

Regulation of inflammation in uveal melanoma Souri, Z.

Citation

Souri, Z. (2021, September 14). *Regulation of inflammation in uveal melanoma*. Retrieved from https://hdl.handle.net/1887/3210126

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3210126

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>https://hdl.handle.net/1887/3210126</u> holds various files of this Leiden University dissertation.

Author: Souri, Z. Title: Regulation of inflammation in uveal melanoma Issue Date: 2021-09-14

Expression of HDACs 1, 3, and 8 is upregulated in the presence of infiltrating lymphocytes in Uveal Melanoma

Z. Souri, A.G. Jochemsen, A.P.A. Wierenga, W.M.G. Kroes, R.M. Verdijk, P.A. van der Velden, G.P.M. Luyten, M.J. Jager

Cancers 2021

Simple Summary

Uveal melanoma (UM) is an ocular malignancy which is derived from melanocytes in the uveal tract. Epigenetic regulators such as Histone deacetylase enzymes (HDACs) are being tested as treatment of UM metastases. Expression of different HDACs is variable, and some are increased in high-risk tumours with loss of one chromosome 3. As this genetic abnormality is also associated with an inflammatory phenotype, we analysed whether HDAC expression was associated with inflammation. In two cohorts of UM cases, several HDACs showed a positive correlation with tumour-infiltrating leukocytes. Interferon-gamma stimulated expression of some HDACs on UM cell lines. These data suggest that cytokines produced by leukocytes may be responsible for the increased expression of some HDACs in UM with monosomy 3.

Abstract

In Uveal Melanoma (UM), an inflammatory phenotype is strongly associated with the development of metastases, and with chromosome 3/BAP1 expression loss. As expression of several Histone Deacetylases (HDACs) was associated with loss of chromosome 3, this suggested that HDAC expression might also be related to inflammation. We analysed HDAC expression and the presence of leukocytes by mRNA expression in two sets of UM and determined the T lymphocyte fraction through ddPCR. Four UM cell lines were treated with IFN χ (50IU, 200IU). Quantitative PCR (qPCR) was used for mRNA measurement of HDACs in cultured cells.

In both cohorts (Leiden and TCGA), a positive correlation occurred between the presence of a T cell infiltrate and expression of HDACs 1, 3, and 8, while a negative correlation was observed between macrophages and HDACs 2 and 11. After stimulation of UM cell lines with IFNx, a slight increase of HDACs 1, 4, 5, 7, and 8 occurred in two out of four UM cell lines.

We conclude that the observed positive correlations between HDAC expression and chromosome 3/BAP1 loss may be related to the presence of infiltrating T cells.

Keywords: Uveal Melanoma, Inflammation, Metastasis, Chromosome 3, Histone deacetylase

1. Introduction

Histone Deacetylases (HDACs) are epigenetic enzymes which regulate gene expression primarily by modifying the chromatin structure through the removal of acetyl groups from histones, acting in balance with Histone Acetyl Transferases (HATs). Eighteen types of HDACs have been identified in man, classified into four classes: HDAC Class I includes HDACs 1, 2, 3, and 8, which are located in the nucleus, HDAC Class II includes HDACs 4, 5, 6, 7, 9, and 10, with both nuclear and cytoplasmic locations, HDAC Class III consists of sirtuins 1-7, and HDAC Class IV is made up by HDAC 11 [1, 2]. Several types of HDACs show overexpression in cancer cells, which has been associated with invasive behavior [3-5] and a poor clinical outcome, for instance in oral squamous cell carcinoma [6].

Inhibitors of HDACs (HDACi) are being investigated as treatment of a wide range of malignancies, one of which is Uveal Melanoma (UM), which constitutes a rare ocular tumour arising from the uveal tract. It mainly involves the choroid but may also develop in the iris or ciliary body, and gives rise to metastases in 50% of cases [7]. Specific somatic mutations and chromosome aberrations in primary UM are associated with the risk of metastases: loss of one chromosome 3 (monosomy 3) and a mutation in the BRCA1-associated protein 1 (BAP1) gene on the other chromosome 3 are associated with a very high-risk of developing metastases [8, 9]. In a recent study, we described that high-risk UM showed an elevated expression of several HDACs, which was associated with monosomy 3 [10].

It has been known for quite some time that monosomy 3 is related to an inflammatory phenotype, which is characterized by the presence of tumour-infiltrating lymphocytes (TILs), tumour-associated macrophages (TAMs) and high expression levels of HLA Class I and HLA Class II [11-15]. Infiltration of UM with immune cells is associated with an increased risk of metastasis [16-18]. Specific genetic abnormalities are associated with the development of inflammation in UM: extra copies of chromosome 8q are related to macrophage influx, while monosomy 3/BAP1 loss are also associated with the presence of lymphocytes [16, 19]. As differences in expression levels of HDACs were related to monosomy 3/BAP1 loss, we considered a relation between their expression and inflammation.

We set out to investigate the hypothesis that the variation in expression of HDACs is related to the inflammatory phenotype, due to the production of cytokines produced by the infiltrating leukocytes. We analyzed this by determining HDAC expression and the presence of an inflammatory phenotype in two cohorts of UM patients, and by treating four UM cell lines with IFNx.

2. Materials and Methods

2.1. Study samples

The studied tumours came from 64 eyes that underwent an enucleation for UM at the Leiden University Medical Center (LUMC), Leiden, The Netherlands, between 1999 and 2008. In this group, 51% of the patients were male and 49% female. Their mean age at the time of enucleation was 61 years. The mean follow-up time (defined as the time period between enucleation and death) was 83 months (range 2 to 229 months). Follow-up was updated in 2020. At the end of follow up, 17 patients (27%) were alive, 37 patients (58%) had died because of metastases, four (6%) had died because of other causes, while for six patients (9%) the cause of death was unknown.

MRNA levels of patients included in the TCGA database were investigated for validation of our results (n=80) [18].

This work has been carried out in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki). The project was approved by the LUMC Biobank committee and the LUMC METC committee (19/10/2016, code G16.076/NV/gk).

2.2. Chromosome analysis

Tumour DNA was isolated using the QIAmp DNA Mini kit (Qiagen, Venlo, The Netherlands). Single-nucleotide polymorphism (SNP) analysis was performed using an Affymetrix 250K_NSP or Affymetrix SNP 6.0 array to detect chromosome 3 loss [20]. Additional copies of chromosome 8q were detected by Affymetrix SNP 6.0 array and analysed using the GISTIC 2.0 algorithm [19].

