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5.1 Introduction

The urgent need for sustainable means of transportation is obvious and reflected in
increasingly strict regulations [204]. For certain applications such as in aviation and
maritime shipping, the use of electrical motors will not be feasible in the near future.
Here a sustainable solution, which does not require new infrastructure and vehicles,
is the use of synthetic Fischer-Tropsch fuels. During Fischer-Tropsch synthesis (FTS)
syngas, a mixture of Hy and CO, is converted into long-chain hydrocarbons [205]. The
syngas can stem from natural gas, oil, or renewable feedstocks such as biomass. Ad-
ditionally, there is a strong research effort [206,207] to enable capture and conversion
of CO, for the production of syngas, thereby closing the carbon cycle. The synthetic
production of fuels cannot only reduce COs emissions compared to conventional fuels,
but the resulting fuel is cleaner as well, leading to less CO, NOy, SOy, and particulate
matter emission than conventional diesel [208,209].

Fischer-Tropsch catalysis on a large industrial scale has been demonstrated [210,211].
Typical conditions for so-called low-temperature FTS are 30 bar gas pressure and
200 °C to 240 °C catalyst temperature [212]. Compared to iron-based catalysts, cobalt
supported on various oxide supports shows higher activity and selectivity to linear
alkanes [213-215]. However, cobalt catalysts are prone to multiple deactivation mech-
anisms, which are being researched intensively [216,217]. Among these are carbon
deposition [218,219], sulfur deposition [220,221], and the oxidation of the cobalt [222—
225]. Whereas there seems to be a consensus in this literature that cobalt oxide is
not active, the ability of cobalt to oxidize under Fischer-Tropsch conditions has been
doubted.

As oxidation states are highly sensitive to gas pressure and composition, in situ spec-
troscopy studies are indispensable. The use of near-ambient pressure X-ray photoelec-
tron spectroscopy for the study of late transition metal catalysts has been reviewed
recently [66]. Wu et al. [226] have used this technique to determine that, at pressures
on the order of 0.1 mbar, CO reduces an oxidized cobalt foil at lower temperatures
than hydrogen. In a reaction mixture of 1 CO + 1 Hy the surface stayed metallic at
temperatures above 225 °C suggesting that an oxidation of the foil by (background or
product) water does not take place under these conditions. Additionally, they have
observed carbide formation from CO at temperatures as low as 57 °C. However, it
has been shown that the oxidation behavior of cobalt can depend significantly on the
crystallinity, structure, and support of the cobalt sample used [227,228]. This suggests
that studies on single crystals are a small but relevant contribution to completely un-
derstanding the oxidation behavior of cobalt. Kizilkaya et al. [229] find that Hy more
readily removes oxygen from Co(0001) than CO. Although this suggests the opposite
behavior of Co(0001) compared to Co foil [226], the significantly different pressure
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regime of 107> mbar used in Ref. [229] compared to the mbar range used in Ref. [226]
could be responsible as well.

Combining the use of a single crystal with higher gas pressures, we performed near-
ambient pressure X-ray photoelectron spectroscopy on a Co(0001) model catalyst. In
the following we report on the cleanliness of the as-prepared crystal in UHV (Sec-
tion 5.3.1), investigate the role of background water for the oxidation of Co(0001) in
0.25 mbar Hy (Section 5.3.2), and compare this to the behavior in 0.25 mbar CO (Sec-
tion 5.3.3). Using a theoretical model to convert measured intensities to coverages
on the Co(0001) surface, we quantify the amount of surface area covered by adsorbed
oxygen, different carbon species, and sulfur in Hs (Section 5.3.4), CO (Section 5.3.5),
and reaction conditions with a Ha-to-CO-ratio of 2:1 and 4:1 (Section 5.3.6).

5.2 Materials and Methods

5.2.1 Setup and Sample Preparation

The measurements presented in this chapter were performed at beamline 9.3.2 [230]
of the Advanced Light Source, Berkeley and at the HIPPIE beamline [231] of Max IV
Laboratory, Lund. The higher flux available at MaxIV allowed for resolving a larger
number of carbon and oxygen species as exemplified in the following section. Whereas
the gas exposure at ALS was realized by filling a vacuum chamber via one leak valve
for each gas, the HIPPIE beamline at MaxIV uses a high-pressure cell (similar to the
one described in Ref. [232]), allowing for more precise setting of flows and pressures as
well as faster changes in gas composition. At the ALS we used hydrogen of purity 6.0
and CO of purity 3.0 whereas Ho 4.7 and CO 3.7 were available at MaxIV. A liquid
nitrogen trap was used on the hydrogen line for most of the measurements presented
here. Independent of the use of the trap, the water content was below the detection limit
of QMS measurements performed at MaxIV. The effects of the different gas purities
and the trap are investigated in Section 5.3.2. Table 5.1 shows the water and oxygen

background expected in the different bottles.

Table 5.1: Expected level of contaminants in the different gas bottles that were used [233-236].
As the values for Hy 4.7 could not be found, they are estimated as the values for Hy 5.0.

Gas | Purity Supplier H,0 Content [ppm] | O2 Content [ppm]|

H, 6.0 Praxair < 0.5 <0.1
Ho 4.7 | Air Liquide <3 <2
CcO 3.0 Praxair <10 <10

CO 3.7 Air Liquide <5 < 10
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The Co(0001) single crystals were purchased from SPL. They were prepared by cycles
of argon ion sputtering with 1 kV acceleration voltage and subsequent annealing to
590 K in UHV. The annealing temperature is limited by the phase transition from
an hep to an fee crystal structure [237]. To additionally prevent contaminants in the
bulk from reaching the surface the annealing temperature is 5 K to 10 K lower in the
last cleaning cycle and the sample is kept at maximally 573 K or 300 °C during all

experiments.

5.2.2 Resolved Species and Peak Fitting

The binding energy axis of the oxygen, carbon, and sulfur spectra was calibrated ac-
cording to the metallic Co 3ps/, peak at 59.3 eV [238] measured after every change
of the photon energy. After applying this calibration, detected peaks which deviate
less than 4 0.1 eV between different measurement conditions are identified as being the
same species. All peak fits are done in CasaXPS 2.3.19 [239] using a Shirley background.
The Co 3p peak is fitted using a metallic peak consisting of an asymmetric main peak
of the shape LA(1.1,1.5,3) as well as a plasmon loss peak of shape GL(30) fixed at
+ 3 eV and 12.2 % peak area with respect to the main peak. Both these peaks were
used for the 3p3/, as well as the 3p; /5 part of the doublet with a fixed doublet splitting
of 1.2 V. Due to limited literature on Co 3p peak positions and fitting [238,240], this
method is based on the fitting of the Co 2p peak as described below and was adjusted
until a satisfactory fit for the metallic surface was found. However, for all measurement
sets where the Co 3p peak was used this shape was sufficient for a satisfactory fit such
that no cobalt oxide contribution needs to be considered here and only the total area
underneath the metallic Co 3p doublet is relevant for the further analysis. The Co 2p
peak was fitted with a main metallic peak at 778 eV of asymmetric shape LA(1,2.25,3)
and two plasmon loss peaks of shape GL(30) fixed at + 3 eV and + 5 eV and 6.4 %
and 2.1 % peak area with respect to the main peak, respectively. This is based on the
Co 2p fitting presented in Refs. [226,241] and adjusted until a satisfactory fit for a
measurement on metallic cobalt is reached. Additionally, four oxidized peaks of shape
GL(40) at positions + 1.8 eV, + 4.1 eV, + 7.8 €V, and + 10 eV with respect to the
metallic main peak are necessary for some measurements (see Section 5.3.2). As both
CoO and Co304 cause a number of Co 2p contributions in the same binding energy
region [241], an exact identification is complex. However, CoO has been identified on
Co(0001) using in situ SXRD [242] under similar conditions as used here, which is thus
the more likely candidate. Figure 5.1 shows an example fit where both metallic and
oxidized cobalt are present.

For the O 1s measurements taken at the ALS, we identified oxygen peaks at 529.7 eV as
adsorbed atomic oxygen O(ad), 530.8 eV as adsorbed hydroxyls OH(ad), and 532.1 eV
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Figure 5.1: Co 2p area measured on Co(0001) in 0.25 mbar Hy at 220 °C surface temperature
showing all peaks necessary for a satisfactory fit of the 3/2 part of the doublet. This surface is
partially oxidized, which was likely caused by a temporary technical problem with the liquid
nitrogen trap that was used on the hydrogen line. For details about the oxidation behavior of
Co(0001) in Hs see Section 5.3.2.

as adsorbed carbon monoxide CO(ad) by comparison with relative positions given in
literature [226,241,243]. These are fitted with line shapes of GL(50) and GL(70) (only
adsorbed CO) and fixed binding energy distances. In the same manner [226,243] we
identify carbon peaks as carbide or carbon atoms C at 283.5 eV, hydrocarbons C.H,
at 284.9 eV, and adsorbed carbon monoxide CO(ad) at 286.0 €V in the C 1s peak. The
hydrocarbon contribution shifts to 285.6 eV only in UHV, which might indicate that
a different type of hydrocarbon is predominantly present here compared to reaction
conditions.

