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Abstract 
When cell surface receptors engage their cognate ligands in the ex-
tracellular space, they become competent to transmit potent signals 
to the inside of the cell, thereby instigating growth, differentiation, 
motility and many other processes. In order to control these signals, 
activated receptors are endocytosed and thoroughly curated by the 
endosomal network of intracellular vesicles and proteolytic organ-
elles. In this Review, we follow the epidermal growth factor (EGF) re-
ceptor (EGFR) from ligand engagement to its voyage on endosomes 
and, ultimately, its destruction in the lysosome. We focus on the spa-
tial and temporal considerations underlying the molecular decisions 
that govern this complex journey and discuss how additional cellular 
organelles—particularly the ER—play active roles in the regulation of 
receptor lifespan. In summarizing the functions of relevant molecules 
on endosomes and the ER, we cover the order of molecular events 
in receptor activation, trafficking and downregulation and provide 
an overview of how signaling is controlled at the interface between 
these organelles.

Introduction
Multicellular life necessitates communication between distantly lo-
cated cells in a manner that is straightforward to incite, decode and 
act upon. To serve these universal needs, cell surface receptors have 
evolved to recognize and respond to environmental cues with exqui-
site specificity and precision. In mammalian cells, some of the most 
vital cellular signaling pathways, including proliferation and differenti-
ation, fall under the purview of growth factor receptors. Imbedded in 
the plasma membrane, these proteins extend ligand-interacting sen-
sory platforms into extracellular space and receptor tyrosine kinase 
(RTK) response modules into the cytosol. This arrangement couples 
environmental inputs received via growth factor binding to signaling 
cascades transduced inside the cell upon kinase activation. Because 
stimulatory ligands for these receptors are produced at a distance, 
their activation is inducible on demand. Crucially, once the receptors 
become turned ‘on’, their signals must be terminated in order for cells 
to regain equilibrium and maintain responsiveness to future inputs. This 
balance between activation and downregulation is managed large-
ly by the uptake of receptors from the cell surface into the vesicu-
lar network of the endocytic pathway, where timing and direction-
ality of transport modulate signal duration and determine receptor 
fate. Adding further complexity to the matter, receptors such as EGFR 
signal not only at the cell surface, where ligand engagement oc-
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curs, but continue signaling on endosomes for a comparable period
(Haugh et al., 1999; Leonard et al., 2008; Foley et al., 2012; Francavilla 
et al., 2016). EGFR has also been reported to localize to the nucleus, 
where it is suggested to function as a transcription factor in associa-
tion with cancer disease progression (Kamio et al., 1990; Brand et al., 
2013). From ligand encounters to receptor degradation in the lyso-
some, in this Review we discuss how EGFR navigates the endosomal 
system, toggling its signaling switch in cellular space and time.

What happens at the cell surface (doesn’t always stay there)
EGFR—the model RTK
EGFR is the first identified member of the receptor tyrosine kinase (RTK) 
family (Burgess et al., 2003; Bublil et al., 2007) and, in accordance with 
its plethora of functions, is expressed on the surface of numerous cell 
types (Chen et al., 2016). When in its active or ‘on’ state, EGFR trans-
duces signals to the cell interior that instigate key processes of life, 
such as growth, differentiation, proliferation and motility (Ceresa and 
Peterson, 2014; Li et al., 2017). Given these profound effects, the asso-
ciation of EGFR with cancer is self-evident and exemplified by the vast 
number of studies that link deregulated expression and degradation 
of EGFR, as well as its activating mutations, with transformation (Shan 
et al., 2012; Tomas et al., 2014). Because many of the basic principles 
of EGFR biology are shared by its lesser-studied family members and 
beyond, EGFR represents the model growth factor RTK.

Activate me
EGFR can be activated by a number of ligands, of which EGF is most 
extensively studied (Cohen, 1962; Cohen and Carpenter, 1975; Harris et 
al., 2003; Singh et al., 2016). These ligands are produced as transmem-
brane precursors whose juxtacrine, paracrine and/or endocrine origins 
vary depending on the biological cues that instigate activity of EGFR. 
Typically, EGF production is locally controlled, as opposed to being 
delivered systemically, such as in the case of hormones, which makes 
it possible for different organs to conduct their own EGF-mediated 
programs (Singh and Harris, 2005; Conte and Sigismund, 2016). Once 
released into the extracellular milieu, EGF and related ligands begin 
the search for their cognate receptors, thereby setting in motion cel-
lular programs of survival and growth (Massague and Pandiella, 1993; 
Sahin et al., 2004; Li et al., 2015; Chen et al., 2017). Specificity of EGFR 
activation is mediated through the establishment of defined contacts 
between the ligand and the binding groove of the receptor located 
on its extracellular face (Bajaj et al., 1987; Lax et al., 1988; Ferguson et 
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al., 2003; Jorissen et al., 2003; Zhu et al., 2017). Variations in sidechain 
features between different ligands, as well as post-translational mod-
ifications present on the extracellular EGFR domain, determine the 
strength of engagement (Azimzadeh Irani et al., 2017). Solid-state 
NMR experiments have demonstrated that in the absence of ligand, 
the intracellular region of EGFR exists in a rigid conformation, while the 
extracellular domain remains highly dynamic. Ligand binding sharp-
ly restricts this flexibility, providing a stable platform for ligand-medi-
ated dimerization—a key event in receptor activation and initiation 
of downstream signaling (Ogiso et al., 2002; Kaplan et al., 2016). 
