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Abstract

Proximal tubule epithelial cells (PTEC) are susceptible to drug-induced kidney injury (DIKI). Cell-
based, two-dimensional (2D) in vitro PTEC models are often poor predictors of DIKI, probably due
to the lack of physiological architecture and flow. Here, we assessed a high throughput, 3D
microfluidic platform (Nephroscreen) for the detection of DIKI in pharmaceutical development.
This system was established with four model nephrotoxic drugs (cisplatin, tenofovir, tobramycin
and cyclosporin A) and tested with eight pharmaceutical compounds. Measured parameters
included cell viability, release of lactate dehydrogenase (LDH) and N-acetyl-B-p-glucosaminidase
(NAG), barrier integrity, release of specific miRNAs, and gene expression of toxicity markers. Drug-
transporter interactions for P-gp and MRP2/4 were also determined. The most predictive read
outs for DIKI were a combination of cell viability, LDH and miRNA release. In conclusion,
Nephroscreen detected DIKI in a robust manner, is compatible with automated pipetting, proved
to be amenable to long-term experiments, and was easily transferred between laboratories. This
proof-of-concept-study demonstrated the usability and reproducibility of Nephroscreen for the
detection of DIKI and drug-transporter interactions. Nephroscreen it represents a valuable tool
towards replacing animal testing and supporting the 3Rs (Reduce, Refine and Replace animal

experimentation).

Introduction

Renal proximal tubules are susceptible to drug-induced kidney injury (DIKI) [1], which can be a
dose-limiting factor in pharmacotherapy and lead to kidney failure in patients. Up to 14—26% of
acute kidney injury cases are caused by DIKI [2], [3], [4]. This clinical observation is in stark
contrast to the low number of drug candidates, 2% of total, that fail in preclinical development
due to nephrotoxicity [5]. This disparity demonstrates the need for better clinically predictive
models for nephrotoxicity for use in discovery and early development. Screening-friendly, human-
relevant in Vitro test systems will also help replace animal studies in drug discovery and
contribute to the 3 Rs (Replacement, Reduction and Refinement of animal studies). One third of
drugs and drug candidates tested are (partially) excreted via the urine following dosing to humans
[6], [7]. Active secretion of xenobiotics in the kidney takes place mainly via the proximal tubule
epithelial cell (PTEC) of the nephron [8]. A polarized monolayer of PTECs, joined by characteristic
epithelial tight junctions, separates the vasculature on the basolateral side from the tubular fluid

on the apical side and regulates solutes and water by active transport mechanisms.

In recent years, three-dimensional (3D) microfluidic in Vitro models of PTECs, also referred to as
proximal tubule-on-a-chip, gained significant interest as predictive platforms for nephrotoxicity
in drug development [9]. Currently employed in vitro two-dimensional (2D) PTEC models lack
important in vivo characteristics, such as cell-extracellular matrix (ECM) interaction and fluid

shear stress (FSS), which limits their relevance and predictivity with regards to nephrotoxicity [1],
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[9], [10]. Renal proximal tubule-on-a-chip showed improved characteristics, such as increased
tight-junction formation (ZO-1 expression), and increased number of cilia and microvilli at the
apical membrane [11], [12]. Features like albumin uptake and increased P-glycoprotein (P-gp)
activity in renal proximal tubule-on-a-chip, and nephrotoxicity induced by cisplatin showed close

resemblance with in vivo observations [11], [12].

Implementation of renal proximal tubules-on-a-chip in large-scale nephrotoxicity screening is
limited due to the complexity and low throughput of most models, often consisting of one chip
connected to pumps to generate flow [11], [12]. Furthermore, most renal proximal tubules-on-a-
chip described lack basolateral and apical compartments or make use of a two-compartmental
model separated by cells cultured on a semi-permeable membrane ignoring cell-ECM interaction
[12]. Choice of renal cell source is another important factor in the proximal tubule-on-a-chip.
Although freshly isolated primary PTECs show more physiological characteristics in a
nephrotoxicity screening proximal tubule-on-a-chip model [13], availability of primary PTECs
limits the throughput of this model. Using immortalized renal PTECs would not only overcome

this problem but would also enhance reproducibility across different laboratories [13].

This study aimed to assess a high throughput, 3D-microfluidic platform (Nephroscreen) for the
detection of drug-induced nephrotoxicity: This platform was specifically designed to fulfill
requirements of pharmaceutical companies and promote alternative methods to animal testing
in support of the 3Rs. Nephroscreen was first challenged with four selected model human
nephrotoxic drugs (cisplatin, tenofovir, tobramycin and cyclosporin A) that affect the proximal
tubule. This was complemented with eight additional compounds provided by three
pharmaceutical companies for evaluation in a blinded manner. The data were generated at

several laboratories to ensure that the platform is robust and transferable.

In Nephroscreen we combined a microfluidics platform with suitable cell lines and appropriate
assays. An automatable, microfluidic plate consisting of multiple chips, the OrganoPlate, was
combined with renal PTEC cell lines, exposed to FSS induced through passive levelling by gravity
[14, [15], [16]. The chosen cells, conditionally immortalized PTEC overexpressing OAT1 (ciPTEC-
OAT1) or pseudo-immortalized renal PTEC (RPTEC), are able to establish a polarized epithelium
expressing functional transporters [15], [16]. The ciPTEC-OAT1 has been engineered to
overexpress OAT1, in addition to other transporters, such as P-gp and OCT2, expressed in the
parental ciPTEC line [17], [18]. Therefore, they are an ideal cell line to study the toxicity of
substances requiring transport into the cell via these transporters. RPTEC, on the other hand,
were chosen due to their performance in establishing leak-tight epithelial barriers. Thus, both
implemented cell lines show different, complementary strengths that were exploited by
measuring suitable endpoints: ciPTECs were utilized for cytotoxicity, biomarker, and transporter
activity measurements while RPTECs performed very well in functional assays such as barrier

function.
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Cellular damage was studied using various read-outs, such as enzymatic production of formazan
(WST-8 assay), indicator of cell viability and release of lactate dehydrogenase (LDH) and N-acetyl-
B-p-glucosaminidase (NAG), measures for membrane integrity. Molecular markers of cellular
stress included extracellular levels of specific miRNAs: mir34a, mir21, mirl92, and mir29a [14],
[15], as well as gene expression of heme oxygenase 1: HMOX1 and neutrophil gelatinase-
associated lipocalin: NGAL [19]. Functional parameters for the epithelial monolayer consisted of
barrier integrity testing as well as interactions with P-gp and multidrug resistance-associated
proteins 2 and 4 (MRP2/4) [15], [16].

