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Abstract

Background
Analysis of the stool samples is an essential part of routine di-

agnostics of the helminthes infections. However, the standard meth-
ods such Kato and Kato-Katz utilize only a fraction of the information 
available. Here we present a method based on the nuclear magnetic 
resonance spectroscopy (NMR) which could be auxiliary to the stand-
ard procedures by evaluating the complex metabolic profiles (or phe-
notypes) of the samples.

Method
The samples were collected over the period of June-July 2015, 

frozen at -20°C at the site of collection and transferred within four 
hours for the permanent storage at -80°C. Fecal metabolites were ex-
tracted by mixing aliquots of about 100 mg thawed stool material with 
0.5 mL phosphate buffer saline, followed by the homogenization and 
centrifugations steps. All NMR data were recorded using a Bruker 600 
MHz AVANCE II spectrometer equipped with a 5 mm triple reso-
nance inverse cryoprobe and a z-gradient system.

Results
Here we report an optimized method for NMR based metabolic 

profiling/phenotyping of the stool samples. Overall, 62 metabolites 
were annotated in the pool sample using the 2D NMR spectra and the 
Bruker Biorefcode database. The compounds cover a wide range of the 
metabolome including amino acids and their derivatives, short chain 
fatty acids (SCFAs), carboxylic acids and their derivatives, amines, 
carbohydrates, purines, alcohols, and others. An exploratory analysis 
of the metabolic profiles reveals no strong trends associated with the 
infectionstatus of the patients. However, using the penalized regres-
sion as a variable selection method we succeeded in finding a subset 
of eleven variables which enables to discriminate the patients on basis 
of their infections status.

Conclusions
A simple method for metabolic profiling/phenotyping of the 

stools samples is reported and tested on a pilot opisthorchiasis cohort. 
To our knowledge this is the first report of a NMR-based feces analysis 
in the context of the helminthic infections.
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Background

Analysis of stool samples is an essential part of routine diag-
nostics of the helminthes infections. For years, despite a consistent 
background of criticism and occasional new developments, the direct 
smear and Kato-Katz techniques remain the gold standard diagnos-
tic tests for schistosomiasis, opisthorchiasis and the soil-transmitted 
helminthiasis [1]. However, here we introduce a method based on nu-
clear magnetic resonance spectroscopy (NMR), which could be aux-
iliary to the standard methodologies. In contrast to the Kato and Ka-
to-Katz tests which use only the eggs count as a measure, we examine 
the complex metabolic profile of the sample. In other words, we are 
applying the metabolomics approach. Metabolomics is a discipline 
studying the metabolome – a totality of the metabolites that can be 
measured in a biological sample. The metabolites are defined as the 
end products and the intermediates of the metabolism. In the clinical 
setting the metabolomics studies are commonly based on the analysis 
of the body fluids. Urine and blood (serum or plasma) are being the 
most common sample types due to the minimally invasive procedures 
of sample collection. Feces as a material for metabolomics studies has 
only recently started to gain the deserved attention [2, 3]. Over recent 
years few metabolomics studies in such areas as e.g. dietary interven-
tions [4], inflammatory bowel disease [5, 6] and colorectal cancer [7] 
have been published.

Indeed, the fecal masses are the physiological product of the gas-
trointestinal tract, one of the key metabolic systems of the human body. 
Thus, it is logical to assume that their composition should reflect cur-
rent metabolic status of the digestive tract or its metabolic phenotype 
[8]. The human gut represents a complex ecosystem and harbors gut 
bacteria outnumbering the cells in our organism [9] and the analysis of 
the fecal masses or/and their derivatives (e.g. extracts or fecal waters) 
offers the most direct access to the physiological processes controlling 
the gastrointestinal system homeostasis, gut bacteria-host interactions 
and interaction between the hosts and parasitic helminthes. For exam-
ple, the helminth infections are often accompanied by such symptoms 
as diarrhea, abdominal pain and blood in the stool. The given exam-
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ples represent the extreme cases, but they provide a clear illustration 
of the parasite’s ability changing the metabolic homeostasis of the host 
and the host’s digestive system in particular. This, in turn, makes met-
abolic analysis of the fecal masses an interesting, non-invasive way to 
monitor such changes.

