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PRAAT scripts to measure speed fluency and breakdown 
fluency in speech automatically
Nivja H. de Jong a,b, Jos Pacillya and Willemijn Heerena

aLeiden University Centre for Linguistics (LUCL, Leiden University, Leiden, The Netherlands; bICLON Graduate 
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ABSTRACT
Fluency in terms of speed of speech and (lack of) hesitations such as 
silent and filled pauses (‘uhm’s) is part of oral proficiency. Language 
assessment rubrics therefore include aspects of fluency. Measuring 
fluency, however, is highly time-consuming because of the manual 
labour involved. The current paper aims to automatically measure 
aspects of L2 fluency, including filled pauses, in both Dutch and 
English. A revised existing script and a new script for filled pauses 
are tested on accuracy. We also gauged whether the outcomes of 
the new script could be used for language assessment purposes by 
relating the outcomes to human judgements. Without further 
investigations, the current script should not (yet) be used for the 
purpose of assessing fluency automatically in (high-stakes) oral 
proficiency assessment. However, the performance of the scripts 
for measuring aspects of fluency globally and quickly are promising, 
especially given their stability in accuracy on new corpora.
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Introduction

Speaking is a remarkable skill. Before a speaker is able to articulate the appropriate 
sounds, a number of speech production processes have been carried out and have been 
carried out quickly. There are roughly three stages in speech production: conceptualising 
what to say, formulating how to say this in language, and finally articulating the appro-
priate sounds (e.g. Levelt et al., 1999). If at any stage of the speech production process the 
speaker encounters a problem, the speaker will become disfluent, which may result in 
silent pauses, filled pauses (e.g. ‘uh’, ‘uhm’), or slowing down articulation speed.

When speaking in a second language (L2), the same stages are needed to proceed from 
thoughts to articulated sounds. However, it will be more difficult, because the processes 
are less automatised in the L2, especially those needed for linguistic formulation of the 
message. Moreover, the L2 linguistic knowledge that is needed may at times be insuffi-
cient, which may cause disfluencies, for instance, when the speaker decides to reconcep-
tualise, circumventing the need for the specific L2 linguistic knowledge (see Segalowitz, 
2010 for an elaborate description of disfluencies in L2 speaking). In short, disfluencies in 
speech are telling of speaking proficiency: only highly proficient L2 learners with highly 
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developed L2 knowledge and skills will be able to fluently express their thoughts, without 
undue hesitations. In addition to this theoretic reasoning, there is ample research 
showing that holistic evaluations of proficiency are (highly) related to measures of 
fluency in speech (Ginther et al., 2010; Iwashita et al., 2008; Kahng, 2014; Kang et al., 
2010; Révész et al., 2016). It is therefore no wonder that language tests include aspects of 
fluency in their rubrics to distinguish levels of proficiency as in the often-used Test of 
English as a Foreign Language internet Based Test (TOEFL iBT), the International 
English Language Testing System Academic (IELTS), the oral proficiency interview of 
the American Council on the Teaching of Foreign Languages (ACTFL OPI), and in the 
Pearson Test of English Academic (PTEA).

Having established the importance of fluency as part of oral proficiency, we note that 
measuring aspects of fluency are highly time-consuming. To aid future research into the 
relation between specific aspects of fluency and proficiency, and potentially for the 
purpose of assessing fluency automatically in language testing, the present study set 
out to investigate to what extent aspects of fluency may be evaluated automatically.

Theoretical background

De Jong and Wempe (2009) developed a tool that measures some aspects of fluency: 
silent pauses (frequency and duration) and speed of speaking, automatically, without the 
need for transcribing or even manual annotations and measurements. Although the 
script has been used to measure these aspects of pausing and speed, information on 
filled pauses such as ‘uhm’ and ‘uh’ is, as yet, missing, although filled pauses have been 
shown to distinguish between L1 and L2 speech (e.g. De Jong, 2016; Kahng, 2014), to be 
strong predictors of communicative adequacy in task fulfilment (Révész et al., 2016), and 
to be related to overall L2 proficiency (De Jong, 2016).

The present study, rather than using automatic speech recognition, will only aim to 
detect filled pauses. It is (as yet) not feasible to arrive at correctly recognised speech 
including filled pauses for L2 speakers with many diverse accents, in multiple languages 
(but see recent developments for English, Moussalli & Cardoso, 2020). Instead, this study 
will use general, acoustic properties of the signal to detect filled pauses. The next 
paragraph will describe previous research that has indicated acoustic characteristics of 
filled pauses so far. In short, these include duration in milliseconds, overall pitch, and 
vowel qualities. Overall pitch can be measured through F0, which is the fundamental 
frequency of a sound, resulting from the rate of vibration of the vocal folds. With respect 
to the vowel qualities, F1 and F2 are the main formants that shape vowels, resulting from 
changes in the shape of the vocal tract (e.g. by changing the shape and location of the 
tongue). F3 is the third resonance in the speech signal, likewise resulting from changes in 
the shape of the vocal tract (e.g. by lip-rounding).