2.3. Tumour gene expression

RNA was isolated using the RNeasy mini kit (Qiagen, Venlo, The Netherlands). Gene expression levels were determined using an Illumina HT12v4 array (Illumina, Inc., San Diego, CA, USA) and data were obtained for expression of epigenetic regulators (HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, HDAC8, HDAC9, and HDAC11) and infiltrate markers (CD3E, CD8A and CD68). Information regarding the Illumina probe numbers and gene expression levels has been published [10].

2.4. Droplet Digital PCR (ddPCR)

Droplet digital PCR (ddPCR) was used in order to measure the T cell fraction as previously described [21, 22], applying a specifically-designed probe directed at a locus of the TCR- β gene.

2.5. Cell lines and cell culture

Four UM Cell lines were used in this study: the OMM1 cell line was previously established by Dr G.P.M. Luyten (LUMC, Leiden, The Netherlands) [23]. OMM2.5 was a gift from Dr B.R. Ksander (Schepens Eye Re-search Institute, Boston, MA, USA) [24]. Both are BAP1-positive and cultured in Roswell Park Memorial Insti-tute Medium 1640 (RPMI) Dutch modified media (Life Technologies, Europe by, Bleiswijk, The Netherlands) supplemented with 10% fetal bovine serum (FBS) (Greiner Bio-one, Alphen a/d Rijn, The Netherlands), 1% GlutaMAX and 1% penicillin/ streptomycin (Life Technologies).

Two BAP1-negative UM cell lines (MP46 and MP38) were provided by the Curie Institute, Paris, France [25] and cultured in Iscove's modified Dulbecco medium (IMDM) (Life Technologies), supplemented with 20% FBS (Greiner Bio-one) and 1% penicillin/streptomycin (Life Technologies).

2.6. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

The procedure for RNA isolation and quantitative real-time polymerase chain reaction (qPCR) has been described previously [26]. In summary, total RNA was extracted from cells using an RNeasy Mini Kit (Qiagen Benelux B.V., Venlo, The Netherlands). The IScript cDNA synthesis kit (Bio-Rad Laboratories B.V., Veenendaal, The Netherlands) was used for complementary cDNA synthesis according to the manufacturer's instructions. Quantitative real-time polymerase chain reaction (qPCR) was performed in three independent experiments using the CFX-384 machine (Bio-Rad), with triplicates. Data were analysed using CFX manager 3.1 (Bio-Rad). CT values of genes of interest were normalized against the geometric mean of housekeeping genes *RPS11* and *CAPNS1*. The sequences of primers used in the study are shown in Table 1.

Table 1. Sequences of primers used in the qPCR test.

Primers	Forward	Reverse
HDAC1	5'- CATCGCTGTGAATTGGGCTG	5'- CCCTCTGGTGATACTTTAGCAGT
HDAC2	5'- CATGGCGTACAGTCAAGGAG	5'ATAATTTCCAATATCACCGTCGTAG
HDAC3	5'- AGTTCTGCTCGCGTTACACA	5'- CCGAGGGTGGTACCTCAAAC
HDAC4	5'- TGGGAGTTTGGAGCTCGTTG	5'- AGTCCATCTGGATGGCTTTGGG
HDAC5	5'TGGTCTACGACACGTTCATGCT	5'- TCAGGGTGCACGTGTGTGTT
HDAC6	5'-GGAGAATCAGATCGCAACCGC	5'- ACTGGGGGGTTCTGCCTACTT
HDAC7	5'- GACAAGAGCAAGCGAAGTGC	5'- GAGGTGTGGGGGACACTGTAG
HDAC8	5'- CCAAGAGGGCGATGATGATC	5'- GTGGCTGGGCAGTCATAACC
HDAC9	5'- GAGGACGAGAAAGGGCAGTG	5'- GTACCAGAGCTTGGGATGGC
HDAC11	5'- TGTCTACAACCGCCACATCT	5'- GGTGCCTGCATTGTATACC
RPS11	5'- AAGCAGCCGACCATCTTTCA	5'- CGGGAGCTTCTCCTTGCC
CAPNS1	5'ATGGTTTTGGCATTGACACATG	5'- GCTTGCCTGTGGTGTCGC

2.7. Statistics

Data were analyzed with SPSS software version 22.0 (SPSS, nc., Chicago, II, USA). Spearman correlation was performed in order to test correlations between non-parametric data. Pearson's chi square test was used for categorical data analysis. Graphs were obtained using GraphPad Prism version 5.0 for Windows (GraphPad Software, La Jolla, CA, USA). An Independent t test was used to compare qPCR data.

3. Results

3.1. HDAC expression is related to clinical and genetic tumour characteristics

When we looked at the mRNA levels of the different HDACs, we noticed a moderate variable expression in the Leiden cohort (Figure 1A) as well as in the TCGA panel (Figure 1B).

We already knew that expression of some of the HDACs was related to the tumour's chromosome 3 status, but now also investigated the possible association between HDACs and other high-risk tumour characteristics, such as cell type, tumour location (involvement of the ciliary body), tumour size (indicated as cTNM stage), BAP1 expression as determined by immunohistochemical staining in the Leiden cohort of 64 cases as well as in the TCGA cohort (mRNA expression) of 80 cases.

Increased expression of HDACs 1 and 8 was associated with the presence of epithelioid cells (p= 0.002 and p = 0.005), increased HDAC4 expression was associated with ciliary body involvement (p = 0.04) and high cTNM stage (p = 0.04). Expression of HDACs 1, 4, and 8 was higher in tumours with monosomy 3 (p = 0.002, p = 0.01, and p < 0.001, respectively), while HDAC11 showed a lower expression in cases with monosomy 3 (p < 0.001). Increased expression of HDAC4 and HDAC8 was associated with loss of BAP1 (p = 0.004, p = 0.001 respectively), while the opposite relation was observed for HDAC11 (p = 0.004) (Table 2). When we looked at disomy 3 tumours only, HDAC4 and HDAC7 were associated with chromosome 8q gain (p = 0.01, p = 0.007). As expected, when we looked at the TCGA cohort, HDACs 4 and 8 but also HDAC3 showed a negative correlation with the BAP1 mRNA expression level (p < 0.001, p < 0.001, p = 0.02), while HDACs 6 and 11 (p < 0.001, p < 0.001) showed a positive correlation (Supplementary Table 1).