Within the receptor dimer, rotation of the transmembrane segment 
transduces a conformational change to the intracellular kinase do-
mains, resulting in their asymmetric positioning, which in turn promotes 
cross-phosphorylation of cytoplasmic receptor tails (Honegger et al., 
1989; Moriki et al., 2001; Kourouniotis et al., 2016; Purba et al., 2017). 
Depending on the type and degree of phosphorylation, the latter can 
now recruit specific signaling complexes and thus harbor the potential 
to initiate a wide variety of downstream signaling cascades associat-
ed with EGF-dependent responses (Foley et al., 2012; Wagner et al., 
2013; Ceresa and Peterson, 2014; Li et al., 2017). 

Ligand or not
In the absence of ligand, most EGFR molecules remain in their mono-
meric form and are therefore inactive. However, because the arrival 
of any external signals is difficult to anticipate, EGFR has evolved to be 
intrinsically poised towards the ‘on’ state, occasionally giving rise to 
auto-activation (Ferguson et al., 2003; Burgess et al., 2003; Ceresa and 
Peterson, 2014). Therefore, while maintaining acute responsiveness to 
ligands, cells must also guard themselves against aberrant or exces-
sive activation of EGFR. These needs are accommodated through 
continuous surface sampling and the differential intracellular routing 
of receptors (Fig. 1). Although inactive receptors continuously travel 
through the endocytic compartment (Fig. 1, step 1 + route 1), slow 
internalization and rapid recycling rates ensure their accumulation on 
the cell surface. Upon ligand binding (Fig. 1, step 2), this equilibrium 
shifts rapidly (Herbst et al., 1994; Burke and Wiley, 1999; Wiley, 2003; Ce-
resa and Peterson, 2014; Tomas et al., 2014), causing activated recep-
tors to spend extended periods of time traveling the endocytic route 
(Fig. 1, step 3 + route 3). In this case, signaling continues until receptors 
are either recycled back to the cell surface or taken up into proteolyt-
ic lysosomes, leading to their demise. Understanding how cells control 
the duration of legitimate ligand-mediated responses, while keeping 
unwarranted activation at bay in many ways encompasses the crux 
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of signaling pathways. It appears that cells have taken the ‘divide 
and conquer’ approach to solving this problem by segregating the 
receptor ‘on’ and ‘off’ states in cellular space and time. How this is 
orchestrated to afford proper regulation of EGFR lifespan is discussed 
in the following sections.
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Fig.1: Destinations of activated EGFR: from the cell periphery to the perinuclear ‘cloud’
Ligand-free monomers of EGFR, residing primarily on the cell membrane (1a), can be spon-
taneously internalized and recycled (Route 1). Even in the absence of stimulation, stochastic 
dimerization (1b) and auto-activation (1c) of EGFR may occur. The latter is kept in check by en-
docytosis, inactivation and recycling via the Rab11 recycling endosomes (RE) (Route 1). Ligand 
binding promotes receptor dimerization (2a-b), leading to activation and phosphorylation of 
the cytoplasmic tails (2b) that mediate recruitment of various adaptor proteins (such as Grb2) 
for downstream signal transduction cascades (3). The intracellular fate of EGFR depends on the 
extent of its activation. Under conditions of ‘low’ stimulation, AP-2 adaptor is recruited for clath-
rin-mediated endocytosis (CME) (3a), resulting in EGFR-containing early Rab5-positive signaling 
endosomes (3a-b). As these endosomes mature, they travel to the perinuclear region, where 
ligand-activated (and auto-activated) EGFR encounters increasing phosphatase activity and is 
inactivated prior to being recycled (Route 2). By contrast, ‘high’ levels of EGFR activation result 
in extensive receptor phosphorylation and ubiquitination by the E3 ligase Cbl, which causes 
diversion of EGFR, preferentially internalized via clathrin-independent endocytosis (CIE), away 
from recycling and towards degradation in the lysosome (Ly), located in the perinuclear ‘cloud’. 
This occurs via the Rab7-positive late endosome (LE) (3b), where ubiquitinated EGFR is targeted 
from the limiting endosomal membrane into intraluminal vesicles (ILV), giving rise to a multivesic-
ular body (MVB) (Route 3). Subsequent LE/Ly fusion delivers EGFR for degradation. 

Receptor endocytosis and the peripheral-perinuclear divide 
Endosomes: signaling hubs or traps for destruction? 