A number of studies (Hughes et al., 2016a, 2016b; Kaushik et al., 2010; Shriberg, 2001, 
p. 165; Stouten & Martens, 2003, p. 3) have indicated duration of the syllable or vowel 
within the syllable to be a significant characteristic of filled pauses. The other character-
istics indicated so far are variation of F0 (Verkhodanova & Shapranov, 2016), the height 
of F0 (Clark & Fox Tree, 2002; Shriberg & Lickley, 1993), variability in formants F1 
through F3 (Audhkhasi et al., 2009; Kaushik et al., 2010), and overall stability (Stouten & 
Martens, 2003, p. 4). From these studies it can be concluded that filled pauses, in contrast 
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to other syllables, tend to have longer durations, show less F0-variation, have a lower F0, 
and less F1-F3 variability. In other words, filled pauses tend to be long, stable or steady 
syllables pronounced at a low pitch. Additionally, filled pauses are usually pronounced as 
‘lazy’ vowels or close to a schwa ([ə]) (Shriberg, 2001). For (American) English, Vasilescu 
and Adda-Decker (2007) have shown that the sound of the filled pause may be closer to 
a mid-open back unrounded vowel ([ʌ]). For back vowels such as /ʌ/, it is known that the 
F1 and F2 are relatively close to each other (Reetz & Jongman, 2009, p. 184). For both 
such a back unrounded vowel as well as for a schwa-sound, the F3 can be relatively high, 
with lips not being rounded (Ladefoged & Johnson, 2011). Another potential variable 
that may distinguish between ‘lazy’ (thus filled pauses) and non-lazy syllables would be 
a variable that captures to what extent the speaker makes an effort in their articulation, 
hence to what extent the current vowel is further away from what can be said to be the 
default or average vowel of that speaker. For this, we propose to include variables that 
measure the distances between F1, F2, F3 to the relative medians of the F1, F2, F3 of that 
speaker.

The studies that have created algorithms to detect filled pauses are difficult to compare 
to each other and difficult to evaluate for the purpose of measuring L2 filled pauses. 
Firstly, they are difficult to compare because they differ in the (combinations of) features 
being tested. Likewise, different kinds of learning algorithms have been used (e.g. 
Gaussian mixture models as in Krikke & Truong, 2013, or no learning phase as in 
Kaushik et al., 2010). Also, methods differed in what time-unit was used during the 
training and testing phase of the algorithm; for instance, a window of 110 milliseconds 
(Audhkhasi et al., 2009), very short windows (e.g. Verkhodanova & Shapranov, 2016), or 
Stouten et al. (2006) who first divided the speech into silent and phoneme-like segments. 
Finally, none of the studies reported automatic filled pause detection on speech by L2 
speakers.

Based on the current body of knowledge on acoustic properties of filled pauses briefly 
described above, the present research attempted to arrive at an easy-to-use implementa-
tion of a filled pause detection algorithm. Most of the studies above have investigated 
English filled pauses. Stouten and Martens (2003) propose that their method for detect-
ing Dutch filled pauses would work for English as well. The present study aimed to 
implement algorithms for both English L2 and Dutch L2 filled pauses. We chose Dutch in 
addition to English because filled pauses in Dutch and English seem to have similar 
acoustic properties. The script by De Jong and Wempe (2009) was written in PRAAT 
(Boersma & Weenink, 2016), a computer program that enables precise analyses of 
speech, and includes a scripting language. We will use the same program to test and 
implement the algorithms in the current research.

Research aims

Building on the previous research described above, the research aims of the present study 
were as follows:

(1) To create a PRAAT script that measures aspects of L2 fluency automatically, 
including information on silent pauses, filled pauses, and speed of speech. This 
script will run without the need to transcribe or recognise speech, and without the 
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need to have separate (annotated) speech data available for training of the specific 
algorithm;

(2) To test the accuracy of the script with respect to the detection of filled pauses for 
two types of speech data (Dutch and English-speaking performances in language 
assessment settings), by relating the outcomes of the script to manual annotations 
of filled pauses;

(3) To gauge validity of the automatic measures of fluency for the purpose of language 
assessment, by relating the outcomes of the script to judgements on fluency.

Methods

For the purpose of training and testing an algorithm that automatically measures fluency 
in L2 speech, two existing corpora of Dutch and English L2 speech were chosen as 
primary materials. In the Dutch corpus, the performances were elicited for research into 
assessment and in the English corpus, the materials were actual assessment perfor-
mances. Choosing existing L2 assessment corpora has the advantage that the data are 
ecologically valid. At the same time, choosing these corpora meant that sound quality was 
lower than is optimal for precise phonetic measurements in the case of the English 
corpus, and that available sound files were relatively short (20 seconds) to allow for 
ideally stable measurements in the case of the Dutch corpus. However, we also added 
secondary corpora unrelated to language assessment to test the resulting algorithms for 
more general use. Finally, necessary for the third research aim, judgements on fluency 
were already available for both primary corpora. In what follows, we describe the corpora 
(materials) in some detail and the methods used in creating the PRAAT-scripts.

Materials

English primary corpus (APTIS)
The English corpus consisted of a subset of the speech data (120 items with a total 
duration of about 240 minutes) as described in more detail in Tavakoli et al. (2017), 
including annotations and human judgements. This corpus, including annotations and 
judgements, was made available to us by the British Council. The corpus consists of 
performances from the operational APTIS speaking test, which is a computer-based 
speaking test consisting of four tasks, taking about 12 minutes to complete. Test takers in 
this corpus had a range of L1 backgrounds (Arabic, Bengali, Bosnian, French, Georgian, 
German, Greek, Japanese, Malay, Mandarin, Romanian, Spanish, Tamil, Ukrainian, and 
Uzbek – as guessed from the location of the test takers). Performances on the APTIS tasks 
1 through 4 were included, targeting the A1/A2 level (task 1) through B2 (task 4). Tasks 1 
through 3 consist of three prompts each, and test-takers have 30 seconds (Task 1) or 
45 seconds (Tasks 2 and 3) to respond to each prompt. For task 4, participants get 
1 minute of preparation time, and have a maximum time of 2 minutes to respond. 
Tavakoli et al. (2017) selected eight speakers from each level from A2 through C1.1 Task 4 
of the A2-level test-takers was not included in their study, since these recordings rarely 
contained enough speech. The subset (60 files) for the current study was selected by one 
of the annotators (see below) on sound quality. Note, however, that the sound quality of 
the English files in general was below normal standards for phonetic analyses.
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APTIS speaking performances are rated holistically. Analytical descriptors, such as 
descriptors for fluency, are included. The performances selected by Tavakoli et al. (2017) 
were always rated with the same score holistically as analytically on fluency. The fluency 
descriptors mention pausing, false starts, and reformulations at levels A1 through C1, 
where the A1 descriptor mentions such disfluencies impede understanding and the C1 
descriptor mentions such disfluencies do not interrupt the flow of speech (see Table 3 in 
Tavakoli et al., 2017, p. 12).