Figure 1. Distribution of HDAC mRNA in A) 64 UM from Leiden; B) 80 UM from the TCGA cohort. Horizontal bars indicate mean gene expression.

2 W ent HDACII H p 20(31) 0.38 20(31) 0.35 21(34) 0.50 12(19) 0.50	Table 2. Clinico-pathological characteristics according to low and high HDAC expression. Groups were separated according to the median into low (L) expression and high expression (H). Using Pearson's Chi Square test, $p \le 0.05$ is considered significant. Numbers in brackets represent percentages.	HDACI HDAC2 HDAC3 HDAC4 HDAC6 HDAC7 HDAC8 HDAC1	гн <i>р</i>	Cell Type (n=e4) (n=e4) Spinde 17(27) 5(8) 0.002 9(14) 13(20) 0.49 14(22) 8(12) 0.08 13(20) 9(14) 0.30 9(14) 13(20) 0.30 12(19) 10(16) 0.73 17(27) 5(8) 0.005 9(14) 13(20) 0.38 Mixed/epitheliold 15(23) 27(42) 2.1(33) 2.1(33) 17(27) 25(39) 19(30) 2.3(36) 19(30) 2.3(36) 19(30) 2.1(33) 2.1(33) 17(27) 25(39) 2.2(34) 20(31) Mixed/epitheliold 15(23) 27(42) 2.1(33) 2.1(33) 2.1(33) 2.1(33) 2.1(33) 2.1(33) 2.1(33) 2.1(33) 2.1(33) 2.1(33) 2.0(31) 2.0(31)	CiliaryBody Involvement (n=64) Notimvolved 22[34] 18[28] 0.30 17(27) 23[36] 0.36 19[30] 21[33] 0.85 24[37] 16[25] 0.04 23[36] 17(27) 0.12 23[36] 17(26] 0.22 22[34] 18[28] 0.70 19[30] 21[33] 0.35 Notimvolved 22[34] 18[28] 0.30 17(27) 23[36] 0.36 19[30] 21[39] 0.85 24[37] 16[25] 0.04 23[36] 17(27] 0.12 23[36] 17(26] 0.22 22[34] 18[28] 0.70 19[30] 21[33] 0.35 Involved 20[46] 14[22] 13[20] 11[17] 12[19] 12[10	CTNM Stage (16 2010) (16 2	Chromosome 3	
	repres		Г	9(14) 22(34)	19(30) 12(19)	16(26) 13(21)		
into le repress L L L 19(30) 12(19) 13(21)	redian		d	0.005	0.70	0.87		
edian into le ckets repres p L 22(34) 0.70 19(30) 12(19) 0.87 16(26)	n brac	DAC8	н	5(8) (8(28) 2(19)	7(27) 2(19)		
the median into l n brackets repres MC8 1 H p L H p L (8) 0.005 9(14) (39) 0.70 19(30) (19) 0.70 12(30) (19) 0.87 14(26) (19) 0.87 14(26) (19) 0.87 14(26)	ing to bers i	Ħ		27) 5 27) 25	34) 18 12 12	21) 17 21) 12		
Ing to the median into l hbrackets repres HDAC8 I HDAC8 I H p L H p L H p L H p L H p 2339 $25(39)$ 2005 $2(34)$ 27 $25(39)$ 2026 21 $12(13)$ $22(34)$ 21 $12(13)$ $22(34)$ 21 $12(13)$ $22(34)$ 21 $12(13)$ $21(25)$ 21 $12(13)$ 2871	scordi Numb		Г	17(2 17(2	22(3 12(1	20(3 13(2		
cording to the median into l Numbers in brackets repres HDAC8 I L H I L H L 17(27) 5(8) 0.005 17(27) 25(39) 0.70 17(27) 25(39) 0.70 17(27) 25(39) 0.70 17(27) 18(28) 0.70 12(19) 12(19) 12(19) 13(21) 12(19) 0.87 13(21) 12(19) 0.87	ted ac ant. 1	F	ď	0.73	0.22	0.07		
ant. Numbers in brackets repres ant. Numbers in brackets repres p $HDAC8$ p L p L p L p L p r	epara gnific	DAC	Η	10(16) 21(33)	17(26) 14(22)	15(24) 16(26)		
eparated according to the median into land	vere s red si	Т	l	12(19) 21(33)	23(36) 10(16)	22(35) 9(14)		
vere separated according to the median into lived significant. Numbers in brackets repress HDAC7 HDAC8 HDAC7 HDAC8 HDAC8 I I I L H I I I I I I I I I/(27) 5(8) 0.00 9(14) II(33) 21(33) II(27) 25(38) 0.00 19(30) II(32) 0.72 19(30) II(28) 0.72 19(30) III(39) 13(21) 13(21) III(28) 0.72 III(28) 0.73 19(30) III(28) 0.72 13(21) 13(21) 13(21) 13(21) 13(21) 13(21) 13(21) <td>oups v nsider</td> <td></td> <td>d</td> <td>0.30</td> <td>0.12</td> <td>0.44</td> <td></td>	oups v nsider		d	0.30	0.12	0.44		
Purple were separated according to the median into linito linit and respectively and represent the significant. Numbers in brackets represent the provided significant. Numbers in brackets represent the provided significant into linit and represent the provided significant significant into linit and represent the provided significant sig	in. Gr is co	AC6	н	3(20) 9(30)	7(27) 5(23)	7(27) 4(23)		
n. Groups were separated according to the median into lisis considered significant. Numbers in brackets repress AC6 HDAC7 HDAC8 H p L H p L H $3(20)$ 0.30 12(19) 10(16) 0.73 17(27) 5(8) 0.005 9(14) $3(20)$ 0.30 12(13) 17(27) 5(13) 17(27) 5(13) 22(34) $7(27)$ 0.12 23(36) 17(26) 0.22 22(34) 13(30) 23(30) $7(27)$ 0.12 23(36) 17(26) 0.22 22(34) 18(28) 0.70 19(30) $7(27)$ 0.44 22(35) 15(24) 0.07 20(32) 17(27) 0.87 16(26) $7(27)$ 0.44 22(35) 15(26) 0.77 12(19) 0.87 16(26) $7(27)$ 0.44 22(35) 15(26) 13(21) 13(21) 13(21) 13(21) $7(27)$ 0.44 22(35) 15(26) 13(21) 13(21) 13(21) $7(27)$ 0.44 22(35) <	ressio 0.05	Ē	_	14) 1 36) 1	36) 1 14) 1	32) 1 18) 1		
Tession. Groups were separated according to the median into l 0.05 is considered significant. Numbers in brackets repres HDAC6 HDAC8 HDAC8 J HDAC6 HDAC8 HDAC8 J HDAC9 HDAC8 J	$C \exp p \leq p \leq p$		-) 9(9(1 20(
C expression. Groups were separated according to the median into l $p \leq 0.05$ is considered significant. Numbers in brackets repressHDAC6HDAC7HDAC8I I I p L H p L H I I p L H p L H p L I I p L H p L H p L H I I p L H p L H p L H I I p I I p L H p L H I I p I H p L H p L H I I p I H p L H p L H I I I p I I p I I p L I I I p I I p I I p I	HDA test,	4	d	0.30	 9.0	0.0		
HDAC expression. Groups were separated according to the median into ltest, $p \leq 0.05$ is considered significant. Numbers in brackets repress a HDACHDACHDACI p LH p LH p L p LH p LH p L p L a a b b b b b b b b b a a a b b b b b b b b b a a a a b a </td <td>high l quare</td> <td>HDAC</td> <td>Η</td> <td>9(14) 23(36)</td> <td>16(25) 16(25)</td> <td>14(23) 16(26)</td> <td></td>	high l quare	HDAC	Η	9(14) 23(36)	16(25) 16(25)	14(23) 16(26)		