Although key steps in ligand engagement and nucleation of signal-
ing cascades take place at the cell surface, once activated, EGFR 
molecules actually spend most of their remaining lifetime in the cell 
interior, traversing the vesicular network of the endosomal system. Un-
der conditions of low ligand availability, activated EGFR is typically 
subjected to clathrin-mediated endocytosis (CME) (Sigismund et al., 
2005; Robinson, 2015). Although inactive EGFR can move into pre-
formed clathrin-coated pits, phosphorylated receptor accelerates 
CME by attracting the adaptor AP-2 (Rappoprt and Simon, 2009), 
which in turn recruits large amounts of clathrin, resulting in receptor 
clustering and rapid expansion of the budding vesicle (Sorkin et al., 
1996; Tomas et al., 2014; Robinson, 2015). Accumulation of receptors 
in the bud further enhances cross-phosphorylation initiated by ligand 
binding (Ibach et al., 2015), thereby amplifying low-intensity signals. At 
the same time, phosphorylation of AP-2 by EGFR helps to initiate inter-
nalization, sending EGFR into the endocytic pathway (Fingerhut et al., 
2001; Huang et al., 2003; Traub, 2009). The resulting endosomes dwell 
in the peripheral cytoplasm (Fig. 1, step 3a); here, maturation towards 
the late compartment is ‘slow’, and numerous recycling pathways 
are available to spare receptors from degradation (Watanabe and 
Boucrot, 2017) that takes place in the perinuclear region of the cell, 
where proteolytic lysosomes abound (Johnson et al., 2016). While, at 
first, EGFR was considered to predominantly transduce signals at the 
plasma membrane, recent studies have shown that receptor endocy-
tosis does not interfere with its signaling capabilities (Vieira et al., 1996; 
Sousa et al., 2012; Conte and Sigismund 2016). Interestingly, it appears
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that for certain signaling pathways, such as activation of ERK down-
stream of EGFR, intracellular localization of signal transduction (i.e. at 
the plasma membrane versuson endosomes) correlates to the result-
ing transcriptional response (Sousa et al., 2012; Wu et al., 2012). In this 
way, spatial compartmentalization of signaling complexes fine-tunes 
their biological outcomes.

Fast and furious with ubiquitin
When the canonical endocytic route described above is saturated 
owing to increasing abundance of ligand, ‘fast’ clathrin-independent 
endocytosis (CIE) can take over, rapidly routing receptors toward 
degradation (Sigismund et al. 2005) (Fig. 1, step 3b). The decision to 
rapidly traffic endosomes carrying activated EGFR for degradation 
appears to be triggered by receptor ubiquitination, as ubiquitination 
impaired EGFR overwhelmingly travels through the recycling-promot-
ing CME route (Sigismund et al., 2005). Ubiquitination of EGFR is medi-
ated by the E3 ubiquitin ligase Cbl (Huang et al., 2006), brought to the 
phosphorylated EGFR receptor by the adaptor growth factor recep-
tor-bound protein 2 (Grb2) (Batzer et al., 1994; Levkowitz et al., 1999; 
Jiang et al., 2003). Once ubiquitinated, EGFR can be recognized by 
the ubiquitin-dependent adaptors of the endosomal sorting complex-
es required for transport (ESCRT) and sequestered into the intraluminal 
vesicles (ILVs) of the multivesicular body (MVB) (Henne et al., 2011). 
This physically removes the signaling tail of EGFR from the cytosol, 
effectively terminating the downstream signaling cascade (Eden et 
al., 2009). Receptor ubiquitination exhibits a sigmoidal response to in-
creasing concentrations of EGF, ensuring that under conditions of low 
ligand availability activated EGFR will not be marked for destruction 
(Sigismund et al., 2013). Precisely what sets up this barrier to degrada-
tion is not entirely clear. One suggested mechanism postulates that 
high levels of receptor phosphorylation trigger simultaneous recruit-
ment of Grb2 and Cbl2, resulting in efficient ubiquitination (Sigismund 
et al., 2013). It is thought that a productive association of Cbl with the 
receptor is achieved above a certain threshold of phosphorylation, 
which couples ubiquitination to the intensity of ligand-induced stim-
ulus. In contrast, lower levels of stimulus offer fewer phosphorylated 
binding sites that are preferentially occupied by signaling molecules, 
such as Ras and PLCgamma (Chardin et al., 1993; Haugh et al., 1999; 
Henriksen et al., 2013; Sigismund et al., 2013, Tomas et al., 2014). Thus, 
by segregating peripheral signaling and recycling pathways from 
perinuclear degradation in accordance with the degree of stimula-
tion, cells can maximize life-sustaining inputs and effectively cope with 
overstimulation.