As described in Tavakoli et al. (2017) human annotations, including annotations on 
timings, were available. More specifically, the speech data were transcribed and using 
PRAAT, exact locations and timings of both silent and filled pauses were annotated by 
Tavakoli et al. (2017). Minimum (silent or combined with filled) pause time was set to 250 ms.

Dutch primary corpus
The Dutch primary corpus consisted of speech data (114 items of 20 seconds each), 
annotations, and human judgements as described in more detail in Bosker et al. (2013). 
This corpus includes 15 English, 15 Turkish, and eight native speakers of Dutch perform-
ing three tasks targeted at the B1 and B2 level (see Hulstijn et al., 2012). These tasks were 
monologues (max two minutes) in which participants were engaged in a long turn where 
context and task was described, which is comparable mostly to task 4 of the APTIS tasks 
(see primary English corpus below). The speech materials thus consisted of 38 speakers 
performing three tasks (= 114 items). Fragments of approximately 20 seconds were 
excerpted from around the middle of the original recordings. Each fragment started at 
a phrase boundary (Analysis of Speech Unit; Foster et al., 2000) and ended at a silent 
pause (>250 ms).

In the Bosker et al. (2013) study, judgements on fluency were made by 20 listeners who 
received specific instructions to rate on ‘fluency’: the use of silent and filled pauses, the 
speed of delivery of the speech, and the use of hesitations and/or corrections (and not on 
grammar, for example). Participants rated the speech fragments using a nine-point scale.

Bosker et al. (2013) calculated objective acoustic measures for the 90 L2 recordings, 
based on human transcripts of the speech recordings, and using PRAAT to measure 
silent pausing measures (threshold of silent pauses was 250 ms). Although these tran-
scripts included information on filled pauses, for the purpose of the current study, the 
exact location and timing of these filled pauses still had to be added.

Secondary corpus
As for the secondary corpus, a subset of the D-LUCEA corpus (Orr & Quené, 2017) was 
used. This subset consisted of L1 Dutch and L2 English speech data from the same 59 
female speakers, and L1 English (mixed American and British) from 12 male and female 
speakers. All speakers performed multiple speaking tasks, but here a two-minute infor-
mal monologue was used. This was produced in the speakers’ L1, and if that was not 
English, also in their L2. L2 speakers are estimated to at least be at the B2 level (see De 
Boer & Heeren, 2020). For these recordings no fluency judgements were available.

Annotations of the corpora
We used PRAAT to manually annotate, in a PRAAT TextGrid (PRAAT-compatible 
annotation tool), the beginning and ending of each filled pause, adding precise timings 
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of filled pauses. Such annotations were not available for the Dutch primary corpus, nor 
for the English L1 speakers in the secondary corpus. Thus, for each sound file, and by 
each annotator separately, a TextGrid was created with annotations of filled pauses (‘fp’) 
and their timings. See Figure 1 for a screenshot of the visualisation of a soundfile with the 
corresponding TextGrid. Two annotators annotated the primary corpora. For the sec-
ondary corpus, data from the Dutch L1 speakers, in both languages, had already been 
annotated by at least two coders (see De Boer & Heeren, 2020). For the English L1 
speakers in the secondary corpus, filled pauses were annotated by one coder (3rd author). 
Table 1 shows the total numbers of syllables, as well as the number of manually annotated 
filled pauses (by at least one annotator) in all corpora and subsets.

PRAAT scripts

New version of script to detect syllables
The existing script by De Jong and Wempe (2009) to detect syllables was rewritten. The 
original script first of all distinguishes between silences and sound (assumed to be 

Figure 1. PRAAT screenshot of visualisation of sound file with corresponding TextGrid as created by 
the annotator; as can be seen, a filled pause (‘fp’) has manually been annotated, starting at 10.963 and 
ending at 11.365 seconds.

Table 1. Total number of syllables and filled pauses (as indicated by at least 
one annotator) in the different corpora.

Total syllables Filled pauses (manual)

L1 Dutch primary corpus 6,651 577
L2 English primary corpus 19,808 1,585
L1 Dutch secondary corpus 24,006 1,135
L2 English secondary corpus 22,366 1,105
L1 English secondary corpus 4,179 193
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speech) by applying an intensity threshold (in dB), and then detects syllable nuclei. These 
are detected as voiced peaks in intensity, preceding and followed by dips in intensity. We 
now adapted the scripting syntax to the latest PRAAT programming language. We also 
made some changes in efficiency without changing the original way to detect syllable 
nuclei but small differences in millisecond timings of syllables are likely to occur (for 
instance, because sound and silence are detected in a slightly different manner). In 
Appendix 1, we describe the steps of the rewritten script to detect syllables in more 
detail. The new script itself can be found in Appendix 2 (supplemental appendices can be 
found online).