This study was part of the NC3Rs (https://www.nc3rs.org.uk/) crackIT challenge Nephrotube,
launched to generate predictive, animal free-systems for the detection of nephrotoxicity. The
results showed the potential of the Nephroscreen for predictive, animal free-detection of

nephrotoxicity and drug-transporter interactions.

Materials and Methods

Experimental Workflow: Multi-laboratory Collaboration

The combination of assays described previously [14], [15], [16], used towards a functional
Nephroscreen, were performed in laboratories at the School of Life Sciences, University of Applied
Sciences Northwestern Switzerland in Muttenz, Switzerland (lab B), the department of
Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
(lab N) and Mimetas, Leiden, The Netherlands (lab L). Transferability, robustness and
reproducibility of Nephroscreen was established by performing experimental procedures in the
three laboratories using two renal cell lines (ciPTEC and RPTEC). The experimental workflow is
depicted in Fig. 1. For cell viability assessment, tubules of both cell lines were cultured and then
exposed to nephrotoxicants for 24 or 48 h (lab L), Measurement of cell viability included
enzymatic production of formazan using WST-8 (Lab L), LDH release (lab N) and gene expression
of toxicity markers (lab L and N). In addition, RPTEC were tested for their barrier function (Lab L).
In lab N, the effect of the nephrotoxicants on the transporter functionality of P-gp and MRP2/4
was assessed in ciPTEC-OAT1. The release of selected miRNAs (mir-21, -29a, —34a and -192) and
secretion of the enzyme N-acetyl-B-p-glucosaminidase (NAG) in ciPTEC-OAT1 were measured in
lab B.

Cell Culture

CiPTEC-OAT1 cells (Cell4Pharma, Oss, NL) were cultured in T75 flasks in a 1:1 mixture of
Dulbecco's modified Eagle's medium and nutrient mixture F-12 without phenol red (DMEM-F12,
Gibco, ThermoFisher Scientific, Carlsbad, USA, 11039-021) supplemented with insulin-transferrin-
sodium selenite media supplement (Sigma-Aldrich, 11884, insulin 5 pg/mL; transferrin 5 ug/mL;
sodium selenite 5 ng/mL), 36 ng/mL hydrocortisone (Sigma-Aldrich, H0135), 10 ng/mL epidermal
growth factor (Sigma-Aldrich, E9644), 40 pg/mL 3-iodothyronine (Sigma-Aldrich, T5516),
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10% V/V fetal bovine serum (FBS, Gibco, 16140-071 or Greiner Bio-One, Alphen aan den Rijn, The
Netherlands, 758093), and 1% V/V penicillin/streptomycin (P/S, Sigma-Aldrich, P4333), referred

to as ciPTEC complete medium.
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Figure 1: Overview of the microfluidics platform, the cell culture, exposure, and read-out methods
performed on ciPTEC-OATI1 tubules and RPTEC tubules. (a) Image of the back side of the OrganoPlate
3-lane. The microfluid network is positioned in-between a glass sandwich of two microscope grade
glass plates which are attached to the bottom of a standard 384 titer well plate. Access to the
microfluidic system is facilitated via the top wells. One OrganoPlate comprises in total 40 chips as 8
“wells” compose one chip. Green arrows indicate the inlets used for compound dosing. (b) Schematic
of one chip presenting two perfusion channels and the extracellular matrix (ECM) channel in the
middle. Channels are divided by 55 um high ridges called PhaseGuide (grey bars) with act as pressure
barriers. (c) Artist impression of one chip. The chip was loaded with collagen 1 (blue) to the ECM
channel and proximal tubule cells (yellow) were seeded to the top channel. After cell attachment
medium was added to both perfusion channels and perfusion was started (indicated by white arrows).
(d) and (e) Flow charts indicating the culture of RPTEC and ciPTEC-OATI, respectively. Each cell line
was cultured following optimized conditions before exposure to compounds for 24 and 48 h. (d)
Readouts for RPTEC included lactate dehydrogenase (LDH)-release, cell viability assay using WST-8
assay, determination of barrier integrity (Bl) and collection of total RNA for quantitative PCR (qPCR).
(e) Readouts for ciPTEC-OAT1 included lactate dehydrogenase (LDH)-release, N-acetyl-8-d-
glucosaminidase (NAG) release, cell viability assay using WST-8 assay, determination of drug-
transporter efflux assay, collection of release RNA for miRNA determination, and collection of total
RNA for quantitative PCR (qPCR). Assays were performed and optimized in three laboratories and the
obtained results are colour coded: Lab B, orange, Lab L (green), Lab N (blue).

Cells were incubated in a humidified incubator (33 °C, 5% V/V CO,) and every 2-3 days ciPTEC

complete medium was changed. At 90-100% confluency cells were washed with HBSS (Sigma-
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Aldrich, H6648 or Gibco, 14025-100), detached with accutase (Sigma-Aldrich, A6964), pelleted
(200-300xg, 5 min), and used for passaging (10,000-20,000 cells/cm?) or for seeding in the

OrganoPlate. Cells were used for experiments between passage 52 and 65.

RPTEC cells (Kidney PTEC Control Cells, SA7K Clone, Sigma-Aldrich, Schnelldorf, Germany,
MTOX1030) were seeded in T75 cell culture flasks coated with PureCol (Advanced BioMetrix,
5005-B, diluted 1:30 in cold Hank's balanced salt solution (HBSS, Sigma-Aldrich, H6648), 20-min
incubation at 37 °C) in MEME alpha Modification (Sigma-Aldrich, M4526) supplemented with
RPTEC Complete Supplement (Sigma-Aldrich, MTOXRCSUP), t-glutamine (1.87 mM, Sigma-
Aldrich, G7513), Gentamicin (28 pg/mL, Sigma-Aldrich, G1397) and Amphotericin B (14 ng/mL,
Sigma-Aldrich, A2942), referred to as RPTEC complete medium. Cells were incubated in a
humidified incubator (37 °C, 5% V/v CO;) and every 2-3 days RPTEC complete medium was
changed. At 90-100% confluency cells were washed with HBSS, detached with accutase (Sigma-
Aldrich, A6964), pelleted (140xg, 5 min), and used for seeding in the OrganoPlate. Cells for

experiments were used up to passage 3.

