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Conclusions 

Available therapeutic strategies that target the causal factors associated with 

neurodegenerative diseases are scarce. Most medications offer only symptomatic 

relief to the patient, such as levodopa that helps to reduce the motor symptoms of 

Parkinson’s disease1, donepezil that reduces the memory and learning deficits in 

Alzheimer’s disease2, and antidepressants to tackle depression in Huntington’s 

disease3. Unfortunately, the majority of these medications have a temporary effect 

and, in addition, may not be effective in all patients. This is due to the multifactorial 

complexity of these disease mechanisms which are challenging to unravel and 

understand. In chapter 1, we highlight the prospects of applying systems biology to 

explore and further our understanding of specific neurodegenerative diseases, with 

a focus on Parkinson’s disease. By combining this holistic approach with omics data, 

we are able to integrate valuable information for a wide variety of biological matrices. 

We chose metabolomics as our main omics technique due to the ability to take a 

snapshot of the dynamic metabolic processes in different disease states, thus 

promoting the opportunity to understand the disease from an alternative 

perspective, i.e. by specifically identifying the biological phenotype. Metabolomics 

has demonstrated its usefulness in biomarkers in a range of conditions ranging from 

cancer4 to neurological disorders5,6. However, there is still a relatively low number of 

methods providing absolute quantitative data that broadly cover the metabolism. 

Additionally, current techniques that are available are limited by their sensitivity, 

speed, experimental equipment requirements and/or cost. 

In this thesis, we develop and utilise new analytical strategies to capture the 

metabolome in a broad and absolute quantitative manner by modifying the 

conditions of a derivatization reagent to derivatise amine, thiol and carboxyl 

metabolites. Consequently, we address the several limitations experienced in the 

quantitative analytical workflow. With the established methods, we chose to 

concentrate on the central carbon and energy metabolism along with 

neurochemicals as these are strongly implicated in neurodegenerative diseases such 

as Parkinson’s disease. To showcase the broadness in application, we applied the 

methods to several biological models, including human urine, in vitro cancer cell line 

cultures (SUIT-2 cells and HepG2) and induced pluripotent stem cell (iPSC)-derived 

dopaminergic neurons. Also, we used a derivatization reagent on rodent brain tissue 
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with hope to determine the distinct neurochemical profiles in several regions across 

the healthy rodent brains, thus providing information to further decipher the 

connectome. Furthermore, we aimed to demonstrate the application of absolute 

quantitative metabolomics data by the integration into a genome-scale constraint-

based model that captures the functionality of dopaminergic neurons, specifically the 

midbrain substantia nigra dopaminergic neurons associated with Parkinson’s 

disease. 

Sensitive absolute quantitative method development 

One of the key goals in the metabolomics community is to establish an alternative 

technique to study the human metabolome in an absolute quantitative manner in 

response to the common limitations that are experienced with the current 

approaches. This is evident when using cell culture and brain samples as the biomass 

and biofluids can present in low quantities. This setback can be solved by the 

application of mass spectrometry which has superior sensitivity at the compromise 

of resulting absolute concentration accuracy. The quantitative inaccuracy in MS is 

caused by the matrix effect in the electrospray ionisation source. The most common 

solution is the use of stable isotope-labelled analyte pairs that are analysed 

simultaneously during separation and ionisation. This technique is expensive and 

depends on isotope availability. Also, separation sciences coupled to MS, such as LC-

MS, GC-MS and CE-MS, have other additional limitations during analysis as detailed 

below. One approach to solve this issue is the use of isotope-coded derivatization that 

has the ability to modify the physicochemical properties of metabolites to encourage 

improved separation and ionisation features whilst providing an identical isotope 

pair for each analyte of interest. This allows for absolute quantitation analysis in a 

cost-effective manner. With this in mind, these quantities can be integrated into 

systems biology models, thus progressing the successful and comprehensive 

modelling of a variety of biological matrices. 