In the measurements done at MaxIV a larger number of species can be resolved in
the C 1s peaks. An example fit with all necessary peaks is shown in Figure 5.2. The
adsorbed CO is split up into four contributions: Two peaks at + 2.69 eV and + 1.50 eV
with respect to the main CO(ad) peak can be identified as adsorbed CO in the presence
of adsorbed atomic oxygen as they appear in agreement with the appearance of O(ad) in
the O 1s signal. The main CO(ad) peak at 286.0 €V is best fitted with a slightly asym-
metric LA(1.8,2.5,0) shape. Additionally, a small contribution at — 0.65 €V from the
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Figure 5.2: C 1s area measured on Co(0001) in 0.25 mbar CO at 190 °C surface temperature

showing all peaks necessary for a satisfactory fit.

main CO(ad) peak could stem from a different adsorption site on the surface [244,245]
compared to the main CO peak, but cannot be unambiguously identified on the basis
of current literature or our measurements. The hydrocarbon peak is split up into two
contributions at a distance of 0.2 eV from each other. It is likely that a number of
different hydrocarbons are present, such that these two different peaks are necessary
for a satisfactory fit. In comparison with literature [246-248] the carbide/atomic car-
bon contribution is split into a graphitic carbon/multiple carbon atom contribution at
283.9 eV and a carbidic/single carbon atom contribution at — 0.37 €V with respect to
the first. All C 1s peaks (except the main CO(ad) peak) were fitted satisfactorily with
a GL(50) shape. The relative binding energy positions of all contributions are fixed
and the FWHM is restricted to the same value for every measurement of the same peak
for consistency.

As in the C 1s peak, the adsorbed CO contribution to the O 1s peak is split into two
parts (with and without co-adsorbed O, respectively) with a binding energy difference
of 0.65 eV to each other. This can be seen in the example fits in Figure 5.3 where
(a) some or (b) all of the adsorbed carbon is influenced by the adsorbed oxygen. In
some conditions one additional small contribution to the O 1s signal is detected at
— 1.7 eV with respect to the O(ad) contribution. It might stem from a different O
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Figure 5.3: O 1s area measured on Co(0001) in 0.25 mbar CO at (a) 220 °C or (b) at 120 °C
surface temperature showing the peaks necessary for a satisfactory fit.
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adsorption site or a co-adsorbate, but cannot be unambiguously identified on the basis
of current literature and our measurements. The area underneath this peak is there-
fore added to the adsorbed oxygen peak area. The adsorbed CO contribution in the
O 1s signal can overlay with a contribution caused by molecularly adsorbed H2O. As
the exact binding energy position of the adsorbed water might vary significantly de-
pending on co-adsorbates, the oxidation state of the cobalt, and the amount of water
[226,241,249], the CO and the HyO contribution cannot be easily distinguished dur-
ing peak fitting. However, on clean Co(0001) as well as on O(ad)/Co(0001) in UHV
at all investigated temperatures, it can be expected that water, if it adsorbs, adsorbs
dissociatively [249,250]. Therefore, the CO contribution in the O 1s signal of sets of
measurements taken in UHV can be clearly identified without overlay with any signal
stemming from molecular water. By comparing this CO contribution in the O 1s sig-
nal to the CO contribution in the C 1s signal from the same set of measurements we
thus have a measure to evaluate whether molecular water is present on the surface.
In most conditions investigated here, the ratio of the two different CO contributions
is comparable to the ratio in UHV such that no molecularly adsorbed water needs to
be taken into account during the analysis. One exception are measurements on an
oxidized Co(0001) surface presented in Sections 5.3.2 and 5.3.4.

As no different sulfur species are resolved, the area under the S 2p peak can be deter-
mined from only the background subtraction in CasaXPS without a detailed fit. Last,
when potassium was detectable, the K 2p peak partially overlapped with a second
harmonic peak of the Co 2p3/, such that a proper fit of both at the same time was
necessary to determine the area underneath the K 2p doublet. GL(20) shapes with a
doublet splitting of + 2.7 eV were then used for the K 2p contribution.

5.2.3 Converting Peak Areas to Coverages

Model

To convert the measured peak ares into surface coverages of all adsorbates, a mathemat-
ical description of the measured intensities is needed. In the straight line approximation
[251], which only takes inelastic scattering of electrons into account, we first describe
a homogeneous sample of a material 7. In this case the amount of photoelectrons pro-
duced by a specific orbital of species ¢ in a depth ¢ and detected outside the surface
is

Ii(6) = poWiN; P - e/ = kg - e7%/ N (5.1)
with the photon flux ¢(E,) at photon energy E,, the cross section o;(E,) and asym-
metry parameter W; of the probed orbital of species ¢ for the same photon energy, the

number of atoms of species ¢ per volume N;, the spectrometer efficiency P(Fy;,) for
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substrate

Figure 5.4: Illustration of the model assumed for coverage calculations. Explanation see text.

detection of electrons with the kinetic energy FEj;,, and the inelastic mean free path
Ai(Egin) of the same electrons in material 4.

Integrating Equation 5.1 over a homogeneous, clean, and macroscopically thick (6 —
o0) cobalt substrate results in the total contribution from the specific orbital and thus
the area under the measured peak of

I8P = koo Ao (5.2)

Figure 5.4 illustrates how this is extended to include different adsorbed species. For
an adsorbate i covering an area x;, with 0 < z; < 1, Equation 5.1 has to be integrated

over the thickness of the first monolayer d™" resulting in
9= 2 ks (1 - e—d?“/*i) . (5.3)

For a part of the cobalt substrate which is covered with an adsorbate i the substrate in-
tensity given in Equation 5.2 is attenuated due to the adsorbate by a factor of e=di /N
On the other hand, the area 1 -, x; of the cobalt follows Equation 5.2 without atten-
uation. Notice that this is only valid if all possible adsorbates 7 are taken into account.
The total cobalt signal is then

Ico = kcoAco - ((1 - le> + le : 6d$ﬂL/)\i> (54)
= kcoAco - <1 —z; ) (wi/z)) - (1 - e‘”””)) (5.5)

3

where the second notation is simply for the purpose of convenience for the following

steps. With the above equations we can express the ratio of intensities of two different
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adsorbates I;/I; as well as the ratio of the intensity of an adsorbate and the cobalt
substrate I;/Ic, and subsequently solve for the following equations.

—dME /X
x; I; ijj (]‘ —e / )
Ti_ L (5.6)
Zj Ij ki (1 _ e—d,li“L/)\,;)

-1
Ico ki) _ , _ .
zj = ( IC] kci)\;o (1 —e d?/IL/)‘J) +Z(ml/xj) (176 dﬁdL/)")) (5.7)

We have found it most convenient to first calculate x;/z; for all x; and one specific
adsorbate j using Equation 5.6, then calculating the x; from Ic,/I; and all (z;/z;)

using Equation 5.7, and finally getting all other z; as x; = (z;/x;) - x;.

Multiple Layers

One complication in applying this model in our scientific case is that over time the
overlayer of one of the adsorbed materials, the hydrocarbons, can become thicker than
one monolayer under specific conditions (see Section 5.5.1). This introduces another
unknown, the height of that hydrocarbon overlayer. To take this into account the
sum of all coverages . x; is monitored. Once the result would be larger than 1 the
equations as above do not hold anymore and the calculation needs to be adjusted
slightly. For this the coverage of an adsorbate for which the measured intensity does
not significantly change over time (anymore) in these conditions, we used oxygen or
sulfur, is fixed to the last calculated value. All other coverages are calculated as above
and the coverage . of the hydrocarbons is then 1 — Zl Zhe Ti- Now the ratio of the
oxygen or sulfur and the hydrocarbon intensities can be used to calculate the height

Dy and thus number of monolayers of the hydrocarbons as
D /dME. (5.8)

We finally plot the corresponding number of monolayers that were present if it were the
only adsorbate on the surface Xy, = e - Die/ thCL. As this procedure assumes that all
of the hydrocarbons are layered to the same height Dy, on only one specific fraction xy,
of the substrate surface area, this model is limited and can easily become inaccurate,
especially for large coverages. The manner in which the hydrocarbons grow, layer-by-
layer or three-dimensional growth as well as potentially on top of other adsorbates, is
unknown and neglected here.

In the case of the oxidation in Hy at temperatures below 220 °C (see Section 5.3.2)
the model results in (oxygen) coverage values large than 1 as well. As here not only
the adsorbate O(ad) is present in multiple layers but a cobalt oxide is growing, the
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model cannot be extended in a similar fashion and the situation would require a more
complex model making assumptions about the fashion in which this oxide grows, which
is outside the scope of this thesis. Therefore, the results of our model for this case are
intentionally reported only as relative coverages of the different adsorbed species instead
of absolute coverages and can only be discussed in a qualitative manner.

Estimating Parameters

The photon flux ¢(E,) was recorded during the measurements after every change of
the photon energy (ALS) or read from a pre-recorded flux curve (MaxIV). The cross
sections o;(E,) of Co 2p, Co 3p, O 1s, C 1s, and S 2p for the specific photon energies
were determined using Ref. [252] and are displayed in Table 5.2. The asymmetry
parameters W; are equal to 1 as the setups used here adhere to the "magic angle"
in XPS [64]. As only ratios of intensities measured in the same geometry and at the
same electron kinetic energy are compared, the spectrometer efficiency P(Ejy;,) does
not need to be known. The inelastic mean free path was calculated according to the
TTP-2M equation with the help of the NIST Database 71 Version 2.1 [253]. For the
bulk cobalt metal the mean free path can be taken directly from the database. For all
adsorbates the calculation requires an estimation of the mass density m;, the number of
valence electrons V of the material (contributing to electron loss), and a rough estimate
of the bandgap E, of the material. A recommendation for the choice of V is given in the
manual to the NIST Database [253]. For estimation of the mass density, the number
of atoms per volume N;, and the thickness of one monolayer dM" we distinguish two
different cases.

Most measurements shown in this thesis are of the first case, in which less than a
monolayer of an adsorbate is expected. Then the structure likely differs significantly
from any bulk structure of the adsorbate and the crystal structure of the Co(0001)
substrate thus needs to be taken into account. In this case the topmost cobalt layer
has to be included in the calculation of A and thus contributes to the mass density, the
valence electrons, and the bandgap. Theory supplies values for the Co-O distance for
adsorbed O and OH [254], Co-C distance for adsorbed C [255], and the Co-S distance
for sulfur [256], which are used to estimate the monolayer thicknesses. Together with
the cobalt crystal structure [257] these are used to calculate the mass density and
number of probed atoms per volume geometrically. The rough bandgap estimations
were done using literature values for cobalt oxide [258] as well as different sulfides and
carbides [259]. For the case of CO, the measurement of the C 1s signal as well as the
O 1s signal are available to include into the model. Based on theory literature [260] we
assume an upright adsorption with the carbon atoms towards the surface and use the

Co-C as well as the C-O distance for the layer thicknesses. These are used separately



Table 5.2: Estimated parameters for the calculation of coverages. Explanation and sources see text.