Measures to detect filled pauses
From the literature on filled pauses, an initial PRAAT script was created that measured, 
for each syllable as indicated by the syllable-detection script, duration, properties of the 
F0, and of the formants F1, F2, and F3. The script takes the TextGrid with syllable peaks 
(output of new syllable-nuclei-script) and the corresponding sound file as input, and 
takes the following steps:

(1) Syllable boundaries are detected as 6 dB in intensity below the syllable peak at 
both sides of the peak. When this leads to no boundary between syllables (i.e. 
when the dip between the syllables is less than 6 dB but more than 2 dB), the 
boundaries for the two adjacent syllables are put at the lowest intensity, set at 
0.0001 ms apart. Syllables are then put as intervals in the TextGrid and held in 
an array;

(2) All syllables as detected in step 1 are concatenated into one stretch of sound (with 
10 ms overlap);

(3) The median F0 of the concatenated sound is calculated to obtain a global estimate 
of the speaker’s (sound file) voice; This variable is used to determine pitch ceilings 
and maximum formant values;

(4) The median F0 of each syllable is measured and put in an array, using a pitch 
ceiling of 2.5 * global median F0.2 (NB: undefined values for F0 are first replaced 
by the mean);

(5) Median global F1, F2, and F3 are measured, using a maximum formant value of 
4000 + 4 * (global median F0 – 100)3;

Using these settings for pitch ceiling and maximum formant values, the following 
variables were measured for each syllable:

● Duration in seconds;
● Duration, z-normalised; i.e. the duration of each syllable, relative to the mean 

duration of all syllables of that speaker (of that sound file), in standard deviations 
from that mean;

● F0z: fundamental frequency in semitones (reference value 100 Hz), z-normalised. 
Thus, −1 would mean 1 standard deviation below the speaker’s median F0;

● sdF0: standard deviation of the F0 in semitones;
● Distance between F1 and F2 (in Bark);
● F3 (in Bark);
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● Standard deviations of F1, F2, F3 (in Bark);
● Mean absolute deviations of F1, F2, F3 to the globally measured F1, F2, F3 (of that 

speaker/sound file, in Bark);

Based on the theoretical background, we expect filled pauses, in comparison to other 
syllables, to have longer absolute and/or z-normalised durations, lower pitch (F0z), lower 
standard deviations of F0 and of F1 through F3, a lower distance between F1 and F2, 
a higher F3, and lower deviations of F1 through F3 to their respective global measures of 
F1 through F3.

Defining the algorithms to detect filled pauses
Data preparation. First, because exact beginnings and endings of syllable boundaries 
and thus of filled pauses cannot be defined or perceived precisely and are therefore 
somewhat arbitrary in manual annotations, we allowed for some mismatch in the timings 
of automatic measurements of syllable boundaries to those of the manual measurements 
(of filled pauses). For both annotators (Dutch data), and for all three annotators (English 
data) of the primary corpora, we matched manually detected filled pauses to the auto-
matically defined syllables when the manual annotated filled pause fell between 120 ms 
before and/or 120 ms after an automatically defined syllable.

Secondly, we combined the annotations by the annotators with the outcomes of all 
measures for all automatically detected syllables. If one of the annotators had annotated 
a certain automatically defined syllable to be a filled pause, we took this syllable as a filled 
pause. In other words, the algorithm was trained to detect all manually detected filled 
pauses (including those when only one of the annotators had noted the filled pause).

Thirdly, we deleted syllables with extreme values for one of the measures. This led to 
deletion of 0.53% (35/6,651) of the syllables in the Dutch corpus and 0.12% (23/19,808) of 
the syllables in the English corpus.

Defining algorithms. In Figure 2, please find a scheme in which the steps following data 
preparation are shown. Firstly, the data in both corpora was split into a training set and a test 
set. The training set consisted of 70% randomly selected syllables in both corpora. We then 
adopted a repeated cross-validation approach to find an algorithm to detect filled pauses for 
each corpus, using this training set. Within the cross-validation, we used generalised linear 
modelling predicting the binomial variable ‘FP’ or ‘normal’ (not FP), as determined by 
manual annotations. For each step in the analyses, the cross-validation was carried out 
with 10 folds (James et al., 2013, p. 184). This means that for each out of 10 times that we 
applied a model, a different 10% of the data is kept as a test-set. The squared error (predicted 
versus actual response) on this test set is saved and then averaged over the 10 folds. This 
averaged squared error (delta) for a particular model was saved. The cross-validation for one 
model was repeated 10 times, resulting in 10 delta-values for one generalised linear model 
predicting the binomial variable. The 10 deltas were then compared to another set of 10 deltas 
from a competing algorithm, using a t-test (alpha was set to 0.01). A significant difference in 
which delta’s from a more complex model were lower than those from a more parsimonious 
model would mean that the more complex model outperforms the simpler model and thus 
the more complex model is kept. In this way, a number of variables were found not to 
significantly improve the algorithm to detect filled pauses and were deleted from the 
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algorithm. Additionally, we deleted variables which led to improved algorithms (as evidenced 
by the difference in the t-test) but were inconsistent with theory. For the English data, for 
example, contrary to visual inspection of the histograms for the annotated filled pauses versus 
all other syllables, and contrary to theory, higher values of the (square root transformed) 
standard deviation of the F3 would lead to a higher probability of a filled pause. Most likely, 
this finding is due to collinearity in the data (standard deviations of F1-F3 correlate with each 
other, plus they correlate with the mean absolute deviations of F1-F3). With high collinearity, 
spurious findings are known to occur (Belsley, 1991). By testing subsequent models in this 
way (beginning with the full model and leaving out non-significant and illogical predictors) in 
the training set, we derived two formulae, one for each corpus.