OrganoPlate Culture

For all experiments, plates were seeded as described in our previous work [14, [15], [16]. Biefly,
a three-lane OrganoPlate (Mimetas BV, 4003 400B, Fig. 1) with a channel width of 400 um and a
height of 220 um was loaded with 1.6—2 uL of ECM gel composed of 4 mg/mL collagen | (AMSbio
Cultrex 3D Collagen | Rat Tail, 3447-020-01), 100 mM HEPES (Life Technologies, ThermoFisher
Scientific, 15630), and 3.7 mg/mL sodium bicarbonate (Sigma-Aldrich, 320 S5761) to the middle
inlet of all 40 chips. After polymerization of the ECM, HBSS was added on top of the collagen I and
the plate was incubated in a humidified incubator (37 °C, 5% V/v CO-) overnight. RPTEC or ciPTEC-
OAT1 were detached from culture flasks and resuspended at a concentration of 10 x 106 cells per
mL in RPTEC complete medium or 20 x 10° cells per mL in ciPTEC complete medium, respectively.
Of the cell suspension, 2 pL was injected into each top inlet, followed by an addition of 50 pL
medium to the same well. For control chips, no cell suspension was added. Subsequently, the
OrganoPlate was placed for 4 h at an angle of about 75° into a humidified incubator (37 °C,
5% V/Vv CO: for RPTEC or 33°, 5% V/Vv CO; for ciPTEC-OAT1). After attachment of the cells, which
was confirmed by light microscopy, 50 uL medium was added to the top outlet, bottom inlet and
bottom outlet. The OrganoPlate was placed flat in an incubator (37 °C, 5% V/v CO- for RPTEC or
33 °C, 5% V/v CO; for ciPTEC-OAT1) on an interval rocker platform ( +7° angle, 8 min interval)
enabling a bidirectional flow though the perfusion channels. At day 3, antibiotic free medium was
used to refresh the medium in the chips, and the ciPTEC-OAT1 plates were transferred to a
humidified incubator (37 °C, 5% V/V CO.).
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Compound Exposure

Cells were exposed for 24 or 48 h to four model nephrotoxicants and eight blinded compounds
following the general experimental design depicted inFig. 1. The selection of the test
concentrations was based on doses where toxicological effects were seenin vivoand on
preliminary cytotoxicity data in 2D obtained with ciPTEC-OAT1. Briefly, cells were seeded in 96-
well flat-bottom plates at 35000 cells/cm?, maintained until confluency, subsequently exposed for
24 or 48 h to a concentration range of each of the compounds diluted in ciPTEC complete medium
and viability was determined (WST-8 assay). For Nephroscreen testing, a low and a high toxicity
concentrations were selected. In absence of detectable toxicity, the two highest concentrations
were chosen (data not shown). Detailed solvent, dilutions, and culture conditions for each
substance are described in Table S1, while data on previous studies used for the determination of
potential test concentrations are listed in Table S2, together with relevant toxicity information
disclosed after data acquisition and analysis of data had been completed. For compounds R1 and
R2, additional experiments including more concentrations and additional time points were
performed in lab B. For R1, cells were exposed for 48 h and for R2, cells were exposed for 11 days,

with medium changes every 2—3 days.

Using a pipette, 50 uL of the model compounds (cisplatin, tenofovir, tobramycin and cyclosporin
A) or the eight blinded compounds (G1, G2 and G3; R1, R2 and R3; and P1 and P2) diluted in
medium were dosed via each of the 4 inlets guiding to the microfluidic channels (details in Fig. 1).
Medium from both the apical and basolateral perfusion channels was refreshed before exposure
to the nephrotoxicants. For RPTEC, the exposure was started at day 6 and dilutions of
nephrotoxicants were prepared in TOX medium (MEME alpha Modification (Sigma-Aldrich,
M4526) supplemented with RPTEC Tox Supplement (Sigma-Aldrich, MTOXRTSUP), t-glutamine
(1.87 mM, Sigma-Aldrich, G7513). For ciPTEC-OAT]1, cells were exposed on day 9 and dilutions of

nephrotoxicants were prepared in ciPTEC complete medium.

WST-8 Assay

Cell viability was determined using the Cell Counting Kit-8 (WST-8, Sigma-Aldrich, 96992) as
described previously [14, [15]. Briefly, the WST-8 solution was diluted with ciPTEC complete
medium or RPTEC TOX medium (ciPTEC-OAT1 or RPTEC respectively) and added to the channels
of the OrganoPlate. After 20-60 min, absorbance was measured at 450 nm with a Multiskan™ FC
Microplate Photometer (ThermoFisher Scientific) or with a Benchmark Plus microplate
spectrophotometer (Bio-Rad, Veenendaal, The Netherlands). Viability was expressed as % of the

control.

LDH Activity in Medium
LDH activity in the culture medium is a measure for membrane integrity. Medium was collected
on ice after compound exposure and stored at —80 °C until further processing. After thawing, LDH

activity was measured using an activity assay kit (Sigma-Aldrich, MAK066), following the
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manufacturer's protocol. In brief, 5 UL per sample was added to a flat bottom 96-well plate. In
addition, a calibration curve using a NADH (1.25 mM) standard was prepared. Assay buffer was
added to a final volume of 50 uL per well and then a master reaction mix was added per well
(1:1, v/v). After 3 min, absorbance was measured at 450 nm on a Benchmark Plus microplate
spectrophotometer (Bio-Rad) every 5 min until absorbance measured in a sample was higher than
the highest level of NADH in the calibration curve (12 nmol/well). Extracellular LDH activity was

expressed as mU/mL.