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Recycling goes deep
Receptors that are only moderately activated, either  owing  to  
low ligand availability or in a ligand-independent manner, are still in-
ternalized into endosomes, but their reduced signaling potential does 
not require degradation. Upon entry into the early endosomal com-
partment, these receptors are recycled in vesicles characterized by 
the presence of the GTPase Rab11 (Ullrich et al., 1996; Baumdick et 
al., 2015). This pathway takes receptors through the perinuclear re-
gion, where they become increasingly exposed to the tyrosine-pro-
tein phosphatase non-receptor 1 (PTP1B) that resides at the ER. PTP1B 
dephosphorylates EGFR at ER-endosome contact sites, ensuring that 
receptors transported back to the plasma membrane are no longer 
active. This mode of regulation results in an inverse spatial relationship 
between cellular kinase (peripheral) and phosphatase (perinuclear) 
activities (Fig. 1), which are facilitated by the interactions between 
endosomes and the ER (as discussed below). In contrast, fully acti-
vated EGFR molecules are redirected away from recycling vesicles 
and traffic toward the late endosomal compartment for degrada-
tion (Sabet et al., 2015). Prior to their degradation, these molecules 
also encounter ER-associated phosphatase PTP1B (Eden et al., 2012), 
which disables further signaling downstream. Additionally, in response 
to the intensity of incoming signals, the cell varies the number of sig-
naling vesicles, which helps to maintain a relatively consistent amount 
of activated EGFR molecules per endosome (Villasenor et al., 2015). 
This, in turn, keeps the dephosphorylation rate constant and enables 
the cell to maintain robust responses to the dynamic extracellular en-
vironment without becoming vulnerable to overstimulation. The exis-
tence of multiple regulated means to abrogate signaling responses 
(i.e. dephosphorylation and degradation) underscores both the flex-
ibility and rigor of the systems that function to keep cellular signaling 
cascades in check. Moreover, this complex regulatory framework ex-
emplifies how spatiotemporal regulatory capabilities of the endocytic 
compartment elegantly serve the greater interests of the cell. How the 
trafficking and transport of EGFR is orchestrated in molecular terms is 
discussed in the next section.

Cruising in the endosome: how mature!
Ready, set, phosphoinositides
Reversible association of proteins and complexes with specific vesic-
ular membranes underlies the membrane dynamics throughout the 
endosomal system. To ensure recruitment and exclusion at the right 
place and time, vesicles undergo continuous maturation, with their dif 
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ferent stages characterized by the presence of distinct phosphoinos-
itides (PIs). These derivatives of phosphatidylinositol are anchored to 
the membrane and acquire different phosphorylation states, which 
then direct the differential recruitment of proteins associated with ear-
ly or late stages of endosomal maturation (as expertly reviewed by 
Schink et al., 2016). Not surprisingly then, progress of EGFR along the 
endocytic route closely depends on the PI contents of its carrier vesi-
cles (Tan et al., 2015; Schink et al., 2016; Henmi et al., 2016). In fact, ac-
tivated EGFR can itself influence membrane composition through the 
recruitment of PI3-kinase II alpha, which increases the concentration 
of phosphatidylinositol 3-phosphate (PI(3)P). The presence of this lipid, 
in turn, stimulates the recruitment of the small GTPase Rab5—the cen-
tral organizer of early endosomes (Zerial and McBride, 2001; Jordens 
et al., 2005; Zeigerer et al., 2012)—and thus marks the start of endo-
somal maturation (Leevers et al., 1999; Ceresa and Peterson, 2014). 
Therefore, by manipulating membrane features, EGFR effectively ac-
celerates its own trafficking and downregulation. 

Rab5 is on
Once EGFR, residing on the surface of the cell, turns ‘on’ and moves 
into newly budding vesicles, it sets in motion an orderly chain of arrivals 
and departures of membrane-associated proteins that facilitate and 
control its progress along the endocytic track. This begins with recruit-
ment of factors responsible for the establishment of early endosomal 
character, marked by the presence of the Rab5 GTPase. Firstly, the 
guanine nucleotide exchange factor (GEF) RME-6, which activates the 
Rab5 GTPase, associates to the budding membrane to promote Rab5 
recruitment towards the nascent endosome (Sato et al., 2005) (Fig. 2, 
step 1a). After the EGFR-containing endosome buds off to begin its 
intracellular journey, it acquires another Rab5 GEF, Rin-1 (Balaji et al., 
2012) (Fig. 2, step 1b). This likely leads to increased levels of Cbl asso-
ciated with EGFR and consequently stimulates receptor ubiquitination 
(Barbieri et al., 2004). Ubiquitinated EGFR, in turn, recruits yet another 
Rab5 GEF, Rabex-5 (Fig. 2, step 1c). Collectively, these steps create a 
positive feedback loop of GTP-loaded (and thus active) Rab5 mem-
brane occupancy (Penengo et al., 2006; Mattera et al., 2006; Zhang et 
al., 2014), thereby stabilizing Rab5-associated machineries responsible 
for early endosome fusion and transport. Specifically, tethering factor 
EEA1 is recruited to Rab5 (Simonsen et al., 1998; Dumas et al., 2001; Na-
varolli et al., 2012), which, together with the class C Core Vacuole/En-
dosome Tethering (CORVET) complex, promotes fusion between early 
endosomes (Balderhaar et al., 2013; Van der Kant et al., 2015) (Fig. 2, 
step 2). At the same time, Rab5-positive endosomes move away from 
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the plasma membrane towards the perinuclear region, where their fu-
sion with later-stage endosomes is more likely. This transport is accom-
plished by the minus-end-directed dynein motor complex, adapted 
to Rab5 through its effector Fused TOES (FTS)-Hook-FTS and HOOK-in-
teracting protein (FHIP) (FHF) (Driskell et al., 2007; Guo et al., 2016) (Fig. 
