

Loss of the controlled localization of growth stage-specific cell-wall synthesis pleiotropically affects developmental gene expression in an *ssgA* mutant of *Streptomyces coelicolor*

Noens, E.E.; Mersinias, V.; Willemse, J.J.; Traag, B.A.; Laing, E.; Chater, K.F.; ... ; Wezel, G.P. van

Citation

Noens, E. E., Mersinias, V., Willemse, J. J., Traag, B. A., Laing, E., Chater, K. F., ... Wezel, G. P. van. (2007). Loss of the controlled localization of growth stage-specific cell-wall synthesis pleiotropically affects developmental gene expression in an *ssgA* mutant of *Streptomyces coelicolor*. *Molecular Microbiology*, 64(5), 1244-1259.
doi:10.1111/j.1365-2958.2007.05732.x

Version: Publisher's Version

License: [Creative Commons CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/)

Downloaded from: <https://hdl.handle.net/1887/22957>

Note: To cite this publication please use the final published version (if applicable).

Loss of the controlled localization of growth stage-specific cell-wall synthesis pleiotropically affects developmental gene expression in an *ssgA* mutant of *Streptomyces coelicolor*

Elke E. Noens,^{1,2} Vassilis Mersinias,³
Joost Willemse,¹ Bjørn A. Traag,¹ Emma Laing,³
Keith F. Chater,⁴ Colin P. Smith,³ Henk K. Koerten²
and Gilles P. van Wezel^{1*}

¹Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, the Netherlands.

²Department of Molecular Cell Biology, Section Electron Microscopy, Leiden University Medical Center, Leiden University, Leiden, the Netherlands.

³School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.

⁴Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.

Summary

Members of the family of SsgA-like proteins (SALPs) are found exclusively in sporulating actinomycetes, and SsgA itself activates sporulation-specific cell division. We previously showed that SALPs play a chaperonin-like role in supporting the function of enzymes involved in peptidoglycan maintenance (PBPs and autolysins). Here we show that SsgA localizes dynamically during development, and most likely marks the sites where changes in local cell-wall morphogenesis are required, in particular septum formation and germination. In sporogenic aerial hyphae, SsgA initially localizes as strong foci to the growing tips, followed by distribution as closely spaced foci in a pattern similar to an early stage of FtsZ assembly. Spore septa formed in these hyphae colocalize with single SsgA-GFP foci, and when the maturing spores are separated, these foci are distributed symmetrically, resulting in two foci per mature spore. Evidence is provided that SsgA also controls the correct localization of germination sites. Transcriptome analysis revealed that expression of around 300 genes was significantly altered in mutants in *ssgA* and its regu-

latory gene *ssgR*. The list includes surprisingly many known developmental genes, most of which were upregulated, highlighting SsgA as a key player in the control of *Streptomyces* development.

Introduction

The correct timing and localization of cell division, which involves dynamic reorganization of cell-wall synthesis and breakdown, are among the most studied topics in modern microbial cell biology. In most bacteria a single septum forms the cleavage furrow dividing the mother cell into daughter cells, but during growth of the Gram-positive mycelial bacterium *Streptomyces*, vegetative hyphae are divided only occasionally by vegetative septa or cross walls, giving multigenomic compartments, while reproduction involves the simultaneous production of many specialized septa to form long chains of unigenomic spores from multigenomic aerial hyphal compartments (Wilder-muth and Hopwood, 1970; McCormick *et al.*, 1994; Flärdh *et al.*, 2000). Correctly organized apical growth and branching of vegetative hyphae depend on the activity of DivIVA (Flärdh, 2003). In contrast to vegetative cross-walls, multiple sporulation septa are produced simultaneously and in a highly co-ordinated way within a sporogenic aerial hypha. A first step in sporulation-specific cell division is the localization of FtsZ to many regularly spaced sites along the aerial hyphal wall (Grantcharova *et al.*, 2005). Multiple septa are then simultaneously synthesized in a process in which proteins required for the formation of bacterial divisomes are presumably sequentially directed to the Z ring (Bramhill, 1997; Errington *et al.*, 2003). The segregation of DNA into the prespore compartments is partially dependent on ParA and ParB (Jaki-mowicz *et al.*, 2002a; 2005), is accompanied by DNA condensation, and appears to be completed by a process involving septum-located FtsK (Wang *et al.*, 2007). After septum closure the wall of the prespore compartments thickens and becomes pigmented, and eventually the mature spores are separated by a poorly understood process of autolytic cleavage. Much remains to be learned about the co-ordinated production of up to 100 sporulation septa in aerial hyphae.

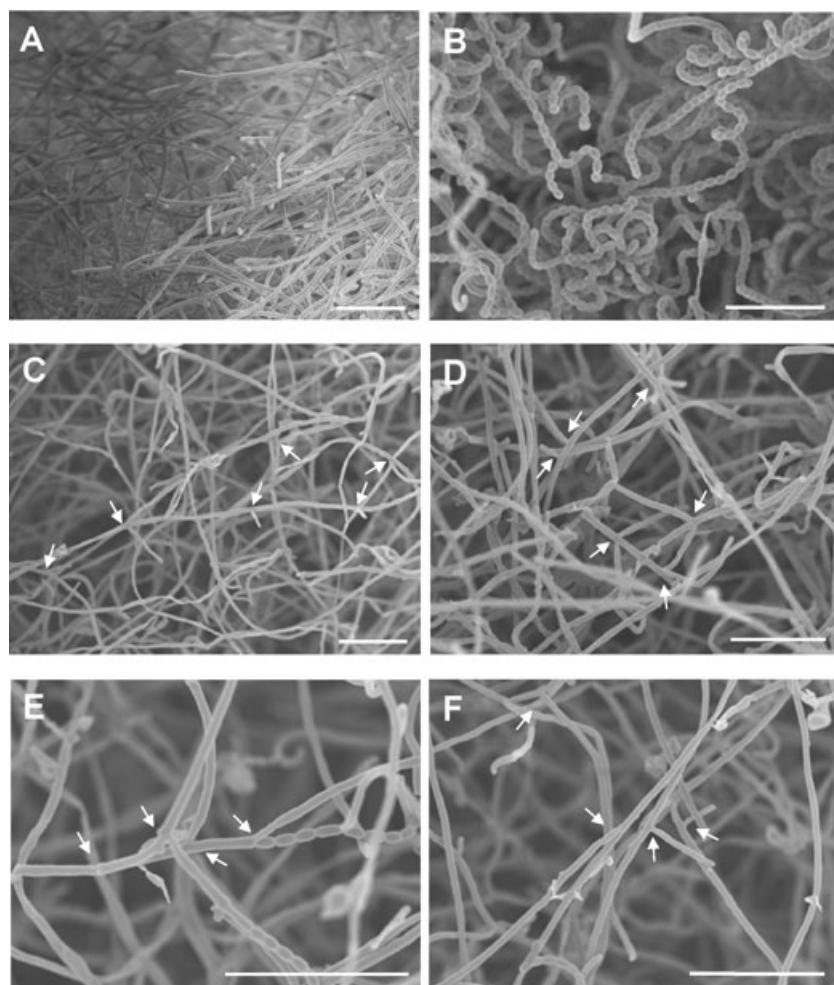
Accepted 5 April, 2007. *For correspondence. E-mail: g.wezel@chem.leidenuniv.nl; Tel. (+31) 71 5274310; Fax (+31) 71 5274340.

Cell division in mycelial actinomycetes differs from that in other bacteria in lacking *minC* and *minE* homologues for septum-site localization (Marston *et al.*, 1998; Autret and Errington, 2001), the nucleoid occlusion system Noc and Z-ring anchoring proteins such as FtsA and ZipA (Errington *et al.*, 2003; Lowe *et al.*, 2004). Instead, several unique protein families have been identified that play a role in the control of cell division (Flärdh and van Wezel, 2003; Chater and Chandra, 2006). One such family is that of the SsgA-like proteins (SALPs), developmental agents that occur exclusively in mycelial actinomycetes, and are unrelated to other known proteins. The model strain *Streptomyces coelicolor* A3(2) harbours seven paralogues, all involved in specific chaperone-like tasks during development, controlling processes from initiation of sporulation to the autolytic cleavage of spore wall peptidoglycan (PG) (van Wezel and Vijgenboom, 2004; Noens *et al.*, 2005). The most-studied SALP, SsgA itself, was first identified as an effector of septation in *Streptomyces griseus* (Kawamoto and Ensign, 1995). In *S. coelicolor*, *ssgA* null mutants have an unusual conditional non-sporulating phenotype, the aerial hyphae nearly all being devoid of sporulation septa except on mannitol-containing media, on which some spores are produced (van Wezel *et al.*, 2000a). Overexpression of SsgA results in hyperseptation of both vegetative and aerial hyphae, thus interfering with the control systems that determine the morphological differences between the two cell types. Such overexpression effected the production of extremely thick and irregular septa, often with a gap in the middle, demonstrating disturbance of the concluding stages of the cell division process (van Wezel *et al.*, 2000a). Therefore, SsgA somehow activates the initiation and control of septal PG synthesis, probably by influencing the function of penicillin binding proteins (PBPs) involved in the biogenesis of septal PG, which in bacteria is typically carried out by FtsI (Bramhill, 1997).

In this work, we provide an in-depth analysis of *ssgA* using a knockout mutant and an *ssgA-egfp* fusion strain, and employ microarrays to analyse the global changes in gene expression in strains defective in *ssgA*. Clear links between distinct phenotypic anomalies and altered gene expression profiles are provided.

Results

The ssgA mutant has branching aerial hyphae


We showed previously that *ssgA* mutants produce aerial mycelium but have a conditional non-sporulating phenotype, failing to sporulate on glucose-containing solid media, while some spores are produced on mannitol-containing media (van Wezel *et al.*, 2000a). To get a more detailed view of the developing aerial hyphae, we sub-

jected the *ssgA* mutant to detailed cryo-SEM. Interestingly, a significant number (approximately 40%) of the *ssgA* mutant aerial hyphae branched, and some showed multiple branches, with an average branch spacing of 5–10 µm. Despite extensive searches we never observed this phenomenon for aerial hyphae of the parental strain M145 (Fig. 1). Branching was also apparent in double mutants where besides *ssgA* also *ssgC*, *ssgD*, *ssgF* or *ssgE* and *ssgG* was disrupted, and the branching was significantly enhanced in *ssgAC* double mutants, which had up to five branches at one single point of the aerial hyphae (Fig. S1).

