to
conclusions and recommendations, it is suggested
to assess the confidence in the estimates of the
sensitivity measures. This can be done, for instance,
using bootstrapping.(126)

If the results are in accordance with intuition
and confidence in the estimates allows, conclusions
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Fig. 2. Protocol for the analysis of an LCIA characterization model.

can be drawn and the model can be given to de-
cisionmakers and used in LCA (step 4). If not,
one needs to repeat the analysis. If the sensitivity
analysis produced results not in accordance with
intuition, then the analyst needs to establish whether

counterintuitive results are representative of some
combination of aspects that were not previously con-
sidered (and thus constitute new insights) or whether
they are due to possible numerical inconsistencies
present in the code or in the distribution assignment.
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Then, one needs to intervene in the code or in the
model input distributions. If the repetition is due to
low confidence in the estimates, then the remedy is
an analysis at a larger sample size, if computing time
permits.

3.3. Application of LCIA Global SA Protocol to the
Noise Characterization Model

The protocol is here applied to a characteri-
zation model developed for the quantification of
the impacts on humans from the exposure to noise
emitted by a variety of sources in a life cycle
(noise model, from now on(39,40)). The exposure
to noise is of particular relevance for environmen-
tal risk assessment,(127) since it affects a consid-
erable part of the population.(50) Therefore, the
novel inclusion of noise impacts in LCA(40) pro-
vides a fitting test case for the integration of risk
analysis and LCA. Cucurachi et al.(39) define a theo-
retical framework for the inclusion of the impacts of
noise on humans in LCA studies. In Cucurachi and
Heijungs,(40) the methodology has been operational-
ized and characterization factors are provided to be
used in LCA studies. In the following, the protocol is
applied to the two acceptations of the noise model.

3.3.1. Step 1: Noise Model Definition

The noise model is based on the quantification
of the noise impacts of sound emitted by any source
operating in a life cycle.(39) The sound power emit-
ted by a source, or combination thereof, at the emis-
sion compartment determines a change in sound
pressure at the exposure compartment. A series of
conditions intervene to attenuate or propagate the
trajectory of sound waves, thus influencing the way
the sound emissions are perceived eventually as noise
by human targets that are exposed to them. Generic
characterization factors are calculated according to
the formula:

Qcs = 20√
Wamb

× Nf × 10
(D−Aatt )

20 × 10
(α+β)

20 , (18)

where Wamb represents the environmental sound
power at the emission compartment, thus assuming
that some sound emissions are already present in
the environment, Nf represents the number of tar-
gets that are exposed to the sound power, D is a
directivity factor that determines the direction of

propagation, Aatt defines a series of attenuation fac-
tors that intervene and limit the propagation of
sound waves between emitting source and receiver,
α is a specific factor related to the frequency of emis-
sion, and β refers to a penalty added according to
the time of the day the emission takes place. Further-
more, Aatt may be expanded into:

Aatt = Adiv + Aatm + Aground + . . . Aother (19)

thus it represents a series of context-specific attenu-
ation factors that are a function of the distance be-
tween source and receiver (Adiv), the atmospheric
conditions (Aatm), the ground composition (Aground),
and any other attenuation that may be relevant to the
system under study (Aother ). For the sake of simplic-
ity, we omit in the characterization factors formulas
the indexes used in LCA to define the compartments
of emission and exposure and refer to Refs. 39 and
40 for more details on the model.

We may consider the complete formula for the
calculation of the characterization factors as the
input-output noise model to which we want to ap-
ply the LCIA global SA settings, and the model in-
puts reported below in Equations (18) and (19) as the
uncertain variables that will be analyzed (step 1a in
Fig. 2). We considered two alternative configurations
of the noise model:

� Simple model, based on Equation (18), and con-
sidering Aatt as an uncertain model input with a
given distribution (see Table I):

ySM = ϑSM (x) = f (Wamb, D, Aatt , Nf, α, β).