2, step 3). Taken together, the processes orchestrated by the Rab5 GT-
Pase enable early endosomes to grow in size, in preparation for their 
transition into the late compartment, where cargo proteolysis occurs.

Hand it over to Rab7
Late endosomal vesicles are typically marked by the GTPase Rab7 
and devoid of Rab5. Occurring through an elegant hand-over mech-
anism, the conversion from Rab5 to Rab7 constitutes the hallmark of 
endosomal maturation (Pols et al., 2013; Balderhaar et al., 2013; Lin 
et al., 2014; van der Kant et al., 2015; McEwan et al., 2015) (Fig. 2, 
step 4). This begins with the arrival of the Mon1-ccz1 complex (Fig. 2, 
step 4a), which interacts with both Rab5 and Rabex-5 (Poteryaev et 
al., 2010; Nordman et al., 2010; Huotari and Helenius, 2011). Subse-
quent dephosphorylation of PI3P on the endosomal membrane (Shin-
de and Maddika, 2016) enables Mon1-ccz1 to attract and activate 
Rab7 (by loading it with GTP; Fig. 2, step 4C) (Nordman et al., 2010; 
Yasuda et al., 2016), as well as to displace Rabex-5 (Fig 2, step 4b) 
(Rink et al., 2005), resulting in a hybrid vesicle harboring both Rab5 
and Rab7. At this point, the GTPase-activation protein (GAP) Msb3 
can be recruitedto expel Rab5 from the endosomal membrane (Fig. 
2, step 4d) (John Peter et al., 2013). Finally, interaction of the GAP 
TBC-2 with PI(3)P  stimulates the removal of Rab5 from the maturing 
endosomal membrane (Fig. 2, step 4e) (Law et al., 2017). Taken to-
gether, this interconnected cascade of molecular events organizes 
the conversion of a Rab5-positive early endosome into a later one 
marked by Rab7 (John Peter et al., 2013; Rana et al., 2015). Owing

Fig. 2: The order of molecular events in the maturation and transport of EGFR-containing endo-
somes.
Following endocytosis of activated EGFR, early endosomes (EE) acquire the GTPase Rab5, which 
is activated by its GEFs RME-6 (1a) and Rin-1 (1b). Meanwhile, ubiquitinated EGFR recruits the 
Rab5 effector Rabaptin-5 and another Rab5 GEF, Rabex-5 (1c). Once stably associated with 
the endosomal membrane, Rab5 can recruit effector proteins EEA1 and FHF, which respectively 
mediate early fusion events (2) and transport (3) along microtubule tracks, carried out by the 
dynein motor complex toward the nucleus (the minus-end of microtubules). As EEs mature, they 
acquire the GTPase Rab7 and ‘kick’ off Rab5 (4). First, Rab5 recruits the Rab7 GEF complex, 
Mon1/Ccz1 (4a), which activates Rab7, resulting in a hybrid Rab5/Rab7 endosome. Mon1/Ccz1 
also displaces Rabex-5 (4b). Recruitment of Rab7 is further modulated by PTEN dephosphoryla-
tion activity (4c). To complete the Rab5-to-Rab7 hand-over, Rab5 GAPs Msb3 (via the BLOC-1 
complex) (4d) and TBC-2 (4e) associate with Rab7 to promote inactivation and release of Rab5. 
Through its effector RILP, Rab7 can recruit the dynein motor for minus-end-directed transport (5) 
and the HOPS tethering complex for fusion (6), thereby coupling LE transport towards and fusion 
with the lysosome in order to efficiently deliver activated EGFR for degradation.
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to the presence of Rab7, the late endosome can now acquire the 
dynein motor machinery via the Rab7 effector protein Rab Interact- 
ing Lysosomal Protein (RILP) and move along microtubules towards 
the perinuclear region (Cantalupo et al., 2001; Jordens et al., 2001;)
(Fig. 2, step 5). This Rab7-assocaited transport complex also recruits 
the homotypic fusion and vacuolar protein-sorting (HOPS) complex, 
effectively coupling minus-end-directed transport to fusion of late en-
dosomes with one another or with lysosomes carrying Rab7/HOPS (Un-
germann et al., 2000; Van der Kant et al., 2015) (Fig. 2, step 6). Along 
their journey, late endosomes receive key inputs and direction from 
the ER, our current understanding of which is discussed below.