E N E, A
Species Peak P 7 d™™ [nm)] s m 3 \% s
[eV] | [Mbarn] [(nm)™°] | [g-(cm)™] [eV] [nm]
O O 1s 730 0.2551 0.18 99.8 5.89 15 2.5 0.685
OH O 1s 730 0.2551 0.20 92.5 5.75 16 2.5 0.697
cO O 1s 730 0.2551 0.12 152.7 5.27 19 3 0.709
cO C 1s 480 0.2987 0.18 103.0 5.27 19 3 0.709
C C1s 480 0.2987 0.21 87.3 5.2 13 3 0.299
CxH,
C 1s 480 0.2987 0.34 50.4 1.19 86 14.5 2.278
(< 1 ML)
CiHy
C 1s 480 0.2987 0.34 32.5 0.76 86 14.5 2.371
(bulk)
S S 2p 365 1.2080 0.16 114.6 57.6 15 3 0.592
Co Co 3p 260 0.7197 0.21 90.1 8.8 0.544
Co Co 2p 980 0.7651 0.21 90.1 8.8 0.544

96
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for the calculation of N for the O 1s signal and the C 1s signal. The CO contribution
in the C 1s signal is additionally calibrated to take the attenuation by the oxygen
atoms on top into account. Thus, the measured intensities are divided by a factor
of eX];)(—d?/[OLOf coy/Aco). However, the thickness of the whole CO molecule dco =
d(c of co) T d(0 of coy is then taken into account for the calculation of m and A as
well as the attenuation of the cobalt signal in the area covered with CO. The adsorbed
hydrocarbons are a more complex case as a large number of different molecules could
be present. Navarro et al. [47] investigated the Co(0001) surface using in situ scanning
tunneling microscopy during FTS under similar conditions as studied here. The main
product length detected on the surface was 14 carbon atoms with each molecule taking
up an area of 1.8 nm by 0.46 nm and an apparent overlayer height of 0.11 nm. However,
the height can be underestimated in the STM due to limited conductivity. Graphene
already has a higher thickness of 0.21 nm on Co(0001) as determined by DFT [255]
similar to the thickness of benzene on Co(0001) of 0.22 nm [261]. We choose a more
generous estimate of 0.34 nm on the hands of the layer thickness of graphite [195].
Using the surface area taken up by one molecule and the height estimate we can again
calculate m and N.

In the second case, when significantly more than a monolayer of a certain adsorbate
is expected to be present, it is likely that the structure is similar to the structure the
adsorbate has when it is present in bulk. This is the case for adsorbed hydrocarbons
in some measurements under the conditions described in Section 5.5.1. Then literature
values for E, [262] and m [263] of Ci14H3g can be used to calculate the number of
probed atoms per volume N. In this case the thickness of one monolayer is thus not
needed for the calculation of N, but can be used in the last step of the calculation in
Equation 5.8 in order to convert the resulting total overlayer thickness into a number

of layers. We choose the same estimate of 0.34 nm as described for the first case above.

Test and Calibration

When applying this model to a series of measurements it became clear that it is not
complete. A rough estimate of peak areas from a cobalt survey spectrum measured at
1130 eV photon energy shows that the order of magnitude of the Co 3p, Co 3s, and
Co 4s peaks does agree with the literature values of the cross sections confirming the
validity of the general approach of our model as well as the literature values. In con-
trast, the peak area of the Co 2p peak in the survey is at least an order of magnitude
higher than expected from the cross section. This estimate was done without taking
the different probing depths for the different peaks into account. As Co 2p has the
highest binding energy, the probing depth is lowest such that the discrepancy should

be even larger. This agrees with the discrepancy of a factor of about 50 that results
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from fitting detailed Co 2p and Co 3p peaks taken at the same probing depth with
an electron kinetic energy of 200 eV. This value was obtained by averaging over 20
different measurements taken on different days. From these observations the following
can be excluded as causes for the discrepancy: repeated changing of slits being irre-
producible, the flux curve for the different photon energies being imprecise, and the
same slit setting leading to varying attenuation depending on the photon energy. It is
likely that the crystalline structure of the substrate, which is not taken into account
in our model at all, could have a strong influence on the production of photoelectrons
and the complex loss processes in the material. Investigating this further is out of the
scope of this thesis.

However, it follows that the coverage model has to be complemented by experimental
calibration factors for the different peaks which are measured. First, we calibrate the
ratio of the O 1s and the Co 2p (or Co 3p) signal such that the adsorbed oxygen con-
tribution in UHV corresponds to the 0.25 monolayer coverage expected when assuming
maximum coverage with the 2x2 overlayer on Co(0001) [229]. The calibration factor
was determined from the cleanest as-prepared sample measured in UHV. A second as
clean sample measured on a different day, resulted in a calibration factor deviating
from the first by 1 %, which evidences that this calibration method is reproducible.
The measurements used were done at 220 °C. But, as we will show in Section 5.3.1, the
measured signal of adsorbed oxygen in UHV is not temperature dependent between
140 °C and 300 °C.

Second, the C 1s to O 1s signal ratio is calibrated such that the two different CO cover-
ages, calculated from the carbon and the oxygen signal respectively, are in agreement.
This calibration factor is an average over at least 20 different measurement sets in dif-
ferent gas and temperature conditions. However, as explained in Section 5.2.2, the CO
contribution to the O 1s signal cannot be clearly determined from measurements where
molecularly adsorbed water is present on the surface. These are therefore not taken
into account for the calculation of this calibration factor. In all other gas compositions
the calculated ratio of the CO contributions in C 1s and O 1s roughly agrees with the
ratio in UHV. Therefore, the resulting calibration factor we have used is free from the
possible influence by the contribution from molecularly adsorbed water.

Third, the coverage of species calculated from peaks for which there is no calibration
measurement, S 2p in our case, should be merely seen as an estimate of the order of
magnitude and used for relative comparison of the coverage in different situations or

changes over time rather than as an absolute value.
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Figure 5.5: Coverages of all measured adsorbed species on four different as-prepared Co(0001)
samples in UHV at roughly room temperature or 220 °C. For a better overview the different
carbon, hydrocarbon, and adsorbed CO peaks are summed up to one coverage each here and
are only displayed in detail in the supplemental information.

5.3 Results and Discussion

5.3.1 As-prepared Co(0001) in UHV

Figure 5.5 displays the calculated coverages comparing multiple as-prepared samples
in UHV at room temperature and at 220 °C. On average the oxidized contribution in
the Co 3p or Co 2p peaks measured in UHV is 3 % of the total depth of cobalt probed.
The O contribution in the O 1s signal is thus mainly due to adsorbed atomic oxygen
on metallic cobalt in UHV. At room temperature it is noticeable that sample # 1 has a
coverage of adsorbed oxygen of 0.23, whereas sample # 2 only has 0.13. On the other
hand, sample # 2 shows more adsorbed CO, 0.42 compared to 0.04 CO on sample # 1,
which leaves less adsorption sites for the oxygen. As both water and CO are common

background gases in UHV and known to adsorb on Co(0001) at room temperature
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[245], in the case of water dissociatively forming adsorbed O [249], it is likely that
the coverages can differ depending on the exact composition of the UHV background.
Whereas sample # 1 was measured in a freshly baked UHV chamber, sample # 2
was measured after CO had been used in the high-pressure cell, thus in an increased
CO background, although the pressure had recovered to the 10~? mbar range. Figure
5.20(a) in the supplemental information indicates that an increased CO adsorption at
the expense of adsorbed O (sample # 2 at 20 °C and sample # 4 at 220 °C) is mainly
detected as an increase in the peak identified as CO without co-adsorbed O rather than
the peak associated with CO co-adsorbed with O, therefore confirming the validity of
the peak fitting method. However, the separation of the two peaks is not accurate
enough for a quantitative comparison with the O coverage, especially at low total CO
coverages.

Under heating to 220 °C most of the adsorbed CO desorbs also in the high CO back-
ground. At this temperature the CO coverage is between 0 and 0.04 on samples # 1
to # 3, whereas the O coverage remains at 0.23 to 0.24. The OH coverage, which
likely stems from the HyO dissociation as well, lies between 0.04 and 0.08. Carbon and
hydrocarbon contaminants cover maximally 0.06 and 0.03 of the surface, respectively,
for samples # 1 to # 3. Hereby, the detailed peak fitting (see Figure 5.20(b) in the
supplemental information) shows that carbon is mainly present as carbidic carbon. In
most samples the carbidic peak represents at least 95 % of the summed-up C peak area
in UHV with one exception (67 % carbidic C and 33 % graphitic C on sample # 3).
On the other hand, the two different types of hydrocarbons do not show a clear trend
in UHV as both can represent between 0 % and 100 % of the total hydrocarbons (see
Figure 5.20(c) in the supplemental information).

Sample # 4 is more contaminated compared to samples # 1 to # 3. It shows 0.29
coverage with hydrocarbons and 0.31 coverage with atomic carbon. At the same time a
higher coverage with CO (0.13) is possible in this state, which can either be related to
the other co-adsorbates or this surface is rougher than the other samples, which would
leave more low-coordinated surface atoms, steps and kinks, for the CO adsorption.
The Co(0001) terraces are expected to be free from CO above roughly 130 °C in UHV
[245]. Obviously, a sample like sample # 4 has to be subjected to more sputtering and
annealing before performing any experiments.