high HDAC expression. Groups were separated according to the median into l quare test, $p \leq 0.05$ is considered significant. Numbers in brackets represHDAC4HDAC4HDAC8HDAC7HDAC8HpLHpLH p LHpLH p LHpLH $q(14)$ 0.309(14)13(20)0.3012(13)21(33)21(33)21(33) $3(36)$ $17(27)$ 0.31 $19(30)$ 0.32 $13(33)$ $21(33)$ <	v and Chi S		L	13(20) 19(30)	24(37) 8(12)	23(37) 9(14)		
v and high HDAC expression. Groups were separated according to the median into lChi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets represLHDAC4HDAC6HDAC7HDAC81 p L H p L H 2 H p L H p L H H p L H p L H p H p L H p L H <td< td=""><td>to lov son's</td><td></td><td>d</td><td>0.08</td><td>0.85</td><td>0.50</td><td></td></td<>	to lov son's		d	0.08	0.85	0.50		
to low and high HDAC expression. Groups were separated according to the median into lson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets repres $p L$ HDACHDAC $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in brackets repres $p \leq 0.05$ is considered significant. Numbers in $p \geq 0.05$ is considered significant. $p \leq 0.05$ is considered significant. Numbers in $p \geq 0.05$ is considered significant. $p \leq 0.05$ is considered significant. $p \leq 0.05$ is considered significant. $p \geq 0.05$ is considered signi	rding Pears	DAC3	н	8(12) 25(39)	21(33) 12(19)	21(34) 12(19)		
right for the median into IPearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets represDAC3HDAC4HDAC3 \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} p \mathbf{L} \mathbf{H} \mathbf{M} p \mathbf{M} <td>s acco Jsing</td> <td>H</td> <td>Г</td> <td>4(22) 7(27)</td> <td>9(30) 2(19)</td> <td>6(26) 3(21)</td> <td></td>	s acco Jsing	H	Г	4(22) 7(27)	9(30) 2(19)	6(26) 3(21)		
according to low and high HDAC expression. Groups were separated according to the median into l Jsing Pearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets represJubHDAC3HDAC4HDAC6HDAC7HDAC8LHpLHpLHLHpLHpLHL1pLHpLHL1pLHpLH1p1p1pLH1p1p1p1p1p1p1p1p11p1p1p1p11p1p1p1p11p1p1p1pp1p1p1p1pp1p1p1pppp1p1p1pppp1p1pp1ppp1p1pp1ppp1p1pppppp1p1pppppp1p1pppppp </td <td>ristics (H). (</td> <td></td> <td>d</td> <td>49</td> <td>36</td> <td>.64 1</td> <td></td>	ristics (H). (d	49	36	.64 1		
Tristics according to low and high HDAC expression. Groups were separated according to the median into l(H). Using Pearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets repres $HDAC3$ $HDAC4$ $HDAC4$ $HDAC6$ $HDAC7$ $HDAC8$ n n p L H p L $HDAC8$ n n p L $HDAC6$ $HDAC7$ $HDAC8$ n n p L H p L H n n p L H p L H n n n L H p L H p L H n n n L H p L H p L H p L H n </td <td>aracte ssion</td> <td>AC2</td> <td>Н</td> <td>(20) 0 (33)</td> <td>(36) 0 (17)</td> <td>(32) 0 (19)</td> <td></td>	aracte ssion	AC2	Н	(20) 0 (33)	(36) 0 (17)	(32) 0 (19)		
aracteristics according to low and high HDAC expression. Groups were separated according to the median into losion (H). Using Pearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets repressionxc2HDAC3HDAC4HDAC6HDAC6HDAC7HDAC3HDAC8xc3at p LHpLHpLHpxc3at p r r r r r r r r r xc3at p r xc3 p r xc3 p r	ological cha nigh expres	ΠD		(4) 13 (3) 21	(7) 23 (0) 11	17) 20		
cal characteristics according to low and high HDAC expression. Groups were separated according to the median into lexpression (H). Using Pearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets represHDAC2HDAC3HDAC3HDAC4HDAC3HDAC3HDAC3HDAC3 1 p L H p L H p L H p L H 3 1320 0.49 3423 $8(12)$ 0.08 3423 $9(14)$ 1320 0.30 2133 21133 0.72 H p L			L	2 9(1 21(3	17(2 13(2	17(2 13(2		
ological characteristics according to low and high HDAC expression. Groups were separated according to the median into ligh expression (H). Using Pearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets repression (H). Using Pearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets repression. HDAC2 HDAC3 HDAC4 HDAC5 HDAC3 IDAC2 HDAC3 HDAC4 HDAC5 HDAC3 HDAC3 HDAC3 HDAC5 HDAC3 HDAC4 HDAC5 HDAC5 HDAC5 HDAC5 HDAC6 HDAC6 HDAC5 HDAC6 HDAC6 HDAC6 HDAC6 HDAC6 HDAC6 HDAC6 HDAC6 HDAC7 HDAC8 L H A HDAC7 HDAC8 HDAC6 HDAC7 HDAC8 HDAC8 HDAC8 HDAC8 HDAC8 HDAC8 HDAC8 HDAC8 HDAC8 HDAC8 <th colspa="</td"><td>-path and 1</td><td></td><td>d</td><td>0.002</td><td>0.30</td><td>0.57</td><td></td></th>	<td>-path and 1</td> <td></td> <td>d</td> <td>0.002</td> <td>0.30</td> <td>0.57</td> <td></td>	-path and 1		d	0.002	0.30	0.57	
	llinico ssion ss.	IDACI	Н	5(8) 27(42)	18(28) 14(22)	18(29) 14(22)		
Initio-pathological characteristics according to low and high HDAC expression. Groups were separated according to the median into lossion and high expression (H). Using Pearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets representation of the median into low and high expression (H). Using Pearson's Chi Square test, $p \leq 0.05$ is considered significant. Numbers in brackets representation of the median into low and	le 2. C expre: entage	Ĩ	Г	17(27) 15(23)	22(34) 10(16)	19(31) 11(18)		
In the collicity of the rest in the conditioner of the rest in t	Tab (L) perc			Cell Type (n=64) Spindle Mixed/epithelioid	CiliaryBody Involvement (n=64) Not involved Involved	cTNM Stage (n=62) cTNM Stage I-IIB cTNM Stage IIIA- IIIC	Chromosome 3 Status (n=64)	