Here comes the ER for a meet-and-greet
Endosomes in the cloud
Once early endosomes begin to mature, they are increasingly guided 
by interactions with the ER (Friedman et al., 2013). Transient physical 
contacts between these two organelles coordinate long-range ves-
icle transport, regulate membrane dynamics within the maturing en-
dosome and influence the receptor signaling status (Eden et al., 2012). 
In the fast-paced world of endosomal flux, knowing where and when 
to go is crucial (Neefjes et al., 2017). To achieve this task, cells partition 
their endosomal compartment into two fractions—a motile peripheral 
pool of vesicles and a comparatively stationary perinuclear ‘cloud’ 
of endosomes that is located around the Golgi complex (Jongsma et 
al., 2016). This organization is critical for endosomes to efficiently meet 
each other and mature. The perinuclear endosomal pool is kept in 
place by the ER-located ubiquitin ligase RNF26 (Fig. 3, step 1) (Jongs-
ma et al., 2016), which recruits and ubiquitinates SQSTM1 (also known 
as p62), a protein best known for its function as an autophagy adap-
tor. The resulting complex is able to position specific endosomes at the 
ER by attracting EPS15, which is present on the earliest vesicles, and 
TOLLIP, located on later endosomes, through their ubiquitin-binding 
domains. When endosomes need to leave the cloud, the deubiquiti-
nating enzyme USP15 releases them from the ‘grip’ of the ER, allowing 
their long-range transport (Jongsma et al., 2016). Inhibition of this po-
sitioning mechanism dislocates the entire endosomal system, which 
results in the failure of endosomes to progressively mature, attenuates 
cargo degradation and leads to continued EGFR signaling (Jongsma 
et al., 2016). Consequently, through the activity of RNF26, the ER pro-
motes trafficking of activated EGFR and enables timely termination of 
its signaling. 
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Fig. 3. ER-mediated regulation of the EGFR-containing endosome. 
Upon ligand challenge, EGFR-containing endosomes travel from the cell periphery to the peri-
nuclear vesicle ‘cloud’, where their maturation and degradation of activated receptors occur. 
(1) The perinuclear cloud is regulated by the ER-located E3 ligase RNF26, which recruits and 
ubiquitinates SQSTM1 (1a). The resulting ER-associated complex then positions endosomes by 
attracting various ubiquitin-binding endosomal adaptors. Deubiquitination of SQSTM1 by the 
DUB USP15 can release positioned endosomes for continued transport (1b). (2) Maturation of 
endosomes requires them to expel cargoes not intended for degradation. This recycling process 
is supported by the ER, where ER-bound proteins VAP-A and -B interact with the retromer com-
plex subunit SNX2 (2a). At this ER-endosome contact site, the WASH complex induces local actin 
polymerization (2b) to promote fission of recycling tubules away from the maturing endosome. 
(3) The maturing endosome travels toward the lysosome. This transport is mediated by the Rab7/
RILP/dynein motor complex and controlled by the cholesterol sensor ORP1L. When cholesterol is 
abundant in the endosomal membrane, minus-end transport is uninhibited. Conversely, if cho-
lesterol is depleted, ORP1L can interact with VAP-A, resulting in release of the dynein motor (3a). 
At this juncture, facilitated by the ER-associated protrudin, Rab7 may be able to switch direction 
of transport by acquiring the effector FYCO1 and the kinesin-1 motor (3b). At the ORP1L/VAP 
ER-endosome contact site, the Annexin 1A tether mediates cholesterol transfer from the ER to 
the endosome, which promotes incorporation of EGFR into the ILVs for degradation (3c). Prior to 
targeting of EGFR to ILVs, activated receptor is dephosphorylated by the phosphatase PTP1B, 
with the help of the phosphatase SHIP2 and actin nucleating protein Mena (3d). 
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ER goes in for a hug
EGFR-containing endosomes that travel toward the lysosome must ex 
pel any cargoes, which are not destined for degradation. This type of 
recycling intimately involves the ER (Fig. 3, step 2). To this end, the ret-
romer complex subunit SNX2 that is bound to PI3P on endosomal mem-
brane, interacts with the vesicle-associated protein A/B (VAPA/B) on 
the ER membrane; the resulting complex couples recycling tubule 
formation with the transient WASH-mediated assembly of a localized 
actin cytoskeleton, which is required for fission (Dong et al., 2016). In 
effect, this ‘embrace’ of the recycling tubule by the ER dictates both 
the exact location and timing of fission (Rowland et al., 2014). As soon 
as maturing endosomes acquire Rab7, they begin to contact the ER 
for guidance on directionality of their transport throughout the cell. 