No sulfur was detected on the other samples after preparation in UHV. On one as-
prepared sample traces of potassium could be detected. By a rough comparison of the
K 2p signal to the C 1s signal and the respective photon cross sections at 480 eV pho-
ton energy, the potassium coverage was estimated to be on the order of 0.001 at 20 °C
and increasing to an order of 0.01 when heating to 300 °C. Therefore, the potassium

was not included in the coverage model applied here. The temperature dependence
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Figure 5.6: Coverages of all adsorbed species on one as-prepared sample in UHV (sample # 1)

at different temperatures. Details see text.

suggests that the potassium is present in the bulk of the cobalt crystal and can reach
the surface upon heating. The manufacturer excludes their starting material, as well
as processing materials and tools as the source of the potassium. However, it could
stem from polymer materials inside the vacuum chamber [264]. On the as-prepared
samples used for the measurements in Sections 5.3.2 to 5.3.6 the potassium was below
the detection limit. These were subjected to at least 100 more cleaning cycles.

Figure 5.6 shows the temperature dependence of the UHV characterization of sample
# 1. In the whole probed range from room temperature to 300 °C the adsorbed oxygen
remains at a coverage of 0.25 £ 0.04. From this we generously estimate a maximal
uncertainty of + 0.05 for all calculated coverages in the following sections. The temper-
ature stability suggests that the adsorbed oxygen might be stable under the annealing
to 317 °C during the sample preparation. This is in agreement with temperature-
programmed desorption experiments by Xu et al. [249], in which the adsorbed oxygen

formed by water dissociation was stable until at least 350 °C. In the measurements
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presented here the adsorbed OH coverage remains between 0.075 and 0.1 upon heating
to 300 °C as well. A lower value of 0.04 is only measured at room temperature where
more CO is present on the surface possibly blocking the adsorption sites. The CO
has desorbed from 140 °C on, which is in agreement with temperature-programmed
desorption reported in the literature (see Figure S1 in Ref. [245]). The surface area
covered with hydrocarbons from the UHV background seems to increase upon heating
to 140 °C, which might be due to outgassing of parts of the sample holder during this
first heating in the analysis chamber. Upon further heating the hydrocarbons desorb
and are not detectable from 240 °C on. Cooling down again to 180 °C, a coverage of
0.01 with hydrocarbons adsorbs again.

The atomic carbon coverage increases from 0.02 to 0.07 when heating to 180 °C and
decreases again upon further heating until it is not detectable anymore from 240 °C
on. This is somewhat surprising as the dissolution of carbon in cobalt is only expected
at significantly higher temperatures where cobalt carbide can be formed [265]. The-
ory suggests that carbon atoms can easily diffuse below the topmost surface layer of
Co(0001), whereas they are unlikely to diffuse deeper into the bulk unless Co vacancies
are present [266]. Carbon atoms right below the topmost surface layer should still
be detectable in our case as we probe the two to three topmost layers of the cobalt
crystal. This is estimated by comparing the inelastic mean free path of 0.544 nm at
200 eV electron kinetic energy (see Section 5.2.3) to the layer thickness of Co(0001)
of 0.21 nm (calculated from the crystal structure [257]). However, the existence of
vacancies is likely on a Co(0001) surface, especially as the annealing temperature is
limited, such that the dissolution to lower layers cannot be excluded as an explanation
for not detecting the carbon at these temperatures. Cooling down to 180 °C a carbon
coverage of 0.01 resurfaces, which is an order of magnitude less than the 0.14 that was
present at 140 °C before heating up. In general, it is clear that keeping the surface at
an elevated temperature (between 220 °C and 260 °C) in UHV and when introducing
gases can increase the surface cleanliness and keep the surface free from CO, carbon,

and hydrocarbons.

5.3.2 Oxidation of Co(0001) in Hydrogen

Figure 5.7 compares the change in the O 1s signal measured at MaxIV while introducing
(a) wet and (b) dried hydrogen, respectively, both at 220 °C surface temperature.
Both samples show some adsorbed oxygen when starting from UHV as discussed in
detail in the previous section. When introducing the wet hydrogen, the oxygen signal
strongly increases, whereas the dried hydrogen removes the adsorbed oxygen from
the as-prepared sample. The horizontal reference lines in Figure 5.7(b) show that the
adsorbed oxygen can already be removed before actually starting the flow of 3.8 ml/min
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Figure 5.7: O 1s area measured on Co(0001) over time while introducing (a) wet and (b) dried
Ha, respectively, both at 220 °C. The black and white reference lines mark (1) the closing of
the near-ambient pressure cell, (2) the enabling of the mass flow controller, (3) and the start
of the flow of H (details see text). All scans in each map were normalized to have the same
background level. In (a) two consecutive scans at around 7 min as well as around 3 min do
not agree with the scans before and after. Such faulty scans can be caused by mechanical
movements on the machine, for example when closing the cell door, or when the detector does
not move to the correct energy range in time (meaning that the delay time between different
peaks is not chosen long enough). In (b) such faulty scans might be present at 0 min and

around 6 min.

Hs (at the time of reference line 3). When closing the cell door (at reference line 1) the
volume is not pumped via the analysis chamber anymore such that the composition
of the vacuum background can change. Subsequently, the gas lines are opened to the
cell (no reference line) such that the background composition can be influenced by the
background in the gas lines as well. Additionally, when the mass flow controller is
enabled (at reference line 2), meaning a valve between the mass flow controller and
the gas lines to the cell is opened, some gas could easily enter the cell as mass flow
controllers might not be completely leak-tight when closed. These complications in
knowing the exact gas composition at every point in time could also explain why it
appears that the adsorbed oxygen on the as-prepared sample is (partially) removed in

Figure 5.7(a) before it strongly increases in the flow of wet Hs.
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Figure 5.8: Co 2p area measured on Co(0001) after roughly 30 min in 0.25 mbar dried Hs
(blue) compared to after roughly 10 min in wet Hz (orange), both introduced at 220 °C.
The latter spectrum was only measured shortly after CO was added to the gas composition.
However, as will be shown in Section 5.3.3, the presence of CO does not oxidize the cobalt
surface, such that this measurement can still be used to estimate the extent of oxidation
caused by wet Hs.

Apart from the adsorbed oxygen or oxide signal at 530.4 eV, a second contribution is
visible in Figure 5.7(a). The binding energy is roughly the one we have identified as the
binding energy of CO co-adsorbed with O. However, in this case there is no measurable
carbon signal at the time of the last spectrum of the map, such that the same peak
needs to be identified as molecularly adsorbed water (see Section 5.2.2). If the water
dissociates, the binding energy of the resulting adsorbed OH would lie between the
adsorbed O or oxide and the adsorbed H5O, such that it might not be clearly resolved
as a distinct peak in Figure 5.7(a). A detailed fit of the last spectrum in the map
results in 29 % of the oxygen signal stemming from adsorbed water and merely 2 %
from adsorbed OH. Thus, the water is mainly adsorbed molecularly in this case. As
shown in the following paragraph, the cobalt is oxidized here, which explains why it is
inactive for water dissociation [249].

The Co 2p peaks displayed in Figure 5.8 suggest that the probed depth of the cobalt
sample is almost completely oxidized by the wet hydrogen. 98 % of the peak area in a
detailed fit is the oxidized contribution. The strong contribution in the O 1s signal can

thus be identified as mainly stemming from cobalt oxide instead of adsorbed atomic
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Figure 5.9: Co 2p areas measured on Co(0001) in 0.25 mbar dried Hs at 220 °C, 190 °C, and
150 °C, as well as after subsequent heating to 220 °C.

oxygen in this case. In comparison, the surface stays mostly metallic in the dried
hydrogen. The detailed fit shows 9 % oxidized contribution in the Co 2p peaks, which
is not more than the maximum measured on an as-prepared sample in UHV.

While the dried hydrogen keeps the cobalt surface metallic in 0.25 mbar at 220 °C, it
does oxidize upon reduction of the temperature. Figure 5.9 shows the Co 2p area in
0.25 mbar dried Hy under cooling down from 220 °C to 190 °C and 150 °C, as well
as under subsequently increasing the temperature to 220 °C again. The sample was
kept at every temperature for about 1 h. Within this time frame a partial oxidation at
190 °C is clearly visible in the Co 2p area (red curve). A detailed fit identifies 38 % of
the probed depth measured as oxidized cobalt. While staying in these conditions, the
O 1s area was measured twice with a time difference of 26 min, over which no change
is measurable (data not shown). Thus, the full oxidation measured at 150 °C another
29 min later (green curve) is likely actually caused by this decreased temperature and
would have not taken place at 190 °C, at least not within this time frame.

Figure 5.9 additionally displays the Co 2p area after increasing the temperature of the
oxidized surface from 150 °C to 220 °C (grey curve), where it is not reduced within



106 5 Co(0001) during Fischer-Tropsch Synthesis

Time [min]

"1
——-"_—‘——‘—‘
0
536 534 532 530 528 280 290 300
Binding Energy [eV] Temperature [°C]
1 2 3
Counts [a.u.]

Figure 5.10: O 1s area measured on previously oxidized Co(0001) in 0.25 mbar dried Hy while

increasing the temperature from 280 °C to 300 °C with the corresponding temperature graph.

1 h and two measurements of the O 1s area with a time difference of 36 min do not
show any change. This suggests that the reduction is kinetically limited in the time
frame investigated here. Upon further increasing of the temperature the sample is
reduced within 2 min above 280 °C. This is evidenced by the change of the O 1s signal
displayed next to the sample temperature in Figure 5.10. A 90 % metallic contribution
was subsequently measured in the Co 2p area at 300 °C. However, the increase of
the temperature from 220 °C to 280 °C, over which no significant change in the O 1s
area was visible, took place within only 15 min, leaving the possibility that a lower
temperature might have been sufficient for reduction over the course of hours.