<0.001

20(31) 13(20)

4(6) 27(42)

<0.001

3 (5) 27(42)

21(33) 13(20)

0.06

8(12) 23(36)

16(25) 17(26)

0.30

14(22) 18(28)

10(16) 22(34)

0.01

7(11) 25(40)

17(26) 15(23)

0.08

9(14) 24(37)

15(23) 16(25)

0.36

11(17) 23(36)

13(20) 17(27)

0.002

6 (9) 26(41)

18(28) 14(22)

Disomy 3 Monosomy 3

BAP1 staining

0.004

18(33) 10(18)

7(13) 20(36)

0.001

5(9) 20(36)

20(36) 10(18)

0.06

7(13) 16(29)

18(33) 14(25)

0.84

11(20) 14(25)

14(25) 16(29)

0.004

7(13) 20(36)

18(33) 10(18)

0.08

10(18) 19(34)

15(27) 11(20)

0.96

14(25) 17(31)

11(20) 13(24)

0.08

9(16) 18(33)

16(29) 12(22)

(n=55) Bap1-positive Bap1-negative

Chromosome 8q

0.09

14(58) 6(25)

1(4) 3(12)

0.87

2 (8) 1 (4)

13(54) 8(33)

0.007

2 (8) 6(25)

13(54) 3(13)

0.52

8(33) 6(25)

7(29) 3(12)

0.01

7(29) 0(0)

8(33) 9(37)

0.23

7(29) 2 (8)

8(33) 7(29)

0.92

7(29) 4(16)

8(33) 5(21)

0.80

4(16) 2 (8)

11(46) 7(29)

Status in Disomy 3 tumours (n=24) Normal 8q Gained 8q

3.2. HDACs and relation with infiltrating leukocytes

As already observed [10] and confirmed (Table 2), expression levels of some of the HDACs were related to the tumour's chromosome 3/BAP1 status [10]. As monosomy 3 is associated with the presence of an inflammatory phenotype, we speculated that the epigenetic enzymes might be upregulated due to the presence of infiltrating leukocytes which produce cytokines that stimulate HDAC expression. We set out to test this hypothesis (Table 3).

Expression of HDACs 1, 3, 7, and 8 was positively correlated with the expression of the T cell markers CD3E and CD8A, while these correlations were negative for HDAC11. HDAC2 and 11 were inversely correlated with macrophage marker CD68 (p < 0.001, p = 0.001).

When performing the same analysis using the TCGA cohort, the results showed that HDACs 1, 3, and 8 were (again) positively correlated with to the presence of CD3E and CD8A TILs, while HDACs 2 and 11 were (again) negatively correlated with CD3E (p = 0.003, p = 0.002), and HDAC2 and HDAC9 with CD68 (p < 0.001, p < 0.001) (Table 4).

Table 3. Correlation between mRNA expression levels (determined by Illumina array) of different HDACs and expression of TILs (CD3E and CD8A) and TAMs (CD68) in the LUMC cohort (n=64). R = two-tailed Spearman correlation coefficient. $p \le 0.05$ is considered significant (indicated in bold).

	CD3E		CD8A		CD68	
	R	р	R	р	R	р
HDAC1	.340	.006	.407	.001	.082	.52
HDAC2	197	.12	153	.23	430	< 0.001
HDAC3	.256	.04	.315	.01	.129	.31
HDAC4	.074	.56	.217	.08	.029	.82
HDAC6	109	.39	228	.07	.017	.89
HDAC7	.329	.01	.395	.001	.260	.04
HDAC8	.350	.005	.429	< 0.001	.241	.05
HDAC9	136	.28	168	.18	034	.79
HDAC11	259	.04	254	.04	415	.001

Table 4. Correlation between mRNA expression levels of different HDACs and expression of TILs (CD3E and CD8A) and TAMs (CD68) in the TCGA cohort (n=80). R = two-tailed Spearman correlation coefficient. $p \leq 0.05$ is considered significant (indicated in bold).

	CD3E		CD8A		CD68	
	R	р	R	р	R	р
HDAC1	.409	< 0.001	.446	< 0.001	124	.27
HDAC2	329	.003	143	.20	445	< 0.001
HDAC3	.323	.003	.373	.001	.201	.07
HDAC4	.076	.50	.229	.04	.076	.50
HDAC6	211	.06	270	.01	.074	.51
HDAC7	.003	.98	089	.43	.060	.59
HDAC8	.364	.001	.478	< 0.001	202	.07
HDAC9	098	.39	.020	.86	396	< 0.001
HDAC11	339	.002	452	< 0.001	169	.13

In order to obtain the real percentage of T cells as part of the tumour, we used a ddPCR technique to quantify the T cell infiltrate (Supplementary Table 2). A comparison of the T cell fraction versus the expression of HDACs 1, 4, 8, and 11 is provided in Figure 2. Significant positive correlations were observed between T cell fraction and HDACs 1, 3, and 8, and a negative correlation with HDACs 6 and 11.