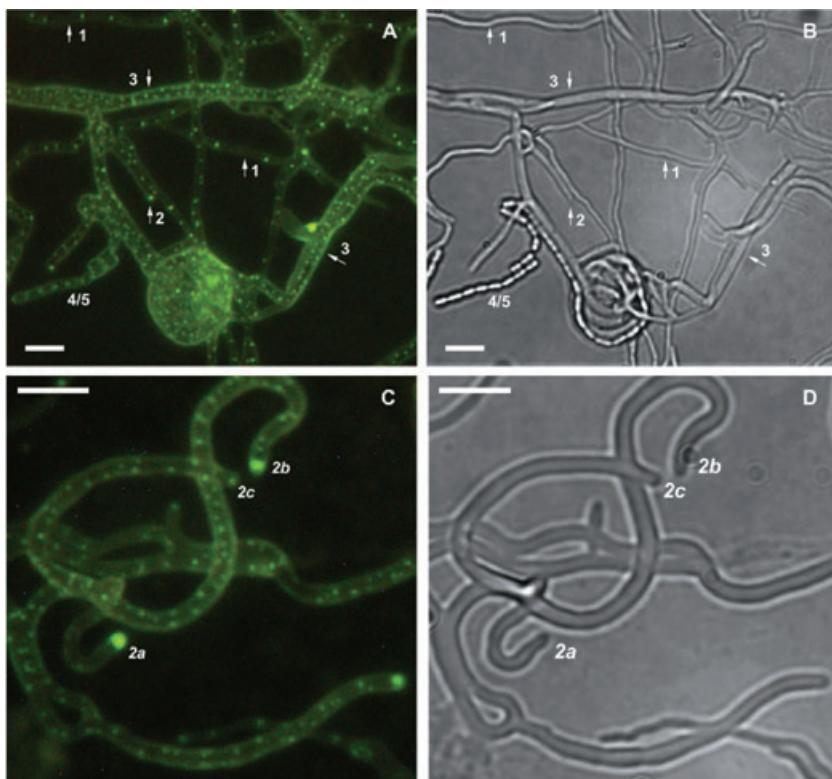
SsgA localizes in a development-dependent and dynamic manner

To analyse the localization of SsgA, we constructed plasmid pGWS116 expressing an *ssgA-egfp* in-frame fusion from the natural *ssgA* promoter and introduced it into *S. coelicolor* M145 (see *Experimental procedures* for details). This plasmid fully complemented *ssgA* mutant GSA3, both in terms of sporulation and of mycelial morphology, indicating that the SsgA-EGFP fusion product was indeed functional and could replace the wild-type SsgA.

Confocal fluorescence microscopy revealed a highly dynamic localization for SsgA-GFP during development (Fig. 2). Discriminating the various stages of aerial development, the following observations were made. Initially, foci were relatively distantly spaced, namely 0.84 ± 0.19 foci per µm (average of 386 foci, measured along the hyphal wall) in the younger aerial hyphae (Fig. 2A, stage 1), which probably correspond to the recently designated and developmentally distinct subapical stem compartments (Dalton *et al.*, 2007). At this stage, the aerial hyphae still have the width of vegetative hyphae (approximately 400–500 nm). The hyphae later widen to about 800 nm, which is the width of spores (see, e.g. Fig. 2D, which demonstrates both types of aerial hyphae). Early stage sporogenic hyphae carried a large amount of SsgA-GFP in the tips, sometimes showing very bright foci (Fig. 2A and C; stage 2). As growth progressed, the foci became less intense and were replaced by foci at alternating sides of the hyphae and around twice as frequent as in young aerial hyphae, namely 1.59 ± 0.34 foci per µm (average of 870 foci and measured along the hyphal wall) (Fig. 2A, stage 3). Eventually, at sporulation septa we found one spot per septum [Fig. 2A and Fig. 3 (stage 4)]. The position of the foci relative to the septa, namely a single spot and immediately adjacent to the hyphal wall, strongly suggests that SsgA is not a part of the divisome, as this is by definition localized in a ring-like fashion. Most of the mature spores (97 out of 127; Table 1) had two foci (average 2.0 ± 0.1 foci per spore: stage 5 in Fig. 3). This

Fig. 1. Cryo-scanning electron micrographs of *S. coelicolor* M145 and its *ssgA* mutant GSA3. Cultures were grown on SFM for 2 days (A and C) and 5 days h (B, D–F) at 30°C.
 A. Young aerial hyphae of M145.
 B. Wild-type spore chains.
 C. Young, unseptated, aerial hyphae of the *ssgA* mutant that often branched (white arrows).
 D–F. Late aerial hyphae of the *ssgA* mutant that often branched (arrows) and occasionally produced spore chains. A higher proportion of the aerial hyphae in the *ssgA* mutant was lysed, compared with the wild type.
 Bar = 10 µm.

suggests splitting and segregation of the initial focus, or alternatively its disassembly and reassembly as two foci. To our knowledge this is the first subcellular localization of a protein in *Streptomyces* spores.


During vegetative growth SsgA-GFP foci were observed primarily in (very) young hyphae, including the tips of germinating spores (see later analysis), but no foci were

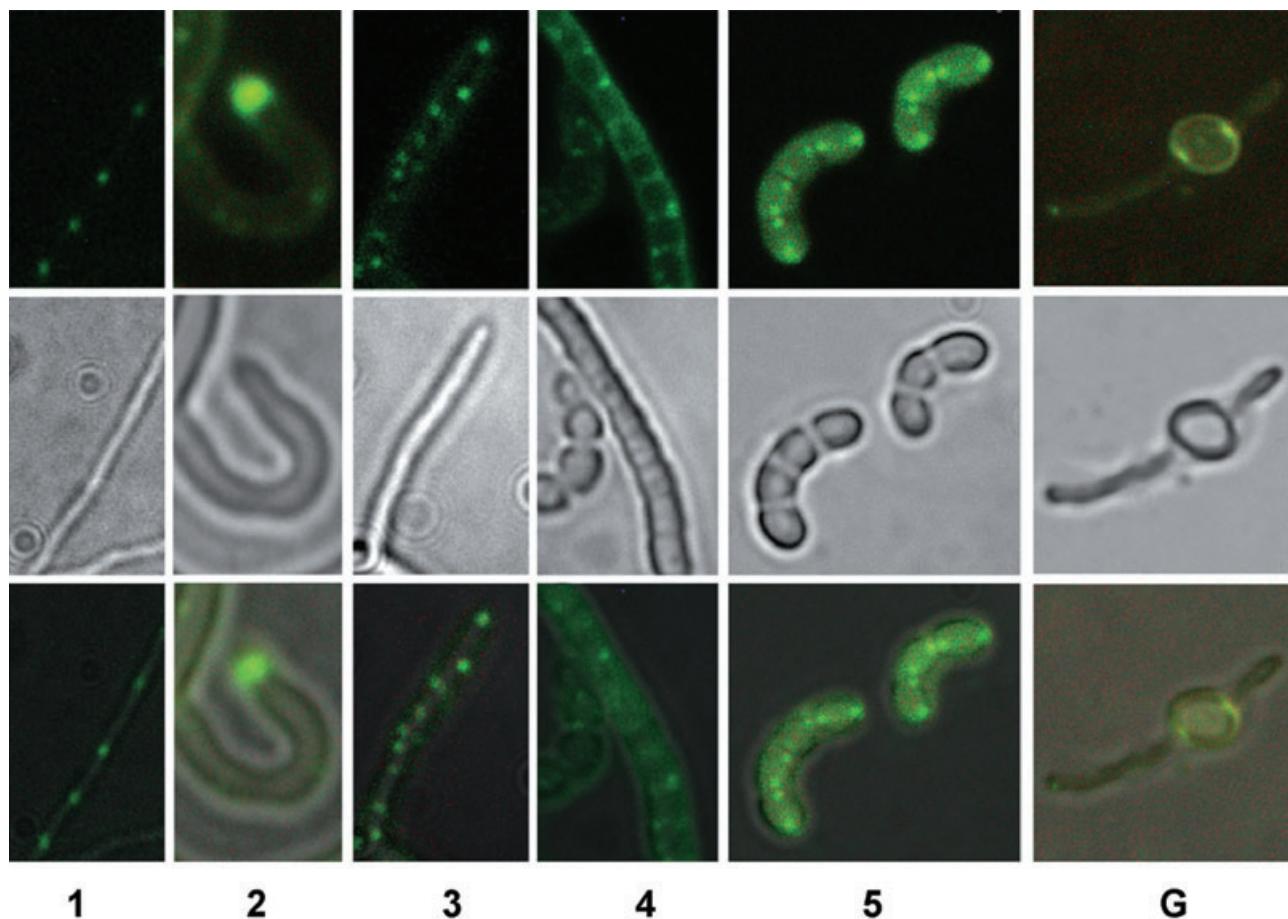
observed in older vegetative mycelium, until differentiation occurred from vegetative to aerial growth (not shown). The previous observation that vegetative cross-wall formation is normal in *ssgA* mutants (van Wezel *et al.*, 2000a) suggests that SsgA does not play a major role in septum synthesis during early growth, so in what follows we focus on the role of SsgA during aerial development.

Table 1. Statistical analysis of germination frequencies and SsgA-GFP foci.

Germ tubes per spore	Strain				Strain	
	M145	GSA3	GSA3 + <i>ssgA</i> -GFP	GSA2	Foci per spore	GSA3 + <i>ssgA</i> -GFP
1	20	42	14	8	1	14
2	61	34	56	56	2	97
3	16	8	16	42	3	12
4	2	3	1	8	4	4
5	0	0	0	1	5	0
6	0	0	0	0	6	0
Total	99	87	87	115	Total	127
Average	2.0 ± 0.1	1.7 ± 0.1	2.0 ± 0.1	2.5 ± 0.1	Average	2.0 ± 0.1

The table shows the number of spores observed with a certain number of germ tubes (one to six, see left column). Strains analysed were wild-type *S. coelicolor* M145, its *ssgA* mutant GSA3, the same GSA3 but complemented with SsgA-GFP, or an SsgA overexpressing strain (GSA2). Foci per spore refers to the number of SsgA-GFP foci observed in spores of the *ssgA* mutant GSA3 complemented with a construct expressing SsgA-GFP.

