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Abstract 

Patient-derived cellular models are a powerful approach to study human disease, 

especially neurodegenerative diseases, such as Parkinson’s disease, where affected 

primary neurons, e.g., substantia nigra dopaminergic neurons, are almost 

inaccessible. Induced pluripotent stem cell-derived models of midbrain-specific 

dopaminergic neurons are increasingly used to investigate Parkinson’s disease. 

Starting with the comprehensive generic reconstruction of human metabolism, 

Recon3D, we generated the first constraint-based, genome-scale, in silico model of 

human dopaminergic neuronal metabolism (iNESC2DN). Transcriptomic data, 

obtained by RNA sequencing, and quantitative exometabolomic data, obtained by 

targeted mass spectrometry-based metabolomics were generated for in vitro 

neuroepithelial stem cell-derived cultures and supplemented by extensive manual 

curation of the literature on dopaminergic neurons. The predictions of the iNESC2DN 

model are consistent with neurobiochemical prior information and in concordance 

with measured fluxes of uptake and secretion of many extracellular metabolites by 

dopaminergic neurons in vitro. We leverage it to rank order the most important 

metabolite concentrations to quantify to maximally reduce the uncertainty 

associated with current predictions of normal dopaminergic neuronal metabolism in 

vitro, as well as optimally design experiments to measure metabolic perturbations 

associated with Parkinson’s Disease. Finally, the iNESC2DN model provides a 

foundation for future targeted metabolomic and tracer-based metabolomic analyses 

of dopaminergic neurons. This illustrates the synergy between constraint-based 

computational modelling of metabolism and biology-driven quantitative 

bioanalytical chemistry. 
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Background 

Patient specific induced pluripotent stem cells (iPSCs)-derived, neuroepithelial stem 

cells (NESC)39, 46, 6, 17, differentiated into neurons33, offer an accessible approach to 

study neurodegenerative disorders in vitro. These neurons exhibit certain features, 

such as extensive arborisation and spontaneous electrophysiological activity19, that 

mimic nigrostriatal dopaminergic neurons, the cell type most vulnerable to 

degeneration in Parkinson’s Disease (PD) 25. It has been hypothesised that this 

selective vulnerability is due to an imbalance between the high energy demand of, 

for example, maintaining tonic electrophysiological activity, and low energy supply 

as a result of, for example, mitochondrial dysfunction29,7. Therefore, characterisation 

of the normal metabolic status of a dopaminergic neuron is of major interest but has 

not yet been reported.  

COnstraint-Based Reconstruction and Analysis (COBRA)28 provides a mathematical 

and mechanistic computational modelling framework for experimental design, 

integrative analysis of prior biochemical knowledge with experimental data as well 

as the generation of novel hypotheses. In particular, quantitative bioanalytical 

chemistry27, 35, 32 has been effectively combined with constraint-based modelling of 

metabolism3 to enable context-specific biochemical interpretation of metabolomic 

data, e.g., to discover differences in glycolytic versus oxidative metabolism in 

different lymphoblastic leukaemia cell lines4, and to characterise metabolic changes 

influencing pluripotency and cell fate in stem cells9.  

In this study, Recon3D8, the most comprehensive generic human metabolic 

reconstruction to date, was rendered context-specific by a combination of manual 

curation and omics data integration, to generate a constraint-based model of 

metabolism in human neuroepithelial stem cell-derived dopaminergic neurons, 

denoted iNESC2DN. Manual literature curation and transcriptomic data were used to 

establish the activity, or inactivity, of a core set of metabolic genes and reactions. In 

parallel, liquid chromatography-mass spectrometry (LC-MS) and gas 

chromatography-mass spectrometry (GC-MS) were used to quantify biogenic amines 

and organic acids in fresh and spent culture media from NESC-derived dopaminergic 

neurons in macroscopic cell culture. Different subsets of the obtained 

exometabolomic data, were used to refine the iNESC2DN model and test its 

predictions. The predicted metabolite uptake and secretion fluxes of the iNESC2DN 
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model were broadly consistent with bioanalytical quantification of metabolite 

consumption and secretion fluxes. A novel approach was developed to predict the 

most informative extracellular metabolites to target for future bioanalytical 

quantification as well as predict the effect of condition-specific metabolic 

perturbations as a mean to design future targeted metabolomic and tracer-based 

metabolomic experiments. Taken together, the iNESC2DN model provides a 

foundation for a systems approach to investigate metabolic dysfunction in patient-

derived cellular models of PD, and the approach taken can serve as a template for the 

study of other neurodegenerative diseases. 

Materials and methods 

The following summary is complemented by essential methodological details as 

Supporting Information.  

In vitro experiments. The iPSC derived NESC were differentiated towards midbrain-

specific dopaminergic neurons using an established protocol33. Calcium imaging and 

automated image analysis using an established pipeline19 was used to assess 

electrophysiological activity at day 23 of differentiation (Figure S4). Additionally, at 

day 23 of differentiation, transcriptomic and exometabolomic data were generated 

from separate in vitro cultures using the same differentiation protocol33 (Figure S4). 

Transcriptomic data was obtained by RNA-sequencing. Targeted exometabolomic 

data was generated from fresh and spent culture media, for 74 biogenic amines and 

amino acids, using an established LC-MS method24, and for 24 organic acids by 

adapting an established GC-MS platform1 (supplementary information section S1). 
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Figure 5.1: Overview of the model generation pipeline. From the Recon3D metabolic 

model8, a turnover model was generated by the integration of constraints representing 

the minimum cellular turnover of key metabolites. A preconditioned model was then 

generated by applying qualitative media constraints. Transcriptomic and manually 

curated data revealed the active and inactive reactions and genes in the cell culture and 

in dopaminergic neurons, which were integrated to generate a context-specific model 

using a model extraction algorithm43. The final iNESC2DN model, used for design of 

future experiments, includes all exometabolomically derived constraints on uptake and 

secretion reactions. 

Reconstruction. Following an established protocol40, the generic human metabolic 

reconstruction, Recon241, was refined with additional manual curation of metabolic 

literature specific to dopaminergic neurons, and included in an update to the generic 

human metabolic reconstruction, Recon3D8. Further manual curation was performed 

to define active and inactive reactions and genes, transport reactions, degradation 

pathways and quantitative constraints necessary to represent the requirement for 

molecular turnover in a non-growing, non-dividing dopaminergic neuron. When 

specific information on dopaminergic neurons was not present in the literature, 

information from other neuronal types, cerebral tissue, or rodent data was used 

(supplementary information section S2). 

Model generation. A stoichiometrically consistent, flux consistent, constraint-based 

metabolic model, specific to in vitro NESC-derived dopaminergic neurons, was 

generated using the results of manual curation combined with transcriptomic and 
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exometabolomic data. Active and inactive genes, obtained from manual curation, or 

transcriptomic data, or both, were constrained in Recon3D, with manual curation 

given priority if a discrepancy arose40. This integration was completed using the 

COBRA Toolbox16, a software tool for modelling genome-scale biochemical networks 

and integrative analysis of omics data in a network context. In particular, 

FASTCORE43, was used as the model extraction algorithm. Models were refined by 

comparing biochemical literature with the results of Flux Balance Analysis26. The 

workflow for model generation is illustrated in Figure 5.1 and described in more 

detail in supplementary information section S3 and section 4.  

Model testing. Two test models were generated, termed ModelUpt and ModelSec, 

which included a subset of quantitative metabolomic data as constraints on uptake 

reaction fluxes or secretion reaction fluxes, respectively, while the excluded 

metabolomic data was used for comparison with model predictions. Flux Variability 

Analysis (FVA)20 and uniform sampling15, were used to test the ability of these test 

models to predict the fluxes of extracellular secretion or uptake reactions, or both 

(supplementary information section S5). Uniform sampling provides a quantitative 

prediction of the probability of each quantitative flux value, between the same 

minimum and maximum flux predicted by flux variability analysis, assuming that 

each feasible steady-state flux vector is equi-probable. 

Experimental design. Three distinct pipelines were developed that use the 

iNESC2DN model for experimental design. An uncertainty reduction pipeline rank 

orders exchanged metabolites according to those whose quantitative 

exometabolomic measurement would maximally shrink the feasible steady-state 

solution space. A phenotypic perturbation pipeline rank orders exchange reactions 

according to those whose rates are predicted to be most likely to change in response 

to a perturbation to an internal reaction rate. Finally, a tracer-based metabolomic 

pipeline was used to identify the non-elementary conserved moieties14 exchanged 

across the boundary of the iNESC2DN model that could be isotopically labelled to 

quantify the activity of metabolic pathways of specific importance to dopaminergic 

neurons (supplementary information section S6). 
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Results 

Experimental characterisation. Differentiated neurons were identified by TUB𝛽III 

immunoreactivity and those also positive for tyrosine hydroxylase indicated the 

presence of neurons capable of converting tyrosine to L-DOPA, the penultimate step 

in dopamine synthesis (Figure 5.6a). Analysis of calcium imaging data revealed 

spontaneously active neurons (Figure 5.6b, c, d). In the transcriptomic data, 

fragments were detected from 18,530 genes, but only 12,698 of these were 

sufficiently abundant to be considered expressed. That is, above a threshold of one 

Fragment per Kilobase of exon per Million reads34. Of the expressed genes, 1,202 

could be mapped to metabolic genes in Recon3D and were considered active, unless 

manual curation of the literature revealed otherwise. The selected metabolomic 

platforms target a total of 98 metabolites present in Recon3D. In the spent medium, 

only 50 metabolites were quantified above the lower limit of detection. However, the 

iNESC2DN model contains 49 metabolites with constraints on their corresponding 

exchange reaction fluxes as there was one two measured metabolite (Glutaric acid) 

that could not be integrated with the model as there are no stoichiometrically and 

flux consistent reactions that correspond to them in Recon3D (supplementary 

information section S7).  

Dopaminergic neuronal reconstruction and model generation. Literature 

curation revealed evidence for the activity, or inactivity, of 252 metabolic genes 

(Table S-1) and 445 metabolic reactions (Table S-2) in dopaminergic neurons. 

Turnover constraints were added to represent the maintenance of a dopaminergic 

neuron (supplementary information section S4.3, Table S-2). Subsequently, 

differences in metabolite concentrations over time, were either converted into 

constraints on exchange reaction fluxes to generate a context-specific model, or kept 

independent from the model generation pipeline and used to test in silico model 

predictions (supplementary information section S7). Exometabolomic concentration 

changes for two metabolites (L-proline and serine), could not be directly integrated 

with the draft context-specific model as it became infeasible, therefore, as described 

in supplementary information section S4.6, relaxation of exometabolomic 

constraints on reactions corresponding to these two metabolites was required. The 

iNESC2DN model, i.e., the context-specific model using all exometabolomic 

constraints compatible with a feasible model, consists of 1,791 biochemical 
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reactions, between 828 unique metabolites, representing the activity of 1,853 

metabolic genes from 90 biological pathways. In addition, the model contained 246 

exchange reactions, 20 for uptake of metabolites from the media, 161 to secrete 

metabolites into spent media, 63 reversible exchange reactions (e.g., for transport of 

water), which were open, and 5 ionic external reactions, e.g., for sodium, calcium and 

potassium (Table S-3), which were closed as the model currently ignores ion 

transport associated with electrophysiolgical activity.  

Model testing. A model generated using quantitative exometabolomic data on the 

uptake of metabolites (ModelUpt) could reasonably well quantitatively predict the 

flux of most secretion reactions, determined from exometabolomic data on 

metabolite secretion. Likewise, a model constrained with exometabolomic data on 

secretion reactions (ModelSec) could reasonably well predict the flux of most uptake 

reactions, determined from exometabolomic data. In both cases, the peak of the 

sample distribution for each exchange reaction, obtained from uniform sampling, 

was substantially better at quantitatively predicting the independent 

exometabolomic data, when compared with the ranges of exchange fluxes 

determined by flux variability analysis. Figure 5.2 illustrates representative 

comparisons for either uptakes or secretions, while Figures S12 and S13 illustrate 

comparisons for all reactions. In Figure 5.2, the measured secretion reaction fluxes 

were within the range predicted by flux variability analysis of ModelUpt for 26 

metabolites, as in (a) and (b), and outside the range for 3 metabolites, as in (c). The 

measured uptake reaction fluxes were within the range predicted by flux variability 

analysis of ModelSec for 14 metabolites, as in (d) and (e), and outside the range for 5 

metabolites, as in (f). 
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Figure 5.2: Comparison of predicted and measured metabolite exchange reaction 

rates. An uptake constrained model (ModelUpt) was tested for its ability to predict 

measured rates of 30 secreted metabolites, with three representatives illustrated in (a-

c). A secretion constrained model (ModelSec) to test its ability to predict measured rates 

of 19 metabolites taken up from the fresh medium, with three representatives 

illustrated in (d-f). A measured range for each exchange reaction rate (pink) was 

obtained from quantitative exometabolomic measurements and includes one standard 

deviation of measurement uncertainty. Predicted probability of exchange reaction flux 

obtained by uniform sampling (dark blue). Predicted exchange reaction flux, derived 

from the mean of the sampling distribution (red star). Predicted maximum and 

minimum fluxes obtained by flux variability analysis (FVA). 

Model characterisation. The iNESC2DN model has the potential to secrete 161 

metabolites (Table S-2), including hydrophilic metabolites such as sugars, amino 

acids, carboxylic acids, keto acids, and nucleobases/nucleosides/nucleotides, while 

the lipophilic metabolites include free fatty acids, oxylipins, sterol lipids, 

sphingolipids, prenol lipids and fat soluble vitamins. The properties of these 

metabolites are an analytical chemistry consideration when selecting or developing 

targeted platforms for future exometabolomic experiments (Table S-3). Out of 161 

metabolites predicted to be secreted, 17 were expected based on their assignment as 

active reactions during manual curation (Table S-2). A minimal set of reactions 

required to satisfy the constraints on the iNESC2DN model, e.g., turnover constraints, 
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is predicted to consist of 363 reactions (Table S-2). These reactions are involved in 

major metabolic pathways and pathways specific to neurons and dopaminergic 

neurons (Figure S14). Of the minimal reactions, about half (151/363) were manually 

curated to be active in dopaminergic neurons, with 32 involved the metabolism of 

dopamine. Twenty minimal reactions correspond to exchange reactions including 7 

metabolites that can be taken up or secreted. The other 13 minimal uptake reactions 

predict the set of minimal medium metabolites for an in vitro dopaminergic neuron. 

These metabolites are glucose, the major source of energy, inorganic phosphate, 

ammonia, reduced glutathione, hydrogen carbonate and 15 amino acids, 9 of which 

are essential. Two amino acids, glutamine and arginine, are predicted to be 

conditionally essential with respect to dopaminergic neurons, as their uptake is 

essential for the feasibility of the model, but they can be synthesised by other tissues 

in the human body. 

  



Chapter 5 

178 
 

5 

 

Figure 5.3: Experimental design. Uncertainty reduction. a) The steady-state flux 

space, Ω ∶= {𝑣 ∈ ℝ𝑛 ∣ 𝑆𝑣 = 0, 𝑙 ≤ 𝑣 ≤ 𝑢}, of the iNESC2DN model was sampled. b) The 

covariance matrix of the sampled flux vectors 𝑣 ∈ Ω was computed. c) The Euclidean 

norm for each row of the covariance matrix was calculated. d) The most informative 

exchange metabolites to measure were rank ordered by decreasing size of the Euclidean 

norm(blue), after taking into account the reduction in uncertainty (red) associated 

with measurement of higher ranked metabolites. The variance reduction due to 

cumulative measurement of higher ranked metabolite exchanges (orange) is taken into 

account in the ranking. Phenotypic perturbation. e) In the iNESC2DN model, certain 

internal reaction rates were perturbed, by changing reaction bounds, to represent, e.g., 

a gene deletion or a decrease in the maximum rate of a reaction. f) The steady-state flux 

space of the original and perturbed models are sampled. g) A two-sample Kolmogorov-

Smirnov test was used to test for significant differences between the control and 

perturbed flux probability distributions. h) Significantly perturbed reactions were 

hierarchically clustered according to the magnitude of the increase (blue) or decrease 

(red), in the mean of the flux probability distribution for each exchanged metabolite. 

Exometabolomic experimental design. Using the uncertainty reduction pipeline, 

we rank ordered 20 unmeasured exchange metabolites by the degree to which their 

measurement would shrink the feasible set of steady-state flux vectors for the 

iNESC2DN model (Figure 5.3a and Table S-3). The three top informative extracellular 

metabolites identified were phylloquinone (Vitamin K1, phyQ), 5-betacholestane-3-

alpha (link), which is a bile acid synthesis pathway intermediate, and biotin (btn), 

which is a small vitamin molecule that acts as a cofactor in oxidative metabolism. The 

phenotypic perturbation pipeline predicted a set of exchange reactions that 

consistently vary as a result of knock-out of either the GBA1 gene, encoding 
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lysosomal and cytoplasmic glucocerebrosidase, or complete inhibition of 

mitochondrial complex 1 (Figure 5.3b).  