Chapter 2 illustrates the development and validation of a pre-column derivatization 

ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) 

analytical method7 with a 10-minute acquisition time, using only positive ionization 

mode. In this method, we expand the reactivity of the reagent 

dimethylaminophenacyl bromide (DmPABr) by altering the reaction conditions 

previously published by Guo et al. (2010)8. The change in reaction conditions 
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resulted in the ability of DmPABr to label primary amines, secondary amines, thiols 

and carboxyls, compared to the original labelling coverage which was exclusive to 

carboxyls. This extension vastly encourages higher coverage of the human 

metabolome.  

The method was employed to analyse healthy human urine and rotenone-treated (at 

1 nM, 10 nM and 100 nM for 3 h, 8 h and 24 h) pancreatic cancer cells (SUIT-2), 

yielding 64 metabolites associated with central carbon and energy-related 

metabolism. These include: amino acids, creatinine, N-acetylated amino acids, 

metabolites from the TCA cycle and pyruvate metabolism, acylcarnitines and 

medium-/long-chain fatty acids. Rotenone blocks the complex I of the electron 

transport chain in the mitochondria - virtually depleting function. After exposure to 

100 nM rotenone, 50% of the metabolites showed significant changes. This 

demonstrates the ability of the method to assess the health of the mitochondria 

within cells. Additionally, a total of 57 metabolites were detected and quantified in 

the urine samples, with low intra-day and inter-day variability in the amino acids 

(within recommended ICH guidelines). Furthermore, creatinine was included in the 

method to enable in method normalisation of metabolite concentrations of urine. 

This method also addresses the weaknesses associated with other commonly used 

quantitative analytical techniques such as HILIC-MS, GC-MS and CE-MS. These 

weaknesses include insufficient coverage requiring combination of multiple 

methods, lack of sensitivity and poor metabolite stability. Another issue is the lack of 

internal standard availability (heavy isotope metabolite pairs). Therefore, to enhance 

quantitation, isotope-coded derivatisation (ICD) was also applied using standards 

derivatised with an isotopically-labelled reagent (DmPABr-D6). The presented work 

showcases the versatility and potential of utilising DmPABr for future metabolomics 

studies in a range of biological matrices. Our novel method unveiled its ability to 

cover a larger proportion of the metabolome in a fast, sensitive and absolute 

quantitative manner.  

Utilising DmPABr provides a versatile method that can be further extended to other 

metabolites that contain the previously mentioned functional groups. The method is 

adaptable with minimal additional work required, creating a suitable metabolomics 

approach for systems biology integration. This is required due to the speed of new 

metabolic pathway predictions identified by computational approaches. 
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Additionally, the method is suitable for the study of a range of diseases associated 

with energy imbalance and mitochondrial dysfunction such as Leigh’s syndrome5 and 

diseases with deficiency of aminoacylase I9. Furthermore, we also believe that 

computational approaches can be created to predict the labelling and retention of 

metabolites, thus allowing a high-throughput analytical technique with broader 

coverage. The method has the potential for sensitive analysis of volume-limited 

samples, and this is discussed in chapter 3. 

Chapter 3 follows on from chapter 2, by focusing on the lack of accurate absolute 

quantitation in low-volume samples experienced by the current available methods 

for analysis. We mention in chapter 2 that the method is not fully optimised for 

volume-limited samples due to an issue with detector saturation (caused by the high 

concentration of metabolites in urine). In response to this, we optimised the 

electrospray ionisation and mass spectrometry parameters. After this alteration, we 

were able to validate and showcase the DmPABr derivatisation technique on the 

application to material-limited HepG2 cell samples (ranging from 250 cells to 1 × 105 

cells) via RPLC-MS/MS10. A total of 37 metabolites were detected and quantified from 

1 × 104 HepG2 cells within 7-minute elution, including: amino acids, N-acetylated 

amino acids, acylcarntines, fatty acids and TCA cycle metabolites. Most of the amino 

acids had a limit of detection below 20 nM, and for the N-acetylated amino acids and 

acylcarnitines, below 5 nM. The intraday variability was within the ICH guidelines for 

the majority of concentrations detected in 5 × 103 HepG2 cells, and the quantification 

of twelve metabolites and the detection of three additional metabolites below LLOQ 

was achieved in 250 HepG2 cells. 