Fig. 2. Fluorescence micrographs showing localization of SsgA-GFP in *S. coelicolor*. Fluorescence microscopy (A, C) and phase contrast microscopy (B, D) of aerial hyphae expressing SsgA-GFP. Cultures were grown on SFM for 5 days at 30°C. A and B. Overview of aerial hyphae showing all stages of development except mature spores. SsgA was localized in several distinguishable patterns in aerial hyphae. Stages (indicated by arrows with a number; see also Fig. 3 and the scheme in Fig. 7): 1, early aerial hyphae; 2, tips of early sporogenic hyphae; 3, sporogenic hyphae; 4, septum site-initiation; 5, septa. The last stages – namely 6, spore separation and G, germination – are not visible in this image, but are highlighted in Fig. 3. C and D. Images showing close up of aerial hyphae with SsgA-GFP foci in the tips. Arrows indicate foci in the tips (stages 2a, 2b and 2c refer to Fig. 7). Bar = 2 μ m.


SsgA and the selection of germination sites

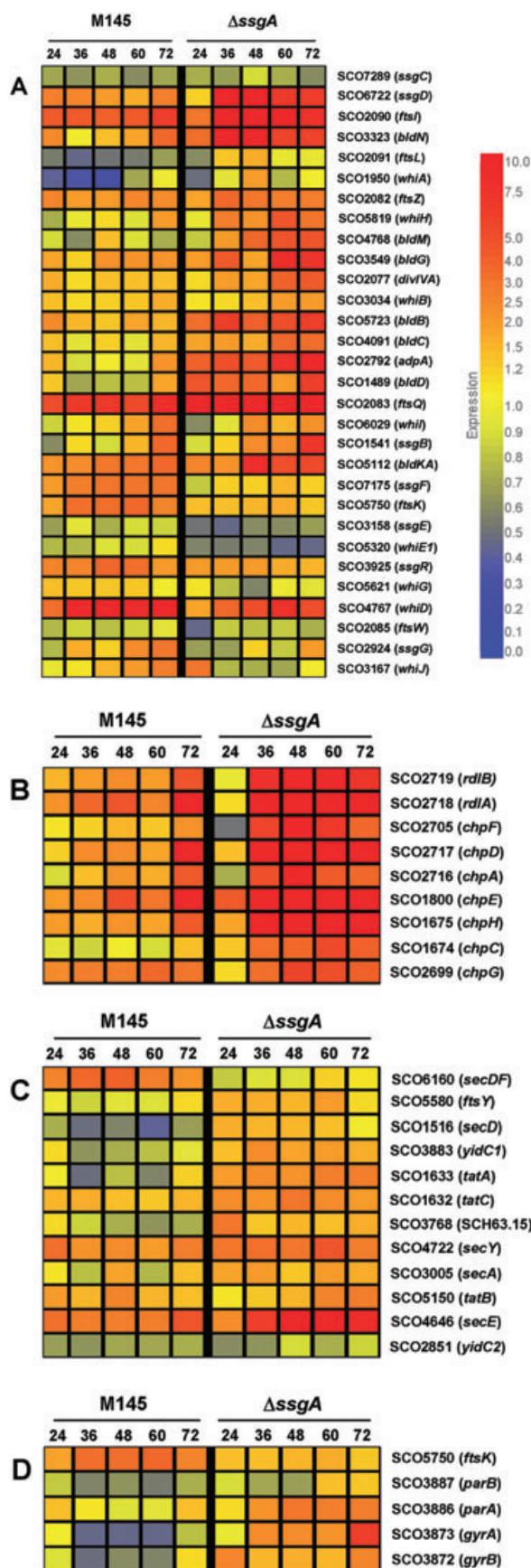
The presence of the SsgA-GFP foci in the spores suggested a possible link with the selection of germination sites. To test this, we allowed spores from *S. coelicolor* M145, its *ssgA* mutant and a strain overproducing SsgA (GSA2; van Wezel *et al.*, 2000a) to germinate, and counted the number of germ tubes. There was a clear correlation between the average number of germ tubes per spore and the copy number of *ssgA*, with on average 1.7 (± 0.1) germ tubes per spore for the *ssgA* mutant, 2.0 (± 0.1) germ tubes per spore in M145 and 2.5 (± 0.1) germ tubes per spore in GSA2 (Table 1). The number of on average two germ tubes per spore in *S. coelicolor* M145 or in GSA3 complemented with SsgA-GFP corresponded very well to the average number of SsgA-GFP foci per spore (also 2.0 per spore, see previously described). Furthermore, more of the SsgA-overproducing spores carried four germ tubes (eight out of 115) than the parent M145 (two out of 99) or the *ssgA* mutant (three out of 89). In GSA2 we occasionally even identified spores with five emerging germ tubes (one among those that were counted), which was never seen in the parental strain. Generally, in older spores fluorescence was lost, suggesting that SsgA-GFP does not physically support the initiation of germ tube formation, but rather marks the future sites. However, in fresh spores the SsgA-GFP foci colocalized with the emerging germ

tubes (labelled 'G' in Fig. 3). Thus, besides its role in the localization of septa, these data suggest that SsgA is also involved in germination site-localization. Interestingly, as mentioned above, SsgA-GFP was produced soon after the emergence of vegetative hyphae, and in particular at the tips, suggesting a possible role in (the control of) vegetative apical growth (Fig. 3).

Global gene expression profiles in M145 and its ssgA and ssgR deletion mutants

To study the cellular response to the absence of either *ssgA* or *ssgR* and in this way discover more about the function of the respective gene products, we compared the development-dependent gene expression profiles of *S. coelicolor* M145 and its mutants GSA3 (M145 Δ *ssgA*) and GSR1 (M145 Δ *ssgR*) by DNA microarray analysis. Strains were cultivated on MM agar plates with mannitol as the sole carbon source and RNA was isolated from mycelium harvested at five time points, corresponding to vegetative growth (24 h), aerial growth (36 h, 48 h) and sporulation (60 h, 72 h). Under these conditions, which have been employed for a variety of microarray experiments with *S. coelicolor*, the mutants showed a similar timing of development as its parent, although only a limited number of spores was produced. We used oligonucleotide-based microarrays of *S. coelicolor* (see

Fig. 3. Fluorescence micrographs showing representative localization of SsgA-GFP in all stages of aerial development. Developmental stages are sequentially labelled 1–5 and G, to facilitate comparison to the scheme in Fig. 7. For strains and growth conditions see Fig. 2.


Experimental procedures for details). The microarray experiments were carried out as independent duplicates. After data normalization genes were selected that were differentially expressed between *ssgA* and *ssgR* deletion mutants compared with M145. We were surprised to find over 300 differentially expressed genes (see Table S2 for details).

We previously demonstrated that the readily observable *ssgR* mutant phenotype is primarily caused by the absence of *ssgA* (Traag *et al.*, 2004). However, this does not completely rule out that SsgR may regulate other genes. To investigate this, we compared the global expression patterns of both mutants. Strikingly, after normalization, the overall gene expression profiles in GSA3 and GSR1 were almost identical (Fig. S2), again providing strong evidence that SsgR is the specific activator of *ssgA*.

Effect on transcription of developmental genes

Surprisingly, the genes that were up- or downregulated in

the *ssgA* (and *ssgR*) mutant as compared with the parental strain M145, included no less than 35 well-known developmental genes (e.g. *bld*, *whi*, *chp*, *rdl*, *ssg*, *par*, see Fig. 4 and Table S2). Both the total number of genes affected by *ssgA* and the proportion that have recognizable developmental relevance were markedly higher than we have found in similar studies of other developmental mutants (*bldA*: A. Hesketh *et al.*, manuscript submitted; *whi*: Tian *et al.*, 2007; *ssgC*: E.E.E. Noens *et al.*, unpublished). Thus, SsgA had a stronger impact on the control of the sporulation process than was expected on the basis of data obtained for other developmental mutants. Transcripts of *ftsI*, involved in septum synthesis and encoding the transpeptidase specifically required for septal PG synthesis (Holtje, 1998; Errington, 2001) were among the most over-represented mRNA species in the *ssgA* and *ssgR* mutants (more than threefold during early aerial growth). Of the SALPs, mRNA of *ssgD* (whose function is still unclear) was more abundant in the mutants from the onset of aerial growth onwards, while the spore

Fig. 4. Comparison of the expression profiles of several classes of genes between M145 and the *ssgA* mutant. RNA from M145 and GSA3 (M145 Δ *ssgA*) was isolated from mycelium grown on MM agar, corresponding to vegetative growth (24 h), aerial growth (36 h, 48 h) and sporulation (60 h, 72 h). Expression profiles of genes are shown, involved in cell division and development (A), chaperins and rodins (B), secretion (C) and DNA replication and segregation (D). Genes were clustered hierarchically according to similarity in expression profile. The lanes represent the time points of RNA isolation for the parental strain M145 (left) and the *ssgA* mutant (right).

maturity *ssgE* and *ssgF* mRNAs were less abundant in the *ssgA* mutant, although the difference for *ssgE* was below the set threshold (twofold). The mRNA for the major developmental regulatory gene *adpA* (*bldH*) was more than threefold more abundant at all time points. *AdpA* is required for *ssgA* transcription in *S. griseus* and affects its expression in *S. coelicolor* (Yamazaki *et al.*, 2003; Traag *et al.*, 2004). *bldN* mRNA, encoding an ECF σ -factor whose transcription is dependent on *AdpA*, was more abundant in the *ssgA* mutant from early aerial phase onwards (Bibb *et al.*, 2000). Supportive evidence for the increased *adpA* and *bldN* mRNA levels is the increased representation of mRNAs for several components of the *BldN* regulatory cascade [*bldM*, *chpA-H* (Bibb *et al.*, 2000; Elliot *et al.*, 2003)] in the *ssgA* mutant (Fig. 4B). The mRNAs for all the chaperin genes *chpACDEFGH* (*chpB* was filtered from the analysis as it failed to pass the quality control) and rodin (*rdlAB*) genes were very strongly increased. Many *bld* gene transcripts were affected as well, particularly those known to be active throughout the life cycle, which are therefore likely to play an important role during sporulation as well as during earlier stages of the *Streptomyces* life cycle. The mRNAs of the sporulation genes *whiA* and *whiH* were increased in the *ssgA* mutant from early aerial phase onwards, while mRNAs of the late sporulation gene *whiD* and the poorly defined sporulation gene *whiJ* were decreased; *whiB* and *whiG* were not significantly affected in the *ssgA* mutant (Table S2). Finally, *divIVa* transcript was more than threefold over-represented in the *ssgA* mutant at a time corresponding to late aerial growth and sporulation, an observation that is possibly linked to the branching of aerial hyphae observed in GSA3 (see Discussion). Despite the strongly enhanced septum formation that follows the overexpression of *SsgA*, the only differentially abundant cell division-related transcripts were those of *ftsL* (which is cotranscribed with *ftsI*) and *ftsQ*, both of which were over-represented in the *ssgA* mutant.