Here we present a simple NMR based metabolomics workflow 
for the analysis of fecal samples. For this pilot study we used stool 
samples of patients diagnosed with opisthorchiasis and a group of 
matched controls. Opisthorchiasis is parasitic disease caused by trem-
atodes belonging to the family Opisthorchiidae (Opisthorchis felineus, 
Opisthorchis viverrini) [10]. According to WHO there are about 17 mil-
lion infected people and approximately 112 million people exposed 
or at risk of infection. The workflow presented here is only a proof 
of principle, but it can be easily scaled, tuned towards a quantitative 
analysis and implemented into other case studies or in future routine 
screening without fundamental modification of the sample collection 
or the exiting diagnostic routines.
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Methods

Sample collection
The study was reviewed and approved by the local ethics com-

mittee of the Siberian State Medical University (Tomsk, Russia). The 
samples were collected over the period of June-July 2015. The samples 
were frozen at -20°C at the site of collection and transferred within 
four hours for the permanent storage at -80°C. The diagnosis of opist-
horchiasis was confirmed by the Kato-Katz test [1]. Table 1 summa-
rizes the demographic data of the patients. In total the samples of 30 
patients (16 infected and 14 uninfected) were used.
Table 1. Characteristics of participants

Parameter Summary Opisthorchiasis
(n=16)

Control
(n=14)

Age (year) range (21, 64) (24, 63)
mean 45 60

Gender male 0 0
female 16 14

Height (cm) range (153, 168) (155, 169)
mean 162 160.9

Weight (kg) range (50, 106) (53, 83)
mean 70.3 70.3

BMI range (18.4, 43.6) (21.7, 32.5)
mean 26.6 27.1

the presence of 
allergies

positive 3 1
negative 9 12

unknown 4 1

Fecal metabolites extraction
Fecal metabolites were extracted as described elsewhere [11] 

with some minor modifications. Briefly, the aliquots of about 100 mg 
thawed stool material were mixed with 0.5 mL phosphate buffer sa-
line (1.9 mM Na2HPO4, 8.1 mM NaH2PO4, 150 mM NaCl, pH 7.4; Sig-
ma-Aldrich, Germany) containing 10% deuterated water (D2O 99.8%; 
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Cortecnet, France) and 0.05 mM sodium 3-trimethylsilyl-propion-
ate-d4 (TMSP-2,2,3,3-d4; Cambridge Isotope Laboratories Inc., UK) 
as chemical shift reference. The mixtures were homogenized by bead 
beating with zirconium oxide beads of 1 mm diameter for 30 s at 4°C 
in a Bullet Blender 24 (Next Advance Inc., USA). The fecal slurry was 
then centrifuged at 16100×g for 15 min at 4°C. Supernatants were col-
lected and centrifugation was repeated. Finally, the resulting fecal ex-
tracts were transferred to a 96 well plate (Bruker, Germany) and 190 
μL of each sample was transferred to a 3 mm NMR tube in SampleJet 
96 tube rack (Bruker, Germany) using 215 Gilson liquid handler. The 
samples were then placed in a SampleJet system and kept cooled at 6 
°C while queued for NMR measurements.

Alternative protocols for fecal extraction, as described elsewhere 
[5, 12, 13] were also applied using technical replicates and the same 
equipment and chemicals described above. For filtration we used the 
Whatman filters with 0.2 μm diameter pores (GE Healthcare, UK). An 
ultracentrifugation step with filtration was also tested using Amicon 
Ultra cellulose centrifugal filters with a cut-off MW of 3000 Da (Mil-
lipore Ireland, Ltd). The filters were washed with doubly distilled 
water before use and tested for impurities and presence of additives 
using a blank PBS buffer sample and acquisition of NMR spectra with 
the same parameters as those used for fecal extracts measurements 
(see below).

NMR spectroscopy
All NMR data were recorded using a Bruker 600 MHz AVANCE 

II spectrometer equipped with a 5mm triple resonance inverse cryo-
probe and a z-gradient system. The temperature of the samples was 
controlled at 27°C during measurement. Prior to data acquisition, tun-
ing and matching of the probe head followed by shimming and pro-
ton pulse calibration were performed automatically for each sample. 
One-dimensional (1D) 1H NMR spectra were recorded using the first 
increment of a NOESY pulse sequence with presaturation (γB1 = 50 
Hz) for water suppression during a relaxation delay of 4 s and a mix-
ing time of 10 ms [14, 15] 64 scans of 65,536 points covering 12,335 Hz 
were recorded and zero filled to 65,536 complex points prior to Fouri-
er transformation, an exponential window function was applied with 
a line-broadening factor of 1.0 Hz. The spectra were automatically 
phase and baseline corrected and referenced to the internal standard 
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(TMSP; δ 0.0 ppm).
After tube filling, 30 μL from the leftovers of each sample were 