As mentioned earlier, cell cultures (particularly microfluidic cell culture) and brain 

samples often provide relatively low volumes of sample that require highly sensitive 

methods to deliver accurate absolute quantitative metabolite concentrations. 

Although methods such as LC-MS have decent sensitivity, there is inaccuracy in the 

ability to produce absolute quantitative results. Chemical derivatisation is an 

attractive choice to not only further improve the sensitivity, but also enhance the 

detection of metabolites in samples at low volumes.  

This proof-of-concept revealed further attainable applications for the DmPABr 

derivatisation technique in the form of sensitive analysis of material-limited 

biological samples whilst maintaining the ability to create a representative profile of 
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the metabolome. Moreover, we utilised the DmPABr technique on UPLC-MS/MS 

without modification of the sample preparation volume, solvent composition and 

injection volume. This resulted in very small numbers of cells on column. However, 

we still were able to quantify 12 metabolites from the equivalent of 0.25 HepG2 cells 

on column. This highlights the potential for further sensitivity when utilising this 

approach, which could be used for single-cell metabolomics11. This may be possible 

by optimisation of solvent composition and coupling to CE-MS and micro/nanoLC-

MS with prospects of optimisation to study various diseases on a smaller scale. 

Furthermore, techniques such as CE-MS often suffer in the separation of anionic 

metabolites12; DmPABr could also aid the separation by the introduction of the 

tertiary amine, allowing cationic separation. 

Data acquisition and model integration 

Systems biology has the potential to advance our understanding of human physiology 

and complex diseases, and identify possible therapeutic targets. This is particularly 

the case for genome-scale constraint-based metabolic models. The main advantage 

is the holistic fashion in which biological information can be linked together in an 

interpretable manner. This is achieved by connecting information obtained from the 

omics field, i.e., genomics, transcriptomics, proteomics and metabolomics. 

Constraint-based modelling has a strength in being able to capture the dynamic 

biological system by including not only the genome but the end stage phenotype of 

the functionality or disease. It produces this by limiting the bounds of the metabolism 

using quantitative metabolomics information and taking understanding further from 

the potential of the system (genotype) to showing the functionality of the system 

(phenotype)13. However, capturing the metabolic bounds requires the use of absolute 

quantitative concentrations as the use of relative quantitative information alone no 

longer suffices. By using the quantitative methods developed and discussed in 

chapter 2 and chapter 3, we aimed to apply these methodologies to provide the 

international scientific community with a quantitative neurochemical profile of the 

mammalian brain ex vivo in chapter 4 and demonstrate the integration of the 

metabolic concentrations into a genome-scale constraint-based metabolic model in 

chapter 5. 

In chapter 4, we present a comprehensive metabolic atlas of the mammalian brain. 

Twenty-five regions in the brains of healthy adult male Wistar rodents were analysed 
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using a 20-minute sensitive neurochemical stabilisation derivatisation LC-MS/MS 

method following Bligh and Dyer liquid-liquid extraction and benzoyl chloride 

derivatisation. The brain regions investigated included: the orbitofrontal cortex, 

cerebral cortex, frontal lobe, ventromedial prefrontal cortex, subcortical structure 

and brain stem. Our findings provided us with a comprehensive profile of 43 

neurochemical metabolites and highlighted the brain regions that are associated 

with key metabolic pathways such as the mesolimbic, limbic and nigrostriatal 

pathways. 

Benzoyl chloride is one of the gold standard derivatization reagents for the analysis 

of neurochemicals within the metabolomics community. It was previously developed 

and validated by Song et al. (2012)14 and Wong et al. (2016)15 on a range of matrices 

including serum, microdialysate and tissue. We developed our method on an AbSciex 

QTrap 6500, which provided greater sensitivity. Then, we independently validated 

this method within our lab by following the ICH guidelines. This provided us with a 

trustworthy method supported by two independent institutes. Additionally, benzoyl 

chloride was chosen in preference of DmPABr (as used in chapter 2 and chapter 3) 

because of its soft labelling conditions. This is critical in the analysis of 

neurochemicals such as catecholamines because they are very vulnerable to 

degradation outside of the cell16. Thus, this improves the quantitative reliability. 