For the Dutch corpus, the formula according to the generalised linear model on the 
training set was:

Score = 8.62× sqrt(duration) − 0.36× F0z − 0.11×(F2 − F1) + 0.21× F3 − 1.36× sqrt 
(standard deviation of F2) – 1.02× sqrt(standard deviation of F3) − 0.72× sqrt(absolute 
deviation of F1) – 1.62× sqrt(absolute deviation of F2)

And for the English corpus, the formula was:

All data Dutch primary corpus: acoustic measures of all syllables (n = 6616)

Training set (70%): n = 4632 Test set (30%): n = 1984

1) Carry out cross-validation with 10-folds for the full model 
with all predictor variables, as depicted below:

1 test
2 test
3 test
4 test
5 test
6 test
7 test
8 test
9 test
10 test

Save the mean squared error value (delta) from the 10 ‘folds’;

Repeat this 10 times, keep 10 delta’s.
2) Carry out step 1 for more parsimonious models until the 
most parsimonious yet best performing model is found; 
compare competing models using an independent t-test on the 
saved delta’s. Save the final algorithm. i.e. the coefficients 
predicting odds of a syllable being a filled pause or not.

3) Calculate the optimal cut-point, based on minimizing the 
false positive rate and at the same time maximizing the true 
positive rate.

4) Test the algorithm and 
cut-point on the held-out 
test data.

Figure 2. Scheme depicting steps in defining the algorithm and cut-point, and testing the algorithm 
(Dutch primary corpus as example).

ASSESSMENT IN EDUCATION: PRINCIPLES, POLICY & PRACTICE 9



Score = 4.73× sqrt(duration) − 0.29× F0z − 0.20×(F2 − F1) + 0.31× F3 − 0.32× sqrt 
(standard deviation of F1) − 1.38× sqrt(standard deviation of F2) − 0.10× sqrt(absolute 
deviation of F1) − 0.80× sqrt(absolute deviation of F2)

The difference between the formulae is that for the Dutch corpus (and not the English 
corpus), the standard deviation of F3 was kept in the model, and that for the English 
corpus (and not for the Dutch corpus) the standard deviation of F1 was kept in the 
model. For the other variables, the difference is found in the coefficients. For instance, for 
the Dutch data, the (square root-transformed) duration variable counts almost twice as 
much compared to the English data. Contrastingly, the F2− F1 coefficient is twice as high 
for the English data compared to the Dutch data.

Defining optimal cut-points. Cut scores were determined by using the cutpointr 
package (Thiele et al., 2019) in R. To choose the optimal cut point, the procedure 
calculates, for each potential cut point, the true positive rate and the false positive 
rate. Consider the so-called confusion matrix in Table 2. The true positive rate is the 
number of true positives divided by all manually annotated filled pauses, so true 
positives + false negatives. The false positive rate is the number of false positives 
divided by all manually annotated normal syllables, so all false positives + true 
negatives. The scores for all syllables resulting from the algorithm in the training set 
of the Dutch primary corpus ranged from −3.893 to 7.188. If the cut score would be 
set to the minimum score (−.3.893), all syllables above this score would be classified 
as filled pauses, hence all syllables would be classified as filled pauses. This would 
lead to a true positive rate of 1, meaning that all actual filled pauses are correctly 
classified, but at the same time it would also lead to a false positive rate of 1, 
meaning that all normal syllables are wrongly classified as being a filled pause. If the 
cut point is set higher, the false positive rate will go down (which is good, fewer 
normal syllables wrongly classified as filled pauses), but at the same time, the true 
positive rate will also go down (which is a shame, fewer filled pauses correctly 
classified as such). The Receiver Operating Characteristic (ROC) curve depicts this 
relationship between the false positive rate on the x-axis and the true positive rate 
on the y-axis for all thresholds. Figure 4 shows the ROC-curve for the Dutch 
training data. Figure 3 shows the distributions of all manually filled pauses (left 
panel) and syllables not annotated as filled pauses (normal syllables, right panel) 
with the chosen cut point, as found by the optimisation procedure.

For the Dutch corpus, the optimal cut-point was found to be 2.7094, as shown in 
Figure 4. Subsequently, all syllables with scores higher than 2.7094 in the Dutch test set 
were then annotated as automatically-detected filled pauses. For the English corpus, the 
optimal cut-point was found to be 3.4942. Thus, all syllables with scores higher than 
3.4942 in the English test set were annotated as automatically-detected filled pauses. The 

Table 2. Illustration of a confusion matrix.
Manual annotation

Automatic detection FP ‘normal’
FP True positive False positive
‘normal’ False negative True negative
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PRAAT script to detect filled pauses can be found in Appendix 3 (online). Figure 5 shows 
the TextGrid that results when running the rewritten PRAAT-script to detect syllable 
nuclei and the (embedded) new script to detect filled pauses.

Figure 3. Density plots of scores resulting from the algorithm in the Dutch primary corpus training set, 
indicating optimal cutpoint with vertical line.

Figure 4. ROC curve of the scores in the Dutch primary corpus training set, indicating optimal point 
with lowest false positive rate and highest true positive rate (at threshold = 2.7094).
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Results

Testing accuracy of the algorithms

To test the accuracy of the algorithms for both corpora, using the function 
confusionMatrix from the package caret (Kuhn, 2019) in R, the relevant measures to 
compare how well the automatic function could detect the manually annotated filled 
pauses, were calculated in both test sets. These measures are calculated based on the filled- 
in confusion matrix. As an example, Table 3 shows this confusion matrix for the Dutch 
test data. There are a number of ways to report performance or accuracy of an algorithm 
on the basis of such a confusion matrix. The following measures are reported in Table 4:

● Accuracy = (true positives + true negatives)/total number = (107 + 1596)/1984;
● True positive rate or sensitivity = true positives/(true positives + false nega-

tives) = 107/165;
● True negative rate or specificity = true negatives/(true negatives + false posi-

tives) = 1596/1819;

Figure 5. PRAAT screenshot of visualisation of a sound file with automatically-generated TextGrid; as 
can be seen in the third tier called ‘DFauto’, a filled pause (‘fp’) has automatically been detected, 
starting at 10.737 and ending at 11.361 seconds. The first tier shows the automatically detected 
syllable nuclei (22 through 36 in this soundfile), and the second tier shows the phrases as intervals 
(second phrase in this sound file).