Figure 2. Correlations between mRNA expression levels (determined by Illumina array) of different HDACs and T cell fraction (%) (Determined by ddPCR) (n=59). HDAC1 $R^2 = 0.124$, p = 0.002, HDAC4 $R^2 = 0.019$, p = 0.13, HDAC8 $R^2 = 0.071$, p = 0.01, HDAC11 $R^2 = 0.160$, p = 0.005.

3.3. HDAC expression in UM cell lines

The correlation between some infiltrate markers and expression levels of HDACs 1, 3, 4, 6, and 8 could suggest that their expression levels are influenced by the presence of infiltrating cells; this may be due to the production of cytokines such as interferon x (IFNx).

To test this option, we looked at the level of expression of a range of HDACs in four UM cell lines and exposed them to two different doses of IFNx for 48 hrs (Figure 3). HLA-A and HLA-B mRNA levels were measured as positive controls, and show a strong response to IFNx exposure (Supplementary Figure 1).

We observed low levels of HDACs 3, 6, and 7 in all cell lines, with slightly higher levels of HDACs 8 and 11. IFN_x induced a slight but significant increase in HDACs 1, 4, 5, 7, and 8 in cell lines OMM2.5 and MP38 cell lines, and of HDAC11 in MP38. No significant changes were observed in cell lines OMM1 and MP46.

4. Discussion

Previously, we reported that expression of several HDACs was increased in high-risk UM with monosomy 3/loss of BAP1 and gain of 8g [10]. However, we observed variation in expression of several HDACs. As we wanted to get a better insight into the cause of this variable expression, we determined whether expression was related to any specific histological or genetic tumour characteristics. For this, we first used the set of 64 primary UM from Leiden which had been analysed for their chromosome 3 and 8q status, their BAP1 staining and their mRNA expression levels. Expression levels of two HDACs (1 and 8) were higher in case of epithelioid cells, and three HDACs (1, 4, 8) were increased in tumours with monosomy 3, an indicator of bad prognosis in this disease; as monosomy 3 is related to the presence of an inflammatory phenotype with increased levels of HLA Class I expression and the presence of TIL and TAM, we considered the option that the inflammatory microenvironment may be responsible for the upregulation of HDACs in UM. In the Leiden cohort, we observed that four of the HDACs (HDACs 1, 3, 7, and 8) showed a positive correlation between expression levels and TIL, while this was the case for three of the HDACs in the TCGA study (HDACs 1, 3, and 8). HDAC11 showed a consistently negative association with TIL as well as TAM. In order to test our hypothesis that the presence of infiltrating leukocytes led to HDAC expression through the production of cytokines, we treated four UM cell lines (two BAP1 positive ones: OMM1 and OMM2.5, and two BAP1-negative ones: MP46 and MP38) with two different doses of IFNx, an inflammatory cytokine normally expressed by immune cells such as CD8. After 48hrs we found that IFN_x led to some induction of HDAC expression in two out of four treated cell lines (OMM2.5 and MP38).

OMM2.5

This suggests a potential difference in the regulation of HDACs between individuals in response to IFN_x. HDACs contribute towards malignancy: they block the activity of cell cycle inhibitors, inhibit differentiation and apoptosis and thereby enhance uncontrolled proliferation and survival of cancer cells. HDAC expression might be related to invasive and stem cell behavior of UM cells: a change in epigenetic regulation has been proposed by Landreville in 2012, who noticed that loss of melanocytic behavior and a shift toward stem cell behavior occurred during BAP1 inactivation [27]; this could be relevant to the increase of several HDACs after chromosome 3 loss. However, we did not notice a basic difference in expression between the BAP1-positive and BAP1-negative cell lines. Beside their role in the induction of malignancy and invasive behavior, HDACs are also involved in inflammatory processes: HDACs could act as inducers of interferonstimulated genes: inhibition of HDACs by trichostatin inhibited the recruitment of RNA poly II and expression of the ISRE element-containing genes ISG54, ISG15, and ISG56 in primary human fibroblasts; this suggests that HDACs are necessary for the expression of such genes and may be a potential regulator for inflammatory processes [28].

We may be dealing with a circular process, in which cytokines stimulate expression of some HDACs, which subsequently stimulate inflammatory cellular pathways. As we saw a negative association between HDAC2 and the presence of macrophages, some HDACs may have a similar negative immunomodulatory effect.

We previously reported that HDACs are associated with HLA expression, which is part of the inflammatory phenotype in UM: mRNA expression of HDACs (1, 4, and 8) was positively associated with HLA-A and HLA-B expression [10]. When we now look at the relations with lymphocyte markers, HDACs 1, 3, 7, and 8 show the most consistent positive association, and HDACs 2 and 11 a strong negative association. HDAC1 is involved in the expression of type I IFN-responding genes: when cells were treated with the HDAC inhibitor Sodium Butyrate, expression of interferon-stimulated genes was blocked in several human cell lines; depletion of HDAC1 by siRNA reduced the mRNA level of ISG54 [29].

HDAC8 has been shown to have increased enzymatic activity and play a pathogenic role in pulmonary asthma; when mice in a model of allergic asthma were exposed to ovalbumin (OVA), the level of HDAC8 protein expression was significantly increased in the lungs, together with high

numbers of CD68 and CD163 macrophages, while treatment with the specific HDAC8 inhibitor PCI-34051 reduced these effects. The study reported a role for HDAC8 and Galectin-3 for the development of inflammatory macrophages [30]. Another study found that the use of PCI-34051 downregulated inflammatory cytokines in peripheral blood mononuclear cells (IL-18, IL-1 β , MIP-1b, MCP-1, TNFa, and IL-6) [31]. These reports demonstrate a role for HDAC8 in the induction of inflammation.