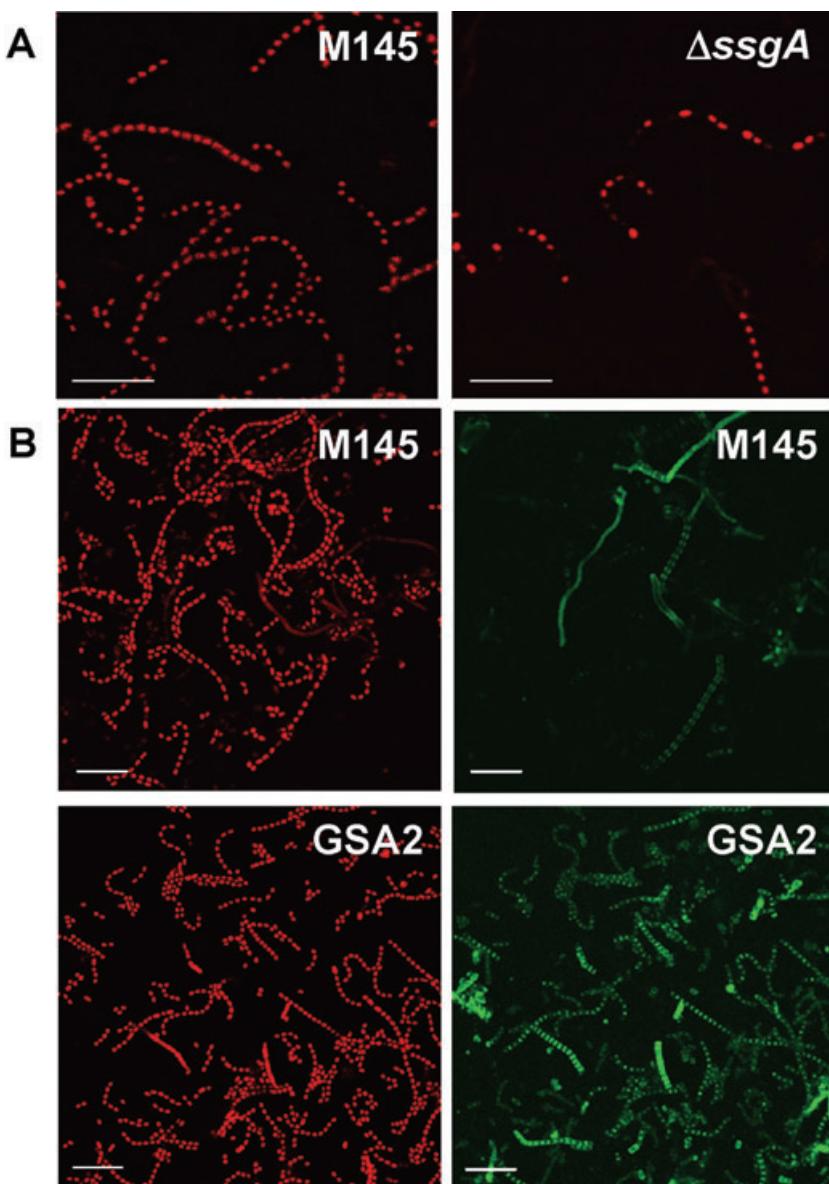
Effect of *ssgA* deletion on transcription of secretion genes

The transcripts of five out of 13 known secretion genes were more abundant in the *ssgA* mutant (Fig. 4C), most of

Fig. 5. Transcriptional analysis of important SsgA-responsive genes by RT-PCR. Transcriptional analysis of *ftsZ*, *divIVA*, *ftsI*, *parB*, *adpA*, *bldN*, *tatA*, SCO0204 and 16S rRNA by semi-quantitative RT-PCR in M145 and the *ssgA* mutant. RNA samples at time points 24 h, 48 h and 72 h were chosen corresponding to vegetative growth (veg), aerial growth (aer) and sporulation (spo) respectively. 16S rRNA and *ftsZ* were used as the controls. The expression patterns conform well to the data obtained by transcriptomic analysis.

them, namely *tatA*, *tatC*, *secD*, *yidC1* (SCO3883), and of a homologue of *tatA* (SCO3768 or *tatA2*), by more than twofold. In contrast, mRNA of *secDF* (SCO6160), encoding the SecDF protein, which is a natural fusion gene of *secD* and *secF* and is required to maintain a high capacity of protein secretion (Bolhuis *et al.*, 1998), was less abundant in all samples of the *ssgA* mutant.

Genes involved in DNA segregation and topology

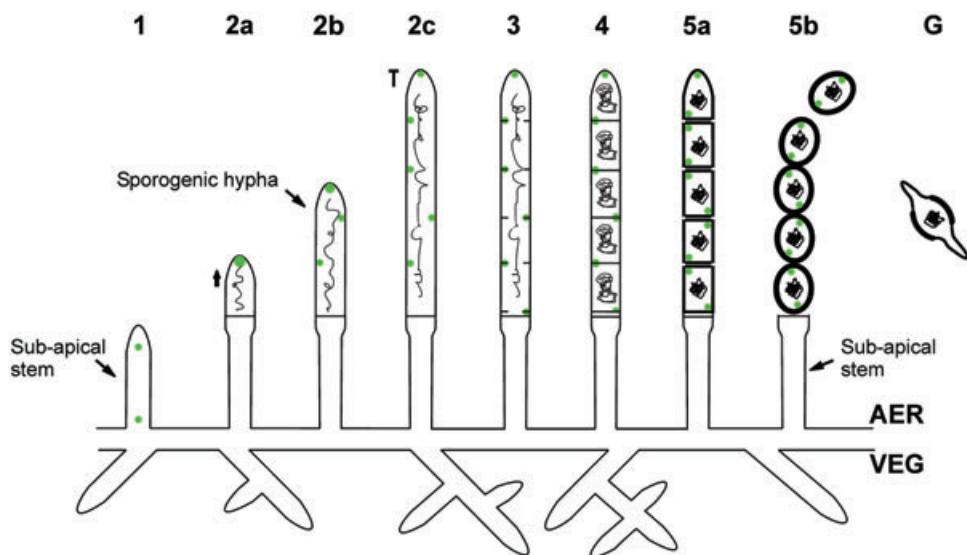

The transcript abundance for several genes involved in DNA replication and segregation was also disturbed in the *ssgA* mutant (Fig. 4D; Table S2). More abundant transcripts included those of *parA* and *parB*, encoding chromosome partitioning proteins (Jakimowicz *et al.*, 2002b) and of *gyrA* and *gyrB*, for the two subunits of DNA gyrase (Calcutt, 1994). The *parAB* operon was upregulated during sporulation, while the *gyrAB* operon was upregulated throughout development. Conversely, transcripts of the DNA translocase gene *ftsK* (SCO5750: *spolIIIE* in *Bacillus*), which is recruited to the FtsZ-ring in *Escherichia coli* and *Bacillus subtilis* (Liu *et al.*, 1998; Bath *et al.*, 2000; reviewed in Errington *et al.*, 2001), and to developing sporulation septa in *S. coelicolor* (Wang *et al.*, 2007) was less abundant in GSA3 at all time points. Besides the changed abundance of these five mRNAs, transcript abundance was also affected for genes close to the chromosomal origin of replication, *oriC*: from SCO3826 until SCO3923, mRNAs for 30% of the genes in this segment are differentially abundant, perhaps as a result of the

enhanced expression of *parB* and/or DNA gyrase in the mutants (see *Discussion*).

Verification of microarray data by reverse transcription polymerase chain reaction (RT-PCR)

To independently verify the expression patterns of the microarray experiment, semi-quantitative RT-PCR was performed on RNA from the parental strain M145 and the *ssgA* mutant, using oligonucleotide pairs for a selection of targets (*ftsZ*, *divIVA*, *ftsI*, *parB*, *adpA*, *bldN*, *tatA* and the *luxR*-like SCO0204) with 16S rRNA as the control (Fig. 5). We used RNA samples corresponding to 24 h (vegetative growth), 48 h (aerial growth) and 72 h (spores). The relative transcript abundance of *divIVA*, *ftsI*, *parB*, *ftsZ*, *adpA*, *bldN* and *tatA* (all up in GSA3 in comparison to in M145) and SCO0204 (strongly down in GSA3) corresponded well to the results obtained from the microarray analysis. We could not reproduce the microarray patterns for *ssgF* and *ftsK* (not shown). The RT-PCR data were quantified and presented after correction for 16S rRNA (Fig. S3).