Table 3. Confusion matrix for Dutch test data (primary corpus, n = 1984).
Manual annotation

Automatic detection FP ‘normal’ totals
FP 107 223 330
‘normal’ 58 1596 1654
totals 165 1819 1984
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● Precision = true positives/(true positives + false positives) = 107/330.

Finally, the measure area under the curve (AUC) is calculated from the earlier men-
tioned ROC-curve, but now using the test-data. This measure represents the extent to 
which the true positive rate (or sensitivity) is maximised while at the same time the false 
positive rate is minimised across all potential thresholds. This measure of performance is 
specifically useful for situations in which a logarithm is tested in skewed or unbalanced data 
sets (Fawcett, 2006), such as ours: most syllables are not filled pauses, only a few are.

Although the Dutch corpus was much smaller than the English corpus (which could 
have led to an unstable formula), most measures are slightly higher in the Dutch corpus 
compared to the English one. For instance, the measure ‘sensitivity’ (also called true 
positive rate or recall) is .65 for the Dutch test set, and .56 for the English data set. These 
numbers mean that 65% and 56% of all manually annotated filled pauses were also 
indicated as filled pauses by the automatic algorithm in the Dutch and English test sets, 
respectively. Most likely the lower scores for English are due to the fact that the quality of 
the recordings of the English corpus were worse than those of the Dutch corpus. Note, 
however, that the precision score for English is somewhat higher (ratio of true positives 
over all positives) than for Dutch (and both are quite low).

The results of testing accuracy of these algorithms on the secondary corpora can be 
found in Table 5. Interestingly, for the new Dutch L1 data, all accuracy measures are 
higher (‘better’) than those for the Dutch primary corpus on which the algorithm was 
trained, especially sensitivity which is up to 75%. For the new English data, we see that 
both L2 and L1 filled pauses can be predicted about equally well. Again, especially the 
scores for sensitivity (76% and 68%) are higher than the scores obtained from the test 
data of the primary corpus. However, note that the scores for precision are lower than 
precision scores for the primary L2 English corpus.

Table 4. Accuracy measures calculated on test data (30% of total) of primary 
corpora.

Dutch test data (n = 1984) English test data (n = 5935)

Accuracy 0.86 0.83
Sensitivity 0.65 0.56
Specificity 0.88 0.86
Precision 0.32 0.33
AUC 0.80 0.75

Table 5. Accuracy measures calculated on secondary corpora.
Dutch L1 data (n = 24,006) English L2 data (n = 22,366) English L1 data (n = 4179)

Accuracy 0.90 0.84 0.86
Sensitivity 0.75 0.76 0.68
Specificity 0.91 0.85 0.87
Precision 0.28 0.21 0.20
AUC 0.88 0.87 0.87
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Correlations between manual and automatic measures of fluency

Global accuracy for the primary corpora was also gauged by correlating global measures 
of filled pauses as calculated from the manual annotations with the same global measures 
as calculated from the automatically detected filled pauses. For these analyses, the total 
number of filled pauses, their total durations, and total speaking time for each recording 
were measured. For the Dutch recordings from native speakers, these (manually mea-
sured) data were not available, thus leaving 90 Dutch recordings and 60 English record-
ings. Figure 6 (Dutch corpus) and 7 (English corpus) show the correlations and plots for 
the following measures, as calculated from the manual and automatic annotations: total 
number of filled pauses, number of filled pauses per second of speaking time, and 
percentage duration of all filled pauses of speaking time.

Figures 6 and 7 show that the correlations between automatic measures of filled pauses 
and manual measures of filled pauses are higher for the English data than for the Dutch 
data. A potential explanation for this finding is that the Dutch recordings (always around 
20 seconds) were considerably shorter than the English recordings (mean 108 seconds, 
with a minimum of 37 seconds). It is quite likely that measures from recordings of just 
20 seconds are less stable than those from longer recordings. We therefore also calculated 
the correlations adopting a stricter threshold for filled pauses in both data sets, 

Figure 6. Scatter plots and Pearson correlations for the Dutch primary corpus, comparing measures 
from manually annotated and from automatically detected filled pauses (n = 90).

Figure 7. Scatter plots and Pearson correlations for the English primary corpus, comparing measures 
from manually annotated filled pauses with those from automatically detected filled pauses (n = 60).
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multiplying the mathematically optimal cut points (found to be 2.7094 and 3.4942) by 
1.2. Recalculating the relevant measure for filled pauses in this way led to higher 
correlations for both data sets, especially for the Dutch data set: correlations were now 
.57, .53. and .69 for the Dutch data and .78, .75, and .77 for the English data for the 
measures total number of filled pauses, number of filled pauses per second of speaking 
time, and percentage duration of all filled pauses of speaking time, respectively.

Gauging validity for the purpose of language assessment

In addition to validating the script in terms of accuracy of measurement compared to 
manual measurement, it is useful to evaluate the extent to which the automatic measures 
are predictive of human judgements on (aspects of) fluency and proficiency. As described 
in the materials sections, the speech data in both primary corpora have been judged on 
fluency.