NAG Measurement in Medium

The levels of B-N-acetylglucosaminidase (NAG) in supernatant are a measure for membrane
integrity and are also used as a biomarker of kidney damage in vivo. They were determined using
the NAG-Assay Kit (BioVision, K733-100), following provider's instructions. Briefly, 30 uL of the
supernatant (cell culture medium) where adjusted to a volume of 70 uL with NAG assay buffer in
a 96-well plate. To this, 55 uL substrate where added and incubated for 30 min at 37 °C, followed
by the addition of 25 pL stop solution. After another 10 min at 37 °C, absorbance was measured
at 400 nm in a Flexstation 3 (Molecular Devices). Absorbance of a standard dilution series of pNP
(0-20 nmol of pNP/well) was measured in parallel and used for the calculations. Extracellular NAG

activity was calculated (mU/mL) and expressed as % of the control.

Barrier Integrity Assay

The barrier integrity assay was performed as previously published on RPTEC [15]. Briefly, the
medium of the perfusion channel (apical side of the cells) was replaced with RPTEC TOX medium
containing 0.5 mg/mL tetramethylrhodamine (TRITC)-dextran (4.4 kDa, Sigma-Aldrich, FD20S)
and 0.5 mg/mL fluorescein isothiocyanate (FITC)-dextran (150 kDa, Sigma-Aldrich, T1287).
Subsequently, plates were imaged with the ImageXpress Micro XLS-C High Content Imaging
System (Molecular Devices). Leakage of the dyes from the lumen (apical compartment) to the
basal compartment into the ECM was measured over time, and the ratio between the basal and
the apical compartment was analyzed with Image J version 1.51n [20]. From these measurements,
the apparent permeability index (Papp) was calculated as previously described [15], using the

following formula:

_ ACreceiver X Vryeceiver (Cm)

o =
pp At XAparrier XCdonor \ S

ACreceiver is the measured normalized intensity difference of the ECM to the donor channel (apical
compartment) at tomin and tiomin, Vreceiver is the volume of the measured region in the ECM channel
(0.0001 cm?), At is the time difference (10 min), Avarier is the surface of the ECM interface with the
medium channel (0.0057 cm?), and Caonoris the donor concertation of the dextran dyes
(0.5 mg/mL).
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Gene Expression of Toxicity and Nephrotoxicity Markers

Total intracellular RNA was isolated from cells harvested from perfusion channels in the
OrganoPlate using the RNeasy Micro Kit (Qiagen, Venlo, The Netherlands) as previously described
[16]. Complementary DNA (cDNA) was synthesized with Moloney Murine Leukemia Virus (M-
MLV, Promega, M1705) reverse transcriptase, according to the manufacturer's protocol. Gene
expression levels of heme oxygenase 1 (HMOX1) and neutrophil gelatinase-associated lipocalin
(NGAL), encoded by the lipocalin-2 (LCNZ2), were measured using quantitative PCR (gPCR)
with GADPH as reference. TagMan Universal PCR Master Mix (Life Technologies, 4304437) and
gene specific primer-probe sets (HMOX1: Hs01110250 mi, LCN2: Hs01008571 _m1l
and GAPDH: Hs99999905_m1) were purchased from Applied Biosystems (ThermoFisher
Scientific). The real-time PCR was carried out using a fluorometric thermal cycler (Qiagen, Rotor-
Gene Q 3000 or Celtic Diagnostics, Corbett research PCR Rotorgene 6000). The PCR program
consisted of 10 min of initial denaturation at 95 °C followed by 45 cycles of 15 s at 95 °Cand 1 min
at 60 °C. Fluorescence was detected at the end of each cycle at 510 nm (excitation 470 nm). Ct
values were determined using the second derivative method. For each sample, dCt was calculated
using Ct values of the gene of interest and the housekeeping gene (GAPDH). Treatment induced
differential gene expression was calculated using the -ddCts -(dCt treatment-dC tcontrol) and fold

changes as 274,

Detection of miRNAs in Medium

Total RNA was extracted from 80 pL supernatant using the miRNeasy® Serum/Plasma Kit (Qiagen,
217184) following the manufacturer's protocol. miRNAs were reverse-transcribed using the
TagMan® MicroRNA Reverse Transcription Kit (Applied Biosystems®, 4366596) and the miRNA-
specific stem-loop primers for the miRNAs-21, -34a,-29a and -192 (Applied Biosystems™,
TagMan microRNA Assays #002438, #000426, #002112, and #000491, respectively). The reaction
mix was prepared according to the manufacturer's instructions for a final reaction volume of 10 pL
with 3 pL RNA extract. The conditions for reverse transcription were set for 30 min at 16 °C
followed for 30 min at 42 °C and 5 min at 85 °C.

The real-time PCR was carried out using a fluorometric thermal cycler (Qiagen, Rotor-Gene Q 3000
or Celtic Diagnostics, Corbett research PCR Rotorgene 6000). The reaction mix contained
TagMan® Fast Advanced Master Mix 1x (Applied Biosystems™, 4444557), TagMan microRNA
Assay primer 1x (Applied Biosystems™) and 1.3 puL cDNA in a final reaction volume of 20 uL. The
PCRs were run at 95 °C for 20 s followed by 40 cycles of 1 s at 95 °Cand 20 s at 60 °C. All extracted
RNAs were analyzed in technical duplicates; Ct-values of these two measurements were averaged

and considered a single value.
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Drug Transporter Assays