Tracer-based metabolomic experimental design. A subset of the iNESC2DN 

model was atomically resolved using the COBRA Toolbox v3.016. Specifically, a 

submodel was generated from the majority (1,091/1,533) internal reactions where 

a balanced atom mapping could be algorithmically predicted using the Reaction 

Decoder Tool31, including manual correction of R-group specification in appropriate 

substrate-reactant pairs, not previously done for the atom mappings reported in 

Recon3D8. No balanced atom mappings could be computed for 442 reactions in the 

iNESC2DN model, as at least one molecular structure was not available for each 

reaction or the corresponding reaction was unbalanced. In the submodel, a total of 

215 conserved moieties, their corresponding chemical structures and moiety 

subnetworks were identified. Using this subModel we predicted the non-trivial 

conserved moieties associated with all of the metabolites that could be taken up from 

the fresh medium, which therefore could be used in future tracer-based metabolomic 

experiments. For example, a conserved moiety, with molecular formula N4C4, is 

predicted to be taken up from the medium within hypoxanthine and is present in 90 

different metabolites in the subModel including 5-Methylthioadenosine, AMP, ATP 

and hexanoyl coenzyme A, each of which have the potential to be secreted by the 

iNESC2DN model. 

Discussion 

Advances in constraint-based reconstruction and analysis. Completion of this 

study required several advances in constraint-based reconstruction and analysis. For 

example, this modelling approach is most commonly applied to biochemical systems 

where one predicts a feasible steady state flux vector that also satisfies a biologically 

motivated cellular objective, e.g., maximisation of biomass production flux for an 

exponentially growing culture of bacteria26. However, neither substantia nigra 

dopaminergic neurons nor differentiated dopaminergic neurons divide, and it is not 

known what the cellular objective is for such neurons. Therefore, we added new 

constraints that enforce certain internal reactions, or combinations thereof, to 

operate above a certain flux, e.g., constraints on the turnover rate for metabolites and 

constraints representing the energetic requirements for biomass maintenance and 

electrophysiological signalling. As no cellular objective is assumed, uniform 
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sampling42 was applied, e.g., to reliably predict the sets of reaction fluxes that vary 

most in response to a PD relevant perturbation. This required the development and 

application of a novel algorithm, guaranteed to uniform sampling of the steady state 

solution space of high-dimensional metabolic networks15, such as those derived from 

Recon3D.  

Another example of a novel advance in constraint-based reconstruction and analysis 

is our pipeline (Figure 5.1) to generate a constraint-based metabolic model of a non-

dividing cell that starts with the most comprehensive generic metabolic network to 

date, Recon3D8, and integrates biochemical, transcriptomic, exometabolomic and 

manually curated data. It allows the generation of a variety of in silico models of 

neuronal metabolism, in a more comprehensive manner than previously described 

methods23 and models18. The pipeline is sufficiently flexible that it can be used to 

generate context-specific, genome-scale metabolic models using data from 

dopaminergic neurons with different genetic backgrounds and different conditions, 

e.g., mitochondrial monogenic PD patient-derived cultures (e.g., PINK1) and isogenic 

control cultures exposed to mitochondrial stressors.  

Biochemical interpretation of well predicted metabolic characteristics. 

Variants of the iNESC2DN model performed well at quantitatively predicting 

metabolite secretion fluxes, given quantitative bounds on metabolite uptake fluxes, 

and at quantitatively predicting metabolite uptake fluxes, given quantitative bounds 

on metabolite secretion fluxes (Figure 5.2). Of the analysis methods tested, uniform 

sampling of steady state fluxes yielded the best predictions of quantitative secretion 

fluxes, especially for proline, putrescine and asparagine. The iNESC2DN model 

predicts the potential to uptake or secrete many metabolites that are not constrained 

by our quantitative exometabolomic data. Of the unmeasured metabolites predicted 

to be secreted by the iNESC2DN model, at least 30 are specifically associated with 

neuronal disorders (Table S-3), e.g., increased pyroglutamic acid is an indicator of 

glutathione deficiency and is associated with brain toxicity due to formation of amino 

acid adducts and dopamine quinones13.  

All vulnerable neuronal populations in Parkinson’s disease seem to either use 

monoamine neurotransmitters, such as dopamine (dopaminergic neurons within 

substantia nigra pars compacta), norepinephrine (noradrenergic neurons in locus 

coeruleus), and serotonin (serotonergic neurons in raphe nucleus), or produce 



Mechanistic model of dopaminergic neuron metabolism 

181 
 

5 

cytosolic monoamines, such as the cholinergic neurons of the dorsal motor nucleus 

of the vagus36, 25. Also, high levels of cytosolic monoamines are hypothesised to 

underlie selective degeneration, since vulnerable neuronal populations generally 

include a catecholamine-derived neuromelanin pigment36, 44. Consistent with 

phenylalanine being the precursor of monoamine neurotransmitters, the iNESC2DN 

model includes a high representation of reactions from the phenylalanine, tyrosine 

and tetrahydrobiopterin metabolism.  

Most of the cellular phenotypic traits that are shared between vulnerable neuronal 

populations in Parkinson’s disease, can be associated with a metabolic burden36. Such 

neurons require a high supply of energy in order to meet the demand to tonically 

propagate action potentials over a large axonal arbour and for the synthesis, release 

and reuptake of neurotransmitters47, 36. This intrinsic need to produce and consume 

a large amount of energy is thought to makes these neurons especially vulnerable to 

any impairment of energy metabolism47, 45, therefore mitochondrial deficits could 

drive pathogenesis in Parkinson’s disease38, 37, 36. Consistent with this, in the 

iNESC2DN model we observe an increased representation of reactions related with 

oxidative phosphorylation, mitochondrial transport and the metabolism of cofactors, 

such as NAD metabolism. 

The predicted minimal medium, which is the minimum number of metabolites 

required to be taken up by the model, consists of typical energetic substrates, 

essential amino acids and certain nonessential amino acids. In particular, L-

glutamine is a non-essential amino acid that can be converted into nucleotides that 

then serve as a source of energy. Recently, a novel link has been described between 

glycolysis and mitochondrial dysfunction, which is mediated by reductive 

carboxylation of L-glutamine12. A decrease in utilisation of reduced nicotinamide 

adenine dinucleotide (NADH) by the mitochondrial respiratory chain results in 

cytosolic reductive carboxylation of glutamine and thereby cytosol-confined NADH 

recycling. It is not known if this mechanism is of particular interest for PD. The 

minimal set of active reactions also predicted the activity of many reactions in 

dopamine metabolism, reflecting the importance of these reactions within the 

metabolic network. The set of minimal medium metabolites for an in vitro 

dopaminergic neuron provides a basis for the rational design of defined fresh 

medium specific for neuronal cell cultures5. 
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Biochemical interpretation of poorly predicted metabolic characteristics. 

When disparate biochemical information from different experiments is integrated 

into a constraint-based model, they must be made consistent because inconsistent 

constraints will lead to an infeasible model, that is, one which does not admit any 

steady state flux. Therefore, it is important to achieve a balance between integration 

of further prior information, with the aim to improve quantitative predictions, and 

the risk of infeasibility due to inconsistency. As an example, the glutathione 

transferase (VMH link) reaction in dopamine metabolism was manually curated to 

be active since it is present in dopaminergic neurons11, but it was excluded during 

model generation as it was not part of any flux consistent pathway in the generic 

Recon3D model. This indicates a metabolic pathway that requires future manual 

curation in the next iteration of the generic human metabolic reconstruction. 

Furthermore, qualitative metabolic predictions were made concerning secreted 

metabolites that may be important for dopaminergic neurons, but they were not 

tested because the targeted metabolomic platforms were initially chosen before the 

model existed.  

Exometabolomic concentration changes for L-proline and serine, could not be 

directly integrated with the preconditioned model without making it inconsistent 

with the existence of a steady state flux. Recon3D allows reversible transport of the 

conditionally essential amino acid, L-proline. Prior to addition of exometabolomic 

data, the context-specific model includes extracellular transport reactions for L-

proline, e.g., via proton symport PROT2r, but does not require secretion of L-proline, 

only either uptake or secretion is required. Therefore, when the exometabolomic 

data, which observes secretion of L-proline, is attempted to be integrated with the 

draft context-specific model, it may not be, and in this case is not feasible to obtain a 

steady state flux that secretes L-proline. Therefore, relaxation of the exometabolomic 

constraint, to permit L-proline uptake by the model, is required to render the model 

feasible. The situation is the same for serine, a non-essential amino acid. Essentially 

the common issue here is that data on the presence of gene products only provides 

information that the corresponding reaction may be active, but not the direction that 

the corresponding reaction is active in. 

Relationship between in vivo, in vitro and in silico. Manual curation of the 

literature focused on quantification of neuronal molecular composition, turnover 
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fluxes, active genes, active reactions and inactive reactions specific to neurons, and 

substantia nigra dopaminergic neurons in particular. In parallel, we integrated 

transcriptomic and metabolomic data from human neuroepithelial stem cell derived 

neurons in macroscopic culture. As such, the iNESC2DN model is an in silico model 

that particularly emphasises the properties of human substantia nigra dopaminergic 

neurons and the properties of human neuroepithelial stem cell derived neurons33. 

The macroscopic culture is a state of the art in vitro model of a human substantia 

nigra dopaminergic neuron in vivo. However, a single DN emanating from the 

substantia nigra is characterised by a massive axonal arbour21, much larger than 

other neuronal types, and projects to ~200k terminals in the striatum29. In contrast, 

the in vitro neurons do have extensive neuronal projections, but not to the same 

extent as in vivo. Like this morphological divergence, there may be a molecular 

divergence between the in vivo neuron, on which manual curation was based, and on 

the in vitro neuronal culture used for generation of transcriptomic and metabolomic 

data, which is not pure culture of DN and may have a different extracellular 

metabolome. It will be interesting to compare this version of the iNESC2DN model 

with future versions generated using protocols already in development for 

generation of higher purity dopaminergic neuronal cultures. 

Exometabolomic experimental design. Algorithmic experimental design was used 

to propose designs that optimise the information obtained in future exometabolomic 

and tracer-based metabolomic experiments. Algorithmic design of exometabolomic 

experiments enables optimal selection and development of targeted mass 

spectrometry platforms for future analyses. This is important as one targeted 

analytical platform cannot quantify the concentration of all of the metabolites within 

the iNESC2DN model (supplementary information section S15). Our uncertainty 

reduction pipeline rank orders unmeasured exchanged metabolites by the degree to 

which their measurement would shrink the feasible set of steady-state flux vectors. 

The top ranked metabolites include biotin, which is known to be enriched in select 

areas of the central nervous system, including the substantia nigra22. Phylloquinone 

interacts with the N-terminus of alpha-synuclein, inhibits fibril formation in vitro and 

is being investigated with a view toward development of new therapies targeting 

alpha-synuclein aggregation10. 
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Design of tracer-based metabolomic experiments. The pipeline for tracer-based 

metabolomic experiment design is hampered by the absence of molecular structures 

for some reactants30, e.g., those with R groups in the structure, as they precluded the 

atomic resolution of all reactions in the iNESC2DN model. However, it was possible 

to atom map the majority of internal reactions, which permitted the identification of 

the majority of conserved moieties14 in the iNESC2DN model. Identification of 

conserved moieties has strong potential for use in design of tracer-based 

metabolomic experiments46. By isotopically labelling any single atom in a conserved 

moiety, one can use the iNESC2DN model to predict the reachable set of metabolites 

that could contain that isotopic label, or any other isotopically labelled atom in the 

same conserved moiety. For a single conserved moiety, this approach for the design 

of an isotopic labelling strategy has been explored with the related concept of an 

elementary metabolic unit2. This will facilitate future study of metabolic pathways 

particularly significant for identified by our exometabolomic approach in more 

detail. 

Conclusions 

We have developed the first, mechanistic, genome-scale, metabolic model of a 

pluripotent stem cell derived dopaminergic neuronal culture, denoted iNESC2DN. It 

combines extensive manual curation of biochemical literature with genome-scale 

quantification of transcripts and extracellular metabolite concentration changes. The 

model also atomically resolves metabolic transformations at genome-scale. Variants 

of the model, tested against subsets of independent exometabolomic data, could 

quantitatively predict metabolite uptake and secretion fluxes for many fresh and 

spent medium metabolites. With a view towards future metabolomic experiments to 

refine the model in an iterative systems biology cycle, we demonstrate its utility for 

experimental design of targeted metabolomic and tracer-based metabolomic 

experiments. As such, the iNESC2DN model establishes a solid foundation for 

comparative analyses of neuroepithelial stem cell derived dopaminergic neurons 

from PD patients and controls via mechanistic model-driven metabolomic and 

tracer-based metabolomic approaches, and we expect, that this strategy will be very 

useful also for other neurodegenerative diseases. 
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Supporting Information 

 

Part I 

Methods 

S1 Experiments 

S1.1 Cell culture 

An overview of the experimental approach is given in Figure S4. 

 

Figure S4: Experimental protocol overview. 

Human neuroepithelial stem cells (hNESC) were differentiated into midbrain 

dopaminergic neurons. The cell number in each culture well was counted on day 1, 

13, 19 and estimated for day 23. Spent media samples for metabolomic analyses were 

collected at days 10, 13, 19 and 23. Samples were analysed with both GC-MS and LC-

MS. At day 23, live cells were subjected to calcium imaging followed by 

immunostaining assays, and collection of parallel samples for transcriptomic 

analysis. The media composition at the various stages of cell culture were as follows; 

Maintenance stage (red): maintenance medium containing ascorbic acid, 

purmorphamine (PMA) and the aminopyrimidine CHIR-99021(CHIR). 

Differentiation stage (green): differentiation medium containing ascorbic acid, Brain-

derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), 

Transforming Growth Factor Beta 3 (TGF𝛽3), dbcAMP and PMA. Maturation stage 

(blue): differentiation media without PMA. 

 

S1.1.1 Human neuroepithelial stem cell-derived dopaminergic 

neuronal differentiation. 

A human neuroepithelial stem cell line from a healthy human donor (Identifier: 

3.0.0.10.0 Acronym: hNESCs K7/ NPBSCs/NEs, wild-type) was maintained and 

differentiated into DNs, using an established protocol54, summarised below. 

 

N2B27 Medium preparation. The culture medium, denoted N2B27 medium, was 

used as the basis to prepare both maintenance and differentiation media and was 
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obtained by mixing equal amounts of Neurobasal medium (Invitrogen/Life 

Technologies) and DMEM/F12 medium (Invitrogen/Life Technologies) 

supplemented with 1% penicillin and streptomycin (Life Technologies), 2 mM L-

glutamine (Life Technologies), 0.5 X B27 supplement without Vitamin A (Life 

Technologies) and 0.5 X N2 supplement (Life Technologies). The final concentration 

of the media composition is fully detailed in Table S-4. 

 

Plate coating. Nunc cell-culture treated 6-well plates (ThermoFisher scientific, 

Roskilde, Denmark) were coated with 1% Matrigel (Discovery Labware, Inc., Two 

Oak Park, Bedford, MA, USA, Catalogue number 354277, lot number 3318549) in 600 

μ L of knockout DMEM (1X) medium. 

 

Cell seeding and maintenance. At the time of cell seeding, the knockout DMEM (1X) 

medium from the coating step, was removed from each well and the K7 hNESC line 

was seeded in three replicate wells. The medium to maintain the hNESC in culture, 

denoted maintenance medium (red in Figure S4: Overview of the experimental 

protocol), is based on N2B27 medium with 0.5 𝜇M PMA (Enzo life sciences), 3 𝜇M 

CHIR (Axon Medchem) and 150 𝜇M ascorbic acid (Sigma Aldrich). The cell seeding 

was done by preparing 5 × 106 million cells/mL in 50% matrigel in maintenance 

medium and adding 200 𝜇L of this preparation to obtain approximately 0.2 mm or 

200 𝜇m thick layer of cells in three dimensions within Matrigel, with 4 × 105cells per 

well. After the Matrigel and cell mixture was added to the well, the plate was 

incubated for 2 min at 37 °C to gelate the matrigel layer, the plate was then taken out 

of the incubator and 2.8 mL of maintenance medium was added and the plate was 

incubated at 37 °C and 5% CO2 for 48 h. 