For both data sets, we ran linear models to predict the fluency ratings by the scores for 
speech rate, number of filled pauses per second, and percentage duration of filled pauses 
as predictors. Table 6 shows the total R2 for the models using the automatic measures and 
those for the models using the manual measures as predictors. We also gauged the 
predictive value of the new measures of filled pauses alone.

As can be seen from Table 6, the scores given by judges rating on fluency are best 
predicted when the measures for speech rate are included. For the English corpus, the 
measures of filled pauses (either by hand or automatically) do not predict these scores at 
all (the models were not significant). For the Dutch corpus, on the other hand, the models 
predicting the fluency scores by measurement of filled pauses alone, led to 15% (manually 
measured filled pauses) and 16% (automatically measured filled pauses) of the variance 
explained. This amount of variance explained by the automatic measures of filled pauses 
alone goes up to 20% when the higher cut point (multiplied by 1.2) was employed.

Discussion and conclusions

An algorithm to detect filled pauses automatically was created for Dutch and English 
speech data. The speech data of the primary corpora, on which the algorithms were 
trained, were mostly L2 data (Dutch corpus) or only L2 data (English corpus). 
Annotations by two annotators (Dutch data) or three annotators (English corpus) were 
combined in order to find the optimal algorithm to detect filled pauses. The algorithms 
for both corpora used almost the same set of variables, but with different coefficients. In 
general, it turned out that syllables

Table 6. Total R2 for linear models predicting (mean) scores for fluency.
Total R2 

Predictors
Dutch primary corpus 

(n = 90)
English primary corpus 

(n = 60)

Manual, only FP-measures 0.15 0.01 (ns)
Manual, including speech rate 0.75 0.43
Automatic, only FP-measures 0.16 0.02 (ns)
Automatic, including speech rate 0.53 0.32
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● that are long in duration,
● pronounced with a relatively low pitch,
● with vowel qualities that are like a schwa and/or like a back mid-open vowel,
● with vowel qualities that are stable,
● and pronounced lazily,

have a higher chance of being a filled pause. The algorithms and cut scores were 
determined using training data (70% of all syllables). Most of the measures included in 
the algorithms have been incorporated in previous research characterising and/or detect-
ing filled pauses (e.g. Audhkhasi et al., 2009; Hughes et al., 2016b; Kaushik et al., 2010; 
Shriberg, 2001; Stouten & Martens, 2003; Vasilescu & Adda-Decker, 2007; 
Verkhodanova & Shapranov, 2016). For both the Dutch as well as the English algorithm, 
however, we found an additional characteristic to be predictive of syllables being a filled 
pause. This is summarised as ‘pronounced lazily’ above and pertains to the extent to 
which the speaker makes an effort in pronouncing the vowel, measured by the proximity 
of the syllable’s F1 and F2 to the median of the speaker’s F1 and F2. In short: the less 
effort a speaker makes, the closer the F1 and F2 are to the respective medians, and thus 
the more likely the syllable is a filled pause.

For the second research aim, we tested the accuracy of the algorithms on the remain-
ing 30% of the data and found that 65% of the Dutch manually annotated filled pauses 
and 56% of the English manually annotated filled pauses were indeed correctly classified. 
At the same time, 12% (Dutch data) and 14% (English data) of syllables that were 
manually not annotated as being a filled pause, were incorrectly classified as being filled 
pauses (indicated by the specificity measures). Finally, precision for the current system 
seems quite low: 32% (Dutch data) or 33% (English data) of the automatically classified 
filled pauses are indeed as such annotated manually. Perhaps the high numbers of false 
positives can partly be explained by lengthened syllables that are now classified as filled 
pauses, a hypothesis we aim to investigate in future research. Related to this hypothesis is 
a question for future research, namely to what extent such false positives or lengthened 
syllables that partly sound like filled pauses could be classified as hesitations. For 
the second research aim, we also tested the algorithms on unrelated secondary corpora 
with Dutch L1 data, as well as English L2 and L1 data. The results showed that the 
accuracy measures for L1 Dutch were even higher than those of the primary corpus. For 
English, most accuracy measures were better, except the number of false positives 
(‘precision’ was lower than on the primary corpus).

In testing for the optimal algorithm, we decided to delete significantly predicting 
variables, if their sign in the formula was inconsistent with previous studies and theory. 
For instance, the standard deviation of F0 was found to add to predicting filled pauses. 
However, contrary to theory, it was found that larger standard deviations were related to 
higher probabilities of filled pauses, although previous research had indicated that 
stability of the F0 would be a positive predictor of filled pause occurrence 
(Verkhodanova & Shapranov, 2016). We concluded that such unpredicted results may 
have been due to correlation among the predictor variables. For F0, however, another 
possible explanation is that this was due to the fact that F0 may also tend to decline 
during the articulation of the filled pause (O’Shaughnessy, 1992). In other words, 
previous research is inconsistent with respect to F0 as a predictor of filled pauses: 
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a decline of F0 (O’Shaughnessy, 1992) would be consistent with larger standard devia-
tions, whereas stability of F0 (Verkhodanova & Shapranov, 2016) would be consistent 
with smaller standard deviations. Therefore, decline of F0 should also be investigated as 
a potential indicator in future research.

In validating the automatic filled pause script further, global correlations between the 
manual and automatic measures of filled pauses, averaging over the recordings in the 
primary corpora, were carried out. The crucial global automatic measures, namely 
number of filled pauses per second speaking time and the percentage duration of filled 
pauses in speaking time, correlated with the manual measures between .53 and .78, at 
least when a more strict cut point or threshold was employed to detect filled pauses (the 
mathematically optimal found threshold multiplied by 1.2). These correlations were 
lower for the Dutch data than for the English data.