The *ssgA* mutant shows disturbed DNA segregation and/or condensation. Considering the unexpectedly strong effect of the absence of *ssgA* on the expression of genes involved in DNA topology and segregation/condensation, we analysed the DNA distribution in aerial hyphae and (pre)spores by confocal fluorescence microscopy of samples stained with propidium iodide (PI). When aerial hyphae are actively growing, the DNA is distributed evenly in the hyphae (i.e. DNA segregation follows septation);


Fig. 6. Visualization of DNA and peptidoglycan subunits by fluorescence microscopy. Cultures were grown on SFM for 5 days at 30°C. A. DNA content of *S. coelicolor* and the *ssgA* mutant revealed by propidium iodide (PI). The *ssgA* mutant is disturbed in DNA segregation. B. *S. coelicolor* M145 and its SsgA-overexpressing derivative GSA2. Left column shows DNA visualized with PI; right column shows peptidoglycan subunits visualized with f-WGA. GSA2 shows strongly enhanced septation in young aerial hyphae. F-WGA-stained foci also were observed between spores in the mature spore chains, most likely indicative of autolysis. Bar = 5 μ m.

while in mature spores the DNA is completely segregated, with one chromosome per spore (Jakimowicz *et al.*, 2005; Noens *et al.*, 2005). Interestingly, distribution of chromosomes was rather irregular in the *ssgA* mutant spore compartments (Fig. 6A), with many spores showing either very strong staining of nucleoids or no staining at all, while the wild-type strain showed normal DNA segregation. This suggests disturbed segregation and/or condensation of chromosomes. In an *S. coelicolor* transformant with enhanced expression of SsgA, DNA segregation was normal. To visualize *de novo* septal PG synthesis, samples were also stained with fluorescein-conjugated wheat germ agglutinin (f-WGA), which stains unincorporated PG subunits. Young aerial hyphae of surface-grown cultures of a strain with enhanced expression of SsgA

showed strongly enhanced production of septal PG with many ladders typical of sporulation-specific cell division (Fig. 6B), in line with our earlier observation that SsgA activates the synthesis of septa (van Wezel *et al.*, 2000b). This phenotype is similar to the phenotype of a mutant in *ssgC*, which may antagonize SsgA function (Noens *et al.*, 2005). Additionally, f-WGA-stained foci were observed between spores in the mature spore chains, most likely indicative of the autolytic activity needed for spores to separate.

Discussion

SsgA is an activator of sporulation-specific cell division: *ssgA* mutants have almost no sporulation septa, while

Fig. 7. Scheme showing the localization of SsgA-GFP during development of *S. coelicolor* M145. Green spots refer to the observed localization of SsgA-GFP foci. Developmental stages: 1, early aerial growth; 2, growth of aerial hyphae destined to be converted into spores ('sporogenic hyphae'); 3, in-growth of septa and DNA segregation/condensation; 4, completion of septa; 5, spore maturation (5a, completion of spore-wall synthesis; 5b, autolytic spore separation); G, germination of spores. Note that DNA is segregated after the initiation of septum synthesis (between stages 3 and 4). For close-up images of SsgA-GFP localizations see Figs 2 and 3. The putative 'subapical stem' was postulated recently (Dalton *et al.*, 2007).

overexpression of the protein results in hyperseptation, which has been exploited to reduce mycelial clump size in industrial fermentations (van Wezel *et al.*, 2006). As shown previously, overexpression of SsgA alone can change morphology such that not only massive septa (up to 10 times the thickness of regular vegetative cross-walls) are produced, but the width of vegetative hyphae is approximately doubled to match that of sporogenic aerial hyphae [around 800 nm (van Wezel *et al.*, 2000a)]. Hence, SsgA directly activates the synthesis of septal PG. As SALPs lack a DNA binding motif, their effects may well be mediated via a direct interplay with components of the cell-division apparatus, and in particular with PBPs (in the cases of SsgA, SsgB and SsgG) and autolysins (in the cases of SsgE and SsgF) (Noens *et al.*, 2005). Two major issues concerning SsgA have been addressed here: its cellular localization and likely function at different developmental stages; and the global transcriptional response to its absence.

SsgA controls events that require major changes in local cell-wall morphogenesis at several developmental stages

Confocal fluorescence microscopy showed that most relatively fresh spores have two well-separated SsgA foci that colocalize with emerging germ tubes, implicating SsgA in determining where germination is initiated. SsgA is not essential for germination, but in its absence the average number of germ tubes per spore is reduced (< 1.7 germ

tubes per spore). Overproduction of SsgA enhances the number of germ tubes (2.5 per spore, against 2.0 in the parent M145).

Although SsgA is not important for vegetative cross-wall formation, we did observe SsgA foci at the tips of emerging germ tubes and young vegetative hyphae. Overexpression results in submerged sporulation, suggesting that ectopic SsgA expression disturbs the mechanisms that discriminate vegetative hyphae from aerial hyphae (van Wezel *et al.*, 2000a). Thus, SsgA-mediated submerged sporulation can now be reinterpreted as a response of the sporulation regulatory cascade to an ectopically realized checkpoint, the initiation of multiple septation. During sporulation of aerial hyphae, SsgA occurs at several distinct localizations (Figs 2 and 3). The data are summarized in Fig. 7. Initially, SsgA-GFP formed relatively widely spaced foci in the centre of young aerial hyphae; this may either represent an early stage of SsgA assembly, or a yet unresolved compartment-specific function of SsgA in the so-called subapical stem (Dalton *et al.*, 2007). At the next stage, sporogenic hyphae emerged. These were distinguished by their increased diameter to around 800 nm, from around 400 nm for vegetative and young aerial hyphae. As sporogenic hyphae extended, bright foci were visible in the tips at first. These then faded while an increasing number of closely spaced foci formed behind the tip, resulting in a spacing similar to the foci of FtsZ-GFP (Grantcharova *et al.*, 2005) and the localization of ParB complexes before septation (Jakimowicz *et al.*, 2005), and in line with the earlier observed upregulation of *ssgA* from

the onset of sporulation (Traag *et al.*, 2004). This suggests that SsgA carried by the growing aerial tip may be distributed at regular intervals in aerial hyphae to mark future sites of septum formation. One speculative possibility is that the initial function of such SsgA foci is to establish new sites for PG synthesis, associated with the accelerating elongation of aerial hyphal apical compartments, as the numbers of chromosomes increase exponentially (see (Chater and Losick, 1997), for a discussion). In turn, this could underpin much of the spatial regularity associated with sporulation. When hyphal elongation stops, the SsgA-associated PG biosynthetic capacity could then instead be used for the formation of septum-associated wall material, via the acquisition of *FtsI*. Transcripts of *ftsI* were overrepresented in the *ssgA* mutant, and *FtsI* is the only PBP known to be recruited by the divisome (after Z-ring formation has completed) and in other bacteria is responsible for the production of septal PG (Botta and Park, 1981). The enhanced expression of *ftsI* may be a compensatory response to the absence of SsgA and hence of septal PG synthesis.

As sporulation septation progresses, SsgA localizes on one peripheral edge of the sporulation septa, and finally appears as two foci, one at each end of each spore, which, by marking the sites of future germ tube emergence, complete the sequence of functions that SsgA mediates during the life cycle. The surprisingly regular pattern of septation presumably requires proteins that help mark the wall of aerial hyphae where in the future the (up to 100) septa must be localized (Schwedock *et al.*, 1997; Flärdh and van Wezel, 2003). Otherwise it is difficult to see how the highly regular spacing of around 1 µm can be achieved (almost) simultaneously. Interestingly, such cell-wall marking occurs in filamentous fungi by septins, such as SepA in *Aspergillus nidulans* (Harris *et al.*, 1999). Like SsgA, SepA belongs to an entirely new family of cell division-related proteins with little similarity to other protein families (Longtine *et al.*, 1996; Longtine and Bi, 2003).

Comparison of the SsgA-GFP localization data with the observed morphological changes due to either deletion or overexpression of *ssgA* shows an obvious relationship of SsgA with the processes that require major changes to the cell wall, and in particular with germination, tip growth and septum synthesis. The enhanced expression of *divIVA* in the *ssgA* mutant, together with the localization of SsgA in tips of germ tubes and growing (aerial) hyphae suggested a possible functional relationship with DivIVA, which determines the polarity of mycelial growth and is located at the tips of germ tubes and hyphae. SsgA disappeared as vegetative growth progressed, suggesting a role for SsgA during the initial stages of vegetative growth. The upregulation of *divIVA* in *ssgA* mutants was particularly apparent at later time points correlating to aerial

growth and when branching of mutant aerial hyphae was observed by cryo-SEM. Hyphae grow by tip extension controlled among others by DivIVA, and enhanced expression of DivIVA gave rise to several new sites of cell-wall synthesis, with hyperbranching as a result (Flärdh, 2003). A role of SsgA in the control of branching frequency and/or branch-site selection is supported by the large number of small branches produced when SsgA is overproduced. However, many of these small branches fail to extend beyond 1–2 µm, suggesting that the machinery required to extend apical growth is not sufficiently abundant to support growth of most of the branches. Although SsgA-GFP was abundant in the tips of all aerial hyphae, the localization of DivIVA in aerial hyphae is unknown, but perhaps similar during hyphal extension (K. Flärdh, pers. comm.). Upregulation of *divIVA* during later development in the *ssgA* mutant may well be responsible for the branching observed in the *ssgA* mutant aerial hyphae, which is in line with recent experiments that established a function for DivIVA in aerial growth (K. Flärdh, pers. comm.).

What model can we distil from these seemingly diverse data to explain the function of SsgA? As argued previously, in each case (septation, branching and germination) a significant change in the local cell-wall morphogenesis is effected, requiring opening of the cell wall (and PG), followed by *de novo* PG and membrane synthesis and – certainly in the case of sporulation-specific cell division – co-ordination along the hypha and probably previously determined site selection. Taking into account the observed relationship between SALPs and PG-related enzymes [PBPs and autolysins; (Noens *et al.*, 2005)] we propose that SsgA is a chaperonin-like protein that plays an important role in marking the cell wall for major changes at a later moment in time, and in particular in determining the sites for septation and germination. Such a function is comparable to that of SepA in the morphologically very similar filamentous fungi.

Disturbance of SsgA-mediated changes in cell-wall biosynthesis causes many changes in the expression of developmentally relevant genes, suggesting that SsgA contributes to an important developmental checkpoint

Changes in apparent gene expression in the *ssgA* mutant are likely to be the combined result of two major factors: feedback to the genome of information from specific changes in the cellular state caused by *ssgA* mutation; and changes in the relative abundance of cell-types. Remarkably, the transcripts of around 300 genes were increased or decreased in relative abundance by at least twofold in the mutant, at two or more time points. This is much more than observed for other developmental mutants: the highest number previously reported is the 125 transcripts affected

in a *whi* mutant (Tian *et al.*, 2007), and only 17 transcripts were reported to be affected by a *bldN* mutation (Elliot *et al.*, 2003). Overall, these considerations make it likely that the changes in the transcriptome caused by mutation of *ssgA* are largely specific effects on gene expression, rather than simply reflecting changes in the proportions of different cell-types.