 

Neuronal differentiation and maturation. The differentiation medium with PMA  

preparation to induce the differentiation of hNESC towards midbrain dopaminergic 

neurons consisted of N2B27 medium with 200 μ M ascorbic acid, 0.01 ng/ μ L BDNF 

(Peprotech), 0.01 ng/ μ L GDNF (Peprotech), 0.001 ng/ μ L TGF β 3 (Peprotech), 2.5 

μ M dbcAMP (Sigma Aldrich) and 1 μ M PMA. This medium preparation was 

completely replaced every 2 days during the next 6 days of culture in the 

differentiation process. For the maturation of differentiated neurons, PMA is 

required to be absent from the differentiation medium. This differentiation medium 



Chapter 5 

194 
 

5 

without PMA was used from day 9 onwards and 50% media replacement every 2 days 

for 3 weeks. 

 

S.1.1.2  Microscopy and calcium imaging 

To monitor cellular morphology during differentiation, bright field images were 

acquired every 48h for 23 days of differentiation using a Zeiss Axiovert 40 CFL 

microscope equipped with a cooled charge-coupled device based camera (Zeiss 

AxioCam MRm, Zeiss). At day 23 in culture, calcium imaging was done with a Fluo-4 

AM green-fluorescent calcium indicator dye. After removing the differentiation 

medium, 1 mL of 5𝜇M cell permeant Fluo-4 AM (Invitrogen/Life Technologies, 

F14201) in neurobasal medium, was added to selected wells of a 6-well plate at room 

temperature. Full frame fluorescence images, of size 2560×2160 pixels, were 

acquired using an epifluorescence microscope (Leica DMI6000 B, Germany) 

equipped with a cooled sCMOS camera (Neo 5.5, Andor technology, UK) and both 

were controlled with Micro-manager (version 1.4)13. Images were sampled at a rate 

of approximately 10 Hz for about 2 min, stored as image stacks and analysed off-line 

using MATLAB (release 2013b; Mathworks). To automatically detect the neurons, we 

used the ADINA toolbox12 (https://bitbucket.org/jakirkham/adina-toolbox-

v0.1/src), which is a set of MATLAB functions specifically developed for the analysis 

of calcium imaging data. This includes a segmentation step where regions of interest 

corresponding to individual neurons are selected. For each segmented neuron, we 

measured fluorescence traces as relative changes in fluorescence intensity over time. 

 

S1.1.3 Immunofluorescence staining assay 

Immunostaining for a dopaminergic marker, tyrosine hydroxylase (TH) and a pan 

neuronal marker, Class III 𝛽-tubulin (TUBbIII) were used to identify differentiated 

dopaminergic neurons. Immunostaining for tyrosine hydroxylase (TH) positive 

differentiated neurons was performed on wells of a 6-well plate after day 25 of 

differentiation. Differentiated cells were fixed with 4 % PFA in 1× phosphate-

buffered saline (PBS) (15 min), followed by permeabilisation with 0.05% Triton-X 

100 in 1× PBS (3 min on ice), and blocking with 10% fetal calf serum (FCS) in 1× PBS 

(1 h). After washing with 1× PBS, the primary antibodies mouse anti-TUB𝛽III 

(1:1000, Covance, Germany), rabbit anti TH (1:1000, Santa Cruz biotechnology, 

Germany) and chicken anti-GFAP (1:1000, Merck Millipore, Germany), were 
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incubated for 90 min at 25 °C. After washing with 1× PBS, the secondary antibodies 

Alexa Fluor 488 Goat Anti-Rabbit (1:1000, Invitrogen), Alexa Fluor 568 Goat Anti-

Mouse (1:1000, Invitrogen), Alexa Fluor 647 Goat Anti-chicken (1:1000, Invitrogen) 

and Hoechst 33342 to stain DNA (1:10000, Invitrogen), were incubated overnight at 

4 °C. After washing with 1× PBS, confocal images of areas of selected wells were 

acquired, using a confocal microscope (Zeiss LSM 710). 

 

S1.2 Transcriptomic analyses 

S1.2.1 Cell culture 

A human neuroepithelial stem cell line from a healthy donor was maintained and 

differentiated into DNs, using an established protocol54, described in supplementary 

information section S1.1.1, with the following adaptions. The hNESCs were cultivated 

in mTESR1 medium (StemCell technologies, #05850) on 6-well dishes coated with 

Matrigel (Corning, #354263). The media composition, to the extent that it has been 

defined by the manufacturer, is detailed in Table S-4. At 23 days of the protocol 

(Figure S4), the percentage of TH positive cell was estimated between 15-20%. Since 

protein content per cell can vary from 2.46 × 10−5 to 4.71 × 10−5𝜇g/cell, protein 

content was measured using a Bradford protein assay. 

 

S1.2.2 RNA preparation 

 

RNA extraction The Ambion Magmax™-96 total RNA isolation kit (Life Sciences) was 

used for RNA extraction. Magnetic beads were used to isolate nucleic acids. 

Afterwards, the samples were washed and purified with DNAase. The RNA obtained 

was eluted in 50𝜇𝑀 elution buffer. Fragment Analyzer (Aligent Technologies Inc.) 

was used to measure RNA quality and concentration. 

 

RNA-sequencing protocol RNA-sequencing data was generate from a hNESC-

derived dopaminergic neuronal cell culture at day 23 in culture. The sequencing 

library preparation was done using 200 ng of total RNA input with the TrueSeq RNA 

Sample Prep Kit v3-Set B (RS-122-2002, Illumina Inc, San Diego, CA) producing a 275 

bp fragment including adapters in average size. In the final step before sequencing, 

twelve individual libraries were normalised and pooled together using the adapter 

indices supplied by the manufacturer. Pooled libraries have then been clustered on 
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the cBot Instrument (Illumina Inc, San Diego, CA) using the TruSeq SR Cluster Kit v3-

cBot-HS (GD-401-3001, Illumina Inc, San Diego, CA) sequencing was then performed 

as 78 bp, single reads and 7 bases index read on an Illumina HiSeq3000 instrument 

using the TruSeq SBS Kit HS- v3 (50-cycle) (FC-401-3002, Illumina Inc, San Diego, 

CA). 

 

S1.3 Analysis of RNA sequencing data 

The raw RNA-seq data were analysed with a custom-made RNA-seq analysis pipeline, 

which included publicly available software (SAMtools, version 0.1.18; FASTX-Toolkit, 

version 0.0.14)36 and custom-made python scripts. The RNA-seq analysis pipeline 

consists of six main steps: (i) quality control for the raw RNA-seq reads; (ii) 

prepossessing of the raw RNA-seq reads to remove adapters and low-quality 

sequences; (iii) alignment of the reads to the human reference genome; (iv) assembly 

of the alignments into transcripts and (v) quantification of the expression levels of 

each gene. Briefly, the raw RNA-seq reads (length 52 nucleotides, single-end) of each 

sample were checked by FastQC (version 0.11.2) to determine the read quality. 

Adapter sequences and low quality sequences were removed by cutadapt (version 

1.10)39 using default settings. Reads with length less than 25 nucleotides were 

excluded from further analysis. Next, the alignment of RNA- seq reads against the 

human reference genome (NCBI build37.2, downloaded from iGenome of Illumina, 

https://support.illumina.com/sequencing/sequencing_software/igenome.html) 

was performed using TopHat2 (version 2.0.13)30. Alignment results were processed 

by Cufflinks (version 2.2.1)67 for assembly of transcripts with default parameter 

settings. The quantification of gene expression was estimated by normalised FPKM 

(Fragments per kilobase of transcript per Million mapped reads) and counts at gene 

level by cuffnorm (version 2.2.1)67. In order to obtain one expression value per gene, 

we used the transcript with the largest average expression as representative for the 

corresponding gene, since measurements for low-abundance transcripts are less 

reliable. In case of replicated genes, the maximum value expression from replicates 

was averaged. 

 

S1.4 Exometabolomic data 



Mechanistic model of dopaminergic neuron metabolism 

197 
 

5 

Table S-3 contains a list of target metabolites analysed with both LC-MS and GC-MS 

platforms: 75 biogenic amines and amino acids, and 24 organic acids. Aspartic acid is 

targeted in both platforms, therefore a total of 98 metabolites were targeted. 

 

S1.4.1 LC-MS profiling of biogenic amines and amino acids 

The analysis of 75 biogenic amines (Table S-3) was performed with an established 

LC-MS method46. Briefly, 15 𝜇L of culture medium was extracted by adding 400 𝜇L of 

ice-cold methanol, 55 𝜇L of ice-cold milliQ water, 10 𝜇L of tris(2-

carboxyethyl)phosphine (TCEP; 1𝜇g/𝜇L) and 10 𝜇L of a mixture of stable isotope 

labelled internal standards (Table S-3). The samples were vortexed for 10-20 

seconds and centrifuged at 16000×g and 4 °C for 10 min. For the the calibration 

samples, 80 𝜇L of each calibrant sample was mixed with 10 𝜇L of TCEP (1 𝜇g/𝜇L) and 

10 𝜇L of internal standard mix and extracted with 400 𝜇L of ice-cold methanol as for 

medium samples. After centrifugation, all supernatants were transferred into 1.5 mL 

tubes and the liquid extracts were evaporated in a vacuum concentrator (Labconco, 

Kansas City, MO, USA) to dryness. The dried extracts were first dissolved in 80 𝜇L 

borate buffer (pH 9) and mixed with 20 𝜇L of pure acetonitrile containing 3 𝜇g/𝜇L 

AccQ-Tag derivatisation reagent (Waters, Etten-Leur, Netherlands) to start the 

chemical derivatisation of the primary and/or secondary amine groups. The 

derivatisation reaction was performed at 55 °C for 30 min in a temperature-

controlled orbital shaker (VWR Incubating Microplate Shaker, Germany). After 

completion of derivatisation, the samples were centrifuged at 16000×g and 4 °C for 

2 min and 80 𝜇L of the supernatant was transferred into LC vials for sample injection. 

1 𝜇L of the liquid extract was injected onto the analytical column for the analysis.   

 

All measurements were performed with a Waters Acquity ultra-high pressure liquid 

chromatography (UPLC) (Milford, MA, USA) hyphenated with Agilent 6460 triple-

quadrupole mass spectrometer (Palo Alto, CA, USA). Chromatographic separation 

was achieved on a Water Acquity HSS T3 C18 UPLC column (2.1×100 mm, 1.7 𝜇m) 

and the metabolites were identified based on their retention time and via multiple 

reaction monitoring (MRM) transitions from their protonated precursor ions of the 

AccQ-Tag derivates into common product ion of 171 m/z with corresponding linear 

ranges and LOD values (Table S-3). The peak detection and integration were 

performed with Agilent MassHunter Quantitative Software v7.0 (Palo Alto, CA, USA).   
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For the concentration determination, the calibration lines were drawn on a 

concentration range over three orders of magnitude (0.1 𝜇M - 100 𝜇M). The calibrant 

and internal standards were spiked into blank solvent (methanol/water, 80%/20%; 

v/v) in which the area ratio of each target analyte to its corresponding internal 

standard was used to define the ordinate values of the calibration curve. In total, 

sixteen calibration points were selected where each six calibration point covers one 

order of magnitude (e.g. 100 nM - 1 𝜇M: 100 nM, 200 nM, 400 nM, 600 nM, 800 nM, 

1 𝜇M). After linear regression, the linear response range for each metabolite was 

determined by Pearson’s correlation coefficient (R2≥0.95) except dopamine and 

levodopa. The linear equation for each calibration line was used to convert area 

ratios obtained in samples into absolute quantities (in 𝜇M) by using a Macro formula 

in Microsoft Office 2010. 

 

S1.4.2 GC-MS profiling of polar metabolites 

Twenty-four polar metabolites (Table S-3) were analysed in culture media using a 

modified version of an in-house built GC-MS platform3. Because of the high 

abundance of D-glucose and L-lactic acid in culture media, samples were diluted 

1:299 (v/v) in milliQ water. Fifty microliters of both diluted and non-diluted culture 

medium was extracted with 425 𝜇L of an extraction solvent (methanol/water, 

94%/6%; volume/volume) containing stable isotope labelled internal standards 

(Table S-3). After vortexing the samples for 10 min on a multivortex, the samples 

were centrifuged at 16000×g and 4 °C for 10 min. Four hundred microliters of the 

supernatant was transferred into a 1.5 mL tube and the solvent was evaporated in a 

vacuum concentrator (Labconco, Kansas City, MO, USA). Dry samples were 

resuspended for the oximation reaction in 35 𝜇L of pyridine containing 

methoxyamine hydrochloride (15 𝜇g/𝜇L) and kept at 30 °C for 90 min. After the 

oximation of the aldehyde groups on reducing sugars and organic acids, samples 

were further derivatised with silylation reaction for 60 min in an orbital shaker 

(VWR, Germany). This reaction was carried out by adding 40 𝜇L of MSTFA (N-methyl-

N-trimethylsilylacetamide) into the samples. Subsequently, samples were 

centrifuged at 16000×g and room temperature for 5 min and 70 𝜇L of the 

supernatant was transferred into silanized glass inserts. The GC-MS measurements 

were performed on an Agilent 7890A GC System coupled to a single 759 quadruple 
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5975C Mass Selective Detector. One microliter of sample was injected with splitless 

injection. The analytes were separated on an Agilent HP-5MS Ultra Inert capillary GC 

column (30 m, 250 𝜇m ID, 0.25 𝜇m film thickness). Metabolite identification was 

carried out by using the retention time of the chemical standards and mass spectral 

similarity of the fragmentation pattern with NIST MS Search Software (v2.0). The 

metabolite quantification was performed based on the specific fragment ion for each 

polar metabolite (Table S-3). Both peak extraction and integration were performed 

by using the vendor’s software (Agilent MassHunter Quantitative software v5.0). The 

concentrations were determined by spiking eleven (for diluted samples) or six (for 

non-diluted samples) different concentration values of the chemical standards on a 

50 𝜇L of diluted (300x) or non-diluted mixture of study samples (e.g. quality control 

sample). The area ratio of each target analyte to its corresponding internal standard 

was used to measure the ordinate values for the calibration lines. After linear 

regression, the linear response range for each metabolite was determined by 

Pearson’s correlation coefficient (R2≥0.95) except alpha-ketoglutaric acid. The 

concentration values are then calculated using Macro formula in Microsoft Office 

2010. 

 

S2 Reconstruction 

S2.1 Active and inactive genes and reactions 

A context-specific metabolic model contains only the set of reactions active in a 

particular context. Therefore, we assembled a core set of genes and metabolic 

reactions known to be active or inactive in dopaminergic neurons in vivo or in hNESC-

derived dopaminergic neurons in culture. A core set of active genes (Table S-1), as 

well as active and inactive reactions (Table S-2) was obtained either from manual 

curation of the literature or from transcriptomic data. Manual curation, described 

below, was focused on the physiological and biochemical literature on dopamine 

metabolism, dopaminergic neuronal transporters, central carbon metabolism, 

mitochondria-associated reactions and genes. In addition, manual curation of the 

literature was used to determine the need for addition or deletion of external 

reactions that are required for modelling non-equilibrium steady-state fluxes in 

dopaminergic neuronal metabolism. The list of genes, established by manual 

curation to be metabolically active, was combined with the aforementioned 
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transcriptomic data and used to generate the context-specific model through gene-

protein-reaction associations64. 

 

S2.2 Dopamine metabolism 

A key characteristic of dopaminergic neurons is their ability to synthesise, degrade 

and release dopamine. Therefore, manual reconstruction of dopamine metabolism 

was emphasised. In Recon265, there were already 75 tyrosine related reactions 

distributed in 6 subsystems. This content was extended with information from a 

comprehensive literature review of dopamine metabolism41 and additional manual 

curation of the literature (Table S-2), according to an established protocol64. 

 

S2.3 Dopaminergic neuronal transporters 

The metabolic identity of a cell is strongly influenced by its ability to transport 

particular metabolites across its extracellular membrane, and in the metabolic 

model, this is represented by constraints on the corresponding exchange reactions, 

which define the boundary conditions of the model. To start the reconstruction of 

dopaminergic neuronal transporters, we began with the 1550 extracellular transport 

reactions in Recon 2.0447, which correspond to 255 genes as identified by gene-

protein reaction associations. Almost half (120/255) of the genes associated with 

extracellular transport reactions were manually curated. Manual curation of the 

experimental literature primarily involved the identification of transporters present 

in human substantia nigra pars compacta tissue or cell cultures of dopaminergic 

neurons through in situ hybridisation, RT-PCR, immunohistochemistry or 

immunoblotting. When human data was not found, data from rat or mouse was 

included instead. Additionally, when data specific for dopaminergic neurons or 

substantia nigra pars compacta was not found, evidence for transporters being 

present in neurons in general, astrocytes or blood brain barrier was used instead. 