In measurements taken at the ALS in purer Hy (see Table 5.1) as well as using a
liquid nitrogen trap the cobalt stayed completely metallic at 180 °C (data not shown).
However, lower temperatures were not tested in this case and a possible disagreement
between the temperature read-out in the two different systems is not unlikely. This
can be caused by different positioning of thermocouples with respect to the sample,
different thicknesses of the thermocouples, as well as different distances between the
sample and other materials picking up the thermocouple signal. Therefore, this is no
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clear evidence that the initial purity of the gas in the bottle has an influence. However,
the difference between wet and dried hydrogen used at MaxIV is clearly evidencing at
least some influence of the water background on the oxidation behavior in hydrogen.

As hydrogen adsorbed on the terraces of Co(0001) is more stable than on the steps
and defects [267,268], these lower-coordinated Co sites could be free for dissociative
H>O adsorption as soon as the temperature is low enough in the specific HoO partial
pressure. DFT calculations by Ma et al. [269] suggest that the adsorption of HoO
is significantly easier on the steps than on the terraces, whereas the dissociation is
only slightly enhanced in comparison. Once some HyO has dissociated, the resulting
adsorbed O can strongly promote further HyO dissociation on the terrace [249,270]
and even more so on the steps [269]. The oxidized CoO/Co(0001) terraces are not
active for further water dissociation [249], such that a limited growth of only one layer
of oxide could be expected. However, to our knowledge there are no similar studies
regarding the water dissociation on the steps and defects of oxidized cobalt. As the
measurements presented here probe between two and three layers of the single crystal,
which appear fully oxidized, we cannot directly confirm or exclude a limited growth.

Under vacuum pressures, where hydrogen has been shown to remove adsorbed oxygen
from Co(0001) from roughly 180 °C on [229] and no oxidation caused by Hs has been
reported, the background water pressure could be significantly lower leading to less
water adsorption and dissociation. The same study finds that a higher temperature is
needed for Hy to remove adsorbed oxygen from defective Co(0001) compared to the
Co(0001) terraces, which confirms that it is less effective at the low-coordinated sites.
The oxidation observed here in the mbar range has been observed previously by Groot
et al. [242] in ambient-pressure surface X-ray diffraction on Co(0001) showing the
formation of crystalline CoO in 1 bar Hy when decreasing the temperature from 220 °C
to 180 °C. Interestingly, although these studies were done without any drying of the
gas (purity of the hydrogen between 4.5 and 5), the surface stayed metallic at 220 °C
and reduced again when increasing the temperature to 220 °C after the oxidation.
These observations indicate a more efficient reduction in 1 bar wet Hy compared to
0.25 mbar dried Hy. The difference in total pressure might lead to a larger hydrogen
coverage at the same temperature, thus more efficiently preventing the adsorption
and dissociation of water and removing the oxygen atoms. Especially, the reduction
when returning to 220 °C indicates that it is less kinetically limited at higher pressure
compared to our measurements. In a pressure of 0.2 mbar Hy, Papaefthimiou et al.
[228] have reduced an oxidized Co(0001) surface at about 250 °C, which is the same
range as our result taking the usual inaccuracies of temperature measurements into
account. Additionally, our measurements agree with the results of Wu et al. [226]
on polycrystalline cobalt foil. In roughly 0.13 mbar (100 mTorr) Hy they observe
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Figure 5.11: O 1s area measured on Co(0001) over time while introducing CO at 220 °C. The

black and white reference line marks the start of the flow of 1.9 ml/min CO.

oxidation below 185 °C and the reduction between 200 °C and 290 °C indicating that
the difference in structure between the single-crystalline and the polycrystalline sample
might not have a significant influence on the oxidation behavior in this pressure range
of hydrogen. Lukashuk et al. [271] have observed the reduction of a Co304 powder
in 0.4 mbar Hy starting from 250 °C on as well. In contrast, Turczyniak et al. [227]
observe a complete reduction of Co304 nanopowder in 0.2 mbar Hy only at 350 °C.
This confirms that the complex structure of nanoparticles and powders, which can
consist of numerous different types of cobalt sites, not even taking possible supports
into account, can still lead to significantly different results compared to studies on
crystalline samples. In general, the above considerations suggest that low-coordinated
cobalt atoms are more prone to the oxidation by water in a hydrogen environment and
that the water partial pressure as well as the total hydrogen pressure play a significant
role.

5.3.3 Metallic Co(0001) in CO

Figure 5.11 displays the change of the O 1s signal on Co(0001) while introducing
CO into the near-ambient pressure cell at 220 °C surface temperature. The adsorbed
oxygen on the as-prepared sample is efficiently removed as soon as the CO is introduced
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Figure 5.12: Co 2p areas measured on Co(0001) in 0.25 mbar CO at 220 °C and 120 °C.

(see horizontal reference line). At the same time the adsorbed CO signal appears at
higher binding energy, albeit not yet to a strong extent compared to the adsorbed O
on the as-prepared sample (see Section 5.3.5 for a quantitative analysis of the adsorbed
species in 0.25 mbar CO).

The Co 2p signals displayed in Figure 5.12 confirm that the cobalt stays mainly metallic
in 0.25 mbar CO at 220 °C (0.5 % oxidized contribution in the fit). This is is still the
case when decreasing the temperature to 120 °C (4 % oxidized contribution in the fit).
Thus, although the CO contains a similar amount of water (see Table 5.1) and is not
additionally dried, it is significantly more efficient at keeping the Co(0001) metallic
compared to dried Hs at the same total pressure. This is especially surprising as the
CO is expected to dissociate on defect sites starting from around 60 °C on [272]. Thus,
at least part of the resulting adsorbed atomic oxygen (see Section 5.3.5) desorbs as
CO4 without oxidizing the cobalt.

These results are in agreement with the measurements of Wu et al. [226] on cobalt foil,
which stays metallic even at room temperature in roughly 0.13 mbar CO. Additionally,
they measure the reduction of CoO/Co(0001) by CO between 150 °C and 200 °C again
indicating a kinetic limitation as well as the more efficient reduction by CO compared
to Hs at the same total pressure. Co304 powder has also been shown to start reducing
in 0.15 mbar CO from 150 °C on, at lower temperatures than in 0.4 mbar Hy [271]. In
UHYV studies, Kizilkaya et al. [229] observe the opposite behavior as 2 - 1075 mbar Hy
removes adsorbed oxygen from Co(0001) at 177 °C, whereas CO in the same pressure
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range does not remove it even at 357 °C. In these conditions a coverage of at most
0.33 monolayers of CO and mainly on the top sites can be expected (estimated from
Figure 8 in Ref. [245]). Based on the same reference, a coverage between 0.33 and
0.5 monolayers can be expected on the top as well as the hollow sites in all pressure
and temperature conditions studied here (as well as industrial FTS conditions). As
the top sites would be the most stable position for HoO as well [254,270], a specific
minimal coverage with CO, thus minimal CO pressure at a specific temperature, could
be needed for sufficient site blocking to prevent the oxidation. Combined TPD and
DFT studies by Jiawei et al. [250] suggest that the adsorption of CO is significantly
stronger than the adsorption of HoO such that the CO could adsorb preferentially
when both are present in the gas phase. They also find that the co-adsorption of CO
stabilizes the adsorption of HoO via hydrogen bonds. As molecularly adsorbed water
can form two of those hydrogen bonds whereas OH could only form one, this might
hinder dissociation of the adsorbed water.

As water preferentially adsorbs on the steps compared to on the Co(0001) terrace [269],
the steps might be more relevant than the different terrace sites here. In contrast to
Hs (see Section 5.3.2), CO shows a comparable adsorption on stepped surfaces as on
Co(0001) [273]. Thus, the blocking of step sites by the CO at the investigated pressures
is possible. At the same time the dissociation of CO has been shown to be facilitated
at the steps of Co(0001) compared to the terrace [272] and to not be hindered by an
increasing CO coverage [274]. The dissociation could lead to additional blocking of the
step edges by the resulting atomic carbon. As will be shown in Section 5.3.5, carbon
species can be detected on the Co(0001) surface in CO at all investigated temperatures.
Although the carbon atoms could diffuse on the terraces [266], they are more stable at
the steps [218].

However, at even higher pressures, Groot et al. [242] observe the formation of CoO
on Co(0001) in CO (purity 4.5 to 5) at temperatures up to 260 °C and no reduction
up to 340 °C. In this case the total water pressure is higher such that the preferential
adsorption of CO might be insufficient to block all sites for the HoO dissociation.
However, in their study the total water pressure in both gases should be comparable
and can thus likely not completely explain the significantly more efficient reduction
they observe in Hy compared to CO, which is in contrast to our results in the mbar
range.

In general, the above suggested site blocking effect preventing oxidation could lead to
a different result depending on the exact water content as well as the exact manner
and order of introducing the CO and the oxidizing agent (O5, HoO, or wet Hs), which
can further complicate the comparison of different studies in the literature.
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Figure 5.13: Coverages of adsorbed carbon species, OH, and sulfur on the Co(0001) surface in
0.25 mbar dried Hy at different temperatures cooling down from 220 °C to 150 °C and subse-
quently heating up to 300 °C. For clarity the different carbon, hydrocarbon, and adsorbed CO
peaks are summed up to one coverage each here and the detailed results are only displayed in
the supplemental information. As explained in the text, the coverages can only be interpreted

relatively to each other instead of absolutely in this case.