Strikingly, the products of genes affected by *ssgA* included close to 40 well-known cell-cycle control proteins (see later analysis). These do not include genes that encode the components of the divisome scaffold (i.e. the Z-ring and supporting proteins), with *ftsQ* and the *ftsI-ftsL* operon as exceptions. This, and the fact that the *ssgA* mutant produces occasional spore chains on mannitol-containing media, and that FtsZ-GFP rings were formed under these conditions, indicates that indeed SsgA is not essential *per se* for Z-ring formation in aerial hyphae (Fig. S4).

The mRNA profiles in the *ssgA* and *ssgR* mutants were very similar, in line with our earlier experiments showing that SsgR is the specific transcriptional activator of *ssgA* (Traag *et al.*, 2004). It is therefore highly likely that SsgR regulates only the downstream-located *ssgA*. In fact, the observed (high) similarity in the mRNA profiles provides strong support for the validity of the microarray data obtained for the *ssgA* mutant (Fig. S2).

Effects on chromosome segregation and secretion

We observed a highly irregular distribution of chromosomes in the spore compartments when *ssgA* mutants were grown under conditions that allow full development. Our microarray analysis suggests that this disturbed DNA distribution is at least partially due to the altered expression of *parAB* and *gyrAB*. The development-specific expression of *gyrA* and *gyrB* and of *parA* and *parB* in the wild type was further enhanced in the *ssgA* mutant. *gyrA* and *gyrB* are the two genes for DNA gyrase, a type II DNA topoisomerase responsible for the catalysis of the negative supercoiling of the DNA in replication, while ParA and ParB contribute to correct partitioning of the chromosomes into the unigenomic spore compartments (Kim *et al.*, 2000; Jakimowicz *et al.*, manuscript submitted). Changes in the expression of *gyrAB*, *parAB* and also *ftsK* (although the latter could not be corroborated by RT-PCR analysis) might well have effects on the correct segregation, condensation and topology of the chromosomes. Surprisingly, besides the *gyr* and *par* genes, many other *ori*-proximal genes showed deregulated expression in the *ssgA* mutant. Genome-wide, the expression of >4% of the genes is affected significantly in the *ssgA* mutant, while 30 out of 98 *ori*-proximal genes, namely ORFs SCO3826–SCO3923, are affected. Suggestively, *ssgRA* (SCO3925–3926) lie immediately next to this cluster of

genes. Many of these genes are essential genes involved in DNA synthesis and maintenance.

Finally, the expression of genes that encode proteins involved in the Sec and Tat secretion pathways is also significantly affected by *ssgA* mutation. Most of these genes show increased transcription in the mutant relative to its parent M145, except for the *secDF* gene (decreased). We recently showed that enhanced *ssgA* expression has a strongly positive effect on secretion (and production) of enzymes in *Streptomyces lividans* (van Wezel *et al.*, 2006). Thus, the secretion genes respond similarly as *ftsI*: SsgA is known to enhance the associated processes (septum formation, secretion), but the relevant genes are upregulated in an *ssgA* mutant, perhaps as a compensatory effect. Comparison of microarray data on the *ssgA* mutant with those of a strain overexpressing *ssgA* (not yet available) could shed more light on this puzzling phenomenon.

The position of *ssgA* in the developmental hierarchy

What is the position of SsgA in the developmental control hierarchy? Our experiments and previous observations strongly suggest a function for SsgA in the co-ordination of septal PG synthesis. The prime candidate for the latter is *ftsI*, one of the more strongly overexpressed genes in the *ssgA* mutant (see later analysis). The timing for SsgA function is also highlighted by the response of the *whi* genes: the earlier-acting aerial hyphal developmental genes *whiA*, *whiH*, *whiL* and *whiJ* were overexpressed in the *ssgA* mutant, while spore maturation genes, including *ssgE* and *ssgF* (both important for correct autolytic spore separation), *sigF*, *whiD*, and the spore pigment cluster *whiE* (Kelemen *et al.*, 1998; Molle *et al.*, 2000; Noens *et al.*, 2005), were under-expressed. This remarkable tendency suggests that the irregularities of the *ssgA* mutant in developmental gene expression are most likely a checkpoint effect, i.e. the septum formation/DNA partitioning checkpoints have not been passed. We also observed significant overexpression of several *bld* genes, including *bldB*, *bldC*, *bldD*, *bldG* and the *adpA* (*bldH*) responsive genes, including *bldN*, in the *ssgA* mutant. While *bld* genes are by definition essential for early developmental events, their mRNA levels remain high and in some cases strongly increase late on [e.g. *bldN* (Bibb *et al.*, 2000)] and they were particularly abundant in the *ssgA* mutant at late time points. The *chp* genes for the chaplin proteins, which are part of the spore coat (Claessen *et al.*, 2003; Elliot *et al.*, 2003), as well as the functionally related *rdl* genes, were all markedly overexpressed in the *ssgA* mutant (Fig. 5B and Table S2). Thus, the phenotypic and transcriptional analyses together suggest that SsgA plays a crucial role in the control of morphogenetic processes leading to the formation of septal PG in aerial hyphae, at

Table 2. Bacterial strains, Plasmids and constructs described in this work.

Bacterial strain	Genotype	Reference
<i>S. coelicolor</i> A3(2) M145	SCP1 ⁺ SCP2 ⁺	Kieser <i>et al.</i> (2000)
GSA2	M145 + pGWS4-SD	van Wezel <i>et al.</i> (2000a)
GSA3	M145 Δ ssgA (::aadA)	van Wezel <i>et al.</i> (2000a)
GSR1	M145 Δ ssgR	Traag <i>et al.</i> (2004)
K202	M145 + KF41	Grantcharova <i>et al.</i> (2005)
<i>E. coli</i> JM109	See reference	Sambrook <i>et al.</i> (1989)
<i>E. coli</i> ET12567	See reference	MacNeil <i>et al.</i> (1992)
<i>E. coli</i> ET12567/pUZ8002	See reference	Gust <i>et al.</i> (2003)
Plasmid and constructs	Description	Reference
pHJL401	<i>Streptomyces/E. coli</i> shuttle vector (5–10 copies per genome in <i>Streptomyces</i>)	Larson and Hershberger (1986)
plJ2925	Derivative of pUC19 (high copy number) with BglII sites flanking its multiple cloning site.	Janssen and Bibb (1993)
pGWS116	pHJL401 with 1.2 kb fragment harbouring a translational fusion of <i>ssgA</i> and <i>egfp</i>	This study
pGWS4-SD	Integrative construct overexpressing <i>ssgA</i> .	van Wezel <i>et al.</i> (2000a)
KF41	pSET152-derived integrative vector expressing FtsZ-GFP	Grantcharova <i>et al.</i> (2005)

a time relating to the activities of WhiA and WhiB, and before or at the onset of Z-ring formation, and that the failure of the septation checkpoint prevents the expression of genes for post-septation functions. A similar effect was implied in a previous report (Flärdh *et al.*, 2000) showing that at least some late functions were not carried out when sporulation septum formation was prevented by a developmental stage-specific deficiency of FtsZ.

Conclusion

SsgA is an important cell-cycle control protein that most likely functions by (facilitating the) marking of the cell wall for future major changes in cell-wall morphogenesis, with a clear involvement in and stimulatory effect on co-ordinated sporulation-specific cell division and spore germination, and perhaps also on branching. This, together with the localization data, supports the idea that SsgA fulfils a chaperone-like function, aiding the cell-wall synthesizing machineries to find the exact positions for future PG synthesis. In this way, SsgA may be one of the proteins that compensate for the absence of septum-localizing proteins such as FtsA, ZipA, Noc and MinCE in unicellular bacteria. The search for direct interaction partners for SsgA should better our understanding as to how SsgA functions at the molecular level.

Experimental procedures

Bacterial strains and media

The bacterial strains described in this work are listed in Table 2. *E. coli* K-12 strains JM109 (Sambrook *et al.*, 1989) and ET12567 (MacNeil *et al.*, 1992) were used for routine cloning and plasmid propagation, and were grown and transformed by standard procedures (Sambrook *et al.*, 1989).

E. coli ET12567 containing pUZ8002 was used for conjugation to *S. coelicolor* (Kieser *et al.*, 2000). *E. coli* transformants were selected in L-broth containing the appropriate antibiotics. *Streptomyces coelicolor* A3(2) M145 was obtained from the John Innes Centre strain collection, and was the parent for the previously created *ssgA* mutant GSA3 (van Wezel *et al.*, 2000a). All media and routine *Streptomyces* techniques are described in the *Streptomyces* manual (Kieser *et al.*, 2000). SFM agar plates were used for making spore suspensions and R2YE agar plates for regeneration of protoplasts and, after the addition of the appropriate antibiotic, for selecting recombinants. Pregermination was performed by heat shock at 50°C for 10 min, followed by shaking at 30°C for at least 10 h. For microscopic analysis, streptomyces were grown on SFM agar plates. For standard cultivation and plasmid isolation, YEME or TSBS [tryptone soy broth (Difco) containing 10% (w/v) sucrose] were used.

Plasmids and constructs

All plasmids and constructs described in this article are summarized in Table 2. plJ2925 (Janssen and Bibb, 1993) is a pUC19-derived plasmid used for routine subcloning. The shuttle vector pHJL401 has the pUC19 *ori* for high-copy number replication in *E. coli* and the SCP2⁺ *ori* (around five copies per chromosome) for maintenance in *S. coelicolor* (Larson and Hershberger, 1986). An 1860 bp DNA fragment harbouring *ssgR* and *ssgA* was amplified by PCR from M145 genomic DNA using oligonucleotides Q1 and SsgA-GFP3 (oligonucleotides are listed in Table S1). In this way, a KpnI restriction site was created replacing the *ssgA* stop codon. The fragment was inserted as an EcoRI–KpnI fragment into plJ2925, creating pGWS113. Subsequently, *egfp* was amplified from pFT73 (Nothaft *et al.*, 2003) using oligonucleotides Har_GFP_For and Har_GFP_Rev, replacing the start codon of *egfp* by a KpnI restriction site. This facilitated in-frame fusion of *ssgA* and *egfp*. This 716 bp fragment was inserted as an KpnI–HindIII fragment into pGWS113, resulting in pGWS114. The complete insert was cloned as an EcoRI–

HindIII fragment in pHJL401, resulting in pGWS116. The plasmid expresses *ssgA-egfp* from the natural *ssgA* promoter.