Prior to the derivatization, we also had to develop and validate the liquid-liquid 

extraction of the neurochemicals from the brain tissue. After analysis of the brain 

samples across ten batches, all metabolites had an analytical RSD below 20% (except 

epinephrine and homoserine). Moreover, all metabolites passed the ICH guidelines 

linearity assessment showing that absolute quantitative analysis was possible. 

When presenting healthy adults rat control data, developmental factors are 

important. We ensured that the samples were time-independent by measuring the 

rats at two time-points (17 weeks and 19.5 weeks). After this, we investigated the 

metabolic profile across the 25 brain regions, attempting to identify metabolic 

similarities and differences. The brain regions exist in a connected lattice but each 

region has its own distinct genome, transcriptome, proteome and metabolome, 

leading to the idea of the connectome17. With this comes a variation in the 

composition of cells such as neurons and glial cells. We understand that specific 

neurons such as cholinergic, dopaminergic and serotonergic are expressed 
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differently across the brain. In this study, we wanted to map and correlate the 

neurochemical profile, including neurotransmitters to the specific regions 

associated. In a review by Ivanisevic et al. (2015)13, they highlighted the need for 

more metabolomics data to improve our understanding of the brain. We believe this 

potentially provides the scientific community with additional knowledge relating to 

the connectome.  

To improve understanding of the mammalian brain and contribute to the 

connectome and study of diseases, the brain regions and metabolites included in the 

study need to be relevant. Within this method, we investigated brain regions that 

were associated with a range of neurological diseases such as Parkinson’s, 

Alzheimer’s and Huntington’s disease, and psychiatric disorders such as anxiety, 

addictive behaviours and PTSD. Examples of these regions include the olfactory bulb, 

nucleus accumbens, globus pallidus, bed of the stria terminalis, substantia nigra and 

raphe. The metabolites covered include core metabolites such as amino acids as well 

as specific pathways associated with neurological illnesses. Pathways such as the 

tyrosine metabolite, urea cycle and polyamine metabolism were investigated. We 

identified significant differences in the pathways such as the tyrosine metabolism; 

this was seen mainly in the ratio of dopamine to epinephrine. This difference was 

seen with the regions that express a high density of dopaminergic neurons in 

comparison to adrenergic neurons. The data collected shows the turnover of 

neurotransmitters such as serotonin to 5-hydroxyindoleacetic acid and dopamine to 

homovanillic acid, DOPAC and 3-methoxytyramine. This demonstrates the 

extensiveness of the data presented within chapter 4.   

With the sharing of absolute quantitative neurochemical concentrations, we have 

captured the metabolome of the mammalian brain. This information can potentially 

be integrated with genome-scale constraint-based models. These findings encourage 

a deeper understanding of the role of the metabolome on brain function and 

connectivity, and create a solid foundation upon which future brain studies can build. 

The information can also be used as a biological validation for analytical and cell 

biology quality. For example, during differentiation of iPSCs into midbrain neurons, 

the neurons are usually identified by their genetic markers18, however, we clearly see 

within this chapter that most neurons are present within all regions. Using this data, 

we can also assess the metabolic signature to potentially allocate the area 
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representation more clearly. Additionally, we can assess the quality of the iPSC-

derived midbrain neurons to decipher whether they mirror the metabolic 

functionality.  