As mentioned above, Rab7 mediates dynein-dependent transport of 
late endosomes toward the nucleus through its effector RILP (Jordens 
et al., 2001), which is needed to bring late endosome cargo, such as 
the EGFR, to the lysosome (Driskell et al., 2007). However, Rab7 can also 
‘choose’ to recruit the effector FYCO1, and subsequently the kinesin-1 
motor, which enables microtubule-based transport of late endosomes 
in the opposite (plus-end) direction, i.e. toward the periphery of the 
cell (Pankiv et al., 2010). In order for Rab7 to change course from one 
direction to the other, it needs to disengage from one motor complex, 
while recruiting another. Interestingly, both release of the dynein mo-
tor and acquisition of kinesin-1 involve help from the ER. To achieve 
the former, Rab7 interacts with the cholesterol sensor Rab7-associated 
oxysterol-binding protein, ORP1L (Fig. 3, step 3) (Rocha et al., 2009). As 
long as endosomal cholesterol is available, ORP1L remains in a closed 
conformation, which is compatible with maintenance of the dynein 
transport complex on Rab7/RILP. Conversely, under conditions of cho-
lesterol depletion from the endosomal membrane, ORP1L opens up 
to interact with the ER-bound VAPA/B (Rocha et al., 2009; Van der 
Kant et al., 2013; Wijdeven et al., 2016). This results in release of dynein 
from the Rab7-RILP complex and temporarily halts transport of the en-
dosome toward the microtubule minus-end. Incidentally, VAPA/B also 
interacts with an ER-associated protein protrudin, which is capable of 
loading kinesin-1 motor onto Rab7/FYCO1 (Raiborg et al., 2015). It has 
been speculated that this scenario presents an opportunity for Rab7 
to switch direction of endosomal transport away from the nucleus (Wi-
jdeven et al., 2015; Raiborg et al., 2016). Although EGFR-containing 
late endosomes have not been shown to travel via this plus-end-di-
rected route, whether and how Rab7, or its associated proteins, may 
‘guard’ against the misdirection of EGFR is an important issue that re 
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mains largely unexplored.In addition to modulating endosomal trans-
port, ER-endosome contact sites established by the ORP1L-VAPA/B in-
teraction allow endosomal cholesterol to be replenished directly from 
the ER by way of the Annexin 1A tether (Eden et al., 2016). Meanwhile, 
the first steps of signal inactivation also take place at ER-endosome 
contact sites. It is here that EGFR encounters phosphatase PTP1B, 
which resides on the ER membrane, and the subsequent dephosphor-
ylation of its cytoplasmic tail renders the receptor inactive (Eden et al., 
2012). Interaction between phosphorylated EGFR and PTP1B is likely 
regulated by two adaptor proteins, Mena and Ship (Hughes et al., 
2015). Both receptor dephosphorylation and replenishment of late en-
dosomal cholesterol promote the incorporation of EGFR into the ILVs 
of a maturing MVB (Raiborg and Stenmark, 2009; Eden et al., 2010; 
Eden et al., 2012), which physically removes the tail of EGFR from the 
cytosol, effectively terminating its signaling. This spatially and tempo-
rally links receptor inactivation to its degradation. The details of how 
EGFR finds its way inside the MVB are discussed below. 

The final act: inactivation and destruction
In the final throes of EGFR’s life, late endosomes, arriving in the perinu-
clear region of the cell, fuse with the proteolytic lysosome stationed 
here (Luzio et al., 2007; Johnson et al., 2016). To get into the lysosome, 
ubiquitinated EGFR molecules are escorted to the site of ILV formation 
by four sequentially operating ESCRT complexes, ESCRT-0, -I, -II, and 
-III (Chirst et al., 2017) (Fig. 4). In a first selection step, taking place on 
early endosomes, The ESCRT-0 complex, comprised by the hepato-
cyte growth factor-regulated tyrosine kinase substrate (Hrs) and sig-
nal transduced adaptor molecule (STAM), recognizes and sequesters 
ubiquitinated EGFR away from recycling domains. Interestingly, STAM 
and Hrs are both phosphorylated by EGFR following its kinase domain 
activation and dephosphorylated by PTP1B (Eden et al., 2010; Stuible 
et al., 2010). Co-regulation of ESCRT-0 with the EGFR activity cycle 
temporally synchronizes peak sorting activity with sharply increasing 
demand following ligand-mediated receptor activation. Once ubiq-
uitinated EGFR traffics to the late endosome, ESCRT I, II and III are se-
quentially recruited to sort and package the chosen cargoes into ILVs. 