(20)

� Extended model, including the expansion of
Aatt to be, in turn, a function of the specific local
conditions of, e.g., temperature, humidity (see
Table I):

yEM = ϑEM (x)

= f (Wamb, D, Aatt [T, Prs, RelHum, f m,

d, G], Nf, β). (21)

In the extended model, Aatt is calculated by an it-
erative process involving a combination of intermedi-
ate calculation model inputs and uncertain variables,
on which Aatt depends ([T, Prs, RelHum, f m, d, G];
see Table I). In the simple model, the analysis is
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Table I. Uncertain Inputs in the noise model in the Two Alternative Configurations

Simple model

Variable Probability distribution function

Wamb Background sound power level [dB] Lognormal (meanlog = 2.3, sdlog = 1.09)
D Directivity component [dB] Normal (mean = 3, standard deviation = 1)
Aatt Attenuation factors [dB] Normal (mean = 5, standard deviation = 1)
Nf Population level Lognormal (meanlog = 2.3, sdlog = 1.09)
α Perceived frequency model input [dB] Uniform (min = –26.2,max = 2)
β Penalty for time of the day [dB] Triangular (0;10;5)

Extended model

Variable Probability distribution function

Wamb Background sound power level [dB] Lognormal (meanlog = 2.3, sdlog = 1.09)
D Directivity component [dB] Normal (mean = 3, standard deviation = 1)
Nf Population level Lognormal (meanlog = 2.3, sdlog = 1.09)
β Time of the day penalty [dB] Triangular (0;10;5)
T Temperature [˚C] Normal (mean = 15, standard deviation = 5)
Prs Ambient pressure [Pa] Uniform (min = 2000,max = 101325)
RelHum Relative humidity [%] Uniform (min = 10,max = 100)
fm Frequency of the emission [Hz] Triangular (63;8000;4000)
d Distance from source to receiver [m] Lognormal (meanlog = 3.9, sdlog = 1.09)
G Ground composition factor Triangular (0;1;0.5)

limited to assigning a probability distribution to Aatt ,
based on the a priori knowledge of the model. A
series of additional model inputs is introduced, and
compared in the analysis with the simple model com-
position. Model input α (i.e., frequency component)
is excluded from the extended model because it be-
comes dependent on f m. The two alternative con-
figurations refer to two different times of the process
of development of an LCIA model. Respectively, the
simple configuration refers to the phase of theoreti-
cal definition of the model, the extended configura-
tion to a later phase in which the modeler has already
a deeper knowledge of the functioning of the model
and more data are available on the variables that are
used.

We then proceeded according to the protocol
and a computer model was created to encode the
input-output mapping for the simple and extended
model configurations (step 1b of the protocol in
Fig. 2).

3.3.2. Step 2: Uncertainty Analysis

In order to identify the most representative dis-
tributions for the model inputs (step 2a of the pro-
tocol; see Fig. 2), the data provided in Cucurachi
and Heijungs(40) were confronted with data from the

noise literature. In Table I, the distributions are de-
fined for the input variables for both the simple
and the extended configurations. Similar distribu-
tions were chosen for variables that appear in both
the simple and extended noise model.

Given the low calculation time required by the
running of the two configurations of the model a MC
sample of N = 120,000 was selected. Sobol quasi-
random sequences(128–130) were used to generate the
sample for the uncertain inputs (step 2b). Data
were stored and used for the calculation of the two
outputs ySM and yEM, according to the defined com-
putational model (step 2c).

3.3.3. Step 3: Global Sensitivity Analysis

The analysis proceeded with definition of the
global SA settings (step 3a). The following settings
were defined as a basis of the global SA of the noise
model:

(1) LCIA Model Structure: to determine whether
the behavior of the quantity of interest (model
output) is the result of individual effects or
of interactions among the model outputs. This
goal is reached by estimating first-order sen-
sitivity indices and comparing their value to
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Table II. First-Order and Total Order Sensitivity Indicesa

Simple model Analysis of model structure

Variable First order Total order

Wamb Background sound power level [dB] 0.021 0.296
D Directivity component [dB] 0.002 0.047
Aatt Attenuation factors [dB] 0.002 0.052
Nf Population level 0.175 0.858
α Perceived frequency model input [dB] 0.026 0.183
β Penalty for time of the day [dB] 0.003 0.062

Extended model

Variable First order Total order

Wamb Background sound power level [dB] 0.003 0.422
D Directivity component [dB] 0.009 0.009
Nf Population level 0.003 0.932
β Time of the day penalty [dB] 0.006 0.978
T Temperature [˚C] 0.003 0.003
Prs Ambient pressure [Pa] 0.003 0.517
RelHum Relative humidity [%] 0.003 0.003
fm Frequency of the emission [Hz] 0.003 0.261
d Distance from source to receiver [m] 0.004 0.946
G Ground composition factor 0.003 0.068

aTop contributors in bold.

unity (see Section 2.4). Possibly, if computing
time allows, one can estimate also the total or-
der sensitivity indices or higher-order indices.