Drug-transporter interactions with P-gp and MRP2/4 were studied in ciPTEC-OAT1 using calcein-
acetoxymethyl (calcein-AM, 2 uM, Life Technologies, C1430) and 5-chloromethylfluorescein
diacetate (CMFDA, 1.25 uM, Life Technologies, C7025), respectively [16], [21]. Both calcein-AM,
a P-gp substrate, and CMFDA are permeable to the cell membrane and are intracellularly
metabolized into calcein or glutathione-methylfluorescein (GS-MF), substrates for MRP2/4.
PSC833 (10 uM, Tocris, Bristol, UK, 4042/1) was used as model inhibitor for P-gp, included as
positive control for inhibition in each experiment. Transport of calcein and GS-MF is by MRP2/4,
P-gp and BCRP and therefore, a mixture of PSC833 (10 uM), MK571 (10 uM, Sigma-Aldrich,
M7571) and KO143 (10 uM, Sigma-Aldrich, K2144) was used to selectively inhibit efflux, again as
positive control [21]. Stocks of calcein-AM, CMFDA, PSC833 and KO143 were dissolved in DMSO
(Sigma-Aldrich, D5879), MK571 was dissolved in milli-Q water. Test compounds were dissolved as
described in Table S1. Work solutions were prepared in freshly-prepared Krebs-Henseleit buffer
(Sigma-Aldrich, K3753), supplemented with 10 mM HEPES (Sigma-Aldrich, H3375) at pH 7.4,
referred to as KHH. All conditions contained a final concentration of DMSO of 0.6% V/V. Perfusion
channels were washed with 50 pL in the medium-channel inlet and outlet and then perfused twice
with KHH. Cells were incubated with calcein-AM and CMFDA with or without the presence of
model inhibitors or nephrotoxicants at 37 °C for 1 h. Next, efflux was arrested using PSC833
(10 uM), MK571 (10 uM) and KO143 (10 uM) in cold (4 °C) KHH. Perfusion during washing and
incubation was ensured by adding 80 uL or 20 pL to the medium-channel inlet and outlet,

respectively.

Intracellular accumulation of calcein and GS-MF in ciPTEC-OAT1 in the OrganoPlate was
measured IN Situ on a spinning disk confocal Becton Dickinson (BD) Pathway 855 high-throughput
microscope (BD Bioscience, Breda, The Netherlands). A x 10 objective was used with excitation
and emission filters set at 488 nm and 520 nm, respectively. Subsequently, bright-field images of
each chip were acquired. Fluorescence intensity was determined at the ECM-medium interface in
Image J. Intensity per chip was then normalized to fluorescence measured in vehicle in same

experiment.

Data Analysis

Data are presented as mean % SD for at least three chips (n = 3-5) per condition, unless stated
otherwise. Statistics were performed using GraphPad Prism version 8 (San Diego, CA, USA). Data
was found to be significantly different compared to medium control or corresponding vehicle

if p < 0.05 using a one-way ANOVA followed by a Tukey's multi comparison post hoc test.
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Results

Robustness of the System

Cisplatin, tenofovir, cyclosporin A and tobramycin have previously been shown to cause mild to
severe cytotoxicity in confluent monolayers of ciPTEC-OAT1 in a 96-well plate [14]. In our work,
cell viability was measured upon a 48-h exposure to cisplatin (5 and 30 uM), tenofovir (15.6 and
1000 pM), cyclosporin A (5 and 30 uM), and tobramycin (7.5 and 15 mM) in ciPTEC-OAT1 in the
OrganoPlate at three different research sites. At the chosen concentrations, these
nephrotoxicants caused a significant reduction in cell viability (Fig. 2) and increased LDH release
for tobramycin and cyclosporin A at the highest concentrations tested (Figure S2). As depicted
in Fig. 2, we observed similar effects in viability of ciPTEC-OAT1 at all three laboratories, in line
with earlier findings reported by lab B [14]. The other PTEC line used in the Nephroscreen, RPTEC,
showed decreased viability, assessed with WST-8 and LDH-release, after exposure to tobramycin
only, thus appeared to be less sensitive than ciPTEC-OAT1 (Figure S2). ciPTEC-OAT1 exposed to
tenofovir in the compound screen showed a higher viability compared to the vehicle control when

exposed to the low concentration but a significant loss in viability at 1000 uM (Fig. 2).

WST-8, ciPTEC-OAT-1, 48h
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Figure 2: Side to side comparison of viability data received from the WST-8 assay. Data are from
three different labs, performed at FHNW (Lab B), Mimetas (lab L), or at department of Pharmacology
and Toxicology, Radboud University Medical Center (lab N). In each site, 1-3 independent experiments
with 2—6 replicates (chips) were analyzed. Abbreviations: CDDP, cisplatin; CSA, cyclosporin A; DMSO,
dimethyl sulfoxide; TBR, tobramycin;, TNV, tenofovir; WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-
nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt; VC, vehicle control. #: in lab L
slightly different concentrations for tenofovir were used, 15 uM instead 15.6 uM and 1215 uM instead
of 1000 uM. Statistically significant compared to corresponding vehicle: #p < 0.05, **p < 0.01.

Assessment of Cytotoxicity and Tubular Damage
Based on the data generated with the model nephrotoxicants, we performed experiments to
ascertain the potential nephrotoxicity of eight test substances. These compounds were provided

by the pharmaceutical companies GlaxoSmithKline (GSK), Roche and Pfizer in a blinded manner,
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referred to as unknown nephrotoxicants, and named as G1, G2 and G3 for compounds provided
by GSK, R1, R2 and R3 for compounds provided by Roche, and P1 and P2 for compounds provided
by Pfizer.

In a first step, cell viability in confluent monolayers of ciPTEC-OAT1 in 2D was assessed to
determine appropriate starting concentrations of the unknown nephrotoxicants in the
OrganoPlate (data not shown). Cytotoxicity parameters provided a consistent picture and showed
reduced cell viability (WST-8) and increased LDH release caused by five of the unknown
nephrotoxicants (G1, G3, R1, R3, P2) in both cell lines tested (Fig. 3a—h). NAG release was only
determined in ciPTEC-OAT1 and yielded concordant results (Fig. 3i and j). In general, toxicity was
more marked after 48 h than after 24 h exposure. Interestingly, G2 increased cellular production
of formazan in RPTECs, while R2 increased this production in ciPTEC-OAT1. The sensitivity of both

PTEC cell lines to the treatments was, however, comparable.

In addition to cytotoxicity measurements, the impact of treatments on the functionality of the
tubular epithelial layer (i.e. barrier integrity in RPTEC in the OrganoPlate) was determined by
assessing the apparent permeability to the low-molecular weight marker dextran-TRITC (4.4 kDa)
and high-molecular weight marker dextran-FITC (155 kDa). Impaired barrier function was
observed after exposure to tobramycin, and five test substances (G1, G3, R1, R3 and P2). The
latter were the same five compounds that caused a decrease in cell viability. The effects were

generally more marked after 48 h than after 24 h exposure (Fig. 4).