combined to form a pool sample mix. The pool sample was aliquoted 
and used for acquisition of two-dimensional (2D) NMR spectra to aid 
the assignment of fecal metabolites. The set of 2D experiments includ-
ed a J-resolve (J-res), 1H-1H correlation spectroscopy (COSY), 1H-1H 
total correlation spectroscopy (TOCSY), 1H-13C heteronuclear sin-
gle quantum correlation (HSQC) and 1H-13C heteronuclear multiple 
bond correlation spectroscopy (HMBC) using the standard parame-
ters implemented in Topspin 3.0 (Bruker Biospin, Germany).

NMR data processing
NMR data were further processed using in house routines writ-

ten in Matlab 2014a (The Mathworks, Inc., USA) and Python 2.7 (Py-
thon Software Foundation, www.python.org). Briefly, the obtained 
1H spectra were re-evaluated for incorrect baselines and corrected 
using a polynomial fit of degree 5. The spectral region from 0.5 to 9.7 
ppm was binned using an in-house algorithm for adaptive intelligent 
binning, which is based on the original paper of De Meyer et al. [16]. 
Initial bin width was set to 0.02 ppm and final variable bins sizes were 
calculated based on the peaks position and width in the spectra. The 
spectral region with the residual water peak (4.5 – 5.1 ppm) was ex-
cluded from the data. The final data consisted of 429 bins that were 
normalized by the Probabilistic Quotients Normalization method [17] 
to correct for dilution differences from sample to sample. Data were 
first normalized to unit total area and subsequently, the variables of 
each sample were divided by those of a reference sample, in this case 
the median spectrum. Each sample was subsequently scaled by its me-
dian quotient, which represents the most probable dilution factor. Fi-
nally, the normalized data was autoscaled prior to statistical analysis.

Data analysis
All the analysis was performed in the R statistical software en-

vironment (http://www.r-project.org/, R version 3.2.3.). Exploratory 
data analysis was performed using the package “pcaMethods” [18]. 
Variable selection was performed with the “glmnet” package [19]. For 
data visualization the “ggplot2”, “GGally” and “gridExtra” packages 
were used.
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Optimization of the sample preparation
In contrast to other body fluids like urine and blood for which 

the well-established standard operating procedures (SOP) exist, no 
consensus for feces handling has been reached yet. Thus, to get an 
optimal extraction of the feces samples several protocols described in 
the literature [11–13] were tested. A detailed overview of the available 
methods can be found in recent review by Deda et al. [2]. In our case, a 
minimally modified protocol of the one recently suggested by Lamich-
hane et al. [11] provided an optimal outcome in terms of spectra qual-
ity and the number of the metabolites detected. In the original manu-
script, the authors suggested mixing the fecal material with 2 volumes 
of PBS (Wf:Vb; mg of feces x μL−1 of PBS buffer), which according to 
them provides better signal to noise ratios and minimal compromise 
for peak shifting due to small inter-sample pH differences. They also 
used a freeze-thaw cycle with centrifugation of the fresh fecal slurry, 
storage at -80°C and thawing at the day of analysis followed by a sec-
ond centrifugation. Since, the samples used in our study were already 
frozen and stored at -80°C at the site of collection we opted to avoid 
the extra freeze-thaw step. Therefore, after thawing the frozen fecal al-
iquots and the homogenization of the fecal slurry, we performed two 

Results

Figure 1. A schematic outline of the sample preparation workflow
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consecutive centrifugation steps at 4°C. The suggested 1:2 Wf:Vb ratio 
did not work well in our case as the supernatants could not be easily 
separated from the precipitated material even after extending the cen-
trifugation time. An obvious solution would be to include a filtration 
step but this would require an extra step to wash the filters, which 
increases the time and costs of the protocol. On the other hand, we 
found that by using the 1:5 Wf:Vb and 7 min 1D 1H-NMR acquisition 
method (64 scans per sample) the losses in the signal to noise ration 
were minimal even for the weak signal of formic acid (SNR 36.3 and 
29.8 for 1:2 and 1:5 Wf:Vb, respectively) while the peak shifting of pH 
sensitive protons was reduced comparing to 1:2 Wf:Vb as an effect of 
better pH control. We therefore decided to follow the 1:5 Wf:Vb mix-
ing with PBS for all the samples analyzed in this study. Figure 1 shows 
a schematic representation of the entire workflow.