After a review of metabolic genes active in the brain, only the genes specific for 

dopaminergic neurons or substantia nigra pars compacta were included in the list of 

active genes. 

 

S3 Constraint generation 

S3.1 Biomass maintenance and turnover constraints 
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Stoichiometric specification of biomass composition15, as well as cellular synthesis 

and turnover requirements is an essential component for the specification of the 

objective function in constraint-based modelling. However, fully differentiated 

dopaminergic neurons do not replicate and therefore, it is sufficient if lipid, nucleic 

acid, and amino acid synthesis meet the demand for their turnover. Therefore, we 

adapted an established methodology64 to define the minimal biomass maintenance 

and turnover requirements for dopaminergic neurons. This required manual 

curation of the neurochemical literature to extract biomass precursor turnover rates, 

fractional biomass composition, and identification of key degradation reactions for 

dopaminergic neurons. Where human data was not obtained, rodent data was used. 

Where human substantia nigra pars compacta dopaminergic neuronal data was not 

obtained, other neuronal data was used. 

 

Biomass composition. TheRecon3D7 biomass maintenance reaction was 

decomposed into its constituent biomass precursors. The fractional composition of a 

human substantia nigra pars compacta dopaminergic neuron was obtained by 

following several steps. First, the lipid and water fractional composition of a human 

substantia nigra pars compacta dopaminergic neuron was assumed to be the same 

as the one from a 55 year human cerebral cortex grey matter (39.6% dry weight of 

lipids and 60.4% dry weight of non-lipid residues and 82.3% wet weight water 

content)49. Furthermore, we used the protein wet weight (w/w) fractional 

composition for human substantia nigra (99 mg/g w/w)5 to calculate the protein dry 

weight (DW) fractional composition. RNA and DNA dry weight fractional 

compositions for human substantia nigra (grey matter) were readily available in the 

literature (3,29 µg/mg DW of RNA and 1,81 µg/mg DW of DNA)35. Based on the 

relative concentrations of the different neuronal lipids, amino acids, and nucleic 

acids, the overall dry weight (DW) fractional human neural tissue composition was 

estimated to be 39.60% lipid, 55.93% protein, 0.18% DNA, 0.33% RNA, and 3.96% 

others48.  

 

The fractional composition (%) of each biomass precursor was converted into a 

reaction rate (𝜇mol/gDW/h that is micromole per gram dry weight per hour). These 

values were then converted into fluxes (𝜇mol/gDW/h) taking in consideration an 
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experimental time of 48h and a value for the dry weight of an hNESC-derived neuron 

(𝐷𝑊(𝐷𝑁), gDW/cell). The latter was calculated using 

𝐷𝑊(𝐷𝑁) ≔ Protein content / protein percentage 

where the protein content (𝜇g/cell) was obtained from the results of the 

aforementioned Bradford assay (0.0002459 to 0.00047053 𝜇g/cell) and the protein 

percentage was based on the calculated fractional protein composition of a human 

substantia nigra pars compacta dopaminergic neuron. This is a coarse-grained 

approximation of neuronal lipid, amino acid, and nucleic acid maintenance 

requirements converted into 𝜇mol/gDW/h. The protein content ranged from 

0.0002459 to 0.00047053 𝜇g/cell. The protein percentage obtained from the 

literature is 55.93% protein48. Therefore, the dry weight of a single dopaminergic 

neuronal cell was estimated to be 6.4 × 10−10 gDW/cell, with a range of 4.4 − 8.41 × 

10−10. 

 

Key degradation reactions. Using the neurochemical literature, the degradation 

pathway, or pathways, for each biomass precursor were identified and the first 

reaction in each degradation pathways was identified in Recon3D. For example, as 

reviewed in31, phosphatidylserine is exclusively localised in the cytoplasmic leaflet of 

neuronal and astrocytic membranes, forming protein docking sites for signalling 

pathways. The phosphatidylserine decarboxylase enzyme is able to decarboxylate 

the serine moiety of phosphatidylserine to form phosphatidylethanolamine. 

Although one of the fatty acyl groups of phosphatidylserine can also be hydrolysed 

to convert phosphatidylserine into lysophosphatidylserine, this is quantitatively a 

minor pathway.  

 

Turnover rates  

The turnover rate of a metabolite reflects the rate at which that metabolite is 

replaced in a tissue, given by the reciprocal of the turnover time40. Turnover rates are 

commonly expressed as half-lives and represent the time, expressed in hours, 

required for half of the precursor to be replaced33. Metabolite half-lives 𝑡1/2 were 

collected from the literature33 and converted into turnover rates 𝜆 with 

𝜆 ∶= ln(2) / 𝑡1/2     (1) 
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and then interpreted as constraints on degradation reaction rates. Turnover rates 

were converted to the same unit (𝜇mol/gDW/h) as reaction rate, and applied as 

constraints, as described in supplementary information section S4.3. 

 

S3.2 Maximum metabolite uptake constraints 

Only the constituents of the defined fresh medium, plus some reversible extracellular 

transport reactions including water, carbon dioxide and oxygen, were permitted to 

be taken up by the model. That is, lower bounds on the corresponding exchange 

reactions were set by assuming that the maximum uptake rate is equal to the 

metabolite concentration in the fresh medium, divided by the duration of the interval 

being modelled (Table S-3). This is always an overestimate of the actual metabolite 

uptake rate, because it effectively assumes that the concentration of each uptaken 

metabolite is zero at the end of the time interval. 

 

S3.3 Exometabolomically derived exchange reaction rate ranges 

For each pair of quantitative measurements for the same metabolite at two time 

points, an exometabolomically derived exchange reaction rate, 𝑣𝑒𝑥𝑝, was estimated 

for the corresponding metabolite by assuming a constant rate of change of metabolite 

concentration with respect to time and setting this rate of change of metabolite 

concentration to be equal to the experimentally measured flux when scaled 

appropriately with respect to the calculated dry cell mass in culture. The total dry 

weight for the in vitro cell culture (at day 19 and 23) was estimated from the product 

of the dry weight of a single neuron in culture times the number of cells in the cellular 

culture. 

 

Cell number. The cell number in each culture well was measured on days 1, 13, 19, 

but not day 21 or 23 in culture. Therefore, the evolution of cell number with respect 

to time was estimated using a cubic spline fit to the measured cell numbers (Figure 

S5). Exometabolomic data was collected at day 9, 13, 19 and 23. However, only 

exometabolomic data from day 19 and 23 were used to quantitatively constrain the 

models. This is consistent with the established differentiation protocol used, where 

a 30-45% increase in cell number is observed during the first five days and therefore 

a steady state assumption was not considered valid during the early period in cell 

culture. 
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Steady state assumption. The assumption of a metabolic steady state for the 

differentiated dopaminergic neuronal cell culture in the latter period in cell culture 

is based on two observations. Firstly, in contrast to earlier stages, the cell number 

does not alter significantly in the last five days in culture (<3-4% increase). Secondly, 

it is known that the rate of neuronal differentiation reaches toward a plateau toward 

the end of the period in culture54. 

 

Exchange reaction rate. In the model, the unit of flux is 𝜇mol/gDW/hr, while the 

unit of metabolite concentration change is 𝜇mol. In order to transform an 

extracellular metabolite concentration change into a lower bound on the 

corresponding exchange reaction flux, we assumed that 

𝑓𝑙𝑢𝑥 = 𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 / 𝑐𝑒𝑙𝑙 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑐𝑒𝑙𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 × 𝑡𝑖𝑚𝑒 

based on an established approach, implemented in Metabotools4, a software suite for 

integration of metabolomic data with constraint-based models, integrated into the 

COBRA Toolbox26. 

 

Figure S5: Measured and estimated cell numbers during neuronal differentiation 

Cell culture numbers were measured at seeding (day 0) and day 13 and 19 of 

differentiation. The cell culture was seeded with a density of 400k cells per well. The cell 

number at day 21 and 23 was estimated by interpolation in order to enable 

normalisation of metabolic uptake and secretion rates. 

 

Exchange reaction rate ranges. The measurements of metabolite concentration 

changes and the aforementioned cell culture parameters are associated with 
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measurement uncertainty. Therefore, this measurement uncertainty was propagated 

to uncertainty in the estimation of experimental exchange reaction rates. The 

exometabolomically derived exchange reaction ranges was therefore set to be 

between 𝑣𝑒𝑥𝑝 − 𝜎, and 𝑣𝑒𝑥𝑝 + 𝜎 where 𝜎 denotes the standard deviation in estimated 

experimental exchange reaction rates. For details on the exometabolomically derived 

exchange flux ranges for each measured metabolite, see Table S2. 

 

S4 Model generation 

A context-specific, flux-consistent, constraint-based metabolic model representative 

of the hNESC derived dopaminergic neuronal in vitro cell culture was generated using 

an overall approach based on established and novel Constraint-Based 

Reconstruction and Analysis methods26. 

 

S4.1 An overview of constraint-based modelling 

All constraint-based modelling predictions are derived from optimisation problems, 

typically formulated in the form: 

      (2) 

where 𝑆 ∈ ℝ𝑚×𝑛 is a stoichiometric matrix of 𝑚 metabolites and 𝑛 reactions 

representing a biochemical 908 network, 𝑣 ∈ ℝ𝑛 is the vector representing the flux 

through all of the reactions in a network and 𝜓 ∶ ℝ𝑛 → ℝ  is an objective function, which 

is typically convex. In a constraint-based metabolic model of reaction fluxes, the set 

of feasible steady-state flux vectors forms a polyhedral convex solution space, 

defined by the equality and inequality constraints in Equation (2), enabling 

optimisation of a variety of convex objective functions over this set.  

 

The matrix 𝑆 can be split horizontally into two matrices corresponding to internal, 𝑁 

∈ ℤ𝑚×𝑘 , and external, 𝐵 ∈ ℝ𝑚×(𝑛−𝑘) , reactions, with corresponding internal and external 

rate vectors, 𝑧 ∈ ℝ𝑘 and 𝑤 ∈ ℝ𝑛−𝑘. While all internal reactions are characterised by 

being mass and charge balanced, external reactions are, on the other hand, 

imbalanced reactions. External reactions are classified in sink, demand or exchange 

reactions. A demand reaction allows the accumulation of a compound. A sink reaction 

allows the production of a metabolite. Finally, A exchange reaction allows the 
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exchange of a metabolite across the extracellular boundary of a system, providing a 

mechanism to transfer metabolites between the environment and the extra-cellular 

fluid. Such reactions are distinct from transport reactions, which transfer metabolites 

between compartments within the model, including the extracellular compartment. 

Exchange reactions are added to a model to allow certain metabolites to be 

exchanged across the boundary of the system at variable rates.  

 

The linear equality, 𝑆𝑣 = 0 in Equation (2), represents mass balance for all the 

metabolites. This means, for each metabolite the rate of metabolite consumption is 

equal to the rate of metabolite production. In Equation (2), 𝑆𝑣 = 0 implies that 𝑁𝑧 = 

−𝐵𝑤 where internal production plus external input equal internal consumption plus 

external output. For certain intracellular metabolites, those not exchanged across the 

boundary of the system, we assume they are at a steady-state, so we have 𝑁𝑖𝑧 = 0, 

where 𝑁𝑖 denotes the 𝑖𝑡ℎ row of the internal stoichiometric matrix. Additional linear 

inequalities keep reaction rates between lower and upper bounds, 𝑙 and 𝑢, 

respectively. 

 

S4.2 The generic human metabolic model: Recon3.0 model 

Given a generic reconstruction of human metabolism, not specific to any organ, tissue 

or cell type, a generic model of human metabolism was generated, using an 

established procedure26. 

 

Recon3D7 is the latest and most comprehensive, manually-curated genome-scale 

reconstruction of human metabolism. Additionally, Recon3D provides information 

about gene-protein-reaction associations which associate each metabolic gene with 

the corresponding enzyme or enzyme complex and reaction in a Boolean manner. 

The largest stoichiometrically and flux consistent26 part of Recon3D, termed 

Recon3.0model, was used as a generic model for generation of dopaminergic 

neuronal metabolic models. This generic model is divided into 9 cellular 

compartments and currently encompasses 2,248 open reading frames and 10,600 

metabolic reactions involving 5,835 unique metabolites.  

 

In each metabolic reaction, 𝑣𝑖, is constrained between a lower and an upper bound, 

𝑙𝑏 ≤ 𝑣𝑖 ≤ 𝑢𝑏. The default reaction lower and upper bounds are commonly set based on 
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model characteristics and constraints value. Lower and upper bounds were set to 

include fluxes from metabolite concentration in the media, e.g., glucose flux rate 

based on media composition (-5,430.74 𝜇mol/gDW/hr). Reactions can be reversible 

or irreversible. A reaction is said to be reversible in the case where it has a negative 

𝑙𝑏 and a positive 𝑢𝑏. When the 𝑙𝑏 is set to zero and the 𝑢𝑏 is a positive number the 

reaction proceeds in the forward direction. Similarly, when the 𝑢𝑏 is zero and the 𝑙𝑏 

is a negative number the reaction occurs in the backward direction. The same works 

for exchange reactions: if a metabolite is taken up, the corresponding exchange 

reaction has zero as 𝑢𝑏 and a negative number as 𝑙𝑏, whereas if it is secreted, the 𝑢𝑏 

is a positive number and the 𝑙𝑏 is set to zero. 

 

S4.3 Generation of the turnover model 

Given the generic model, a turnover model was generated by applying constraints on 

the turnover rates of certain key cellular constituents of a dopaminergic neuron.  

 

As described in supplementary information section S3.1, the minimum turnover 

requirement of a dopaminergic neuron was obtained from the literature and used to 

constrain the model as follows. When a biomass precursor was associated with a 

single degradation reaction, this reaction was set to irreversible in the direction of 

degradation, and 0.75 times the degradation rate 𝑑 was set as the lower bound on 

that degradation reaction. A 25% relaxation of the lower bounds from the estimated 

degradation rate was used as standard to account for uncertainty in the data66. For 

the example of phosphatidylserine in supplementary information section S3.1, a 

lower bound was set on the phosphatidylserine decarboxylase reaction. When a 

biomass precursor could be metabolised through a reversible reaction, one direction 

of which corresponded to catabolism, this reaction was split into a pair of irreversible 

reactions and the turnover constraint applied to the catabolic direction.  

 

When a biomass precursor could be degraded by more than one reaction, the sum 

total rates of degradation by all degradation reactions, was set to be greater than 0.75 

times the degradation rate 𝑑, via an inequality of the form 

𝑣1 + 𝑣2 + ... + 𝑣𝑛 ≥ 0.75 × 𝑑,    (3) 

with due consideration of reaction directionality. Support for inequalities, such as 

Equation 3, within constraint-based modelling problems, has been fully implemented 
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within the COBRA Toolbox26. In total, this approach resulted in 21 turnover 

constraints on single degradation reactions, and a further 8 turnover constraints, 

each on a set of degradation reactions, when the metabolite could be degraded by 

more than one pathway. 

 

S4.4 Generation of the preconditioned model 

Given the turnover model, a preconditioned model was generated by applying 

maximum metabolite uptake constraints and biochemically motivated constraints on 

certain otherwise reversible exchange reactions.  

 

As described in supplementary information section S3.2, for each metabolite present 

in the fresh medium, the maximum metabolite uptake rate (𝜇mol/gDW/hr) was 

calculated (Table S-3). This was then used to set the lower bound on the 

corresponding exchange reaction. The lower bounds on all other metabolite uptake 

reactions were set to zero, to reflect the assumption that no other metabolites, except 

those in the defined medium, were accessible to the in vitro culture. For each 

consumed metabolite, the upper bound on the corresponding exchange reaction is, 

by definition, set to zero.  

 

Furthermore, some bounds on otherwise reversible exchange reactions were 

manually set to satisfy specific characteristics of a (neuronal) cell culture, e.g., the 

production of oxygen and glucose were disallowed by setting the upper bound on the 

corresponding exchange reaction to zero, so that only uptake became possible in the 

model. Also, the ionic transport reactions for sodium, calcium, potassium and iron, 

were closed (𝑙𝑗 = 𝑢𝑗 ≕ 0). Of the components present in the fresh medium, 50 were 

used to qualitatively constraint the uptakes of the model. Furthermore, a set of 

reactions associated to dopaminergic neuronal metabolism were qualitatively 

constrained such as the production of neuromelanin, ATP, dopamine, GABA etc. 
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S4.5 Generation of the context-specific models 

Given the preconditioned model, a context-specific model was generated by 

application of manually curated and omics derived constraints on the activity or 

inactivity of certain genes and reactions.  