Chapter 5 presents iNESC2DN, a validated constraint-based metabolic model in 

human dopaminergic neurons created from integrating quantitative omics data with 

generic metabolic model Recon3D19 using iPSC-derived, human neuroepithelial stem 

cells (hNESC) differentiated into dopaminergic neurons. These neurons represent 

nigrostriatal dopaminergic neurons that can be used to improve the understanding 

of Parkinson’s disease. Recon3D provided a foundation upon which iNESC2DN could 

be built and refined to include the active/inactive pathways and reactions involving 

genetic and metabolic product fluxes. We applied COnstraint-Based Reconstruction 

and Analysis (COBRA)20,21 which computationally models the integration of known 

biochemical data and new experimental data with the ability of generating new 

hypotheses. This approach is achieved mathematically and mechanistically. We 

hypothesised that these neurons have a genetic predisposition that makes them be 

vulnerable to energy imbalances, i.e., mitochondrial dysfunction. In addition, 

Parkinson’s disease has known mitochondrial genetic mutations that make an 

individual predisposed to developing the condition. For this reason, energy-related 

and neurochemical metabolites were isolated and quantified, using LC-MS and GC-

MS methods, from hNESC differentiated to midbrain-specific dopaminergic neurons. 

Manual curation of metabolic literature was performed using an established protocol 

from Recon2 and included in an update to Recon3D, which provides information 

about gene-protein-reaction associations. In addition, further manual curation 

enabled us to identify active/inactive reactions and genes, transport reactions, 

degradation pathways and quantitative constraints. Transcriptomics data were 

obtained via RNA-sequencing, with 1,202 genes mapped to metabolic genes in 

Recon3D. Metabolomics data were generated using four partially overlapping 

platforms from fresh and spent culture media, with 49 metabolites passing the limit 

of detection and integrated into iNESC2DN. We used AccQ-Tag derivatization (RPLC-

MS) and GC-MS to quantify central carbon and energy-related metabolites, and 

neurochemicals. In addition, published biochemical literature (bibliomics) was 

manually curated to enrich the iNESC2DN model and validate our data findings. 
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Evidence of activity/inactivity in 252 metabolic genes and 445 metabolic reactions 

were highlighted in dopaminergic neurons. 

Our resulting iNESC2DN model offers the first, functional, genome-scale, context-

specific constraint-based reconstruction of human dopaminergic neuronal 

metabolism. Future applications of this model include the ability to quantitatively 

predict the rate and route of metabolite movement in various neurodegenerative 

disease conditions, and the design of exometabolomic and tracer-based 

metabolomics experiments. 

Future prospective  

Method expansion and sensitivity enhancement 

The metabolome contains a vast amount of biochemicals in its repertoire that may 

be the key to understanding disease. As discussed throughout this thesis, these 

metabolites vary in their physicochemical properties, providing analytical challenges 

for the metabolomics community. However, we have developed and validated a new 

derivatization technique with dimethylaminophenacyl bromide (DmPABr) that 

labels the amine, thiol and carboxyl metabolites which constitutes over 90% of the 

human metabolome. This technique provides the capacity to capture a significant 

proportion of the metabolome as well as the ability to study the disease in an absolute 

quantitative manner. The main strength of the reagent DmPABr is the flexibility to 

label a broad range of functional groups and introduce the isotope-coded 

derivatization approach, thus improving coverage and quantitation. With this, we 

envision that the application of the methods created in chapter 2 and chapter 3 can 

be used to broaden the quantitative coverage and detect metabolites that were 

previously undetectable. In addition, we hope that the sensitivity gain can also inject 

life into outdated mass spectrometers that previously suffered from ion suppression 

or low sensitivity. 

During our research of neurodegenerative diseases within chapter 4 and chapter 5, 

we highlighted key pathways that can aid the study of the diseases, with the 

tryptophan metabolism as the main pathway. Tryptophan metabolism, and the 

serotonin and kynurenine pathways22 have been associated with inflammation23 and 

oxidative stress in illnesses such as alcohol use disorder (AUD)24-26, Parkinson’s 

disease27, Alzheimer’s disease28, Huntington’s disease29 and schizophrenia30,31. 
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Unfortunately, there are very few metabolomics methods that capture tryptophan 

metabolism in detail in an absolute quantitative fashion. The tryptophan metabolism 

and related pathways have a diverse range of physicochemical properties that can 

provide a range of challenges, such as the separation of isomers nicotinic acid and 

picolinic acid. Additional challenges include the instability, structural variation and 

sensitivity requirements. This pathway explicitly demonstrates the potential 

utilisation of DmPABr to improve current approaches, provide biomarker discovery 

and enable absolute quantitative data integration into constraint-based metabolic 

models. 