5.3.4 Adsorbed Species on Co(0001) in Hydrogen

Figure 5.13 displays the coverages of the adsorbed carbon species, OH, and sulfur on
Co(0001) in 0.25 mbar dried Hy at different temperatures. As explained in Section
5.2.3, the model to calculate these coverages does not take the oxidation of the surface
(see Section 5.3.2) into account such that the resulting values can only be discussed as
relative coverages with respect to each other here and are not absolute coverage values.
As shown in Section 5.3.1, all as-prepared samples show some carbon. Here we start
out with a carbon coverage of 0.04. It can clearly be seen that in time in Hy the
carbon is removed from the surface. This can be expected from around 150 °C surface
temperature on [226]. Whereas the atomic C signal in the first measurement at 220 °C
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consists of 23 % graphitic carbon and 77 % carbidic carbon, only carbidic carbon is left
in all subsequent measurements (see Figure 5.21(a) in the supplemental information),
suggesting that the graphitic carbon is removed first.

Interestingly, the hydrocarbons are removed as well while reducing the temperature
from 220 °C to 150 °C (see Figure 5.13). As they can already be present on the as-
prepared sample from the UHV background (see Section 5.3.1), the removal might not
be related to the cooling but simply happen over time in Hy. On the other hand,
hydrocarbons can stem from the hydrogen bottle. In this case it could be expected
that more adsorb at lower temperatures. However, if that type of hydrocarbon needs
to dissociate in a certain way to stick on the surface, they might only be present at
higher temperatures. This is unlikely as they do not re-appear after heating to 300 °C.
The two types of hydrocarbons differentiated in the fit do not show a clear trend (see
Figure 5.21(b) in the supplemental information). In all investigated conditions the
hydrocarbon signal is small with less than 0.01, which can lead to inaccuracies in such
a detailed analysis.

The presence of some adsorbed CO is generally not surprising as there is a CO back-
ground in the UHV chamber as well as in the gas lines after previous uses of CO in
the cell. However, no clear trend with temperature in Hy can be recognized in Figure
5.13 except that no CO is adsorbed on the metallic Co(0001) at 300 °C. The difference
between the other temperature steps, especially comparing the two different sets of
measurements at 220 °C while cooling down and heating up again, could be explained
on the basis of how much Co(0001) or CoO/Co(0001) is covered with other adsorbates
(C, hydrocarbons, OH, and O) and how much is thus free for CO adsorption. The
distinction between CO alone and CO co-adsorbed with O in the detailed fit (see Fig-
ure 5.21(c) in the supplemental information) shows that mainly the latter is present in
those sets of measurements where the cobalt is oxidized. Thus, the binding energy of
CO on CoO/Co(0001) is shifted as well and contributes to the peak that was identified
as CO with co-adsorbed O. Therefore, it is not possible to use the position of the CO
peak as an indication for the presence of adsorbed O on top of the CoO. However,
the adsorbed OH, which also originates from dissociated water, is increased at these
temperatures as well (see Figure 5.13). As the adsorbed oxygen contribution to the
O 1s peak cannot be distinguished from the cobalt oxide, the presence of adsorbed
oxygen on top of the oxide cannot be confirmed in a direct measurement. Whereas
co-adsorbed oxygen would already reduce the probability for CO adsorption and CO
dissociation [275], cobalt oxides favor CO oxidation over CO dissociation to such an
extent that they are even investigated as CO oxidation catalysts [276].

Over the course of more than 7 h in 0.25 mbar Hs, a small amount of sulfur is adsorbed

on the surface (0.002 in the last set of measurements at 300 °C), which likely stems
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Figure 5.14: Coverages of adsorbed carbon species, oxygen species, and sulfur on the Co(0001)
surface in 0.25 mbar CO at different temperatures cooling down from 190 °C to 120 °C and
subsequently heating up to 220 °C. For clarity the different carbon, hydrocarbon, and adsorbed
CO peaks are summed up to one coverage each here and are only displayed in detail in the

supplemental information.

from contaminants in the hydrogen bottle.

5.3.5 Adsorbed Species on Co(0001) in CO

Figure 5.14 displays the calculated coverages of the adsorbed species on Co(0001) in
0.25 mbar CO at different temperatures. With a maximum coverage below 0.15, less
oxygen than on the as-prepared sample in UHV is present. This confirms the removal
of adsorbed oxygen by CO described in Section 5.3.3. Still, a trend to increasing oxygen
coverage with decreasing temperature is observed. Adsorbed OH, although significantly
less than O (as in UHV as well as in Hy), follows the same trend confirming that again
both likely stem from dissociation of background water. Additionally, this confirms

that O from CO dissociation at defect sites is mostly removed as COs as expected
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from literature [226,245].

The range of CO coverages measured (between 0.21 and 0.44) is slightly lower than the
expected range between 0.33 to 0.5 monolayers (see Figure 8 in Ref. [245]). However,
taking into account how much surface area is in total occupied by other species, the
CO coverage on the bare part of the surface area can be calculated as between 0.27 and
0.68. This estimate does not take possible interactions between the different adsorbates
as well as changes over time (see below) into account.

The CO coverage shown in Figure 5.14, which is calculated based on the C 1s spec-
tra, is not generally higher at lower temperatures. Figure 5.22(a) in the supplemental
information compares these CO coverages to the CO coverages calculated from the
O 1s spectra. Whereas the latter is generally higher at lower temperatures, the C 1s
spectrum shows more adsorbed CO in the first measurement at 190 °C as well as after
heating up to 220 °C again. As the C 1s spectra are measured right after changing
the temperature and the O 1s spectra roughly 18 min later, this could be related to a
carbon and/or hydrocarbon built-up over time, which is especially expected at the tem-
peratures active for FTS (as well as beam-induced reaction, see Section 5.5.1). Thus,
although no change in the carbon signal can be detected on the time scale of the C 1s
measurement, it could be detected indirectly as less surface area is free for CO, OH,
and O adsorption once the O 1s spectrum is measured.

The CO in the O 1s spectrum, the CO in the C 1s spectrum, as well as the adsorbed
O and OH show a (slightly) higher coverage after heating to 150 °C compared to their
coverage at 120 °C. As this trend is the same in the C 1s and the O 1s spectrum, it
cannot be caused by the time difference between the two measurements (as the effect
explained in the previous paragraph). However, an increase in any adsorbate towards
the end of a set of measurements can cause an inaccuracy in all coverages at once as
the Co 2p signal (which is measured at the end of the set) is then underestimated. All
calculated coverages, which are roughly inverse proportional to the measured Co 2p
intensity (see Equation 5.7 in Section 5.2.3), are thus overestimated at the same time.
Taken the estimated inaccuracy of £ 0.05 for all coverages into account, the CO and O
coverages at 120 °C and subsequent increase to 150 °C are overall comparable. Com-
paring the coverages at 150 °C before and after the cooling to 120 °C, a hysteresis
between adsorption and desorption can thus be observed.

As explained in Section 5.2.2, two peaks are associated with adsorbed CO (without co-
adsorbed O) in the C 1s signal, a main higher binding-energy peak as well as a lower
binding-energy peak that was tentatively identified as a second, less stable adsorption
site on the Co(0001) terrace. At all temperatures investigated here, most of the CO
(without co-adsorbed O) is located at the most stable site (between 83 % and 88 %)
confirming this identification. Compared to the phase diagram for CO adsorption by
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Weststrate et al. (Figure 8 in Ref. [245]), it is likely that the most stable site is the
top site, whereas the second observed one is the hollow site. As the coverage of CO
(without co-adsorbed O) does not change significantly with the different temperatures
investigated here (see Figure 5.22(b) in the supplemental information), a constant ra-
tio of the two different adsorption sites is not surprising. Instead the change in CO
adsorption with temperature is detected mainly in the peak identified as CO with co-
adsorbed O (agreeing with the change in adsorbed O). This CO with co-adsorbed O
consists of two peaks in the detailed C 1s fit as well. Here, the lower binding energy one
is dominant (thus likely the most stable site) and accounts for between 71 % and 83 %
of the CO co-adsorbed with O. Thus, although the total CO coverage varies in a range
from 0.21 to 0.44 depending on the temperature (see Figure 5.14), the distribution
over the different adsorption sites remains comparable for CO both with and without
co-adsorbed O.

The change of the amount of adsorbed hydrocarbons with temperature appears some-
what correlated to the amount of adsorbed CO. If all hydrocarbons stemmed from the
CO bottle, one could expect that the adsorbed amount is simply correlated to the tem-
perature like the adsorbed O or to the free space on the surface, which can be estimated
from the total amount of all other adsorbates. In this case more adsorbed hydrocarbons
could be expected after decreasing the temperature to 150 °C. On the other hand, a
larger hydrocarbon coverage at higher temperatures from 190 °C on could be expected
if the hydrocarbons are formed through reaction of the adsorbed CO with background
hydrogen. The distinction between two different hydrocarbon peaks in the detailed fit
(see Figure 5.22(c)) shows that one type is increased at higher temperatures (type I)
and might thus be the hydrocarbons that are produced by reaction with background
Hs, whereas the other type (type II) is adsorbed more at lower temperatures and could
stem from the background in the CO bottle.

The absolute atomic carbon coverage is not significant with values between 0.007 and
0.021, such that the change with temperature is within the estimated inaccuracy of the
calculated coverages. Although CO dissociation, which can be expected from 60 °C
on [272], could leave carbon behind, the amount of carbon is in the same range as on
the as-prepared sample in UHV (see Section 5.3.1). Thus, it cannot be related to CO
dissociation unambiguously. However, in contrast to the UHV measurements, the de-
tailed fit (see Figure 5.22(d) in the supplemental information) suggests that the carbon
is mainly present as graphitic carbon, whereas a smaller amount of carbidic carbon
that appears when decreasing the temperature to 150 °C is not visible anymore after
increasing it to 190 °C again. The carbidic carbon can diffuse into the bulk, although
we have observed that only from higher temperatures on in UHV (see Section 5.3.1).