Drug-Transporter Interactions

Drug-transporter interaction with P-gp and MRP2/4 is another important feature that can result
in high intracellular concentrations in PTEC leading to renal toxicity of substances. Drug-
transporter interactions were determined in ciPTEC-OAT1 as stable expression of these drug
transporters has been previously confirmed in this model [16]. For MRP2/4, interactions were
found for cyclosporin A, G2, G3 and P2 (Fig. 5a and c). Cyclosporin A, G3, P1 and P2 resulted in
interactions for P-gp (Fig. 5b and d). It is interesting to note that the compound G2 clearly
impaired MRP2/4 transport but did not cause any cytotoxicity based on other assays performed,

suggesting competition for transport solely.

miRNA-Release

Released miRNAs can act as biomarkers of toxicity that are detectable in cell culture medium
before other toxicity biomarkers. The medium of the cells treated with the eight blinded
compounds was collected after 24 h of exposure and levels of four selected miRNAs determined
as described in materials and methods. Most tested compounds led to increases in the miRNA
panel at both tested concentrations (Fig. 6a—d). Exceptions to this assessment were compounds
G2 and R2 that did not cause significantly increased release of any of the tested miRNA into the

medium. Interestingly, compound R3 led to an increase in all four miRNAs at the lowest tested
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concentration (25 uM) while the cells treated with 100 uM did not show changes in miRNA

release.

Specific Exposures to Compounds R1 and R2

Due to the lack of toxicity observed in most parameters with compound R2 and to the high
concentrations required to elicit a response with R1, tailor-made subsequent experiments were
planned in discussion with the sponsors, who knew the identity of the compounds. To this end,
ciPTEC-OAT1 in the OrganoPlate were exposed to several concentrations (ranging between 15
and 1000 puM) of R1 and R2 for 48 h and 11 days, respectively. At 48 h, compound R1 showed a
dose dependent loss in viability assessed with the WST-8 assay with an EC50 of 214.5 and 277.3
UM (results from two independent experiments). This toxicity was accompanied by a dose
dependent induction of HMOX1 (Fig. 7a and b). The results confirm that concentrations > ~100
UM lead to toxicity with an EC50 214 and 277 uM (two independent experiments), whereas
HMOX1 expression levels increased in a concentration-dependent manner from a concentration
of 62.5 uM (>2-fold induction; Fig. 7). R1 did not lead to any change in expression of NGAL or in
NAG released into the medium (Fig. 7b and c). Based on information provided by the sponsors,
compound R2 was additionally tested after long-term (11 days) of incubation. Cytotoxicity assay
at 11 days showed a decrease in cell viability with an EC50 of 367.5 and 267.4 uM (results from
two independent experiments) (Fig. 8a). As with compound R1, HMOX1 expression increased in
a dose dependent manner from a concentration of 30.25 uM (22-fold induction; Fig. 8b). The
compound, however, did not cause an increase in NGAL expression or led to a release of NAG
release into the medium at any of the tested time points (48 hours or 11 days of exposure, Fig. 7b

and c).
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Figure 3: Cell viability and lactate dehydrogenase (LDH) release in compound screen. (a) Cell viability
in ciPTEC-OAT1 after 24 h and (b) 48 h exposure. (c) Cell viability in RPTEC after 24 h and (d) 48 h
exposure. (e) Release of LDH, as measure of membrane integrity, in ciPTEC-OAT1 after 24 h or (f) 48 h
exposure. (g) LDH release in RPTEC after 24 h or (h) 48 h exposure. (i) N-acetyl-6-d-glucosaminidase
(NAG) release by ciPTEC-OAT1 treated with sponsor compounds screen after 24 h (i) and 48 h (j)
exposure. Abbreviations: VC, vehicle control; WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-
(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt; DMSO, Dimethyl sulfoxide; NaOH, Sodium
hydroxide. Statistically significant compared to corresponding vehicle: #p < 0.05, **p < 0.01.
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Figure 4: Barrier integrity of RPTEC tubules. (a) Leakage of high-weight molecular marker (155 kDa)
fluorescein isothiocyanate (FITC)-dextran after 24 h or (b) 48 h of exposure to model nephrotoxicants.
(c) Leakage of low-weight molecular marker (4.4 kDa) tetramethylrhodamine (TRITC)-dextran after 24
h or (d) 48 h of exposure to model nephrotoxicants cisplatin (CDDP), tenofovir (TNV), tobramycin (TBR)
and cyclosporin A (CSA). (e) Leakage of FITC-dextran after 24 h and (f) 48 h of exposure to unknown
nephrotoxicants. (g) Leakage of TRITC-dextran after 24 h or (h) 48 h of exposure to unknown
nephrotoxicants. Abbreviations: D-F12, Dulbecco's modified Eagle's medium and nutrient mixture F-
12; VC, vehicle control; Papp, apparent permeability;, DMSO, Dimethyl sulfoxide; NaOH, Sodium
hydroxide; kDa, kilodaltons; n.a., not available. Statistically significant compared to corresponding
vehicle: #p < 0.05, »#p < 0.01.
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Figure 5: Drug-transporter interaction at multidrug resistance protein 2/4 (MRP2/4) and P-
glycoprotein (P-gp) in ciPTEC-OAT1 after co-incubation with compounds at 37 °C for 1 h followed by
arresting of efflux with PSC833, MK571 and KO143 (all 10 uM). For model nephrotoxicants cisplatin
(CDDP), tenofovir (TNV), tobramycin (TBR) and cyclosporin A (CSA) (a) interactions at MRP2/4 and (b)
P-gp and for unknown nephrotoxicants (c) interactions at MRP2/4 and (d) P-gp. Abbreviations: GS-MF,
Glutathione methylfluorescein; AM, acetoxymethyl; VC, vehicle control; DMSO, Dimethyl! sulfoxide.
Statistically significant compared to corresponding vehicle: »p < 0.05, »#p < 0.01.
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#p <0.05, *#p < 0.01.
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Figure 7: Exposure of ciPTEC-OATI1 to R1 (Colistin). Data represent cell viability with the IC50 value of
each experiment. (a), Gene expression of toxicity markers (b) and release of NAG into the medium after
48 h (c). Abbreviations: HMOX1, heme oxygenase (decycling) 1, LCN2, Lipocalin-2 (LCN2); NGAL,
oncogene 24p3 or neutrophil gelatinase-associated lipocalin; NAG, N-acetyl-8-d-glucosaminidase.
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Figure 8: Exposure of ciPTEC-OAT1 to R2 (Cefepime) for 48 h and 11 days. Data represent cell viability.
(a), Gene expression of toxicity markers (b) and release of NAG into the medium after 48 h (circles) and
11 days (squares) (c). Abbreviations: HMOX1, heme oxygenase (decycling) 1; LCN2, Lipocalin-2 (LCN2);
NGAL, oncogene 24p3 or neutrophil gelatinase-associated lipocalin, NAG, N-acetyl-6-d-
glucosaminidase.
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Discussion