 

A core set of Recon3D genes and reactions were extracted by extensive manual 

curation of biochemical studies as being active or inactive in human dopaminergic 

neurons from the substantia nigra (supplementary information section S8). In 

addition to the specific data extracted from the literature, RNA-sequencing data from 

hNESC-derived dopaminergic neuronal in vitro cell culture, which is sensitive at 

genome-scale, was mapped into Recon3D to identify the genes that should be active 

in a dopaminergic neuronal reconstruction (supplementary information section 

S1.2).  

 

A metabolic network formed from the set of core reactions alone is not necessarily 

flux consistent, that is, some reactions may not admit a non-zero steady-state flux. 

Therefore, we used the FASTCORE algorithm71, implemented in the COBRA Toolbox57 

to generate a compact, flux-consistent model. This model returns a minimal number 

of extra reactions, beyond the core set, that are required to ensure the flux-

consistency of the model. Therefore, the output is a context-specific, flux-consistent 

model. 

 

S4.6 Generation of exometabolomically constrained models 

Given the context-specific model, a set of exometabolomically constrained models 

were generated by selective application of constraints derived from quantitative 

measurements of fresh and spend cell culture medium. Exometabolomically derived 

exchange reaction ranges, for metabolites measured to be taken up from the fresh 

medium were used to generate an uptake constrained model (ModelUpt) to test its 

ability to predict the measured secreted metabolites. Exometabolomically derived 

exchange reaction ranges, for metabolites measured to be secreted into the medium 

were used to generate a secretion constrained model (ModelSec) to test its ability to 

predict uptaken metabolites. Furthermore, for each one of the measured metabolites, 

a leave-one-out model was generated, from the iNESC2DN, to test the ability to predict 

exchange of one metabolite measured, but left out of the set used to constrain the 
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model. The iNESC2DN model was generated from the context-specific model by 

including all constraints derived from the metabolomic data on uptaken and secreted 

metabolites. It is this iNESC2DN model that was subsequently used then to design 

future metabolomic experiments.   

 

A given vector of exometabolomically derived exchange reaction rates 𝑣𝑒𝑥𝑝 ∈ ℝ𝑛, 

obtained as described in supplementary information section S3.3, may not be 

consistent with the feasible set of steady state fluxes defined in 2. Specifically, 

inconsistent with the set defined by the steady state constraint (𝑆𝑣 = 0) as well as the 

lower and upper bounds on each reaction 𝑙 ≤ 𝑣 ≤ 𝑢. Should this occur, we fitted the 

model to the experimental data, relaxing the constraints on the bounds of 2, that 

admits a steady state flux 𝑣 ∈ ℝ𝑛, using the following quadratic optimisation problem 

 

where 𝑝 ∈ ℝ𝑛≥0 and 𝑞 ∈ ℝ𝑛≥0 are non-negative variables that permit relaxation of the 

lower and upper bound constraints, respectively. This formulation also allows for 

different weights to be input as parameters to Problem 4 to penalise deviation from 

experimentally measured mean fluxes, with 𝑤𝑒𝑥𝑝 ∈ ℝ𝑛≥0, penalise relaxation of lower 

bounds, with 𝑤𝑙 ∈ ℝ𝑛≥0 and penalise relaxation of upper bounds, with 𝑤𝑢 ∈ ℝ𝑛≥0. For 

example, if the experimentally measured flux is actually the mean flux, then one could 

set 𝑤𝑒𝑥𝑝 to be the inverse of the variance on the experimental flux measurements, 

thereby increasing the penalty on deviation from an experimentally measured mean 

flux where the variance is lower. Certain lower or upper bounds might not be realistic 

to be relaxed, e.g., an essential amino acid can always be taken up but never secreted, 

therefore the upper bound on the corresponding exchange reaction must be zero. 

 

S5 Model testing and characterisation 

A selection of constraint-based modelling techniques were used to test the ability of 

in silico models to predict independent exometabolomic data. Let Ω ∶= {𝑣 ∈ ℝ𝑛 ∣ 𝑆𝑣 = 

0, 𝑙 ≤ 𝑣 ≤ 𝑢} denote the set of steady-state flux vectors consistent with the constraints, 

and dim(Ω) denote the number of linearly independent dimensions of this set. In Flux 

Balance Analysis (FBA) one obtains an optimal flux vector by choosing a coefficient 
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vector 𝑐 ∈ ℝ𝑛, representing a biologically motivated linear objective 𝜓(𝑣) ∶= 𝑐𝑇𝑣 (e.g. 

ATP production, dopamine secretion, etc.) and enforcing 𝑣 ∈ Ω. Since the correct 

coefficient vector is not known for neurons, we used alternative approaches to 

explore Ω. Flux Variability Analysis (FVA)38, was used to find the flux ranges for each 

reaction rate by choosing a coefficient vector 𝑐 ∈ ℝ𝑛 with one non-zero entry, then 

minimising and maximising 𝜓(𝑣) ∶= 𝑐𝑇𝑣, for each reaction in turn. FVA was 

implemented in a computationally efficient manner using the fastFVA algorithm21, 

within the COBRA Toolbox26.  

 

In addition, uniform sampling72 was used to generate an unbiased characterisation 

of the set of steady-state flux vectors Ω. Uniform sampling provides a quantitative 

prediction of the probability of each quantitative flux value, between the same 

minimum and maximum flux predicted by flux variability analysis, assuming that 

each feasible steady-state flux vector is equiprobable. Unlike FBA and FVA, uniform 

sampling does not use an objective function when predicting steady-state fluxes. 

Uniform sampling was implemented using the Coordinate Hit-and-Run with 

Rounding (CHRR) algorithm25, within the COBRA Toolbox26, using the parameters 

𝑛𝑆𝑘𝑖𝑝 = dim(Ω)2 and 𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠 = 8×dim(Ω),  which represent the number of samples 

skipped between stored samples, and the total number of stored samples obtained, 

respectively. FVA and uniform sampling were used to test whether various in silico 

models could predict the outcome of independent exometabolomic analyses (see 

Figure 5.2, and for all measured exchanged metabolites more comprehensively, see 

Figure S12 and S13). 

 

Sparse Flux Balance Analysis approximately minimises the function 𝜓(𝑣) ∶= ‖𝑣‖0 

subject to 𝑣 ∈ Ω, and was used to predict the minimum number of reactions that are 

required to be active to satisfy the known metabolic demands on a dopaminergic 

neuron, as represented by the aforementioned dopaminergic neuron specific 

constraints on the steady-state flux space Ω. The SparseFBA algorithm is 

implemented in the COBRA Toolbox26. 
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S6 Experiment design 

S6.1 Exometabolomic experiment design 

Using uniform sampling, we calculated the flux ranges of exchange reactions to 

predict a list of secreted metabolites to consider for targeted metabolomic analyses 

in future exometabolomic experiments. Furthermore, we prioritised this list of 

secreted metabolites by rank ordering it using two novel pipelines for optimal design 

of future exometabolomic experiments.  

 

In the uncertainty reduction pipeline, illustrated in Figure 5.3a-c, our goal is to select 

the k rows of the covariance matrix that will explain as much uncertainty in the model 

as possible, as suggested by the uniform samples. More precisely, we seek to select a 

subset of k rows such that the k-dimensional volume spanned by these vectors is 

maximised. Computing this subset exactly is a difficult computational problem, and 

we instead use a heuristic, iterative method that greedily selects the row that has the 

maximum Euclidean distance to the subspace spanned by the rows selected already. 

For the first row, this reduces to selecting the row of the covariance matrix with 

largest Euclidean norm. The largest Euclidean norm of the covariance matrix of 

exchange reaction fluxes, was used to rank order the metabolic exchanges 

contributing the most uncertainty to iNESC2DN predictions (Figure 5.3d).  

 

In the phenotypic perturbation pipeline, illustrated in Figure 5.3e-h, we predicted the 

exometabolomic changes most likely to occur following perturbation to internal 

reaction rates, as illustrated in (Figure 5.3h). Starting with the iNESC2DN model, the 

effects of two different perturbations were predicted: (i) deletion of the 

glucocerebrosidase (GBA1) gene, the gene most commonly associated with PD, and 

(ii) complete inhibition of mitochondrial complex I. For each reaction, a two-sample 

Kolmogorov-Smirnov test was used to check whether the sampled fluxes for 

perturbed and control models came from different distributions, with a 5% 

significance level. This test uses the maximum absolute difference between the 

cumulative distribution functions of the distributions of the two data vectors. For the 

𝑗𝑡ℎ reaction, the test statistic is 

𝐷𝑗⋆ ≔ max𝑣𝑗 (∣𝐹𝐶 ̂ (𝑣𝑗) − 𝐹𝑃̂ (𝑣𝑗)∣) 
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where 𝐹𝐶 ̂ (𝑣𝑗) is the proportion of control model sample flux values less than or equal 

to 𝑣𝑗 and 𝐹𝑃̂ (𝑣𝑗) is the proportion of perturbed model sample flux values less than or 

equal to 𝑣𝑗. 

 

S6.2 Conserved moieties and atom mapping 

Where available, a molecular structure was obtained for each metabolite from the 

Virtual Metabolic Human database (www.vmh.life,47) and atom to atom mappings for 

each of the internal reaction of the iNESC2DN model were obtained using an atom 

mapping algorithm, the Reaction Decoder Tool53, which performed optimally in a 

benchmarking exercise52. The atom mappings were then used to identify the 

metabolite structural moieties that are conserved despite all of the metabolic 

transformations in the iNESC2DN model. Moiety identification used an established 

algorithm24, implemented within the COBRA Toolbox26. 

 

Figure S6: Immunostaining and calcium imaging. 

Immunostaining of differentiated neurons and calcium imaging of spontaneously firing 

human neuroepithelial stem cell differentiated into dopaminergic neurons. (a) 

Immunostaining of a representative well at day 23, showing neurons positive for nuclei 

with Hoechst (blue), TUB𝛽III (red) and TH (green); scale bar 20𝛽m. (b) Mean frame of 

a field of view of representative neurons. (c) Automatic segmentation of neurons. (d) 

Fluorescence traces showing the spontaneous activity of individual segmented neurons. 

 

  

http://www.vmh.life/
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Part II 

Results 

S7 Experimental results 

S7.1 Cell culture 

The differentiation of hNESCs into dopaminergic neurons was successfully 

accomplished. Differentiated neurons were identified by TUB𝛽III immunoreactivity. 

Neurons positive for tyrosine hydroxylase (TH) confirmed the presence of neurons 

capable of converting tyrosine to L-DOPA, the penultimate step in dopamine 

synthesis (Figure S6a). Analysis of calcium imaging data revealed spontaneously 

active neurons (Figure S6b, c, d). 

 

S7.2 Transcriptomic data 

Transcriptomic data contains a range of gene expression values. Some of the low 

expression values are certainly attributable to experimental noise or aborted 

transcripts, but for borderline expression values, it is a challenge to divide the 

corresponding genes into expressed or not expressed. Each gene with less than zero 

FPKM, on base-two logarithmic scale, was considered not expressed59. Each gene 

with FPKM higher than a threshold of zero, on base-two logarithmic scale, was 

considered expressed. Out of the 18,530 unique genes with expression levels 

reported in the transcriptomic data, 12,698 were considered to be expressed, based 

on the aforementioned threshold. However, only 1,202 were mapped into Recon3D 

(metabolic genes) and therefore included in the model. To test the viability of  the 

selected transcriptomic data expressed in the in vitro culture and selected in 

Recon3D, a receiver operating characteristic (ROC) curve23 was generated to 

qualitatively compare the expressed and not-expressed assignments from hNESC-

derived dopaminergic neurons transcriptomic data against the active and inactive 

assignments for manually curated dopaminergic neuronal genes (supplementary 

information section S8 below), which we assume to be a true representation of 

dopaminergic neuronal gene expression (Figure S7). If a gene was considered to be 

active by manual curation and was also found to be expressed in transcriptomic data, 

it was considered a true positive (TP). The proportion of true positives that were 

correctly classified as positive, is given by the true positive rate (TPR) 

𝑇𝑃𝑅 = 𝑇𝑃 / 𝑇𝑃 + 𝐹𝑁’ 
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where TN, FP and FN denote true negatives, false positives and false negatives, 

respectively. Likewise, the false positive rate (FPR) is 

𝐹𝑃𝑅 = 𝐹𝑃 / 𝐹𝑃 + 𝑇𝑁. 

 

The true and false positive rates can vary depending on the threshold applied to 

distinguish between an expressed and a not-expressed gene. In the reconstruction, 

genes expressed above the threshold were assigned to be metabolically active and 

genes expressed below the threshold were not included as in the model, unless the 

corresponding reactions had to be included to generate a flux consistent model. 

 

 

Figure S7: Manually curated genes compared with transcriptomic data. 

(a) Confusion matrix illustrating the performance of the transcriptomic classification 

into active and inactive genes. TP - True Positive, TN - True Negative, FN - False 

Negative, FP - False Positive. (b) Receiver operating characteristic (ROC) curve. TPR - 

True Positive Rate, FPR - False Positive Rate.(c) Number of manually curated genes per 

threshold for each condition.(d) A true positive rate of 0.9 corresponded to a threshold 
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value of zero Fragments Per Kilobase of transcript per Million mapped reads (FPKM), 

on base-two logarithmic scale (green vertical line). 
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S7.3 Exometabolomic analysis 

Medium characterisation. The manufacturers specification identifies a total of 57 

different metabolites in the fresh culture medium, of which 24 were amines, 12 

vitamins, 16 inorganic salts, 1 lipid, 2 nucleotides and 2 organic acids (Table S-4). Out 

of these 57 metabolites, 50 were present in the stoichiometrically and flux consistent 

generic model (Recon3Dmodel) and were omitted from further consideration. Of the 

omitted 7 metabolites, four inorganic salts (nitrate, vanadium, manganese and 

copper) were not present in the reconstruction (Recon3D), and a further three 

(magnesium, cyanocobalamin and selenite) did not correspond to any 

stoichiometrically and flux consistent reaction.  

 

By running fresh medium samples in the organic acid (GC-MS) and amine (LC-MS) 

platforms, we were able to measure the absolute concentrations of both organic acids 

(glucose and pyruvic acid) and 22 of the 24 amines, known to be in the medium. This 

enabled us to test the concordance between the specifications of the medium 

manufacturer and the actual concentrations (Figure S8). Reduced glutathione and L-

cystine are two amines that cannot be detected by the LC-MS platform. The remaining 

medium components are mainly inorganic salts and they were not measured. 

 

Figure S8: Validation of specified fresh medium concentrations. 
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Metabolite concentrations specified by the medium manufacturer (blue) compared to 

the absolute concentrations measured by mass spectrometry (grey). Some quantified 

metabolite concentrations, e.g., for cysteine, pyruvic acid, valine, aspartic acid and 

putrescine, significantly deviate from the manufacturers specifications. 

 

S8 Reconstruction and manual curation 

Active genes. Based on literature curation, a total of 252 metabolic genes were 

established to be active in dopaminergic neuronal metabolism (Table S-1). Out of 

these 252 genes, 20 are related to transport reactions, 6 to dopamine metabolism, 

124 associated to mitochondria and 102 to central carbon metabolism. Significant 

effort was made to manually curate transport reactions as their presence or absence 

help to establish the idiosyncratic boundary conditions for any particular cell type. 

Out of the genes for transport reactions in Recon 2.04, biochemical literature on 

approximately half (118/255) were individually manually curated. From these 118 

transporters, 20 were found to be present in the substantia nigra or substantia nigra 

pars compacta in human, mouse, or rat. 

 

Active reactions. Based on literature curation, a total of 420 unique reactions were 

found to be active in dopaminergic neurons (Table S-2). However, 10 of these were 

excluded from the model generation process as they were either stoichiometrically 

or flux inconsistent. Included in these 420 reactions there are 69 from dopamine 

metabolism, 31 from an intersection the medium metabolites with the transport 

reactions associated with the 24 transport genes, 8 demand reactions for biomass 

precursors, 53 exchange reactions corresponding to medium metabolites, 5 

exchange reactions from the metabolites being newly synthesised according to the 

exometabolomic data, and 160 reactions related to mitochondria and central carbon 

metabolism. 

 

Inactive genes and reactions. Based on literature curation, a total of 148 genes 

were deemed to be inactive in neurons (Table S-1). These inactive genes were used 

to help determine the cutoff between expressed and non-expressed genes in the 

analysis of transcriptomic data (supplementary information section S1.2). Based on 

manual curation, a total of 211 metabolic reactions were considered to be inactive in 

the brain (Table S-2) and therefore were excluded from the model. 
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Figure S9: Classification of active reactions and genes by manual curation. 