It is more likely that carbon is removed by reaction with background Hs from 190 °C
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Figure 5.15: Change of the (a) O 1s and (b) C 1s signals measured on Co(0001) over time
while introducing the reaction mixture of 4 Hy + 1 CO at 220 °C. The three black and white
reference lines mark (1) the moment the mass flow controllers are connected to the cell, (2)
the start of the flow of 4.4 ml/min H,, (3) and the start of the flow of 1.1 ml/min CO. All
consecutive spectra have been normalized to the background level at low binding energy. Some
faulty measurements caused by an insufficient delay between the different scans are visible as

horizontal lines in (a).

on (see Section 5.3.4). Interestingly, the graphitic carbon seems to be present in larger
amounts at higher temperatures. This could be due to a higher rate of CO dissociation
or also be related to the decrease in carbidic carbon at those temperatures. If some
carbidic carbon would become graphitic, it might not lead to a net change in the total
carbon coverage. The graphitic carbon could then be more resistant to removal by the
low background pressures of Hy (details see following section).

The sulfur coverage detected after a total of more than 17 h in 0.25 mbar CO is less
than 0.001.

5.3.6 Adsorbed Species on Metallic Co(0001) during FTS

Starting from the as-prepared Co(0001) in UHV the reaction mixture was introduced
by first starting the flow of dried Hs and, once all adsorbed oxygen has been removed,
starting the additional flow of CO. This can be seen in Figure 5.15(a) in the form
of the removal of O and the subsequent adsorption of CO at higher binding energy.
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Figure 5.16: Coverages of carbon species, oxygen species, and sulfur on Co(0001) in 0.25 mbar
(a) 4 H» + 1 CO and (b) 2 Hy + 1 CO. The temperature is increased from 220 °C to 250 °C
at the dotted, vertical reference line. For clarity the different atomic carbon and hydrocarbon
peaks are summed up to one coverage each here and are only displayed in detail in the

supplemental information.
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The removal of oxygen seems to start already before setting the hydrogen flow. At
reference line 1 the mass flow controllers are connected to the cell by opening certain
valves. This can easily cause a partial reduction by background gas from the lines
or small amounts of Hy or CO leaking through the mass flow controllers. Right after
the start of the CO flow the adsorbed CO as well as carbon and some hydrocarbons
can be seen in the change of the C 1s signal in Figure 5.15(b). Additionally, a small
amount of adsorbed OH and some carbon or hydrocarbon species could be suspected
in Ho (between reference line 2 and reference line 3). However, these are not significant
compared to the background level.

As the cobalt stayed metallic in 0.25 mbar dried Hy (see Section 5.3.2) as well as
0.25 mbar CO (see Section 5.3.3) at 220 °C, it could be expected that it also stays
metallic in a mixture of the two gases at the same total pressure and temperature.
This is confirmed by an oxidized contribution to the Co 2p fit of at most 3 % during
up to 3 hin a 4:1- or a 2:1-ratio of Hy to CO at 220 °C. At 250 °C the same value is
measured. Thus, the additional water produced in the Fischer-Tropsch reaction is not
sufficient to oxidize the surface under these conditions.

Figure 5.16 displays the coverages of the adsorbed species on Co(0001) at the two
different gas ratios. In line with the removal of oxygen described above, the O cover-
age stays between 0.015 and 0.02 for both gas ratios at 220 °C, and is only slightly
lower with a maximum of 0.016 at 250 °C. The OH coverage is comparable with values
between 0.01 and 0.02. These values are on the same order of magnitude as on the
metallic surface in 0.25 mbar CO at 220 °C. As shown in Section 5.3.5, the O coverage
can still be an order of magnitude higher upon decreasing the temperature while the
surface stays metallic. In UHV the O coverage is even higher with 0.25 £+ 0.05 without
oxidizing the surface (see Section 5.3.1). However, in 0.25 mbar dried Hy the surface
did oxidize at lower temperatures (see Section 5.3.2). In the two reaction mixtures
lower temperatures were not investigated here. However, the observation that the sur-
face is metallic at 220 °C is in rough agreement with the reduction of oxidized cobalt
foil seen from 225 °C on in 0.1 mbar 1 Hy + 1 CO [226], as well as the reduction of
Co0/Co(0001) observed in 1 bar 1 Hy + 1 CO above 220 °C [242]. As mentioned
above, the complexity of catalysts, supports, and promoters can strongly influence the
oxidation and catalytic behavior. This is evidenced by observations of positive as well
as negative effects of water on the activity and selectivity of different cobalt-based cat-
alysts [277-279]. Overall, the poisoning by oxidation is believed to not play a large role
for industrial Fischer-Tropsch synthesis as it can easily be prevented under realistic
conditions [222].

Figure 5.17 displays the CO coverage in the reaction mixture (compared to the other
adsorbed species). The absolute value of CO coverage lying between 0.44 and 0.53
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Figure 5.17: Coverage of CO on Co(0001) in 0.25 mbar (a) 4 Ho + 1 CO and (b) 2 H2 + 1 CO.
The temperature is increased from 220 °C to 250 °C at the dotted, vertical reference line. For
clarity the sum of the different CO peaks is shown here and the results are only displayed in
detail in the supplemental information. For comparison the coverages of all other adsorbed

species from Figure 5.16 are plotted again.
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seems somewhat higher in reaction conditions compared to 0.25 mbar CO at 220 °C
(see Figure 5.14 in Section 5.3.5). However, less other species are adsorbed here. The
coverage on the bare part of the surface is comparable for both gas mixtures and lies
between 0.52 and 0.63 at 220 °C. Thus, this is not significantly different from the value
of 0.53 measured in 0.25 mbar CO at 220 °C. A trend to smaller absolute CO coverages
in the reaction mixtures at 250 °C compared to 220 °C is not significant and can be
explained by the increase of other carbon species. The CO coverage on the bare part
of the surface is calculated to be between 0.59 and 0.60 at 250 °C and is thus in the
same range as at 220 °C. These results are roughly in agreement with the expected CO
coverage of 0.5 during the reaction [245] and confirm that it does not strongly depend
on the CO partial pressure or the temperature under the conditions investigated here.
As only a small amount of adsorbed O is detected in reaction conditions, it is not sur-
prising that the adsorbed CO is mainly found in the peaks associated with CO without
co-adsorbed O (see Figure 5.23(a) in the supplemental information). The two different
peaks associated with adsorbed CO without co-adsorbed O further show that between
93 % and 97 % of the CO is adsorbed in the most stable site, which is likely the top
site. Thus, although the absolute coverage in reaction conditions is comparable to in
CO (see Section 5.3.5), a somewhat higher fraction of it is in the top site. This might
be related to the smaller amount of other adsorbates, which allows more CO to sit in
the preferred position.

The atomic carbon coverage during the reaction is displayed in Figure 5.16. Although
an increasing trend is visible at 220 °C, the C coverage stays between 0.08 and 0.12
over a time of 3 h at this temperature. In the first measurement in time the C coverage
is already significantly more than in Hs or CO at 220 °C suggesting that it is caused
by the Fischer-Tropsch reaction. Taking the different time axes in Figure 5.16(a) and
Figure 5.16(b) into account, the carbon deposition is not faster in 2 Hy + 1 CO than
in 4 Ho + 1 CO suggesting that the removal of C is not limited by the exact Hsy partial
pressure in this pressure range. Although there seems to be a jump in the C coverage
when increasing the temperature to 250 °C, the further C deposition at this temper-
ature (measured only in 4 Hy + 1 CO) does not clearly display a larger rate than at
220 °C. Thus, any increase in the rate of CO dissociation with increased temperature
seems to be compensated by a faster C removal by Hy. These observations seem to be
in contrast to magnetometer studies on an industrial catalyst where the rate of carbide
formation, although deemed insignificant in general, was found to decrease with an in-
creased Ha-to-CO-ratio as well as with increased temperature [280]. However, a direct
comparison of such literature to our experiments is not justified given the use of a single
crystal, the lower pressure range, and significantly shorter time frame investigated here.

It is especially unclear whether the C deposition would keep increasing linearly over
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time, thus covering the whole surface after on the order of tens of hours, or whether it
would saturate at a certain coverage in an equilibrium between deposition and removal.
Generally, only specific polymeric, graphitic, and bulk carbides are deemed a poison to
the catalyst [216,219,246], whereas all surface carbon that is hydrogenated at FT gas
ratios and temperatures can be considered a reaction intermediate. Figure 5.23(b) in
the supplemental information shows that, although both carbidic and graphitic carbon
follow a similar trend in time, most adsorbed C is carbidic. However, our results in
Section 5.3.4 show that both forms of carbon detected here could be removed by expo-
sure to 0.25 mbar Hs and are thus likely not carbon species responsible for significant
catalyst poisoning.