(2) Factor Prioritization: to determine key uncer-
tainty drivers in the impact assessment model,
namely, the model outputs on which to put re-
sources to reduce uncertainty. The process can
possibly identify those model inputs that can
be fixed to a nominal value without the risk of
adding extra uncertainty to the model. For the
LCIA global SA of a characterization model,
the estimation of the important measures de-
fined in Section 2.4 offers a valuable piece of
information on the importance of a certain
model input in a characterization model.

Based on the settings, we proceeded with esti-
mating the global SA measures presented in Section
2.4. As mentioned in Section 2.5, first-order variance-
based sensitivity indices and the sensitivity measures
δB, δKS, and δKU can be estimated from the same MC
sample with no additional model evaluations, while a
specific design is necessary to estimate total indices.
We used the sobol2007 function of the package sen-
sitivity of the software [R].(131) The function allows
implementing MC estimations of both first and

total order sensitivity indices simultaneously, at a
computational cost of N(k + 2).(98) The same MC
sample was used both to estimate the total indices in
the required specific design and for the estimation of
the sensitivity measures in Equations (8), (14), (15),
and (16).

Setting 1: LCIA Model Structure. In order to
study the structure of the model, first and total or-
der indices were calculated for the simple and the
extended noise model. In Table II, the results are
reported for both configurations (step 6 of the
protocol).

Table II shows that, in the simple model config-
uration, the highest contributor to the output vari-
ance is Nf, the population level, which contributes
about 18% of the output variance. The total sum
of the first-order indices adds up to around 20%,
suggesting the presence of strong interactions be-
tween model inputs even in the simple model con-
figuration. The results of the total order indices
show that Nf explains 85% of the output vari-
ance when all interactions with other inputs are
considered.

In the extended model configuration, Table II
shows that the highest contributors are, respectively,
D, β, and d. However, the total sum of the first-
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order indices adds less than 1%, thus suggesting that
interactions strongly influence the model behav-
ior.Thus, as far as this setting is concerned, we can
conclude that the model is nonadditive, and interac-
tion effects dominate over individual effects.

We then come to the analysis of the key-
uncertainty drivers.

For the model at hand interaction effects
strongly influence the model behavior, limiting the
possibility of extracting conclusive information from
first-order variance-based indices. The total order in-
dices suggest that, for a number of model inputs (in
bold in Table II), the contribution to the output vari-
ance is almost totally due to interactions. At the
same time, the extremely low values for model in-
puts D, T, and Rel Hum may again suggest a method-
ological issue in the estimation of a variance-based
measure in the presence of a multiplicative function.
The estimation of first-order indices becomes par-
ticularly challenging in the presence of nonlinearities
and interaction, e.g., multiplications, between model
outputs (93, p. 3); see also the multiplicative model in
Ref. 93, for which estimation of variance based sen-
sitivity measures results inaccurate.

We then used bootstrapping(126) to assess our
confidence in the estimates. For the case of the total
order indices, such analysis could not be conducted
due to the specific design that was used. On the other
hand, it was possible to use the generated MC sam-
ple to obtain confidence intervals for the first-order
indices. Fig. 3 displays the confidence intervals ob-
tained using 500 bootstrap replicates.

Fig. 3 shows that for the simple model we have
limited variability in the estimates, and, therefore,
we are confident about the ranking obtained with
SFIRST

i . Conversely, a great variability is obtained for
the calculation of the first-order variance-based sen-
sitivity indices for the extended model. This variabil-
ity should lead an analyst to a diminished confidence
in the obtained ranking.

Based on the results of the confidence test and
on the considerations above, we used an ensemble of
sensitivity measures to reinforce the analysis. As de-
scribed in Section 2.5, from the same data set used to
compute the first and total order indices, it is possi-
ble to estimate also the importance measures δB, δKS,

and δKU . The values are reported in Table III (step 7
of the LCIA global SA).

The confidence of the results was tested, once
again, by means of bootstrapping. We show the re-
sults of 500 bootstrap runs for the δB importance
measure (see Fig. 4). For both configurations of

the noise model we have limited variability of the
estimates, thus suggesting that the distance-based
importance measures are better able to deal with the
noise model interactions.