In conjunction with Flotillin-1, ESCRT-I transfers ubiquitinated receptors 
to ESCRT-II, which results in accumulation of degradation substrates, 
invagination of the limiting endosomal membrane and ESCRT-III-de-
pendent formation of ILVs (Meister et al., 2017; Christ et al., 2017). EGFR 
can escape ubiquitin-dependent sorting into ILVs, either early on in 
the endosomal pathway through deubiquitination by the STAM-asso-
ciated DUB, USP8 (also referred to as UBPY) (Niendorf et al., 2007; Berlin
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et al., 2010) or at the limiting membrane of the MVB (Eden et al, Traffic 
2012). In addition to binding ESCRT-0, USP8 also interacts with ESCRT-III 
components further down the sorting pathway (Row et al., 2007), and 
a recent report suggests that USP8 can promote the switch between 
ESCRT complexes on the EGFR substrate through an ESCRT-0 accesso-
ry protein HD-PTP (Ali et al., 2013). Ubiquitination does not only control 
the fate of cargoes, such as EGFR, but also regulates the function of 
ESCRT proteins themselves. For instance, the oncogene LAPTM4B pro-
motes the ubiquitination of Hrs by the E3 ligase NEDD4, which renders 
this adaptor unable to recognize ubiquitinated receptors (Hoeller et 
al., 2006; Persaud et al., 2009; Tan et al., 2015). By contrast, the accu-
mulation of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and the 
resulting recruitment of SNX5 to the endosomal membrane inhibits Hrs 
ubiquitination and instead promotes recognition of ubiquitinated car-
goes by the ESCRT-0 complex (Tan et al., 2015). Because PI exchange 
on the endosomal membrane coincides with maturation, this the 
above regulatory module couples sorting of EGFRs that are marked 
for destruction to the physical progression of receptor-containing vesi-
cles along the endocytic route. Finally, to complete its life cycle, EGFR 
must be delivered to the lysosome. To accomplish this, the MVB must 
fuse with the lysosome, depositing its ILVs into the proteolytic lumen of 
the latter organelle (Luzio et al, 2007). Here, the luminal part of EGFR 
(i.e., its ligand-binding domain) is degraded after an unfolding step, 
which likely requires first the reduction of the cysteine bridges by the 
protein GILT (Arunachalam et al., 2000), followed by the action of mul-
tiple glycosidases and proteases of the cathepsin family. Further, the 
transmembrane domain of EGFR is cleaved by the transmembrane 
aspartate proteases of the Rhomboid family (Lemberg and Freeman, 
2007). However, the fate of the remaining cytoplasmic tail remains un-
clear. While it has been postulated that the tail may be expelled in 
the cytosol experimental demonstration thereof is yet to be reported. 
Although the pathway towards degradation of EGFR is at this time 
fairly clear, the mechanisms of its actual destruction are much less 
understood. 

Conclusions and perspectives
At the time of writing, a Pubmed search for the term ‘EGFR’ returned 
over 44,000 publications, of which the vast majority considers primarily 
the immediate steps in the life of an activated receptor—those occur-
ring at the cell surface. Yet, an EGFR molecule that has been turned ‘on’ 
likely spends more time traveling the endosomal system than residing at 
the cell surface. Meanwhile, its cytoplasmic tail remains exposed and 
available for signaling. Interestingly, the quality of signaling may be dif
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Fig. 4. In or out: sorting and degradation of EGFR.
Degradation of activated EGFR necessitates its sorting and incorporation into the ILVs of a ma-
turing MVB, which are orchestrated by the ESCRT system. This begins on early endosomes, where 
the ESCRT-0 complex, consisting of the ubiquitin-binding adaptor proteins Hrs and STAM, sorts 
ubiquitinated EGFR to the MVB (1). Assisted by Flotilin-1, EGFR is subsequently transferred to the 
ESCRTs -I, -II, and -III (2). ESCRT-III deforms the limiting membrane of the MVB, resulting in ILV for-
mation and sequestration of EGFR therein. Deubiquitination of EGFR by the ESCRT-0-associated 
DUB USP8 can spare the receptor from degradation. USP8 can also interact with ESCRT-III and, 
in the presence of the phosphatase HD-PTP, may promote transfer of EGFR down the ESCRT 
pathway. (3) Proteolytic capabilities of late endosomes and lysosomes require an acidic envi-
ronment, provided by V-type ATPases (4), which is optimal for denaturation and degradation by 
the lysosomal proteases, which are transported by the Mannose 6-Phosphate Receptor from the 
golgi (5). While the transmembrane section of EGFR is thought to be degraded by the rhomboid 
proteases, how—and whether—the cytoplasmic tail of EGFR is degraded remains unclear (6). 

ferent in the cell interior than at the plasma membrane. However, du-
eto the transient nature of endosomes and their ability to move swiftly 
through the cell, it has been challenging to understand what hap-
pens to EGFR on this complex journey, and when. Recent advances 
in imaging tools and techniques have enabled us to make substan-
tial progress in addressing these questions and have revealed the in-
tricate molecular mechanisms at play, as well as the subtle ways in 
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which EGFR influences them to promote its own demise. As it moves 
in endosomes towards the perinuclear cloud, en route to its final des-
tination in the lysosome, active EGFR is subjected to regulation by the 
ER at the ER-en-dosome contact sites. As EGFR, marked for destruc-
tion with ubiquitin, reaches the multivesicular bodies, termination of its 
signaling is ensured by dephosphorylation and subsequent inclusion 
into the ILVs. But what if the receptor thus committed could escape 
the ILVs back to the limiting membrane of the MVB? Could its signaling 
from endosomes resume? Or would the receptor still be recycled and 
reused at the cell surface? Perhaps these provocative questions will 
find answers in the next phase of the discovery regarding endocytosis 
and the management of key cellular cargoes, with EGFR at their fore-
front.  
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