Starting out with an absolute value of 0.04 and 0.03 at 220 °C respectively, in both re-
action mixtures there are more hydrocarbons adsorbed than in UHV and Hs, but they
are in the same order of magnitude as in 0.25 mbar CO (see Section 5.3.5). However,
the absolute hydrocarbon coverage is higher in 4 Hy + 1 CO than in 2 Hs + 1 CO,
thus scaling inversely with the CO partial pressure. This can for example be seen
by comparing the measurement after 2 h at 220 °C and the first measurement at
250 °C for the two different gas ratios in Figure 5.16. Thus, it can be excluded that
all hydrocarbons stem from the background of the CO gas. Additionally, the hydro-
carbon coverages follow roughly the same trend over time as the C coverage including
a stronger increase after increasing the temperature indicating that at least part of
the hydrocarbons could stem from the same reaction process as the carbon. Under
industrial conditions on cobalt catalysts a higher Hy-to-CO-ratio has a positive effect
on the turnover for short products and switches to a negative effect on the turnover
for longer products from a length of roughly 15 carbon atoms on [281]. This can be
explained by a decreased chain growth probability « in the Anderson-Schulz-Flory
chain-growth model [282] with increasing Hz-to-CO-ratio. On Co(0001), the Fischer-
Tropsch product distribution decreases exponentially from methane to longer chains
with mainly C; to C4 products detected at atmospheric pressures [243,283]. Therefore,
mainly methanation is measured on Co(0001) in the mbar range [127]. The methane
turnover on Co(0001) does increase with increasing Ha-to-CO-ratio [284,285]. Thus,
mainly shorter products can be assumed here and a higher activity in 4 Hy, + 1 CO
compared to 2 Hy + 1 CO is likely. However, even if it is the main product, methane
will likely not stay adsorbed on the Co(0001) surface [286] and is thus likely not the
species detected by XPS. In contrast, it can be expected that the adsorption strength
of the products increases roughly linearly with the chain length [287,288], which re-
sults in an exponential increase in the residence time on the surface. Based on this
assumption Navarro et al. [47] have modeled the adsorption of products on Co(0001)
over time. Their result that a chain length of at least 15 carbon atoms is needed to
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reach a significant coverage on the surface agrees well with the length they find exper-
imentally. As our experiments are done at lower pressures, it is to be expected that
a full coverage with products could only be reached after a significantly longer time
than the 30 min Navarro et al. [47] observed in the same temperature range. The sum
of the coverages of all adsorbates stays within 0.6 to 0.7 for both reaction mixtures
over the time of hours tested here. This confirms that the surface is not fully covered
with products and excludes any influence of space limitation on the measured cover-
ages. To shed more light on the nature of the adsorbed hydrocarbons, Figure 5.23(c)
in the supplemental information distinguishes the two different peaks contributing to
the overall hydrocarbon coverages displayed in Figure 5.16. In both gas ratios the two
types show a similar increase over time at 220 °C with the hydrocarbon type labeled
IT clearly being dominant (at least 70 % of the total hydrocarbon coverage). However,
at 250 °C the amount of type I strongly increases over time, whereas type II starts to
desorb. If both hydrocarbons were from the reaction, one would have to conclude that
the increase of the desorption rate of type II strongly exceeds the increase of the rate of
its formation when increasing the temperature from 220 °C to 250 °C, whereas for type
I the increase of rate of formation strongly exceeds the increase of the desorption rate
when increasing the temperature from 220 °C to 250 °C. As type I is more strongly
adsorbed, it would be a longer hydrocarbon than type II in this case. However, the for-
mation of different products shows a comparable temperature dependence on Co(0001)
[283], whereas in industrial FTS the product distribution would rather shift to shorter
chain lengths with increasing temperature [212]. Therefore, we deem it more likely that
the hydrocarbon type II stems from the gas background whereas type I is a reaction
product, which agrees with the results of Section 5.3.5. Generally, the deposition of
products, although it can poison the catalyst [216], can also be considered part of the
initiation phase of the catalyst after which the desorption of subsequent products is
facilitated [47].

The sulfur coverage increases to maximally 0.001 within 4 h in the reaction mixture
for both gas ratios. Thus, although sulfur is known to easily block CO oxidation on
Co(0001) [220,289] as well as more industrially relevant catalysts [221], it is not a
significant poison in the conditions and time frame studied here.

5.4 Conclusions and Outlook

Generally, the oxidation behavior of cobalt during FTS depends on a number of factors:
the structure of the sample, the water partial pressure, and the Hy-to-CO-ratio. For
the case of Co(0001), CO is more efficient at keeping the cobalt metallic compared to
H, at the same total pressure of 0.25 mbar as measured here by in situ XPS. We have
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suggested that this behavior can be explained on the basis of the different adsorption
and dissociation sites of Ho, CO, and HyO, respectively. Namely, CO adsorbs equally
well on the steps and vacancies as on the terrace sites and is therefore able to block the
dissociation of water, which most likely proceeds at low-coordinated sites. In compari-
son, Hy prefers the Co(0001) terrace sites for adsorption and can therefore not prevent
the H5O dissociation in this pressure range. Under reaction conditions of 4 Hy, + 1 CO
and 2 Hy + 1 CO at 220 °C to 250 °C the surface stays mainly metallic.

We have developed a theoretical model to convert the measured intensities of all ad-
sorbed species to quantitative coverage values. Comparisons to values expected from
literature have confirmed the validity of this model in combination with an experimen-
tal calibration.

The high-resolution carbon areas measured at the HIPPIE beamline of MaxIV allow for
the distinction of a number of species. In this way it can be seen that at least 70 % of
the carbon adsorbed on the surface during the reaction at 220 °C is carbidic and thus
a reaction intermediate that can easily be removed by hydrogenation. Additionally,
two different hydrocarbon peaks in the fit allowed for the distinction of hydrocarbons
adsorbed from the CO gas background and formed by the Fischer-Tropsch reaction.
We plan to further study the effect of the water partial pressure on the oxidation be-
havior of Co(0001) by recording phase diagrams with and without drying of the gases.
At a high-flux beamline this can be done via quick O 1s, C 1s, and Co 2p scans while
continuously changing the conditions within a larger range of Hy-to-CO-ratios and tem-
peratures. Additionally, the identification of the different CO adsorption peaks should
be confirmed by more detailed studies in a larger CO pressure range from UHV to
mbars.

5.5 Supplemental Information

5.5.1 Beam-induced Deposition

Figure 5.18 compares the carbon and hydrocarbon coverage measured over time in the
reaction mixture at 220 °C while staying in one position on the surface (thus with
strong beam exposure) to measurements where the beam exposure was minimized. To
achieve the minimum beam exposure we have moved to a new position on the sample
right before every measurement of the carbon area. In this way the influence by the
beam is as small as possible and stays constant over time between measurements taken
at the same temperature. When comparing two consecutive sweeps of every such
carbon area measurement, no difference is detectable, which confirms that the beam-
induced deposition does not play a role in the time frame in which the carbon signal

is measured. However, as the O 1s and Co 2p areas are measured later in time, they
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Figure 5.18: Coverages of carbon and hydrocarbons measured on Co(0001) in 0.25 mbar
2 Hz + 1 CO at 220 °C over time comparing measurements done with strong beam exposure,
labeled (beam), to measurements done while minimizing beam exposure as explained in the
text.
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Figure 5.19: Hydrocarbon coverage on Co(0001) measured in 0.25 mbar 2 Hy + 1 CO at
increasing temperature. The sample was held at every temperature step for roughly 2.5 h
under continuous beam exposure at the same position. As explained in Section 5.2.3, the
coverage values displayed here are calculated as the number of layers that would be present if

the hydrocarbons covered the whole surface in the absence of other adsorbates.
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could still be slightly influenced by a change in carbon species over time. The same
procedure is used for all measurements shown in the previous sections.

In detail, the comparison in Figure 5.18 shows a somewhat higher coverage of C, likely
stemming from beam-induced CO dissociation. Subtracting the two values at 2 h results
in a maximum beam-induced C coverage of 0.07. However, this difference decreases
over time, likely because more surface area gets blocked by hydrocarbons on the surface
with strong beam exposure. The detailed fits show that between 69 % and 80 % of
the carbon is carbidic on the beam-exposed sample. This is in the same range as on
the sample with minimized beam exposure (70 % to 76 %), thus not suggesting any
promotion of graphite formation by the beam.

The deposition of hydrocarbons is more strongly increased on the sample with strong
beam exposure, roughly by a factor of 10 compared to the sample with minimum
exposure. This suggests a beam-induced Fischer-Tropsch reaction. The detailed fits
show that all of the beam-induced hydrocarbon is the one labeled here as type I. This
is the type identified as a Fischer-Tropsch product of the cobalt-catalyzed reaction
in Section 5.3.6. There, it was formed significantly faster at 250 °C compared to
at 220 °C. Thus, the beam might practically have a similar effect as an increased
temperature. The beam-induced deposition could be observed starting from 220 °C
surface temperature on and proceeds faster at higher temperatures. While increasing
the temperature from 220 °C to 300 °C in the reaction mixture over a course of roughly
8 h, the hydrocarbon coverage increased exponentially (see Figure 5.19) and reached a
total of 18 layers. As explained in Section 5.2.3, at these kind of coverages the model
used for the calculations is not accurate and this is thus a rough estimate at best.
However, it is clear that the cobalt terraces are completely covered before reaching
this amount of hydrocarbons. This additionally suggests that the cobalt surface itself
might not be necessary for the beam-induced reaction, although the steps could still
be involved. In contrast to type II, the hydrocarbon type I does not seem to desorb
in the temperature range investigated here, thus being able to cover the whole surface

and making it crucial to minimize the beam exposure.
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5.5.2 Detailed Fit Results
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Figure 5.20: Results of the detailed fits of C 1s spectra measured on different as-prepared
samples in UHV (a) distinguishing CO alone from CO co-adsorbed with O compared to

the O coverage from the O 1s spectra, (b) distinguishing carbidic and graphitic C, and (c)
distinguishing two types of hydrocarbons.
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Figure 5.21: Results of the detailed fits of C 1s spectra measured in 0.25 mbar H; at different
temperatures distinguishing (a) carbidic from graphitic C, (b) two types of hydrocarbons, and
(c) CO alone from CO co-adsorbed with O.
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Figure 5.22: Results of the detailed fits of the spectra measured in 0.25 mbar CO at different
temperatures (a) comparing the total CO coverage calculated from the C 1s spectra to the

total CO coverage calculated from the O 1s spectra, (b) distinguishing CO alone from CO

co-adsorbed with O compared to the O coverage, (c) distinguishing two types of hydrocarbons,

and (d) distinguishing carbidic from graphitic C.
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Figure 5.23: Results of the detailed fits of C 1s spectra measured in 0.25 mbar of 4 H, + 1 CO
(left column) and 2 Hy + 1 CO (right column) (a) distinguishing CO alone from CO co-
adsorbed with O compared to the O coverage from the O 1s spectra, (b) distinguishing carbidic
from graphitic C, and (c) distinguishing two types of hydrocarbons. The dashed, vertical lines
mark an increase of the temperature from 220 °C to 250 °C.