In the simple configuration, the most influential
factors are Nf (population level) and Wamb (back-
ground sound power level) according to all of the
three distance-based measures used. The importance
of Wamb had not been spotted by the variance-based
indices previously estimated. Other model outputs
have an intermediate influence on the output. Ac-
cording to distance-based sensitivity measures, the
background context of emission is the model input
to focus the attention for model development if the
attenuations were not considered in the full specifi-
cation, together with the number of targets that are
exposed to a level of sound emissions that may be
perceived as noise.(39)

In the extended configuration, β (time of the day
penalty) and d (distance of propagation) become the
most influential factors. The importance of β had
not been spotted by the first-order variance-based in-
dices, but is revealed by the total indices.

The results in Table III suggest that, if more
resources were to be available, a modeler would
have to investigate the exact time of the day an
emission is taking place, and the exact distance
between the source of the sound emission and the
receiver/receivers. Such information also provides
a way of prioritizing the recording of information
at the LCI phase of an LCA study, expanding on
the information gathered using the variance-based
techniques.

3.3.4. Step 4: Results Evaluation

With these results in mind, following the final de-
cision step 4 of the protocol presented in Fig. 2, we
decided that the results provide sufficient informa-
tion to judge the noise model. It was resolved that no
further analyses were needed and that the N selected
was suitable to obtain accurate estimates. We turned,
then, to the investigation of the extent to which mea-
sures agree/disagree in the identification of key un-
certainty drivers.(132) The inputs for both configura-
tions of the model did not have the same influence
with respect to the global sensitivity measures used.
The calculation of the correlation coefficient among
Savage scores allows us to study the accordance
among different rankings.(133) Such a technique em-
phasizes the agreement/disagreement for the most
important variables and places reduced weight on
agreement/disagreement for the variables of low
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Fig. 3. Result of 500 bootstrap runs of the calculation of first-order indices for the simple and the extended model.

Table III. Importance Measures for the Simple and Extended Noise model Configurations

Simple model

Variable Importance measure

δB δKS δKU

Wamb Background sound power level [dB] 0.29 0.27 0.29
D Directivity component [dB] 0.13 0.05 0.08
Aatt Attenuation factors [dB] 0.12 0.05 0.07
Nf Population level 0.31 0.29 0.32
α Perceived frequency model input [dB] 0.17 0.16 0.18
β Penalty for time of the day [dB] 0.01 0.06 0.08

Extended model

Variable Importance measure

δB δKS δKU

Wamb Background sound power level [dB] 0.13 0.04 0.06
D Directivity component [dB] 0.15 0.11 0.13
Nf Population level 0.12 0.08 0.09
β Time of the day penalty [dB] 0.30 0.27 0.29
T Temperature [˚C] 0.15 0.03 0.05
Prs Ambient pressure [Pa] 0.14 0.12 0.13
RelHum Relative humidity [%] 0.15 0.03 0.05
fm Frequency of the emission [Hz] 0.20 0.19 0.20
d Distance from source to receiver [m] 0.22 0.20 0.21
G Ground composition factor 0.15 0.03 0.05

importance.(132, p. 166) Table IV displays the resulting
correlations among Savage scores.

In the simple configuration of the model, the
correlation coefficients suggest that most measures
agree with the ranking of inputs. The Savage scores
for the measures δB, δKS and δKU strongly correlate
to one another (�1). A lower positive correla-
tion of Savage scores is obtained comparing the

measure δB with both first and total order indices.
For the extended model, the rankings between
variance-based and the other importance measures
put forward a similar picture. Greater differences
are highlighted between the invariant importance
measures and the first and total order indices, with
δB once again presenting the lowest correlation
value.
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Fig. 4. Result of 500 bootstrap runs of the calculation of δB for the simple and the extended model.