This manual curation result is partly a reflection of the availability of biochemical 

information on certain pathways, e.g., central metabolism, and partly a reflection of the 

pathways that were targeted for manual curation, e.g., dopamine metabolism. 

 

Dopamine metabolism. Following manual curation of the literature41, 58, 43, 44, 76, 14, 10, 

69, 27, 45, 9 metabolites and 49 reactions were added to dopamine metabolism during 

the generation of Recon3D from Recon 2.04. These are 11 transport, 11 exchange, 19 

metabolic and 8 demand reactions. In Recon3D, dopamine metabolism now includes 

122 reactions in total (Figure S10). Out of these 122 reactions, we were able to collect 

evidence for the occurrence of 77 reactions in dopaminergic neurons that were also 

included in our reconstruction as active reactions: 42/49 newly added reactions and 

35/73 dopamine-related reactions already present in Recon 2.04 (21 reactions from 

’Tyrosine metabolism’ subsystem, 1 reaction from ’Miscellaneous’ subsystem, 4 

reactions from ’Transport, extracellular’ subsystem, 7 reactions from 

’Exchange/demand reaction’ subsystem, 1 reactions from ’Tetrahydrobiopterin 

metabolism’ subsystem, 1 reaction from ’Phenylalanine metabolism’ subsystem). For 
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many reactions (45/122) no clear information was found, therefore they were not 

included as active or inactive. Further information can be found in Table S-2. 

 

Figure S10: Reconstruction of dopamine metabolism. 

Dopamine metabolism in Recon2.04 (green, blue) was refined and updated with newly 

added reactions (pink). 

 

S9 Constraints 

S9.1 Exometabolomic data 

We performed a targeted metabolomic analysis and quantified metabolic differences 

with respect to time. Two platforms were selected, capable of detecting a total of 98 

metabolites (74 metabolites from amines and amino acids platform and 24 from 

organic acid platform). Of the 50 metabolites, measured above the lower limit of 

detection, all were present in Recon3D. However one metabolite, glutaric acid (VMH), 

was not present in the stoichiometrically and flux consistent subset of Recon3D, 

designated Recon3.0model, and therefore, they were not further considered for 

computational modelling. From the remaining 49 metabolites, 24 were not 

previously present in the fresh medium 11. 

 

S10 Generated models 
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The main characteristics of the different models generated along this process is given 

in Table S-5. A total of 6 main models were generated. Model generic correspond to 

Recon3.0model. The first four features define the composition of the metabolic 

network based on transcriptomic data and manual curation of reactions and genes. 

The last seven features define the range of fluxes through the network by differential 

application of constraints. A brief summary of each model is given below: 

1. Generic Recon3Dmodel: A close approximation to the largest 

stoichiometrically and flux-consistent subset of Recon3D (5,835 metabolites 

and 10,600 reactions), named Recon3.0model in7. 

 

2. Turnover model: Recon3Dmodel with added constraints representing the 

cellular turnover. A total of twenty-one reactions were individually 

constrained. Furthermore, 26 reactions were associated with eight turnover 

constraints (Table S-2). 
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Figure S11: Venn diagram summarising metabolites. 

A total of 98 metabolites were targeted by the selected LC-MS and GC-MS platforms 

(blue). Of these 98, only 50 were detected in the spent medium obtained to generate 

exometabolomic data (yellow). Of these 50 metabolites, 49 could be used to constrain 

the model as only one metabolite was not present in the stoichiometrically and flux 

consistent subset of Recon3D. Of these 49 metabolites, 25 were present in the fresh 

medium and 24 were synthesised by the cells and secreted into the spent medium. The 

final iNESC2DN model contains exchanges reactions for 179 metabolites (red), 

therefore there still remains 126 metabolites to target with exometabolomic platforms 

developed and applied in future. 

 

3. Preconditioned model: Turnover model with added qualitative constraints for 

46 fresh media metabolites. Exchange reactions corresponding to fresh media 

metabolites were open with a 𝑙𝑏 set less than zero, to the negative of the 

maximum concentration of each metabolite in the fresh media. Uptake 

reactions corresponding to metabolites not in the fresh media were closed (𝑙𝑏 

set to zero) (see Table S-3). 

 

4. Draft context-specific model: Preconditioned model with added manual 

curation and integration of context-specific transcriptomic data, to generate a 

model consisting of 1776 metabolic reactions (see Tables S-2). 

 

5. iNESC2DN model: Context-specific model with exometabolomic constraints 

added for 30 metabolites taken up and 19 metabolites secreted. This omits 

exometabolomic constraints on L-proline and L-serine, as the model would 

otherwise be infeasible. 

 

6. ModelUpt: Context-specific model with added exometabolomic constraints 

for 30 metabolites measured to be taken up from the medium (see Table S-2). 

 

7. ModelSec: Context-specific model with added exometabolomic constraints for 

19 metabolites measured to be secreted into the medium (see Table S-2). 
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S11 Model testing 

S11.1 Prediction of metabolite secretion rates 

Figure 5.2a-c provides a comparison of measured and predicted metabolite secretion 

rates, for 3 representative metabolites, using ModelUpt, a context-specific model 

quantitatively constrained with exometabolomically derived constraints on 

secretion reaction rates. Figure S12 provides this comparison for all 29 metabolites 

measured to be secreted into the medium by the cell culture. 

 

S11.2 Prediction of metabolite uptake rates 

Figure 5.2d-f provides a comparison of measured and predicted metabolite uptake 

rates, for 3 representative metabolites, using ModelUpt, a context-specific model 

quantitatively constrained with exometabolomically derived constraints on uptake 

reaction rates. Figure S12 provides this comparison for all 19 metabolites measured 

to be uptaken from the fresh medium by the cell culture. 

 

S12 Model characterisation 

Figure S14 compares the number of reactions from each metabolic subsystem 

present in the Recon3.0 model, the iNESC2DN model and the minimal set of reactions 

required to be active to satisfy all of the iNESC2DN constraints. Figure 5.3b and 5.3h 

illustrate the reactions within the iNESC2DN model that are predicted to be 

perturbed as a result of GBA1 knockout and Complex I inhibition, respectively. 

 

Part III 

Discussion 

 

S13 Characteristics of the iNESC2DN model 

Tetrahydrobiopterin metabolism is an example of a metabololic subsystem critical 

for dopaminergic neuronal metabolism that is also represented in the iNESC2DN 

model. Tetrahydrobiopterin is absolutely required for the synthesis of monoamine 

neurotransmitters28, including dopamine. The tetrahydrobiopterin biosynthetic 

pathway is thought to involve up to eight different proteins that support six alternate 

de novo and two alternate salvage pathways. The expression of these genes is highly 

correlated with each other and is particularly enriched within monoaminergic 
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neurons28. The first and limiting step in the tetrahydrobiopterin biosynthetic 

pathway is catalyzed by GTP cyclohydrolase I (GCH1). The expression of this gene is 

generally low and particularly heterogeneous across different populations of 

monoamine-containing neurons in humans and rodents, although GCH1 expression 

is a characteristic of nigrostriatal dopaminergic neurons28. The in vitro culture 

expresses GCH1 (log2(RPKM)>2) and therefore the corresponding Recon3D reaction 

gtp cyclohydrolase I (GTPCI) is also included in the iNESC2DN model. GTP 

cyclohydrolase I produces dihydroneopterin triphosphate (ahdt) and formic acid 

(for). In a subsequent reaction, 6-pyruvoyltetrahydropterin synthase (PTHPS) 

converts dihydroneopterin triphosphate (ahdt) into 6-pyruvoyltetrahydropterin 

(6pthp), which is a direct precursor of tetrahydrobiopterin (thbpt). 
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Figure S14: Minimal flux metabolic subsystems of the iNESC2DN model. 

Comparison of the fraction of reactions in (red) and out (blue) of the minimal flux vector 

in each metabolic subsystem of the iNESC2DN model. 

S14 Metabolic assays 

The quality of the experimental measurements was assessed by comparing the 

measured and supplier reported concentration values (Fig. S8). Based on this 

comparison, for most of the measured metabolites, the measurements were obtained 

within a similar concentration value (20%) reported in fresh culture media. 

However, some measurements (e.g. cysteine, pyruvic acid, valine, aspartic acid and 

putrescine) demonstrated larger differences between measured and supplier’s 

concentrations. There can be several explanations for the discrepancy between 

specified and measured quantities. Some compounds may undergo easily reactions 

with other elements/compounds in their environment due to their reductive and/or 

oxidative nature. For instance, the thiol group of the cysteine is reactive both with 

oxidants and reductants as well as it has high affinity for metals51. Therefore, it can 

be very difficult to determine the quantity of free cysteine residues after protein 

hydrolysis unless the thiol group of the molecule is not stabilised by extensive 

chemical derivatisation procedures1. This could easily explain the observation of a 

lower value for the measured concentration in comparison to the reported value 8. 

Under oxidative and low pH conditions of the incubator, free cysteine may have been 

converted into different compounds which were not targeted during our analysis. 

The discrepancy can be due to the incomplete knowledge on the composition and 

concentration of medium supplements. B21 medium supplement contains a 

confidential amount of putrescine which may have contributed to the large increase 

in the measured concentrations.  

 

It has been previously shown that the concentration of pyruvic acid can be reduced 

in blood by its reaction with bisulphite-binding substances. This can be also true for 

the pyruvic acid in fresh culture medium where there are several substances with the 

bisulphite-binding characteristics. In general, it is challenging to determine an 

overall reference point for the absolute concentrations as many factors may 

contribute to the in accuracy of the measurements. One of these factors is the 

difference in measurement uncertainties between different analytical methods. 

Previously, the measurement accuracy of ELISA against a validated tandem LC-MS 
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method has been evaluated and several differences were observed. The analytical 

assays that were used to report the concentration values in the medium samples by 

the suppliers may exhibit a difference in uncertainty in comparison to our analytical 

platforms. At this point, there is still a lack of certain standardisation for absolute 

concentration measurements among different analytical laboratories which have to 

be compiled under Good Laboratory Practice.  

 

The absolute quantification of fluxes is advantageous for the training and validation 

of a metabolic model. However, the high chemical diversity and broad concentration 

range of the endogenous metabolites complicates the simultaneous quantification of 

many metabolites with one analytical methodology56. Due to its high selectivity and 

large dynamic range, mass spectrometry in combination with conventional 

separation techniques such liquid chromatography (LC), gas chromatography (GC) 

or capillary electrophoresis (CE) are the most popular methodologies in quantitative 

metabolomics. 

 

S15 Analytical chemistry considerations 

It is not possible for one analytical platform to quantify the concentration of all of the 

metabolites predicted to be secreted by the iNESC2DN model, because of the 

differences in their solubility, mass, endogenous concentration levels and volatility22. 

For selective and sensitive detection of diverse chemical classes of metabolites, 

several mass spectrometry (MS) based analytical platforms have been developed and 

reviewed extensively6. For the coverage of a broad group of hydrophilic metabolites 

such as amines and amino acids, carboxylic acids, sugars, 

nucleobases/nucleosides/nucleotides several hydrophilic interaction 

chromatography coupled mass spectrometry (HILIC-MS) platforms have been 

published and applied in cell culture and body fluids50, 19, 75, 77, 70. For the analysis of 

specific hydrophilic classes, it has been also a possibility to combine several chemical 

derivatisation techniques based on the functional group of the metabolites and 

achieve more retention and sensitivity on traditional reverse-phase liquid 

chromatography coupled mass spectrometry (RPLC-MS) 60, 73, 20.  

 

For the separation of sugars and volatile metabolites gas chromatography coupled 

mass spectrometry (GC-MS) is a complementary method with its separation 
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efficiency for the stereoisomers of pentose and hexose sugar32, 29, 68. Nevertheless, GC-

MS analysis requires chemical derivatisation for sugars which is suited for reducing 

the amount of several conformational isomers as well as increasing their volatility. 

For lipophilic metabolites, as similar to hydrophilic metabolites, there are analytical 

methods with broad coverage of different lipid classes55, 74, 8, 11, 63, 9. However, for 

certain lipid classes, such as oxylipins and isoprostanes61, 16, 2, sphingolipid42, bile 

acids17, 34, cholesterol and cholesterol esters37 and prenol lipids18 more targeted 

RPLC-MS methods have been developed and validated in the literature.  

 

To be able to generate the absolute concentration values of the metabolites, an 

efficient calibration strategy should be included with the authentic chemical and 

stable isotope labelled internal standards for each target metabolite or the target 

chemical class62. For this purpose the predictions of the in silico model will be an 

important asset to define the key target metabolites in the metabolic network for the 

calibration samples and thereby helping the right choice of the analytical platforms 

for the design of metabolomic experiments. 
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Supplementary tables.  

 

Table S1. Literature curation showing evidence of activity, or inactivity of 252 genes. 

 

EntrezGeneID (Active) EntrezGeneID (Inactive) 

38 586 

39 1717 

43 3156 

226 6566 

240 9194 

241 10449 

292 5409 

384 128 

412 222 

498 1109 

622 1544 

840 1551 

1152 1553 

1160 1555 

1583 1557 

1588 1559 

1593 1562 

1607 1572 

1630 1576 

1737 1577 

1738 1582 

1743 1585 

1757 1586 

2023 1621 

2026 2180 

2052 2571 

2074 2572 

2108 2632 

2109 2670 

2110 2819 

2222 2880 

2246 3028 

2261 3158 

2271 3283 
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EntrezGeneID (Active) EntrezGeneID (Inactive) 

2539 3284 

2597 3292 

2629 3293 

2645 3294 

2646 3295 

2720 3764 

2739 5091 

2747 5161 

2820 5409 

2821 5834 

2932 6241 

3098 6296 

3099 6518 

3101 6519 

3170 6530 

3479 6542 

3763 6580 

3939 7299 

3945 7350 

4047 7923 

4190 8529 

4191 8630 

4929 9154 

4967 10005 

5053 10165 

5106 10202 

5160 10249 

5162 10965 

5209 10998 

5211 11001 

5214 11283 

5223 23597 

5226 26002 

5315 26027 

5337 26227 

5527 28965 

6342 51144 

6515 51170 

6821 51171 
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EntrezGeneID (Active) EntrezGeneID (Inactive) 

6853 51478 

6888 51703 

7084 54988 

8050 55856 

8802 55902 

8803 57016 

8878 57030 

10059 64078 

10135 64816 

10797 64902 

10858 66002 

11332 79611 

22934 80221 

23761 81616 

25796 83884 

51552 84532 

54550 93034 

55669 93517 

57084 114570 

57194 116280 

57704 117140 

64080 121210 

64802 122970 

80210 123880 

115827 126410 

126328 134530 

130752 197320 

548596 246210 

100133941 257200 

18 267020 

217 284490 

219 340810 

223 341390 

224 345280 

501 348160 

539 376500 

847 641370 

1327 277 

1329 278 
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EntrezGeneID (Active) EntrezGeneID (Inactive) 

1337 7364 

1339 7365 

1340 9426 

1345 10720 

1346 54575 

1347 54577 

1349 54579 

1350 54657 

1351 64711 

1384 91227 

1431 94033 

1468 114770 

1537 116080 

2744 116180 

2746 124980 

2805 125210 

2806 133690 

2876 153200 

2879 155180 

2936 158840 

3417 203610 

3418 253180 

3419 266740 

3420 338600 

3421 339220 

4199 348930 

4200 360200 

4512 389020 

4513 441280 

4514 646490 

4519 653600 

4535 728440 

4536 100140000 

4537 100530000 

4538 100530000 

4539 102720000 

4540 
 

4541 
 

4694 
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EntrezGeneID (Active) EntrezGeneID (Inactive) 

4695 
 

4696 
 

4697 
 

4698 
 

4700 
 

4701 
 

4702 
 

4704 
 

4705 
 

4706 
 

4707 
 

4708 
 

4709 
 

4710 
 

4711 
 

4712 
 

4713 
 

4714 
 

4715 
 

4716 
 

4717 
 

4718 
 

4719 
 

4720 
 

4722 
 

4723 
 

4724 
 

4725 
 

4726 
 

4728 
 

4729 
 

4731 
 

4942 
 

6389 
 

6390 
 

6391 
 

6392 
 

6648 
 

7351 
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EntrezGeneID (Active) EntrezGeneID (Inactive) 

7381 
 

7384 
 

7385 
 

7386 
 

7388 
 

7991 
 

8402 
 

8604 
 

8659 
 

9016 
 

9167 
 

9377 
 

9481 
 

10400 
 

10476 
 

10873 
 

10935 
 

10975 
 

23530 
 

27089 
 

27165 
 

29796 
 

51079 
 

54539 
 

55967 
 

56267 
 

79751 
 

80025 
 

83733 
 

84701 
 

125965 
 

126328 
 

170712 
 

341947 
 

349565 
 

374291 
 

1644 
 

4128 
 

4129 
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EntrezGeneID (Active) EntrezGeneID (Inactive) 

6818 
 

7054 
 

9588 
 

19 
 

366 
 

3767 
 

4891 
 

5947 
 

6505 
 

6529 
 

6535 
 

6538 
 

6546 
 

6581 
 

6582 
 

6833 
 

10060 
 

81539 
 

84889 
 

206358 
 

6511 
 

6531 
 

6571   
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Table S2. Metabolic reactions (445) in dopaminergic neurons. 