Figure 2 shows the 1H spectrum of a pooled sample with anno-
tations of the identified metabolites. Overall, 62 metabolites were an-
notated in the pool sample using the 2D NMR spectra and the Bruker 
Biorefcode database (Bruker Biospin, Germany). The detected com-
pounds cover a wide range of the metabolites including amino acids 
and their derivatives, short chain fatty acids (SCFAs), carboxylic acids 
and their derivatives, amines, carbohydrates, purines, alcohols and 
others. The complete list of metabolites is enumerated in the legend 
of Figure 2.

Exploratory analysis of the data
The main purpose of an exploratory data analysis is to reveal 

the major trends in the data as well as the possible analytical and/or 
biological confounders if any. Principal Component Analysis (PCA) is 
commonly used method for such analysis. Figure 3 shows a combined 
score plot of the first three principal components of the PCA model. 
The first three components cover almost 50% (~ 49) of the total vari-
ance in the data but apparently the infection status does not represent 
a visible trend in the data. Since initial PCA model failed to describe 
any tendencies in the data associated with the study design we built a 
two-class Partial Least Squares Discriminant Analysis (PLS-DA) mod-
el with infections status as a class ID. The model proved to be a statis-
tically poor and described the data narrowly better than a random one 
(data not shown). One could interpret the results as a lack of associa-
tion between infection status and metabolic composition of the feces. 
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Figure 2. Regions of the 600 MHz 1D 1H NMR spectrum of the pool sample 
mix of all fecal extracts used in this study. The regions on top are multiplied 
16 times for better visualization. 60 fecal metabolites were identified with 
most of them annotated on the spectrum. Metabolites and their numbering 
as displayed in figure: 1: 2-methylbutyrate; 2: Valerate; 3: n-butyrate; 4:Leu-
cine; 5:Isoleucine; 6: Valine; 7:Propionate; 8: Isobutyrate; 9: 3-methyl-2-ox-
oisovalerate; 10: 2-oxoisovalerate; 11: Ethanol; 12: 3-hydroxybutyrate; 13: 
Threonine; 14: Lactate; 15: 2-hydroxyisobutyrate; 16: 3-hydroxy-2-butanone; 
17: Alanine; 18: Lysine; 19: Thymine; 20: Acetate; 21: 5-aminopentanoate; 
22: Ornithine; 23: Proline; 24: Glutamate; 25: Methionine; 26: Glutamine; 
27: Succinate; 28: 2-oxoglutarate; 29: 3-phenylpropionate; 30: Aspartate; 31: 
Methylamine; 32: Malate; 33: Trimethylamine; 34: Tyrosine; 35: Malonate; 
36: Choline; 37: D-glucose; 38: Taurine; 39: Methanol; 40: Glycine; 41: 
D-xylose; 42: D-galactose; 43: Fructose; 44: Dihydroxyacetone; 45: Uracil; 
46: Fumarate; 47: Urocanate; 48: Ethanolamine; 49: Xanthine; 50: Hypoxan-
thine; 51: Nicotinate; 52: 3-hydroxyphenylacetate; 53: Tryptophan; 54: Phe-
nylalanine; 55: Orotate; 56; UDP-glucuronate; 57: Formate; 58: Benzoate; 
59: 4-aminohippurate; 60: Homovanillate; 61: Putrescine; 62: Asparagine
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The performance of the PLS-DA model clearly supports such interpre-
tation. However, the structure of our data set (30 observations and 429 
variables) is such that the number of predictive variables (p) is much 
larger than the number of samples (n). The PLS-DA method, despite 
being one of the most popular classification methods in metabolomics 
analysis, is a suboptimal choice for the p> > n data sets [20]. Thus, we 
decided to employ an alternative data analysis strategy including a 
variable selection step which could identify a subset of predictors rel-
evant to the study design.