Table IV. Correlation Among Savage Scores Across Global Sensitivity Measures

Simple model

First Order Total order δB δKS δKU

First order 1 0.93 0.46 0.51 0.51
Total order 0.93 1 0.68 0.72 0.72
δB 0.46 0.68 1 0.96 0.96
δKS 0.51 0.72 0.96 1 1
δKU 0.51 0.72 0.96 1 1

Extended model

First Order Total order δB δKS δKU

First order 1 0.68 0.59 0.60 0.62
Total order 0.68 1 0.66 0.73 0.72
δB 0.59 0.66 1 0.98 0.99
δKS 0.60 0.73 0.98 1 0.99
δKU 0.62 0.72 0.99 0.99 1

In summary, the calculation of the correlation
of Savage scores and the use of bootstrap sampling
further helps the LCA modeler to study and under-
stand the developed model, and it is advised as a
supporting analysis for the protocol presented in the
previous sections. In our case, the analysis shows that
the factors Wamb and Nf can confidently be consid-
ered as the key uncertainty drivers for the simple
model, while factors d and β are the key drivers in
the extended configuration.

4. DISCUSSION: STRIVING TOWARDS
IMPROVED LIFE CYCLE IMPACT
ASSESSMENT MODELS

The LCA community is recognizing the need for
improving its methods for the sensitivity and uncer-

tainty analyses of LCA codes. Our work has inves-
tigated this issue, unveiling several aspects. We have
seen that global SA is applicable in portions of the
LCA framework and, in particular, in the crucial
LCIA phase, where performing a full-fledged global
SA not only becomes possible, but is capable of pro-
ducing insights for the analyst that would otherwise
be lost.

We have defined the settings for our sensitiv-
ity analysis in Section 2.9. Suppose that the analyst
uses a one-way sensitivity approach in the context
characterized so far. First, she would be ignoring
uncertainty about the model inputs because, we re-
call, a one-way sensitivity analysis is deterministic.
But, even if this is the case (i.e., ignoring uncertainty),
how would the analyst assign the ranges of the model
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inputs? If these are arbitrarily assigned, then the
results of the OFAT sensitivity have little value.
However, suppose the analyst interprets these ranges
as the 0.05 and 0.95 percentile of some plausible un-
certainty distribution. What results would she ob-
tain? Let us test this approach for the simple and
the extended versions of the noise model analyzed
in this article. For the simple model, the rank-
ing of the most influential parameters identifies the
penalty β as the most influential parameter, fol-
lowed by the directivity component D. In the ex-
tended model, the OFAT approach identifies fm and
D as the most influential parameters, with the rest
of the parameters resulting as equally unimportant.
Thus, the obtained ranking are quite far from the
most rigorous ranking obtained using a global sen-
sitivity analysis method. These results show once
again the limitation of the OFAT procedure. There-
fore, given that distributions are available to the
analyst, the use of a deterministic method that ig-
nores the distributions would only make sense for
computational convenience, but is not conceptually
justified.

The use of global techniques in the protocol
allows overcoming the limitations of OFAT tech-
niques, which have been almost exclusively used in
the field of LCA. In particular, global techniques al-
low in the context of LCA supporting better deci-
sions for policy-making purposes, thanks to a bet-
ter understanding of the impact assessment mod-
els that are used to produce impact scores. More
trustable results strengthen the capability of LCA
to pinpoint environmental hotspots in complex value
chains.(1)

The ability to capture dependencies among
factors and the importance of factors to the output
of the model makes the protocol extendable to other
phases of LCA, in which inputs are used to calculate
an output. The protocol and the given data strategy
that are here proposed and applied to the study of
complex impact assessment models may be also ap-
plied to analyze the results of complete LCA studies
for which data from MC are often readily available
to the analyst. For instance, at the inventory phase
the influence of inventory items on the output of
a study may be also evaluated taking into account
model-structure measures and importance measures.
The protocol proposed here allows extracting in-
formation on a model (LCIA or otherwise) directly
from the results of a MC simulation, without the
need to obtain a specific design. This is advantageous
because most of the software packages that are
used to conduct LCA studies already contain MC

subroutines.6 MC simulation alone, however, does
not allow the analyst to identify key drivers of
uncertainty, or to understand the structure of the
input-output model.(12) In this respect, an issue is
represented by the need to define a joint distribution
function that truly represents the decisionmaker’s
degree of belief about the model inputs. In the con-
text of LCIA model development, modelers typically
have sufficient data to define how the model inputs
are distributed.

In the preliminary phases of the analysis, global
SA can help gathering focus on important factors
based on estimates and expert judgment. Later, a
complete global SA can be performed when a bet-
ter coverage of data is available. In our application,
we considered two different configurations of the
same model that correspond to two model develop-
ment stages. As noted, even though some inputs had
the same distribution function in both configurations,
their importance changed.