Preparation of total RNA

Mycelium used for total RNA isolation was grown on cellophane disks on MM containing 1.5% Hispan agar and 0.5% mannitol as the carbon source. On this medium the strains sporulated well (M145) or poorly (GSA3, GSR1). Mycelium was harvested at times corresponding to vegetative growth (24 h), aerial growth (36 h, 48 h) and sporulation (60 h, 72 h). RNA was purified using the Kirby-mix protocol (Kieser *et al.*, 2000). RNA purification columns (RNeasy, Qiagen) and DNase I treatment were used as well as salt precipitation (final concentration 3M sodium acetate pH 4.8) to purify the RNA and fully remove any traces of DNA respectively. Before use, the RNA preparations were checked for their quality and integrity on the Agilent 2100 Bioanalyzer (Agilent Technologies).

DNA microarray analysis

For microarray hybridization each RNA sample was reverse-transcribed into Cy3-dCTP-labelled cDNA and cohybridized with Cy5-dCTP-labelled genomic DNA from *S. coelicolor* M145, as common reference (Bucca *et al.*, 2003). The samples were hybridized to in-house (University of Surrey) fabricated oligonucleotide (50 mer) microarrays covering essentially all ORFs of the *S. coelicolor* genome (for array coverage and detailed protocols: <http://www.surrey.ac.uk/SBMS/Fgenomics/Microarrays>). The hybridized microarrays were scanned with an Affymetrix 428 laser scanner for fluorescent signal acquisition. The 16-bit TIFF microarray images were analysed with BlueFuse (BlueGnome) spot quantification software and further processed using the statistical computing environment R (Version 2.1.1) and the package Limma (R Development Core Team). An ad-hoc R function was written to normalize all \log_2 cDNA/gDNA ratios on all arrays via the block-median (dividing the ratio of each of the 48 blocks by its respective median ratio). The \log_2 ratios were then scaled to have the same median-absolute-deviation (MAD) across arrays (Smyth and Speed, 2003; Smyth, 2005). Duplicate good spots [with confidence value > 0.1 and spot quality of 1 (two parameters calculated by the BlueFuse software)] were averaged. Technical replicates for the M145 wild-type strain were averaged. Data were then filtered such that there was at least one biological replicate with one good spot in each time point/strain, resulting in a gene list of 7345 genes for differential expression analysis. Data were then imported into GeneSpring (Version GX) and transformed to linear scale. Significantly differentially expressed genes between each of the deletion mutants and the M145 wild-type strain were identified by applying one-way ANOVA ($P < 0.05$; Benjamini and Hochberg False Discovery Rate) using GeneSpring. Some additional genes were also identified that demonstrated more than a twofold change in expression level between wild-type and mutant strains in at least two time points. The expression of selected genes was independently assessed with RT-PCR analysis (see later analysis).

Polymerase chain reaction and RT-PCR analysis

Polymerase chain reactions were performed with *Pfu* polymerase (Stratagene) in the presence of 10% (v/v) DMSO. The programme used was as follows: 2 min at 95°C followed by 35 cycles of 1 min at 95°C (denaturation), 1 min at 58°C (annealing) and 2–3 min elongation at 72°C (time according to the length of the fragment). RT-PCR analysis was carried out using the Superscript III one step RT-PCR System with Platinum® *Taq* DNA polymerase (Invitrogen) for the verification of gene expression changes observed in microarray experiments. RNA samples (time points 24 h, 48 h and 72 h matching vegetative growth, aerial growth and sporulation respectively) were the same as those used for microarray analysis. For each RT-PCR reaction 100 ng of RNA was used together with 1 μ M (final concentration) of each primer. The program used was as follows: 45 min cDNA synthesis at 48°C, followed by 2 min at 95°C and 25, 29, 31 or 35 cycles of: 45 s at 94°C (denaturation), 30 s at 68°C (annealing) and 30 s at 68°C (elongation). The reaction was completed by 5 min incubation at 68°C. Five microlitres of each sample were visualized by ethidium bromide staining after electrophoresis on a 2% agarose gel in 1× TAE buffer. The oligonucleotides are listed in Table S1. Quantification of the RT-PCRs was done by scanning the gels using the GS-800 imaging densitometer followed by analysis using Quantity One software (Bio-Rad).

Microscopy

Confocal fluorescence microscopy. The visualization of DNA (with PI) and cell-wall material (FITC-WGA, Biomedica) by confocal fluorescence microscopy was performed as described previously (Noens *et al.*, 2005). For the visualization of strains containing proteins translationally fused with EGFP, sterile cover slips were inserted at a 45° angle into SFM plates and spores were inoculated in the acute angle. After incubation at 30°C for 2–5 days, coverslips were removed and samples positioned in a drop of water on a microscope slide.

Electron microscopy. Morphological studies of surface-grown aerial hyphae and spores of *S. coelicolor* M145 and mutant derivatives by cryo-scanning electron microscopy (cryo-SEM) were performed as described previously, using a JEOL JSM6700F scanning electron microscope (Keijser *et al.*, 2003).

Acknowledgements

We thank Gerda Lamers for help with fluorescence microscopy, Marie Elliot and Sébastien Rigali for discussions and Klas Flärdh for plasmid KF41 and for sharing unpublished data. The work was supported by EU Marie Curie training Grant HPMF-CT-2002-01676 to K.F.C. and Jay Hinton (Institute of Food Research, Norwich), by BBSRC Grants G18886 to C.P.S. and G18887 to K.F.C., and by grants of the Royal Dutch Academy for Arts and Sciences (KNAW) and the Netherlands Organization for Scientific Research (NWO) to G.P.v.W.

References

Autret, S., and Errington, J. (2001) Dynamic proteins in bacteria. *Dev Cell* **1**: 10–11.

Bath, J., Wu, L.J., Errington, J., and Wang, J.C. (2000) Role of *Bacillus subtilis* SpolIIIE in DNA transport across the mother cell-prespore division septum. *Science* **290**: 995–997.

Bibb, M.J., Molle, V., and Buttner, M.J. (2000) sigma (BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in *Streptomyces coelicolor* A3 (2). *J Bacteriol* **182**: 4606–4616.

Bolhuis, A., Broekhuizen, C.P., Sorokin, A., van Roosmalen, M.L., Venema, G., Bron, S., et al. (1998) SecDF of *Bacillus subtilis*, a molecular Siamese twin required for the efficient secretion of proteins. *J Biol Chem* **273**: 21217–21224.

Botta, G.A., and Park, J.T. (1981) Evidence for involvement of penicillin-binding protein 3 in murein synthesis during septation but not during cell elongation. *J Bacteriol* **145**: 333–340.

Bramhill, D. (1997) Bacterial cell division. *Annu Rev Cell Dev Biol* **13**: 395–424.

Bucca, G., Brassington, A.M., Hotchkiss, G., Mersinias, V., and Smith, C.P. (2003) Negative feedback regulation of dnaK, clpB and lon expression by the DnaK chaperone machine in *Streptomyces coelicolor*, identified by transcriptome and *in vivo* DnaK-depletion analysis. *Mol Microbiol* **50**: 153–166.

Calcutt, M.J. (1994) Gene organization in the dnaA-gyrA region of the *Streptomyces coelicolor* chromosome. *Gene* **151**: 23–28.

Chater, K.F., and Chandra, G. (2006) The evolution of development in *Streptomyces* analysed by genome comparisons. *FEMS Microbiol Rev* **30**: 651–672.

Chater, K.F., and Losick, R. (1997) Mycelial life style of *Streptomyces coelicolor* A3 (2) and its relatives. In *Bacteria as Multicellular Organisms*. Shapiro, J.A., and Dworkin, M. (eds). New York: Oxford University Press, pp. 149–182.

Claessen, D., Rink, R., de Jong, W., Siebring, J., de Vreugd, P., Boersma, F.G., et al. (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in *Streptomyces coelicolor* by forming amyloid-like fibrils. *Genes Dev* **17**: 1714–1726.

Dalton, K., Thibessard, A., Hunter, J.I.B., and Kelemen, G.H. (2007) A novel compartment, the 'sub-apical stem' of the aerial hyphae, is the location of a SigN dependent, developmentally distinct transcription in *Streptomyces coelicolor*. *Mol Microbiol* **64**: 719–737.

Elliot, M.A., Karoonuthaisiri, N., Huang, J., Bibb, M.J., Cohen, S.N., Kao, C.M., and Buttner, M.J. (2003) The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in *Streptomyces coelicolor*. *Genes Dev* **17**: 1727–1740.

Errington, J. (2001) Septation and chromosome segregation during sporulation in *Bacillus subtilis*. *Curr Opin Microbiol* **4**: 660–666.

Errington, J., Bath, J., and Wu, L.J. (2001) DNA transport in bacteria. *Nat Rev Mol Cell Biol* **2**: 538–544.

Errington, J., Daniel, R.A., and Scheffers, D.J. (2003) Cytokinesis in bacteria. *Microbiol Mol Biol Rev* **67**: 52–65, Table of contents.

Flärdh, K. (2003) Growth polarity and cell division in *Streptomyces*. *Curr Opin Microbiol* **6**: 564–571.

Flärdh, K., and van Wezel, G.P. (2003) Cell division during growth and development of *Streptomyces*. In *Recent Developments in Bacteriology*. Pandalai, S.G. (ed.). Trivandrum: Transworld Research Network.

Flärdh, K., Leibovitz, E., Buttner, M.J., and Chater, K.F. (2000) Generation of a non-sporulating strain of *Streptomyces coelicolor* A3(2) by the manipulation of a developmentally controlled ftsZ promoter. *Mol Microbiol* **38**: 737–749.

Grantcharova, N., Lustig, U., and Flärdh, K. (2005) Dynamics of FtsZ assembly during sporulation in *Streptomyces coelicolor* A3 (2). *J Bacteriol* **187**: 3227–3237.

Gust, B., Challis, G.L., Fowler, K., Kieser, T., and Chater, K.F. (2003) PCR-targeted *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. *Proc Natl Acad Sci USA* **100**: 1541–1546.