Reaction 

abbreviation Reaction description Reaction formula 

EX_phe_L[e] exchange reaction for L-phenylalanine phe_L[e]<=> 

EX_tyr_L[e] L-Tyrosine exchange tyr_L[e]<=> 

EX_dopa[e] Dopamine exchange dopa[e]<=> 

EX_34dhphe[e] 3,4-Dihydroxy-L-phenylalanine exchange 34dhphe[e]<=> 34dhphe[c] 

EX_glu_L[e] Predicted informative metabolites glu_L[e]<=> 

EX_dopasf[e] Dopamine 3-O-sulfate exchange dopasf[e]<=> 

EX_dopa4sf[e] Dopamine 4-O-sulfate exchange dopa4sf[e]<=> 

EX_dopa4glcur[e

] Dopamine 4-O-glucuronide exchange dopa4glcur[e]<=> 

EX_dopa3glcur[e

] Dopamine 3-O-glucuronide exchange dopa3glcur[e]<=> 

r0399 

L-Phenylalanine,tetrahydrobiopterin:oxygen 

oxidoreductase [4-hydroxylating] o2[c]+ thbpt[c]+ phe_L[c]-> tyr_L[c]+ thbpt4acam[c] 

TYR3MO2 tyrosine 3-monooxygenase o2[c]+ thbpt[c]+ tyr_L[c]-> 34dhphe[c]+ thbpt4acam[c] 

DHPR 6,7-dihydropteridine reductase h[c]+ nadh[c]+ dhbpt[c]-> nad[c]+ thbpt[c] 

3HLYTCL 3-Hydroxy-L-tyrosine carboxy-lyase h[c]+ 34dhphe[c]-> co2[c]+ dopa[c] 

DOPAt4_2_r Dopamine reversible transport in via sodium symport [1:2] 2.0 na1[e]+ dopa[e]<=> 2.0 na1[c]+ dopa[c] 

DOPASFt Dopamine 3-0-sulfate transport [diffusion] dopasf[c]-> dopasf[e] 

DOPA4SFt Dopamine 4-0-sulfate transport [diffusion] dopa4sf[c]-> dopa4sf[e] 

DOPA4GLCURt Dopamine 4-O-glucuronide transport dopa4glcur[c]+h2o[c]+ atp[c]-> dopa4glcur[e]+ adp[c]+ pi[c]+ h[c] 

DOPA3GLCURt Dopamine 3-O-glucuronide transport 

dopa3glcur[c]+ h2o[c]+ atp[c]-> dopa3glcur[e]+ adp[c]+ pi[c]+ 

h[c] 

TYRCBOX L-Tyrosine carboxy-lyase h[c]+ tyr_L[c]-> co2[c]+ tym[c] 

DOPAc formation of dopamine o2[c]+ h[c]+ nadph[c]+ tym[c]-> h2o[c]+ nadp[c]+ dopa[c] 

DOPAVESSEC Dopamine secretion via secretory vesicle [ATP driven] h2o[c]+ atp[c]+ dopa[c]-> h[c]+ adp[c]+ pi[c]+ dopa[e] 

42A12BOOX 

4-[2-Aminoethyl]-1,2-benzenediol:oxygen 

oxidoreductase[deaminating][flavin-containing] h2o[c]+ o2[c]+ dopa[c]-> h2o2[c]+ nh4[c]+ 34dhpac[c] 

34DHPEAR 3,4-Dihydroxyphenylethanol:NADP+ reductase 34dhpac[c]+ nadph[c]+ h[c]-> 34dhpe[c]+ nadp[c] 

34DHPLACOX 3,4-Dihydroxyphenylacetaldehyde:NAD+ oxidoreductase h2o[c]+ nad[c]+ 34dhpac[c]-> 2.0 h[c]+ nadh[c]+ 34dhpha[c] 

34DHPLACOX_N

ADP_ 3,4-Dihydroxyphenylacetaldehyde:NADP+ oxidoreductase h2o[c]+ nadp[c]+ 34dhpac[c]<=> 2.0 h[c]+ nadph[c]+ 34dhpha[c] 

EX_34dhpha[e] exchange for 34dhpha 34dhpha[e]<=> 

DOPASULT Dopamine Sulfotransferase paps[c]+ dopa[c]-> h[c]+ pap[c]+ dopasf[c] 

DOPASULT4 Dopamine 4-O-Sulfotransferase paps[c]+ dopa[c]-> h[c]+ pap[c]+ dopa4sf[c] 

UDPG4DOPA Dopamine 4-O-Glucuronidation udpglcur[c]+ dopa[c]-> udp[c]+ dopa4glcur[c] 

UDPG3DOPA Dopamine 3-O-Glucuronidation udpglcur[c]+ dopa[c]-> udp[c]+ dopa3glcur[c] 

RE3201C RE3201 o2[c]+ 56dihindlcrbxlt[c]-> h2o2[c]+ CE1562[c] 

DCT Dopachrome tautomerase L_dpchrm[c]<=> 56dihindlcrbxlt[c] 

DOPACHRMISO L-dopachrome isomerase 1 o2[c]+ 2.0 2c23dh56dhoxin[c]-> 2.0 h2o[c]+ 2.0 L_dpchrm[c] 

RE3198C RE3198 h[c]+ nadh[c]+ L_dpchrm[c]<=> nad[c]+ 2c23dh56dhoxin[c] 

DOPACHRMDC L-dopachrome decarboxylation L_dpchrm[c]-> co2[c]+ CE4888[c] 

DOPAQNISO1 Dopaquinone isomerase 1 dopaqn[c]<=> h[c]+ 2c23dh56dhoxin[c] 
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Reaction 

abbreviation Reaction description Reaction formula 

RE1917C RE1917 dopaqn[c] + CE1261[c] <=> 34dhphe[c] + CE1262[c] 

TYRDHINDOX Tyrosinase: 5,6-dihydroxyindole oxygen oxidoreductase 2.0 CE4888[c]+ o2[c]-> 2.0 h2o[c]+ 2.0 ind56qn[c] 

DACT 2,3-dihydro-1H-indole-5,6-dione tautomerization 23dh1i56dio[c]<=> CE4888[c] 

NADPQNOXR DT-diaphorase: NADP quinone oxireductase nadph[c]+ h[c]+ 23dh1i56dio[c]-> nadp[c]+ CE5665[c] 

NADQNOXR DT-diaphorase: NAD quinone oxireductase nadh[c]+ h[c]+ 23dh1i56dio[c]-> nad[c]+ CE5665[c] 

LACROX leukoaminochrome autoxidation CE5665[c]+ o2[c]-> 23dh1i56dio[c]+ h2o2[c] 

RE2526C RE2526 h[c]+ nadph[c]+ CE4888[c]<=> nadp[c]+ CE5665[c] 

RE2296C RE2296 gthrd[c]+ CE5276[c]<=> CE5025[c] 

CE5025t transport of 5-S-glutathionyl-dopamine CE5025[c]+ atp[c]+ h2o[c]-> CE5025 [e]+ adp[c]+ pi[c]+ h[c] 

EX_CE5025[e] 5-S-glutathionyl-dopamine exchange CE5025[e]<=> 

DOPAOQCYS Dopamine-o-quinone cysteine addition cys_L[c]+ CE5276[c]<=> 5cysdopa[c] 

5CYSDOPAt transport of 5-S-cysteinyldopamine 5cysdopa[c]<=> 5cysdopa [e] 

EX_5cysdopa[e] 5-S-cysteinyldopamine exchange 5cysdopa[e]<=> 

RE1916C RE1916 gthrd[c]+ dopaqn[c]<=> CE5026[c] 

CE5026t transport of 5-S-glutathionyl-L-DOPA CE5026[c]+ h2o[c]+ atp[c]<=> CE5026[e]+ adp[c]+ pi[c]+ h[c] 

EX_CE5026[e] 5-S-glutathionyl-L-DOPA exchange CE5026[e]-> 

CE1261t transport of 5-S-cysteinyldopa CE1261[c]<=> CE1261 [e] 

EX_CE1261[e] CE1261 exchange CE1261[e]<=> 

4GLU56DIHDIN

Dt transport of 4-s-glutathionyl-5,6-dihydroxyindoline 

4glu56dihdind[c]+ h2o[c]+ atp[c]<=> 4glu56dihdind[e]+ adp[c]+ 

pi[c]+ h[c] 

EX_4glu56dihdi

nd[e] 4-s-glutathionyl-5,6-dihydroxyindoline exchange 4glu56dihdind[e]<=> 

DOPAtu Dopamine uniport dopa[e]<=> dopa[c] 

RE1918C RE1918 dopa[c]+ acald[c]<=> h2o[c]+ C09642[c] 

C09642te salsolinol transport uniport C09642[c]<=> C09642[e] 

EX_C09642[e] C09642[e]exchange C09642[e]<=> 

CE5629t transport of 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline CE5629[c]<=> CE5629[e] 

EX_CE5629[e] exchange for 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline CE5629[e]<=> 

RE1921C RE1921 CE5626[c]<=> 2.0 h[c]+ co2[c]+ CE5629[c] 

RE1919C RE1919 pyr[c]+ dopa[c]<=> h2o[c]+ CE5626[c] 

RE3095C RE3095 h2o2[c]+ dopa[c]<=> 2.0 h2o[c]+ CE5276[c] 

RE2130C RE2130 dopa[c]+ fald[c]<=> h2o[c]+ CE2172[c] 

CE2172t transport of 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline CE2172[c]<=> CE2172[e] 

EX_CE2172[e] exchange for 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline CE2172[e]<=> 

DOPACCL dopamine o-quinone cyclization CE5276[c]-> CE5665[c] 

DM_CE1261[c] neuromelanin production from 5-S-cysteinyldopa 
 

DM_4glu56dihdi

nd[c] 

neuromelanin production from 4-s-glutathionyl-5,6-

dihydroxyindoline 
 

DM_5cysdopa[c] neuromelanin production from 5-S-cysteinyldopamine 
 

DM_CE1562[c] 

neuromelanin production from 5,6-indolequinone-2-

carboxylate 
 

DM_CE4888[c] neuromelanin production from CE4888 
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Reaction 

abbreviation Reaction description Reaction formula 

DM_CE5025[c] neuromelanin production from 5-S-glutathionyl-dopamine 
 

DM_CE5026[c] neuromelanin production from 5-S-glutathionyl-L-DOPA 
 

DM_ind56qn[c] 
  

ALAt4 
 

na1[e]+ ala_L[e] -> na1[c]+ ala_L[c] 

ARGtD 
 

arg_L[e] <=> arg_L[c] 

ASCBSVCTtc 
 

h2o[c]+ atp[c]+ 2 na1[e]+ ascb_L[e] -> adp[c]+ h[c]+ pi[c]+ 2 

na1[c]+ ascb_L[c] 

ASCBt4 
 

na1[e]+ ascb_L[e] <=> na1[c]+ ascb_L[c] 

ASNt4 
 

na1[e]+ asn_L[e] -> na1[c]+ asn_L[c] 

ASPDt6 
 

h[e]+ 3 na1[e]+ asp_D[e]+ k[c] -> h[c]+ 3 na1[c]+ asp_D[c]+ k[e] 

ASPt6 
 

h[e]+ 3 na1[e]+ k[c]+ asp_L[e] -> h[c]+ 3 na1[c]+ asp_L[c]+ k[e] 

CAt7r 
 

3 na1[e]+ ca2[c] <=> 3 na1[c]+ ca2[e] 

CHOLtu 
 

chol[e] <=> chol[c] 

CREATt4_2_r 
 

2 na1[e]+ creat[e] <=> 2 na1[c]+ creat[c] 

GLNt4 
 

na1[e]+ gln_L[e] -> na1[c]+ gln_L[c] 

GLUt6 
 

h[e]+ 3 na1[e]+ k[c]+ glu_L[e] -> h[c]+ 3 na1[c]+ glu_L[c]+ k[e] 

GLYt2r 
 

h[e]+ gly[e] <=> h[c]+ gly[c] 

GLYt4 
 

na1[e]+ gly[e] -> na1[c]+ gly[c] 

HMR_9613 
 

2 na1[e]+ 4abut[e]+ cl[e] -> 2 na1[c]+ 4abut[c]+ cl[c] 

HMR_9614 
 

na1[e]+ dopa[e] -> na1[c]+ dopa[c] 

HOMt4 
 

na1[e]+ hom_L[e] -> na1[c]+ hom_L[c] 

KCC2t 
 

nh4[e]+ cl[e] <=> nh4[c]+ cl[c] 

KCCt 
 

k[e]+ cl[e] <=> k[c]+ cl[c] 

LEUt4 
 

na1[e]+ leu_L[e] -> na1[c]+ leu_L[c] 

LYStiDF 
 

lys_L[e] -> lys_L[c] 

METt4 
 

na1[e]+ met_L[e] -> na1[c]+ met_L[c] 

PHEt4 
 

na1[e]+ phe_L[e] -> na1[c]+ phe_L[c] 

PROt2r 
 

h[e]+ pro_L[e] <=> h[c]+ pro_L[c] 

PROt4 
 

na1[e]+ pro_L[e] -> na1[c]+ pro_L[c] 

SELMETHte 
 

na1[e]+ selmeth[e] -> na1[c]+ selmeth[c] 

SERt4 
 

na1[e]+ ser_L[e] -> na1[c]+ ser_L[c] 

THRt4 
 

na1[e]+ thr_L[e] -> na1[c]+ thr_L[c] 

r1492 
 

k[c] -> k[e] 

r1518 
 

h2o[c]+ atp[c]+ lnlc[c] -> adp[c]+ h[c]+ pi[c]+ lnlc[e] 

r2471 
 

h[e]+ ser_L[e] -> h[c]+ ser_L[c] 

DM_pe_hs[c] 
  

EX_btn[e] 
  

EX_ascb_L[e] 
  

EX_chol[e] 
  

EX_fol[e] 
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Reaction 

abbreviation Reaction description Reaction formula 

EX_glc_D[e] 
  

EX_gly[e] 
  

EX_gthrd[e] 
  

EX_glu_L[e] 
  

EX_etha[e] 
  

EX_hxan[e] 
  

EX_tyr_L[e] 
  

EX_phe_L[e] 
  

EX_ala_L[e] 
  

EX_pro_L[e] 
  

EX_thr_L[e] 
  

EX_asn_L[e] 
  

EX_ile_L[e] 
  

EX_his_L[e] 
  

EX_lys_L[e] 
  

EX_ser_L[e] 
  

EX_asp_L[e] 
  

EX_Lcystin[e] 
  

EX_pnto_R[e] 
  

EX_inost[e] 
  

EX_thm[e] 
  

EX_pydxn[e] 
  

EX_pyr[e] 
  

EX_ribflv[e] 
  

EX_thymd[e] 
  

EX_ca2[e] 
  

EX_cl[e] 
  

EX_arg_L[e] 
  

EX_M02482[e] 
  

EX_cys_L[e] 
  

EX_k[e] 
  

EX_na1[e] 
  

EX_hco3[e] 
  

EX_gln_L[e] 
  

EX_lnlc[e] 
  

EX_leu_L[e] 
  

EX_met_L[e] 
  

EX_val_L[e] 
  

EX_trp_L[e] 
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Reaction 

abbreviation Reaction description Reaction formula 

EX_HC02172[e] 
  

EX_ncam[e] 
  

EX_ptrc[e] 
  

EX_pi[e] 
  

EX_so4[e] 
  

EX_lipoate[e] 
  

EX_M02887[e] 
  

EX_fe3[e] 
  

EX_nh4[e] 
  

EX_gal[e] 
  

EX_orn[e] 
  

EX_lac_L[e] 
  

EX_cit[e] 
  

EX_CE2028[e] 
  

EX_succ[e] 
  

EX_o2[e] exchange reaction for oxygen o2[e]<=> 

H2Ot H2O transport via diffusion h2o[e]<=> h2o[c] 

O2t o2 transport [diffusion] o2[e]<=> o2[c] 

CO2t CO2 transporter via diffusion co2[e]<=> co2[c] 