The above methodologies can be used to broaden the coverage of known pathways 

but can also be utilised in the study of single-cell metabolomics11. Single-cell 

metabolomics is a growing field of interest that can potentially aid cancer diagnosis, 

the study of aging and the development of drug resistance32. Additionally, this can 

improve systems biology models by allowing the construction of models based on a 

single cell line with its distinct phenotype. The single-cell approach also allows the 

observation of the cell in a dynamic fashion as it changes through the aging and 

maturation processes; this is likely to be crucial in the understanding of slow-onset 

neurodegenerative diseases. To achieve this, supplementary method expansions can 

be made, including the coupling of the derivatization approaches to sensitive 

analytical equipment such as sheathless CE-MS (with stacking)33, nanoLC-MS/MS34-

36 and nanoESI35. Another approach we expect is the use of quaternary amine-

containing derivatization groups that not only reduce ion suppression but provide a 

more sensitive analysis approach37,38.  

Systems biology and metabolomics 

The future of systems biology has the potential to improve disease understanding 

and provide personalised therapeutic suggestions. However, to achieve this, systems 

biology will need to transition past the evaluation of diseases using single 

compartment models and focus on the connectivity between specific regions and 

organs as we try to understand the whole organism, as discussed by Thiele et al. 

(2020)39. Therefore, several steps need to occur such as the development of multi-

organ cell culture devices, creation of new metabolomics assays with sensitivity and 

global metabolic models. However, one major limitation is the dependency on the 

reporting of information from omics communities. Experimental data that is difficult 
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to reproduce or inaccuracies in reported data potentially can misdirect models. 

Additionally, several experimental factors potentially lead to bias in data that 

realistically represents the human metabolites, i.e. culturing cells in an artificial 

environment, variability in co-culture cell line expression, inaccuracy in brain region 

cell line association and cell life cycle stage. 

 

Figure 6.1. A schematic workflow of the systems biology approach with the use of 

metabolically constraint-based modelling. This workflow is used throughout this thesis 

and the future prospects are labelled 1-4. 

The generation of organ or multi-organ metabolic models will improve our 

understanding of complex neurological disorders. For example, Parkinson’s disease 

is not only associated with changes in the substantia nigra, but it also has been shown 

to exhibit changes within several brain regions, for example, the orbitofrontal 

cortex40, caudate putamen, globus pallidus41, subthalamic nucleus42, thalamus43, 

ventral tegmental area44, locus coeruleus45 and raphe46. Once genome-scale 

metabolic models are extended to broader regions and organs, we can understand 

what causes the vulnerability of substantia nigra dopaminergic neurons compared 

with other neurons. Furthermore, after construction of these models, we can delve 

further into the study of mitochondrial genetic mutations that are associated with 

Parkinson’s disease, i.e. PINK1 and LRRK2. This approach would also benefit from 
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the regional/organ comparison as the mutations exists within all cell lines. However, 

the substantia nigra dopaminergic neurons seem to be the only known cells that 

significantly suffer from this genetic vulnerability. 

Once these models are established, it offers the possibility not only to explore the 

causal factors associated with disease but also provides the opportunity for 

therapeutic target identification. By offering a complex yet comprehensive atlas of 

disease function from genotype to phenotype, this could emphasise the key pathways 

that may alter the disease symptoms or slow the progression of neurodegeneration. 

Using techniques such as induced pluripotent stem cell-derived neurons to evaluate 

the effectiveness of therapies could be possible. Using the systems biology 

approaches will allow us to predict the future of therapeutic responses in a dynamic 

and deeper fashion. Once these milestones are achieved, we will be one step closer 

to personalised medicines. 
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