For the third research aim, we tested to what extent the algorithm can be used for L2- 
fluency measurement for assessment purposes, by comparing how well the manual and 
automatically measured aspects of fluency could predict human ratings of fluency. For 
these general linear models, only the Dutch measures of filled pauses significantly 
predicted these perception data, and the measures calculated from automatically detected 
syllables were performing at least as well as the measures calculated from manually 
detected syllables. It is possible that the judges rating the Dutch data had more precise 
instructions on how to judge fluency (including filled pauses) than the judges for the 
English data (compare Bosker et al., 2013 with Tavakoli et al., 2017). The difference in 
type of instruction may partly explain why the English ratings were not related to either 
automatic or manual measures of filled pauses. Another issue to keep in mind is that the 
current automatic measures of (filled) pauses do not take into account the location of 
pauses, while the study by Kahng (2018) has shown that location does play a role, at least 
for silent pauses: pauses within clauses are penalised more heavily than pauses between 
clauses. Therefore, if an automatic measurement of silent and filled pauses would be used 
in automatic scoring for language assessment, location should contribute in some way.

It is at this point difficult to evaluate whether the current algorithms are ‘good’ 
predictors for Dutch and English L2 filled pauses. First of all, there is variability in the 
way in which accuracy is reported and calculated across studies. For instance, Stouten 
and Martens (2003) report sensitivity of 70% for Flemish data and in the current Dutch 
data, 64% sensitivity was reported (see Table 5). However, note that the sensitivity for 
the current Dutch data test set would also increase to 70% if only those filled pauses 
that were marked by both annotators were to be counted. Secondly, more data would 
need to be tested: the English recordings of the primary corpus were of low quality for 
the purpose of acoustic analyses, and for the Dutch data in the primary corpus, only 
short recordings were included. However, the results from the accuracy measures of the 
secondary corpora seem promising, especially for the Dutch algorithm. As a next step, 
we propose to test the new PRAAT scripts on yet more data for both languages. With 
respect to the global validation (relating measures from the script to measures from 
manual annotations and to [fluency] ratings), we can be certain that these would be 
higher if the speaking excerpts (or the tasks themselves) had been longer. With respect 
to the sound quality, we can only speculate how this made a difference to the 
performance of the script. Possibly, the high number of false positives in the secondary 
corpus could be related to this. Another reason why it is hard to gauge the current 
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quality is that it is the first time an algorithm has been developed to detect filled pauses 
in L2 data. It is as yet unknown whether detecting filled pauses in L2 data may be more 
difficult than for L1 data. A hint is found in the positive results for the Dutch L1 data 
(secondary corpus), but this will be a challenge for future research, along with the 
question of whether correctly detecting filled pauses may be dependent on L2 profi-
ciency. It may well be that as proficiency progresses, filled pauses sound more like those 
from native speakers, and hence will be more often (correctly) detected than from 
beginner learners. Taking these considerations into account, we must conclude that the 
current algorithm is not yet suitable for automatic measurement of fluency for the 
purpose of assessing learners’ proficiency, for instance, for the APTIS speaking test. 
Future research should test not only whether overall proficiency would play a role in 
the accuracy of (and therefore validity to use) the script, but also whether factors such 
as gender, quality and length of sound recording, L1 background of the speaker may 
play a role and should be systematically tested. Additionally, it is worth researching 
whether judges who rate on only one aspect (e.g. fluency as in the Dutch corpus) are 
able to focus more precisely on this factor alone compared to judges who make 
a holistic assessment alongside analytic ratings on specific aspects (as was the case in 
the English corpus).

To conclude, the first aim of this research was to create an easy-to-use PRAAT script 
that can measure aspects of L2 fluency automatically, without the time-consuming task of 
transcribing the speech beforehand. For this purpose, the De Jong and Wempe (2009) 
script has been updated and rewritten, and syllables are now detected with more 
accuracy; this is evidenced by a higher correlation between articulation rate calculated 
from manually counted syllables with articulation rate calculated by the script. A new 
script was subsequently created to automatically detect filled pauses. With respect to 
the second aim, to test the accuracy of the new script, we can conclude that the current 
algorithm can correctly identify most of the manually annotated filled pauses, even in 
corpora on which the algorithms were not trained. At the same time, however, there is 
currently a high number of false positives, i.e. syllables that the algorithm identifies as 
filled pauses, but which were not manually classified as such. Finally, regarding the third 
aim, if judges are instructed to look out for fluency, with a precise definition that includes 
filled pauses as was the case for the Dutch data, up to 20% of the variance of ratings on 
fluency can be explained by the automatically measured filled pauses alone. In conclu-
sion, although further research in validation is necessary, the current script with the 
algorithm is promising, especially given the stable performance on the secondary 
corpora.

Notes

1. The speaking tasks 1 through 3 in APTIS were all scored between 0 through 5, where a score 
of 5 entails that the performance is above the level of the task; For task 4, score 5 is at C1- 
level, and 6 is defined as above C1 level. Participants at the C (at least C1) level in Tavakoli 
et al. (2017) always scored at least a 5, on all tasks.

2. The pitch ceiling in this step is based on the estimates of mean 110 and 190 Hz for male and 
female speech and the usual pitch ceilings of 225 and 450 yield a factor between 2 and 2.4. 
Our choice of 2.5 is therefore chosen as a safe multiplier to determine pitch ceiling. (Rietveld 
& Van Heuven, 2009).
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3. The PRAAT manual advises 5500 Hz for measuring 5 formants in female speech and usually 
100 Hz is seen as a good choice per formant. Rietveld and Van Heuven (2009) note that for 
male speech, formant values are about 10% lower. The current formula approximates the 
thus obtained max values of 4400 and 4000 Hz for female and male speech when measuring 
four formants (which is good practice when three are required).
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