Variable selection and validation of the selected subset
The analysis of high dimensional datasets has progressed enor-

mously since the beginning of “omics” era. Several methods specifi-
cally addressing p>> n problem are described and tested in practice, 
but the area of application for the methods is mainly restricted to the 
genomics data [21, 22]. We decided to use the penalized regression 
approach based on its “track record” in solving comparable problems, 
namely a high number of the variables and the limited number of the 
observations [22, 23]. A penalized variable section belongs to the class 
of the regulations methods: the methods which improve the estimates 
“for over-parameterized problems through the use of additional as-
sumptions, prior information or penalties” [24]. A subset of eleven 
variables was selected using a lasso type of penalty. Before subjecting 
the set of selected variables to the next statistical test we have also 
made an inventory of the selection trying to estimate whether the fea-
ture selecting routine has picked the NMR spectral areas influenced 
by the noise and/or any baseline effect. Figure 4 shows the box plots 
for all eleven predictors selected by this method. Table 2 summariz-
es all the selected bins showing their corresponding spectral regions, 
identity and Benjamini-Hochberg corrected p-values. Finally, we have 
included the selected variables into a logistic regression model. The 
resulting model is characterized by the chi square 27.74 and chi square 
probability of 1.05E-4.
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Figure 4. Box-plots for the variables selected with the lasso regression. The 
variable assignments and corresponding p-values are shown in the Table 2

Figure 3. PCA score plots for the first three components
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Spectral region
(ppm)

p-value ID

5.2914 0.0378 Unknown triplet/4.12/1.99/1.80
4.2478 0.0942 Threonine
2.0426 0.0601 Glutamate/Proline
1.3164 0.0378 Threonine and lactate

3.1 0.1661 Malonate
8.1622 0.0378 Hypoxanthine
3.9884 0.0601 Phenylalanine/d-Galactose
3.055 0.0942 Tyrosine/Putrescine/Ornithine
1.3206 0.0031 Threonine and Lactate
1.824 0.1322 Ornithine/2-Aminoadopate
2.9488 0.0378 Asparagine

Table 2. The selected variable assignments and corresponding p-values
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Discussion

Here we present an analytical workflow for 1H-NMR analysis 
of feces with special emphasis on application in the field of the hel-
minthes infections. The described procedure resulted in rich spectra 
where 62 metabolites are annotated (Figure 2). Using our set of the 
samples selection we were able to dissect a subset of the metabolites 
(Figure 4) which may be discriminative for the infection’s status. This 
subset includes such common constituents of human biofluids as thre-
onine, asparagine, lactate and hypoxanthine. Asparagine is higher in 
the samples of the control patients while the other selected compounds 
have higher levels in the infected samples. The limited number of sam-
ples is a clear limitation of this study and therefore we restrain our-
selves from the discussion of the possible physiological models based 
on the selected markers or the attempts to deconvolute the metabolic 
profiles into the infection predictive patterns. On the other hand, the 
proposed method clearly stresses out the potential for a new window 
of information that can be used in such case studies. In principle, the 
fact that a subset of the discriminative metabolites can be dissected 
gives a clear illustration of the method’s potential. A combination of 
a simple, commonly accepted diagnostic method and such advanced 
analytical method as NMR provides a powerful research tool which 
enables the collection of a wealth of information without interference 
or in parallel with the routine diagnostics or epidemiological studies. 
Taking advantage of the robustness and quantitative nature of this 
technology, obtaining the metabolic profiles of fecal material is rather 
straightforward and provides both an insight into biochemistry/phys-
iology of the host-pathogen interaction and the possibility of accessing 
the morbidity and eventually play an auxiliary role in the diagnostics. 
The main limitations of this approach arise mainly from the absence of 
standard procedures in stool collection rather than the technology it-
self. However, taking into account the increasing interest in using the 
NMR (as well as mass spectrometry) based metabolomics approaches 
in fecal samples, we envisage that more established routines and prac-
tices in sample collection will be developed in the near future which 
will reveal the underlying potential of this type of analysis.
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Conclusions

In summary, a simple method for metabolic profiling/phenotyp-
ing of the stools samples is reported and tested on a pilot opisthorchi-
asis cohort. To our knowledge this is the first report of a NMR-based 
feces analysis in the context of the helminthic infections. With this 
study, an attempt was made to extend a conventional way of the stool 
analysis adding an extra dimension which can be used for metabolic 
phenotyping of the patients, in depth exploration of the host-parasite 
interaction and search for metabolic morbidity or/and infection mark-
ers. To extend and take full advantage of the possibilities offered by 
NMR based metabolic profiling much larger cohorts than the one used 
in this study are needed, preferably, even collected in the different en-
demic areas. With this report however, we provide a simple proof of 
concept aiming to introduce a well-established technology in the field 
of infectious diseases and fecal material analysis and with this, trigger 
future studies in this direction.
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