HDAC2 and HDAC11 showed a negative correlation with markers of inflammation such as the presence of lymphocytes and macrophages, both in the Leiden cohort as well as the TCGA cohort. In a study on human cervical cancer cell lines, HDAC2 was found to inhibit transcription of MHC genes, which are associated with the inflammatory phenotype in UM [32]. HDAC2 has been studied extensively in relation to pulmonary inflammation: HDAC2 mRNA and protein expression were reduced in lung epithelial cells and macrophages after exposure to hypoxia [33]. We have previously shown that high-risk UM are characterized by a hypoxic environment [34]. It has been similarly shown that HDAC11 has a low expression in high-risk UM [35, 10]. The best explanation for this phenomenon is that HDAC11 is located on chromosome 3 and expression is decreased after loss of one of the two chromosomes 3. We previously published that monosomy 3 is associated with tumour inflammation: here, we observe a negative correlation between HDAC11 expression and inflammatory TIL and TAM markers. However, a low HDAC11 level may still contribute to the invasiveness of malignant cells: low levels of this HDAC have been reported to increase the risk of metastasis in breast cancer [36]. The expression of some of the HDACs not only shows a correlation with infiltrating lymphocytes, but has also been shown to associate with immune checkpoint expression, suggesting a possible role for these HDACs in the immune evasion of tumour cells: high levels of HDACs 1, 3, 6, and 8 were positively correlated with expression of the B7 homolog 1 checkpoint inhibitor (B7-H1) in gastric cancer. When gastric cell lines were treated with the HDAC inhibitor vorinostat after IFNs induction, B7-H1 was reduced, showing that HDACs play a role in the IFNs enhancement of B7-H1 in gastric cancer and are involved in the evasion phenotype of these malignant cells [37].

5. Conclusion

We report that expression of several HDACs is related to high-risk characteristics in UM and to inflammation, and is possibly regulated by inflammatory cytokines produced by the infiltrated immune cells. The upregulation of HDACs might contribute towards the progression of inflammation and subsequently increase the malignant behavior in this disease.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Correlation between mRNA expression levels (determined by Illumina array) of different HDACs and expression of BAP1 in the TCGA cohort (n=80). R = two-tailed Spearman correlation coefficient. $p \le 0.05$ is considered significant (indicated in bold). Table S2: Correlation between mRNA expression levels (determined by Illumina array) of different HDACs and T cell fraction (%) as determined by ddPCR (n=59). R = two-tailed Spearman correlation coefficient. $p \le 0.05$ is considered significant (indicated in bold). Table S3: Influence of adding IFNs on HLA-A and HLA-B mRNA expression on cultured UM cell lines.

Author Contributions: Conceptualization, Z.S, A.G.J and M.J.J; Data curation, A.P.A.W; Formal analysis, Z.S; Funding acquisition, P.v.d.V and M.J; Methodology, Z.S, A.G.J, W.G.K and R.M.V; Supervision, A.G.J and M.J.J; Writing – original draft, Z.S and M.J.J; Writing – review & editing, A.G.J, A.PA.W, W.G.K, R.M.V, P.v.d.V, G.P.L and M.J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by a grant to Z.S. from The Iranian Ministry of Science Research and Technology, Grant UL 2011-4991 from the Dutch Cancer Society (KWF), Stichting Leids Oogheelkundig Ondersteunings Fonds LOOF and a Horizon 2020 grant from the European Community, CURE UM, nr. 667787.

Institutional Review Board Statement: The METC of the LUMC declared no objection to this study (19/10/2016, code G16.076/NV/gk). The research adhered to Dutch law ('Code for Proper Secondary Use of Human Tissue') and the tenets of the Declaration of Helsinki (World Medical Association of Declaration 2013; ethical principles for medical research involving human subjects).

Informed Consent Statement: Informed consent was not needed for this analysis.

Data Availability Statement: Data from the Leiden cohort are accessible through GEO Series accession num-ber GSE84976 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84976).

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Moschos, M.M.; Dettoraki, M.; Androudi, S.; et al. The role of histone deacetylase inhibitors in uveal melanoma: current evidence. Anticancer Res. 2018, 38(7), 3817-3824.
- Ruijter, A.J.; Gennip, A.H.; Caron, H.N.; et al. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem. J. 2003, 370(3), 737-749.
- Fritzsche, F.R.; Weichert, W.; Röske, A.; et al. Class I histone deacetylases 1, 2 and 3 are highly expressed in renal cell cancer. BMC Cancer 2008, 8(1), 381-390.
- Niegisch, G.; Knievel, J.; Koch, A.; et al. Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol. Oncol. 2013, 31(8), 1770-1779.
- Yang, H.; Salz, T.; Zajac-Kaye, M.; et al. Overexpression of histone deacetylases in cancer cells is controlled by interplay of transcription factors and epigenetic modulators. FASEB J. 2014, 28(10), 4265-4279.
- Chang, H.H.; Chiang, C.P.; Hung, H.C.; et al. Histone deacetylase 2 expression predicts poorer prognosis in oral cancer patients. Oral Oncol. 2009, 45(7), 610-614.
- Jager, M.J.; Shields, C.L.; Cebulla, C.M.; et al. Uveal melanoma. Nature Reviews Disease Primers 2020, 6(1), 1-25.
- Harbour, J.W.; Onken, M.D.; Roberson, E.D.; et al. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 2010, 330(6009), 1410-1413.
- Smit, K.N.; van Poppelen, N.M.; Vaarwater, J.; et al. Combined mutation and copy-number variation detection by targeted next-generation sequencing in uveal melanoma. Mod. Pathol. 2018, 31(5), 763-771.
- Souri, Z.; Jochemsen, A.G.; Versluis, M.; et al. HDAC inhibition increases HLA class I expression in uveal melanoma. Cancers 2020, 12(12), 3690-3704.
- 11. Durie, F.H.; Campbell, A.M.; Lee, W.R.; et al. Analysis of lymphocytic infiltration in uveal melanoma. Invest. Ophthalmol. Vis. Sci. 1990, (10), 2106-2110.
- 12. De Waard-Siebinga, I.; Hilders, C.G.; Hansen, B.E.; et al. HLA expression and tumor-infiltrating immune cells in uveal melanoma. Graefe's Arch. Clin. Exp. Ophthalmol. 1996, 234(1), 34-42.
- Blom, D.J.; Luyten, G.P.; Mooy, C.; et al. Human leukocyte antigen class I expression. Marker of poor prognosis in uveal melanoma. Invest. Ophthalmol. Vis. Sci. 1997, 38(9), 1865-1872.
- Souri, Z.; Wierenga, A.; Mulder, A.; et al. HLA expression in uveal melanoma: an indicator of malignancy and a modifiable immunological target. Cancers 2019 11(8), 1132-1150.