Harris, S.D., Hofmann, A.F., Tedford, H.W., and Lee, M.P. (1999) Identification and characterization of genes required for hyphal morphogenesis in the filamentous fungus *Aspergillus nidulans*. *Genetics* **151**: 1015–1025.

Holtje, J.V. (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of *Escherichia coli*. *Microbiol Mol Biol Rev* **62**: 181–203.

Jakimowicz, D., Chater, K., and Zakrzewska-Czerwinska, J. (2002) The ParB protein of *Streptomyces coelicolor* A3 (2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome. *Mol Microbiol* **45**: 1365–1377.

Jakimowicz, D., Gust, B., Zakrzewska-Czerwinska, J., and Chater, K.F. (2005) Developmental-stage-specific assembly of ParB complexes in *Streptomyces coelicolor* hyphae. *J Bacteriol* **187**: 3572–3580.

Janssen, G.R., and Bibb, M.J. (1993) Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of *Escherichia coli* colonies. *Gene* **124**: 133–134.

Kawamoto, S., and Ensign, J.C. (1995) Cloning and characterization of a gene involved in regulation of sporulation and cell division in *Streptomyces griseus*. *Actinomycetologica* **9**: 136–151.

Keijser, B.J., Noens, E.E., Kraal, B., Koerten, H.K., and van Wezel, G.P. (2003) The *Streptomyces coelicolor* ssgB gene is required for early stages of sporulation. *FEMS Microbiol Lett* **225**: 59–67.

Kelemen, G.H., Brian, P., Flärdh, K., Chamberlin, L., Chater, K.F., and Buttner, M.J. (1998) Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in *Streptomyces coelicolor* A3 (2). *J Bacteriol* **180**: 2515–2521.

Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. (2000) *Practical Streptomyces Genetics*. Norwich: John Innes Foundation.

Kim, H.J., Calcutt, M.J., Schmidt, F.J., and Chater, K.F. (2000) Partitioning of the linear chromosome during sporulation of *Streptomyces coelicolor* A3 (2) involves an oriC-linked parAB locus. *J Bacteriol* **182**: 1313–1320.

Larson, J.L., and Hershberger, C.L. (1986) The minimal rep-

lcon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. *Plasmid* **15**: 199–209.

Liu, G., Draper, G.C., and Donachie, W.D. (1998) FtsK is a bifunctional protein involved in cell division and chromosome localization in *Escherichia coli*. *Mol Microbiol* **29**: 893–903.

Longtine, M.S., and Bi, E. (2003) Regulation of septin organization and function in yeast. *Trends Cell Biol* **13**: 403–409.

Longtine, M.S., DeMarini, D.J., Valencik, M.L., Al-Awar, O.S., Fares, H., De Virgilio, C., and Pringle, J.R. (1996) The septins: roles in cytokinesis and other processes. *Curr Opin Cell Biol* **8**: 106–119.

Lowe, J., van den Ent, F., and Amos, L.A. (2004) Molecules of the bacterial cytoskeleton. *Annu Rev Biophys Biomol Struct* **33**: 177–198.

McCormick, J.R., Su, E.P., Driks, A., and Losick, R. (1994) Growth and viability of *Streptomyces coelicolor* mutant for the cell division gene *ftsZ*. *Mol Microbiol* **14**: 243–254.

MacNeil, D.J., Gewain, K.M., Ruby, C.L., Dezeny, G., Gibbons, P.H., and MacNeil, T. (1992) Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector. *Gene* **111**: 61–68.

Marston, A.L., Thomaides, H.B., Edwards, D.H., Sharpe, M.E., and Errington, J. (1998) Polar localization of the MinD protein of *Bacillus subtilis* and its role in selection of the mid-cell division site. *Genes Dev* **12**: 3419–3430.

Molle, V., Palframan, W.J., Findlay, K.C., and Buttner, M.J. (2000) WhiD and WhiB, homologous proteins required for different stages of sporulation in *Streptomyces coelicolor* A3(2). *J Bacteriol* **182**: 1286–1295.

Noens, E.E., Mersinias, V., Traag, B.A., Smith, C.P., Koerten, H.K., and van Wezel, G.P. (2005) SsgA-like proteins determine the fate of peptidoglycan during sporulation of *Streptomyces coelicolor*. *Mol Microbiol* **58**: 929–944.

Nothaft, H., Dresel, D., Willimek, A., Mahr, K., Niederweis, M., and Titgemeyer, F. (2003) The phosphotransferase system of *Streptomyces coelicolor* is biased for N-acetylglucosamine metabolism. *J Bacteriol* **185**: 7019–7023.

Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) *Molecular Cloning: a Laboratory Manual*. Cold Spring harbor, NY: Cold Spring Harbor Laboratory Press.

Schwedock, J., McCormick, J.R., Angert, E.R., Nodwell, J.R., and Losick, R. (1997) Assembly of the cell division protein *ftsZ* into ladder like structures in the aerial hyphae of *streptomyces coelicolor*. *Mol Microbiol* **25**: 858.

Smyth, G.K. (2005) Limma: linear models for microarray data. In *Bioinformatics and Computational Biology Solutions Using R and Bioconductor*. Gentleman, R., Carey, V., Dudoit, S., Irizarry, R., Huber, W. (eds). New York: Springer, pp. 397–420.

Smyth, G.K., and Speed, T.P. (2003) Normalization of cDNA microarray data. *Methods* **31**: 265–273.

Tian, Y., Fowler, K., Findlay, K., Tan, H., and Chater, K.F. (2007) An unusual response regulator influences sporulation at early and late stages in *Streptomyces coelicolor*. *J Bacteriol* **189**: 2873–2885.

Traag, B.A., Kelemen, G.H., and Van Wezel, G.P. (2004) Transcription of the sporulation gene *ssgA* is activated by the *IclR*-type regulator *SsgR* in a whi-independent manner in *Streptomyces coelicolor* A3 (2). *Mol Microbiol* **53**: 985–1000.

van Wezel, G.P., and Vijgenboom, E. (2004) Novel aspects of signalling in *Streptomyces* development. *Adv Appl Microbiol* **56**: 65–88.

van Wezel, G.P., van der Meulen, J., Kawamoto, S., Luiten, R.G.M., Koerten, H.K., and Kraal, B. (2000a) *ssgA* is essential for sporulation of *Streptomyces coelicolor* A3 (2) and affects hyphal development by stimulating septum formation. *J Bacteriol* **182**: 5653–5662.

van Wezel, G.P., van der Meulen, J., Taal, E., Koerten, H., and Kraal, B. (2000b) Effects of increased and deregulated expression of cell division genes on the morphology and on antibiotic production of streptomycetes. *Antonie Van Leeuwenhoek* **78**: 269–276.

van Wezel, G.P., Krabben, P., Traag, B.A., Keijser, B.J., Kerste, R., Vijgenboom, E., et al. (2006) Unlocking *Streptomyces* spp. for use as sustainable industrial production platforms by morphological engineering. *Appl Environ Microbiol* **72**: 5283–5288.

Wang, L., Yu, Y., He, X., Zhou, X., Deng, Z., Chater, K.F., and Tao, M. (2007) Role of an *FtsK*-like protein in genetic stability in *Streptomyces coelicolor* A3(2). *J Bacteriol* **189**: 2310–2318.

Wildermuth, H., and Hopwood, D.A. (1970) Septation during sporulation in *Streptomyces coelicolor*. *J Gen Microbiol* **60**: 51–59.

Yamazaki, H., Ohnishi, Y., and Horinouchi, S. (2003) Transcriptional switch on of *ssgA* by A-factor, which is essential for spore septum formation in *Streptomyces griseus*. *J Bacteriol* **185**: 1273–1283.

Supplementary material

The following supplementary material is available for this article:

Fig. S1. Branching of aerial hyphae. Cryo-scanning electron microscopy of a double mutant of M145 carrying deletions of both *ssgA* (SCO3925) and *ssgC* (SCO7289). Cultures were grown on SFM agar plates for 5 days at 30°C. Branching of aerial hyphae is typical of *ssgA* mutant GSA3 (see Figure 1), and strongly enhanced in the double mutant.

Fig. S2. Comparison of the global expression patterns of genes in *ssgA* and *ssgR* mutant. RNA from GSA3 (M145 Δ *ssgA*) and GSR1 (M145 Δ *ssgR*) was isolated from mycelium grown on MM agar, corresponding to vegetative growth (24h), aerial growth (36h, 48h) and sporulation (60h, 72h). Genes were clustered hierarchically according to similarity in expression profile. The lanes represent the time points of RNA isolation for the parental strain M145 (left), the *ssgA* mutant (middle), and the *ssgR* mutant (right).

Fig. S3. Quantification of RT-PCR results. After the intensity of the bands was measured, the background value was subtracted from the total value, which was then corrected for 16S rRNA. The RNA samples of M145 (1–3 on the X-axis) and of GSA3 (4–6) correspond to 24h (1, 4), 48h (2, 5) and 72h (3, 6). To allow easy comparison the highest value obtained for any of the three time points for the parental strain M145 was set to the arbitrary value of 1. The data were quantified and analysed using a GS-800 imaging densitometer and Quantity One software (BioRad).

Fig. S4. Localization of FtsZ-GFP in the *ssgA* mutant of *S. coelicolor*. Cultures were grown on SFM for 5 days at 30°C, allowing some sporulation of the *ssgA* mutant. Left, light micrograph; right, fluorescence micrograph (visualising FtsZ-GFP). FtsZ ladders with regular (approximately 1 µm) spacing were formed, although in a smaller proportion of the aerial hyphae than in the parental strain (not shown). Thus, in the few occasions where sporogenic aerial hyphae are produced, localization of FtsZ was not affected by the absence of *ssgA*.

Table S1. Oligonucleotides used in PCR and RT-PCR. Restriction sites used for cloning are presented in bold face.

Table S2. A selection of genes differentially expressed between wild-type M145 and the *ssgA* mutant. The linear scale normalised cDNA/gDNA ratios are presented as aver-

ages of technical replicates or biological replicates (number of biological replicates is indicated for each column). Each worksheet covers a sequential range of 1,000 genes. Very similar lists were generated with the *ssgR* mutant (data not shown; see Fig S2).

This material is available as part of the online article from:
<http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2958.2007.05732.x>

(This link will take you to the article abstract).

Please note: Blackwell Publishing is not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.