A combination of measures is recommended for
the identification of key uncertainty drivers. Using an
ensemble of sensitivity measures allows an analyst to
overcome the limitations of each single method and
to obtain a robust ranking of model outputs. Then, an
analyst has information about which values are possi-
ble to fix in the remainder of the analysis. This is par-
ticularly relevant in the context of LCIA modeling,
where it is common to use characterization factors
that are often representative of certain average con-
ditions (e.g., a certain geographical location is taken
as representative of a wide area). Here, the proto-
col can guide the modeler in deciding which model
inputs could be averaged without affecting the un-
certainty of the model. Once the modeler has a clear
idea of the structure of the model and of the key in-
put drivers, it is also possible to further evaluate the
need to produce geographically explicit characteriza-
tion factors with high level of spatial resolution. For
all LCIA models for which only few inputs would be
determinant in varying the output, it would be a ques-
tionable use of resources to define characterization
factors that are specific to highly localized conditions.
Those model inputs with the largest values of all mea-
sures should be prioritized and further analyzed and
localized.

6Also, fully documented computer subroutines are freely avail-
able for the most used global sensitivity tools, allowing for a
straightforward application of the measures to any context, in-
cluding that of LCA, without any additional modeling time. For
the calculation of sensitivity measures in this article both [R] and
Matlab

R© (136) subroutines were used.



374 Cucurachi, Borgonovo, and Heijungs

5. CONCLUSIONS

This article has discussed the use of global SA
techniques to increase the trust in LCIA models,
thus of LCA, as a sustainability assessment and
decision-support tool to guide policy decisions. The
application of the proposed global SA techniques
would increase the confidence of decisionmakers and
users of existing LCIA models, and also of any fu-
ture developments of novel impact assessment mod-
els and characterization factors. Relying on an en-
semble of sensitivity measures, the protocol provides
the LCA modeler with a series of powerful tools that
increase the validity of the LCA framework, and par-
ticularly the transparency of the modeling phase of
LCIA characterization models.

The protocol helps to set rules and a common
shared procedure that puts the uncertainty and sen-
sitivity analyses practice in the field of LCA in line
with the practices that are already common for other
decision-support tools in the environmental sciences,
and also in the risk analysis community. The com-
bined use of LCA and risk assessment techniques
may further be fostered by such a platform. Read
along the lines of the works of Refs. 2, 4, 55, and 66,
our work also contributes in reinforcing the link be-
tween LCA and risk analysis.

Finally, the insights of this work can be ex-
tended to all other tools of the environmental, cli-
mate change, and risk sciences in which complex
models are used and where global SA is a key ingre-
dient to increase model validity and reliability.
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5. Iqbal MS, Öberg T. Description and propagation of uncer-
tainty in input parameters in environmental fate models. Risk
Analysis, 2013; 33(7):1353–1366.

6. Von Winterfeldt D, Kavet R, Peck S, Mohan M, Hazen
G. The value of environmental information without con-
trol of subsequent decisions. Risk Analysis, 2012; 32(12):
2113–2132.

7. Hall JW, Lempert RJ, Keller K, Hackbarth A, Mijere C,
Mcinerney DJ. Robust climate policies under uncertainty: A
comparison of robust decision making and info-gap methods.
Risk Analysis, 2012; 32(10):1657–1672.

8. EC-JRC. ILCD Handbook—General Guide on LCA—
Detailed Guidance, 2011.

9. Matthews HS, Lave L, MacLean H. Life cycle impact as-
sessment: A challenge for risk analysts. Risk Analysis, 2002;
22(5):853–860.

10. EPA. Life cycle impact assessment. Pp. 46–53 in Life Cycle
Assessment: Principles and Practice. Scientific Applications
International Corporation (SAIC), 2006.

11. ISO. ISO 14044: Environmental management—Life cycle
assessment—Requirements and guidelines. Environmental
Management, 2006; 3:54.

12. Anderson B, Borgonovo E, Galeotti M, Roson R. Uncer-
tainty in climate change modelling: Can global sensitivity
analysis be of help? Risk Analysis, 2014; 34(2):271–293.

13. Mutel CL, deBaan L, Hellweg S. Two-step sensitivity test-
ing of parametrized and regionalized life cycle assessments:
Methodology and case study. Environmental Science &
Technology, 2013; 47(11):5660–5667.

14. Lebailly F, Levasseur A, Samson R, Deschênes L. Develop-
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