We demonstrated the use of Nephroscreen, a proximal tubule-on-a-chip platform for the
screening of nephrotoxicity and drug-transporter interactions. The robustness and transferability
of this platform, a key requirement for broad implementation in industry, was established by the
highly comparable results obtained at three different sites as depicted in Fig. 2. Two human renal
cell lines, ciPTEC-OAT1 and RPTEC, were exposed to two concentrations of each substance (four
model nephrotoxicants and eight blinded compounds) at two exposure times (24 and 48 h).
Subsequently, tailor-made assays were performed for two of the compounds (R1, colistin and R2,
cefepime), exposing ciPTEC-OAT1. Experimental procedures were carried out in three different

laboratories as depicted in Fig. 1, following established standard operating procedures (SOPs).

Concordant with the goal of the study, Nephroscreen was specifically designed to fulfill
requirements of pharmaceutical companies. In pre-clinical toxicity studies, multiple drug
candidates, typically up to 200 compounds, are assessed in vitro and/or in vivo in animal
experimentation [22]. In this study, we implemented well-characterized PTEC lines, considered
relevant for nephrotoxicity and drug-transporter interaction studies, as potential alternatives to
animal experimentation [14], [15], [16], [17], [18], [23], [24]. Supply and reproducibility (low
batch-to-batch variability) of these commercially available cells are guaranteed. The PTECs were
cultured in the OrganoPlate, generating a proximal tubule-on-a-chip consisting of 40 chips on a
384-well microtiter plate format [15]. This model enables the culture of the cells as a tubular
structure kept under flow, without the use of support membranes. Perfusion was generated by
passive leveling resulting in a bidirectional, oscillating flow allowing significant levels of shear
stress circumventing the use of pumps [15], [25]. The diameter of the tubule (approximately 400
um) is larger than in the human proximal tubule. However, it represents a useful model that
allows the long-term culture of polarized cell layers against the ECM with significant barrier
function [15].

Effect of the treatments on the PTECs was determined by measuring functional and biochemical
parameters. Functional parameters focused on the capacity of compounds to interact with
transporters and to impair barrier function. Membrane drug transporters are an important
characteristic of PTECs and expression and activity of transporters have been demonstrated
previously [6], [17], [18], [24]. Differences in response towards toxicant exposures between
CiPTEC-OAT1 and RPTEC could be explained by different expression levels of drug transporters.
For instance, ciPTEC-OAT1, but not RPTEC, functionally express OAT1. This explains the lack of
sensitivity of RPTEC towards tenofovir, as this substance requires the OAT1 transporter for cellular
uptake [18], [24]. Epithelial barrier function is also a key functional parameter, as a leaky
epithelium is often an indicator of impaired kidney function, previously demonstrated in this
model [15].
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Regarding biochemical parameters, cell viability, LDH release and gene expression of toxicity
markers were determined on both PTEC lines to assess the effect of the compounds. For ciPTEC-
OAT1, assays for drug-transporter interaction, NAG release and miRNA secretion were also
performed [14],[16], while RPTEC tubules were more suitable for the assessment of barrier
integrity [15]. Cell viability, as measured by enzymatic production of formazan (WST-8 assay), and
cell membrane integrity, determined by LDH release into the medium, performed well as in vitro
markers for cytotoxicity, although with different kinetic profiles (Table 1, Figure S2). In ciPTECs,
leakage of NAG into the medium displayed a slightly higher sensitivity in detecting the totoxicity
caused by compounds G1 and P2 than LDH release (Fig. 3), but a larger data set would be
necessary to corroborate this claim. Decreased barrier integrity was almost always coupled with
decreased cell viability and increased LDH release. Thus, we assume that the loss of barrier

integrity was directly associated with increased cytotoxicity (Table 1).

The four model nephrotoxicants (cisplatin, tenofovir, tobramycin, cyclosporin A) assessed in this
study elicited a response in at least four of the end-point read-outs (Figure S2, Table 1), in
agreement with previous results [26], [27], [28], [29], [30]. Furthermore, our data show that
cyclosporin A interacts with P-gp, corroborating that Nephroscreen results reflect its known P-gp
inhibition [31]. Nephrotoxicity of tobramycin, on the other hand, could only be observed at
concentrations that were up to 1500-fold higher than plasma concentrations generally found in
patients (0.01 mM) [30]. This is probably due to the low expression of cubilin and megalin
receptors in ciPTEC-OAT1 [17], [32], [33] a limitation that needs to be taken into consideration for
compounds known to be dependent on this cellular uptake mechanism. During the second phase
of the study, eight substances selected and provided by the sponsors were assessed in a blinded

manner.

1000 uM and unpublished in vitro results with PTEC toxicity at concentrations >500 uM (Table
S2).

The ideal set-up for a screening tool requires short-term incubation in order to generate results
quickly. Our results show that for most compounds, exposure during 24 and 48 h suffices to detect
compound-induced damage to renal tubular cells. However, as demonstrated with the results
obtained with R2, the developed platform can also be implemented as a second tier assay for
selected substances of interest that may require subchronic or chronic exposure. The sensitivity
and specificity of Nephroscreen cannot be determined as only a small set of test compounds was
included. Future testing should expand the number of compounds and include compounds with
other toxicity target organs (non-nephrotoxic) as well as non-toxic compounds to further
characterize the model. Also, side-by-side comparison with conventional 2D cell cultures may be
performed to achieve direct comparison and therefore show the value in this model over more
simple models. Other proximal tubule-on-a-chip models have, however, demonstrated that 3D

microfluidic models increase in vivo physiology and sensitivity of PTECs towards nephrotoxicant
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exposure [11], [12], [13]. Additional future improvements could include the corroboration and
systematic assessment of HMOX-1 induction as an earlier biomarker and its implementation as a
FRET-based assay for HMOX1 expression [19]. The implementation of cell lines expressing more
types of functional transporters relevant, such as ciPTEC-OAT1/OAT-3 could also be envisaged
[18]. Moreover, data on additional compounds could support the creation of intelligent decision
algorithms to evaluate the multiparametric data provided by Nephroscreen in an unbiased

manner.