- 15. Maat, W.; Ly, L.V.; Jordanova, E.S.; et al. Monosomy of chromosome 3 and an inflammatory phenotype occur together in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2008, 49, 505-510.
- Bronkhorst, I.H.; Vu, T.H.; Jordanova, E.S.; et al. Different subsets of tumor-infiltrating lymphocytes correlate with macrophage influx and monosomy 3 in uveal melanoma. Invest. Ophthalmol. Vis. Sci. 2012, 53, 5370-5378.
- 17. Robertson, A.G.; Shih, J.; Yau, C.; et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 2017, 32(2), 204-220.
- Gezgin, G.; Dogrusöz, M.; van Essen, T.H.; et al. Genetic evolution of uveal melanoma guides the development of an inflammatory microenvironment. Cancer Immunol. Immunother. 2017, 66(7), 903-912.
- Luyten, G.P.M.; Naus, N.C.; Mooy, C.M.; et al. Establishment and characterization of primary and metastatic uveal melanoma cell lines. Int. J. Cancer 1996, 66, 380-387.
- 20. Chen, P.W.; Murray, T.G.; Uno, T.; et al. Expression of MAGE genes in ocular melanoma during progression from primary to metastatic disease. Clin. Exp. Metastasis. 1997, 15(5), 509-518.
- Amirouchene-Angelozzi, N.; Nemati, F.; Gentien, D.; et al. Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol. Oncol. 2014, 8, 1508-1520.
- 22. Bronkhorst, I.H.G.; Jehs, T.M.L.; Dijkgraaf, E.M.; et al. Effect of hypoxic stress on migration and characteristics of monocytes in uveal melanoma. JAMA Ophthalmol. 2014, 132, 614–621.
- Zoutman, W.H.; Nell, R.J.; Versluis, M.; et al. Accurate quantification of T cells by measuring loss of germline T-cell receptor loci with generic single duplex droplet digital PCR assays. J. Mol. Diagn. 2017, 19(2), 236-243.
- De Lange, M.J.; Nell, R.J.; Lalai, R.N.; et al. Digital PCR-Based T-cell Quantification-Assisted deconvolution of the microenvironment reveals that activated macrophages drive tumor inflammation in Uveal Melanoma. Mol. Cancer Res. 2018, 16(12), 1902-1911.
- 25. Landreville, S.; Agapova, O.A; Matatall, K.A.; et al. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin. Cancer Res. 2012, 18(2), 408-416.
- Sakamoto, S.; Potla, R.; Larner, A.C. Histone deacetylase activity is required to recruit RNA polymerase II to the promoters of selected interferon-stimulated early response genes. J. Biol. Chem. 2004, 279(39), 40362-40367.
- Nusinzon, I.; Horvath, C.M. Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc. Natl. Acad. Sci. 2003, 100(25), 14742-14747.

- Lu, Y.; Stuart, J.H.; Talbot-Cooper, C.; et al. Histone deacetylase 4 promotes type I interferon signaling, restricts DNA viruses, and is degraded via vaccinia virus protein C6. PNAS 2019, 116(24), 11997-2006.
- 29. Zeng, L.S.; Yang, X.Z.; Wen, Y.F.; et al. Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging 2016, 8(6), 1236-1248.
- Li, M.L.; Su, X.M.; Ren, Y.; et al. HDAC8 inhibitor attenuates airway responses to antigen stimulus through synchronously suppressing galectin-3 expression and reducing macrophage-2 polarization. Respiratory Res. 2020, 21(1), 1-4.
- Balasubramanian, S.; Steggerda, S.; Sirisawad, M.; et al. The histone Deacetylase-8 (HDAC8) selective inhibitor PCI-34051 decreases Interleukin-1 Beta secretion in vitro and reduces inflammation in vivo. Blood 2008, 2581-2581.
- 32. Herlihy, N.; Dogrusöz, M.; Van Essen, T.H.; Harbour, J.W.; Van Der Velden, P.A.; Van Eggermond, M.C.J.A.; Haasnoot, G.W.; Elsen, P.J.V.D.; Jager, M.J. Skewed expression of the genes encoding epigenetic modifiers in high-risk Uveal Melanoma. Investig. Ophthalmol. Vis. Sci. 2015, 56, 1447–145
- 33. Leslie, P.L.; Chao, Y.L.; Tsai, Y.-H.; et al. Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes. Nat. Commun. 2019, 10, 1–12.
- Deng, R.; Zhang, P.; Liu, W.; et al. HDAC is indispensable for IFN-γ-induced B7-H1 expression in gastric cancer. Clin. Epigenetics 2018, 10(1), 1-4.

	BAP1		
	R	р	
HDAC1	201	.07	
HDAC2	010	.93	
HDAC3	268	.02	
HDAC4	625	<0.001	
HDAC6	.427	<0.001	
HDAC7	022	.84	
HDAC8	560	<0.001	
HDAC9	069	069	
HDAC11	.739	<0.001	

Supplementary Table 1. Correlation between mRNA expression levels (determined by Illumina array) of different HDACs and expression of BAP1 in the TCGA cohort (n=80). R = two-tailed Spearman correlation coefficient. $p \le 0.05$ is considered significant, and indicated in bold.

Supplementary Table 2. Correlation between mRNA expression levels (determined by Illumina array) of different HDACs and T cell fraction (%) as determined by ddPCR (n=59). R = two-tailed Spearman correlation coefficient. $p \le 0.05$ is considered significant, and indicated in bold

	T cell fraction		
	R	р	
HDAC1	.399	.002	
HDAC2	232	.08	
HDAC3	.319	.01	
HDAC4	.200	.13	
HDAC6	314	.02	
HDAC7	.183	.16	
HDAC8	.357	.01	
HDAC9	122	.36	
HDAC11	363	.005	

Supplementary Figure 1: Influence of adding IFNs on HLA-A and HLA-B mRNA expression on cultured UM cell lines. * $p \le 0.05$, ** p < 0.01, *** p < 0.001.