Preliminary knowledge such as clinical data (for R1, R2, R3) or in vivo toxicity data were provided
by sponsors after the Nephroscreen data collection and analysis had been finalized. The
compound concentrations selected and applied to Nephroscreen unveiled nephrotoxic potential
at concentrations that are considered relevant for toxicological assessment (Table S2). For R1, R2,
and R3 there is clinical data available; these compounds are used at very high concentrations and
administered parenterally, so that a high systemic exposure is reached in patients. For the other
blinded compounds, there is no clinical data but preclinical data on at least one animal species
show that the exposure (Cmax) at which nephrotoxicity was observed in a subset of the animals
was slightly lower, but in a similar range to that eliciting a positive flag in Nephroscreen. In our
experimental set-up, prediction of nephrotoxic liability was highest when combining results of cell
viability, LDH release, and miRNA release. Additional functional effects of the compounds were
uncovered by the drug-transport interaction measurements. The majority of the unknown
nephrotoxicants (G1, G3, R1, R2, R3, P1, and P2) resulted in toxicity detected by at least one of
the parameters or in drug-transporter interactions. Interestingly, an interaction at MRP2/4 was
observed for G2, despite the lack of toxicity. This could be explained by the fact that G2-induced
nephrotoxicity was only observed upon long-term exposure in vivo (one month, highest tested
dose) as compared to short-term (up to 48 h) exposure tested in Nephroscreen. The compound
P1 showed a particularly mild effect on Nephroscreen, as it only led to increased levels of miRNAs
(mir192, mir29a, and mir34a) in the medium and an interaction at P-gp, without causing
cytotoxicity. This is consistent with the existing animal data showing that this vasopressin 1-a
antagonist caused tubular degeneration/regeneration only in female rats treated with a high dose

(125 mg/kg/day) for two weeks.
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In the last phase of this study, tailor-made experiments were performed including expanded
concentration ranges of two compounds after their identities had been uncovered: R1 (colistin)
and R2 (cefepime). For R1 (colistin) we repeated the cytotoxicity assay and determined gene
expression of HMOX-1 and NGAL, as well as the release of NAG in the medium. The EC50 for
cytotoxicity obtained in this experiment was in line with the results of the first round of
experiments (~200 uM). The in vitro cytotoxicity of colistin has been reported by others in the
high micromolar range, around 690 uM.34 Preliminary gene expression data, however, uncovered
a dose-dependent increase in HMOX-1 from a concentration of 30 uM (>2-fold induction).
Transcriptional upregulation of heme oxygenase-1 is a well-known indicator of cellular stress in
several cells and tissues, including PTECs and may be a more sensitive biomarker of toxicity [19],
[26]. This was also supported by the long-term (11 days) exposure of the Nephroscreen to R2
(cefempime). Cefepime had an EC50-value for cytotoxicity of approximately 300 uM, while the
concentration-dependent transcriptional induction of HMOX-1 was observed at concentrations
from of 62 uM (>2-fold induction). These results also show that a long-term exposure is required
for this compound, as the short-term experiment failed to show toxicity up to a concentration of
1000 pM and unpublished in vitro results with PTEC toxicity at concentrations >500 uM (Table
S2).

The ideal set-up for a screening tool requires short-term incubation in order to generate results
quickly. Our results show that for most compounds, exposure during 24 and 48 h suffices to detect
compound-induced damage to renal tubular cells. However, as demonstrated with the results
obtained with R2, the developed platform can also be implemented as a second tier assay for
selected substances of interest that may require subchronic or chronic exposure. The sensitivity
and specificity of Nephroscreen cannot be determined as only a small set of test compounds was
included. Future testing should expand the number of compounds and include compounds with
other toxicity target organs (non-nephrotoxic) as well as non-toxic compounds to further
characterize the model. Also, side-by-side comparison with conventional 2D cell cultures may be
performed to achieve direct comparison and therefore show the value in this model over more
simple models. Other proximal tubule-on-a-chip models have, however, demonstrated that 3D
microfluidic models increase in vivo physiology and sensitivity of PTECs towards nephrotoxicant
exposure [11], [12], [13]. Additional future improvements could include the corroboration and
systematic assessment of HMOX-1 induction as an earlier biomarker and its implementation as a
FRET-based assay for HMOX1 expression [19]. The implementation of cell lines expressing more
types of functional transporters relevant, such as ciPTEC-OAT1/0OAT-3 could also be envisaged
[18]. Moreover, data on additional compounds could support the creation of intelligent decision
algorithms to evaluate the multiparametric data provided by Nephroscreen in an unbiased

manner.
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Conclusion

An advanced screening tool is needed to increase speed, reduce costs and animal testing while
assessing the potential nephrotoxicity of new drug candidates. Taken together, our results
indicate that Nephroscreen, consisting of a microfluidic organ-on-a-chip system coupled with a
multiparametric biomarker analysis is able to identify potential nephrotoxicants. Nephroscreen is
a reliable medium-throughput, standardized, automatable system that proved efficacious in

identifying nephrotoxicants and provided insights into their mode of toxicity.
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Figure $1: Release of lactate dehydrogenase (LDH) (B, D)) and Cell Viability (A, C) upon exposure to
model nephrotoxicants cisplatin (CDDP), tenofovir (TNV), tobramycin (TBR) and cyclosporin A (CSA) in
CiPTEC-OAT1 after 48 hours. Abbreviations: D-F12, Dulbecco’s modified Eagle’s medium and nutrient
mixture F-12; WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium, monosodium salt; HMOX1, heme oxygenase (decycling) 1; LDH, lactate dehydrogenase;
DMSO, Dimethyl sulfoxide; VC, vehicle control; n.a., not available. Statistically significant compared to
corresponding vehicle: *p<0.05, **p<0.01.
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