EX_co2[e] CO2 exchange co2[e]<=> 

EX_h2o[e] H2O exchange h2o[e]<=> 

GBAl glucocerebrosidase h2o[l]+ gluside_hs[l] -> crm_hs[l]+ glc_D[l] 

GTPCI GTP cyclohydrolase I h2o[c]+ gtp[c]-> h[c]+ for[c]+ ahdt[c] 

PTHPS 6-pyruvoyltetrahydropterin synthase ahdt[c]-> pppi[c]+ 6pthp[c] 

SPR sepiapterin reductase 2.0 h[c]+ 2.0 nadph[c]+ 6pthp[c]-> 2.0 nadp[c]+ thbpt[c] 

34HPLtm 
 

h[c]+ 34hpl[c] <=> h[m]+ 34hpl[m] 

4ABUTtm 
 

4abut[c] <=> 4abut[m] 

DAGK_hs 
  

AACOAT 
  

ABTArm 
 

akg[m]+ 4abut[m] <=> glu_L[m]+ sucsal[m] 

ABUTt2r h[e]+ 4abut[e] <=> h[c]+ 4abut[c] 
 

ABUTt4_2_r 2 na1[e]+ 4abut[e] <=> 2 na1[c]+ 4abut[c] 
 

ACGLUtm 
 

acglu[c] <=> acglu[m] 

ACHEe 
  

ADK1m 
 

atp[m]+ amp[m] <=> 2 adp[m] 

AGTim 
 

ala_L[m]+ glx[m] -> pyr[m]+ gly[m] 

AKGDm 
 

akg[m]+ coa[m]+ nad[m] -> co2[m]+ nadh[m]+ succoa[m] 

AKGMALtm 
 

akg[m]+ mal_L[c] <=> akg[c]+ mal_L[m] 

ALAt2r 
 

h[e]+ ala_L[e] <=> h[c]+ ala_L[c] 



Mechanistic model of dopaminergic neuron metabolism 

243 
 

5 

Reaction 

abbreviation Reaction description Reaction formula 

ALOX5 
  

AMETt2m 
 

amet[c]+ ahcys[m] <=> ahcys[c]+ amet[m] 

APOC_LYS_BTNP

m 
 

h2o[m]+ apoC_Lys_btn[m] -> apoC[m]+ biocyt[m] 

ARGNm 
 

h2o[m]+ arg_L[m] -> urea[m]+ orn[m] 

ASPGLUm 
 

h[c]+ glu_L[c]+ asp_L[m] -> h[m]+ glu_L[m]+ asp_L[c] 

ASPNATm 
 

asp_L[m]+ accoa[m] -> h[m]+ coa[m]+ Nacasp[m] 

ASPTAm 
 

akg[m]+ asp_L[m] <=> glu_L[m]+ oaa[m] 

ATPS4mi 
 

4 h[c]+ adp[m]+ pi[m] -> 3 h[m]+ h2o[m]+ atp[m] 

BDHm 
 

nad[m]+ bhb[m] <=> h[m]+ nadh[m]+ acac[m] 

C02712tm 
 

C02712[c] <=> C02712[m] 

C09642te 
 

C09642[c] <=> C09642[e] 

C160CPT1 
  

C160CPT2 
 

coa[m]+ pmtcrn[m] -> crn[m]+ pmtcoa[m] 

CATm 
 

2 h2o2[m] -> o2[m]+ 2 h2o[m] 

CHSTEROLt 
 

h2o[c]+ atp[c]+ chsterol[c] -> adp[c]+ h[c]+ pi[c]+ chsterol[e] 

CK 
 

atp[m]+ creat[m] <=> adp[m]+ pcreat[m] 

CKc 
  

CSm 
 

h2o[m]+ accoa[m]+ oaa[m] -> h[m]+ coa[m]+ cit[m] 

CSNAT2m 
 

coa[m]+ pcrn[m] <=> ppcoa[m]+ crn[m] 

CSNATm 
 

coa[m]+ acrn[m] <=> accoa[m]+ crn[m] 

CYOOm2i 
 

o2[m]+ 4 focytC[m] -> 4 h[m]+ 2 h2o[m]+ 4 ficytC[m] 

CYOOm3i 
 

7.92 h[m]+ o2[m]+ 4 focytC[m] -> 1.96 h2o[m]+ 4 h[c]+ 4 

ficytC[m]+ 0.02 o2s[m] 

CYOR_u10mi 
 

2 h[m]+ 2 ficytC[m]+ q10h2[m] -> 4 h[c]+ q10[m]+ 2 focytC[m] 

DURIK1m 
 

atp[m]+ duri[m] -> h[m]+ adp[m]+ dump[m] 

ENO 
  

ETF 
 

fadh2[m]+ etfox[m] -> fad[m]+ etfrd[m] 

EX_4abut[e] 
  

EX_arachd[e] 
  

EX_atp[e] 
  

EX_bhb[e] 
  

EX_chsterol[e] 
  

EX_gln_L[e] 
  

EX_h[e] 
  

EX_h2o2[e] 
  

EX_hco3[e] 
  

EX_k[e] 
  

EX_lneldc[e] 
  

EX_lnlncg[e] 
  

EX_met_L[e] 
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Reaction 

abbreviation Reaction description Reaction formula 

EX_na1[e] 
  

EX_nh4[e] 
  

EX_pi[e] 
  

EX_strdnc[e] 
  

EX_thr_L[e] 
  

FADH2ETC 
 

fadh2[m]+ q10[m] -> fad[m]+ q10h2[m] 

FAOXC160 
 

7 h2o[m]+ 7 coa[m]+ 7 nad[m]+ 7 fad[m]+ pmtcoa[m] -> 7 h[m]+ 7 

nadh[m]+ 8 accoa[m]+ 7 fadh2[m] 

FBA 
  

FE2DMT1 
 

h[e]+ fe2[e] -> h[c]+ fe2[c] 

FUMm 
 

h2o[m]+ fum[m] <=> mal_L[m] 

G3PD2m 
 

fad[m]+ glyc3p[c] -> fadh2[m]+ dhap[c] 

G6PDH2c 
  

G6PDH2r 
  

GAPD 
  

GBA 
  

GBA2e 
  

GLCt1r 
  

GLNtm 
 

gln_L[c] -> gln_L[m] 

GLUNm 
 

h2o[m]+ gln_L[m] -> glu_L[m]+ nh4[m] 

GLUt2m 
 

h[c]+ glu_L[c] <=> h[m]+ glu_L[m] 

GLUVESSEC 
  

GLYKm 
 

atp[m]+ glyc[m] -> h[m]+ adp[m]+ glyc3p[m] 

GND 
  

GNDc 
  

GTHO 
  

GTHOm 
 

h[m]+ nadph[m]+ gthox[m] -> nadp[m]+ 2 gthrd[m] 

GTHP 
  

GTHPm 
 

h2o2[m]+ 2 gthrd[m] -> 2 h2o[m]+ gthox[m] 

H2CO3Dm 
 

h2o[m]+ co2[m] -> h[m]+ hco3[m] 

H2O2tm 
 

h2o2[c] -> h2o2[m] 

H2OGLYAQPt h2o[e]+ glyc[e] <=> h2o[c]+ glyc[c] 
 

HEX1 
  

HISTAtu hista[e] <=> hista[c] 
 

Htmi 
 

h[c] -> h[m] 

ICDHxm 
 

nad[m]+ icit[m] -> akg[m]+ co2[m]+ nadh[m] 

ICDHy 
  

ICDHyrm 
 

nadp[m]+ icit[m] <=> nadph[m]+ akg[m]+ co2[m] 

L_LACt2r 
  

L_LACtcm 
 

lac_L[c] -> lac_L[m] 
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LDH_L 
  

LDH_Lm 
 

nad[m]+ lac_L[m] <=> h[m]+ nadh[m]+ pyr[m] 

LGTHL 
  

LNSTLSr 
  

MDH 
  

MDHm 
 

nad[m]+ mal_L[m] <=> h[m]+ nadh[m]+ oaa[m] 

ME2m 
 

nadp[m]+ mal_L[m] -> nadph[m]+ co2[m]+ pyr[m] 

MTHFD2m 
 

nad[m]+ mlthf[m] <=> nadh[m]+ methf[m] 

NADH2_u10mi 
 

5 h[m]+ nadh[m]+ q10[m] -> 4 h[c]+ nad[m]+ q10h2[m] 

NMNATn 
  

OCOAT1m 
 

acac[m]+ succoa[m] -> aacoa[m]+ succ[m] 

ORNtiDF 
 

orn[e] -> orn[c] 

P45011A1m 
 

h[m]+ nadph[m]+ 2 o2[m]+ chsterol[m] -> 2 h2o[m]+ nadp[m]+ 

4mptnl[m]+ prgnlone[m] 

P45027A11m 
 

h[m]+ nadph[m]+ o2[m]+ xoltriol[m] -> h2o[m]+ nadp[m]+ 

xoltetrol[m] 

P45027A12m 
 

nadp[m]+ xoltetrol[m] -> h[m]+ nadph[m]+ thcholst[m] 

P45027A13m 
 

nadph[m]+ o2[m]+ thcholst[m] -> h2o[m]+ nadp[m]+ 

thcholstoic[m] 

P45027A14m 
 

h[m]+ nadph[m]+ o2[m]+ xol7ah2[m] -> h2o[m]+ nadp[m]+ 

xol7ah3[m] 

P45027A15m 
 

h[m]+ nadph[m]+ o2[m]+ xol7ah3[m] -> 2 h2o[m]+ nadp[m]+ 

xol7ah2al[m] 

P45027A16m 
 

nadph[m]+ o2[m]+ xol7ah2al[m] -> h2o[m]+ nadp[m]+ 

dhcholestanate[m] 

P45027A1m 
 

h[m]+ nadph[m]+ o2[m]+ chsterol[m] -> h2o[m]+ nadp[m]+ 

xol27oh[m] 

PDHm 
 

coa[m]+ nad[m]+ pyr[m] -> co2[m]+ nadh[m]+ accoa[m] 

PEFLIPm 
 

h2o[c]+ atp[c]+ pe_hs[c] -> adp[c]+ h[c]+ pi[c]+ pe_hs[m] 

PETOHMm_hs 
 

3 amet[m]+ pe_hs[m] -> 3 h[m]+ 3 ahcys[m]+ pchol_hs[m] 

PFK 
  

PGI 
  

PGK 
  

PGL 
  

PGLc 
  

PGM 
  

PPM 
  

PSDm_hs 
 

h[m]+ ps_hs[m] -> co2[m]+ pe_hs[m] 

PYK 
  

r0022 
 

nad[m]+ 2 gthrd[m] <=> h[m]+ nadh[m]+ gthox[m] 

r0081 
 

akg[m]+ ala_L[m] <=> glu_L[m]+ pyr[m] 

r0083 
 

h[m]+ HC01434[m] -> akg[m]+ co2[m] 

r0321 
 

coa[m]+ acac[m]+ atp[m] -> aacoa[m]+ amp[m]+ ppi[m] 

r0399 
  



Chapter 5 

246 
 

5 

Reaction 

abbreviation Reaction description Reaction formula 

r0407 
  

r0408 
  

r0409 
  

r0423 
 

nadp[m]+ icit[m] -> h[m]+ nadph[m]+ HC01434[m] 

r0425 
 

nad[m]+ icit[m] <=> h[m]+ nadh[m]+ HC01434[m] 

r2535m 
 

hom_L[m] <=> hom_L[c] 

r2539 
 

L2aadp[m]+ L2aadp6sa[c] <=> L2aadp[c]+ L2aadp6sa[m] 

RBK 
  

RBK_D 
  

RE0124C 
  

RE1530M 
 

dgtp[m]+ duri[m] <=> h[m]+ dgdp[m]+ dump[m] 

RE1804M 
 

nad[m]+ xol7ah3[m] <=> h[m]+ nadh[m]+ xol7ah2al[m] 

RE1807M 
 

h2o[m]+ nadp[m]+ xol7ah2al[m] <=> 2 h[m]+ nadph[m]+ 

dhcholestanate[m] 

RE2625M 
 

nad[m]+ xoltetrol[m] <=> h[m]+ nadh[m]+ CE4872[m] 

RE2626M 
 

h2o[m]+ nadp[m]+ CE4872[m] <=> 2 h[m]+ nadph[m]+ 

thcholstoic[m] 

RE3251M 
 

h[m]+ nadph[m]+ o2[m]+ xoltetrol[m] -> h2o[m]+ nadp[m]+ 

CE4874[m] 

RPE 
  

RPEc 
  

RPI 
  

SARDHm 
 

fad[m]+ sarcs[m]+ thf[m] -> fadh2[m]+ gly[m]+ mlthf[m] 

SPODMm 
 

2 h[m]+ 2 o2s[m] -> o2[m]+ h2o2[m] 

SRTNtu srtn[e] <=> srtn[c] 
 

STS1 
  

SUCD1m 
 

fad[m]+ succ[m] <=> fadh2[m]+ fum[m] 

SUCOASm 
 

coa[m]+ atp[m]+ succ[m] <=> adp[m]+ pi[m]+ succoa[m] 

TALA 
  

TAUPAT1c h[e]+ taur[e] -> h[c]+ taur[c] 
 

TKT1 
  

TKT2 
  

TMDK1m 
 

atp[m]+ thymd[m] -> h[m]+ adp[m]+ dtmp[m] 

DM_atp_c_ 
  

DM_4glu56dihdi

nd[c] 4-S-Glutathionyl-5,6-Dihydroxyindoline 
 

DM_CE5025[c] 5-S-Glutathionyl-Dopamine 
 

DM_CE5026[c] 5-S-Glutathionyl-L-Dopa 
 

DM_CE1562[c] 5,6-Indolequinone-2-Carboxylate 
 

DM_ind56qn[c] Indole-5,6-Quinone 
 

DM_ascb_L[c] L-Ascorbate 
 

sink_asn_L[c] L-Asparagine 
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DM_no2[c] Nitrite 
 

sink_thmtp[c] Thiamine-Triphosphate 
 

DM_6hddopaqn[

c] 6-Hydroxydopamine-Quinone 
 

sink_chol[c] Choline 
 

DM_CE4888[c] Dopaminochrome 
 

DM_gm1_hs[n] Ganglioside Gm1 
 

sink_pre_prot[r] 

Glycophosphatidylinositol (Gpi)-Anchored Protein 

Precursor 
 

sink_fe3[c] Iron (Fe3+) 
 

sink_citr[c] L-Citrulline 
 

sink_lnlc[c] Linoleate 
 

sink_lnlccoa[c] Linoleic Coenzyme A 
 

DM_C02712[c] N-Acetylmethionine 
 

sink_nadp[c] Nicotinamide Adenine Dinucleotide Phosphate 
 

sink_nad[c] Nicotinamide Adenine Dinucleotide 
 

sink_odecoa[c] Octadecenoyl Coenzyme A (N-C18:1 Coenzyme A) 
 

sink_pmtcoa[c] Palmitoyl Coenzyme A (N-C16:0 Coenzyme A) 
 

DM_pchol_hs[c] Phosphatidylcholine 
 

DM_pcreat[c] Phosphocreatine 
 

sink_phyQ[c] Phylloquinone 
 

DM_K_c_ Potassium 
 

DM_Ser_Gly_Ala_

X_Gly_ly_ 

Protein-Linked Serine Residue (Glycosaminoglycan 

Attachment Site) 
 

sink_Ser_Gly_Ala

_X_Gly[r] 

Protein-Linked Serine Residue (Glycosaminoglycan 

Attachment Site) 
 

DM_na1[c] Sodium 
 

DM_sprm_c_ Spermine 
 

sink_stcoa[c] Stearoyl Coenzyme A (N-C18:0 Coenzyme A) 
 

DM_taur[c] Taurine 
 

DM_thm[m] Thiamin 
 

sink_thmpp[c] Thiamine Diphosphate 
 

sink_Tyr_ggn[c] 

Tyr-194 Of Apo-Glycogenin Protein (Primer For Glycogen 

Synthesis) 
 

DM_ca2[c] Calcium 
 

DM_chsterol[c] cholesterol 
 

DM_pnto_R (R)-Pantothenate 
 

DM_CE1261[c] 5-S-Cysteinyldopa 
 

sink_CE1273[c] 5Beta-Cholestane-3Alpha,7Alpha,12Alpha,24S,25-Pentol 
 

sink_crvnc[c] Cervonic Acid, C22:6 N-3 
 

sink_decdicoa[c] Decadienoyl Coenzyme A 
 

sink_c101coa[c] Decenoyl Coenzyme A 
 

DM_pail35p_hs[

n] 1-Phosphatidyl-1D-Myo-Inositol 3,5-Bisphosphate 
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DM_5cysdopa[c] 5-S-Cysteinyldopamine 
 

sink_retfa[c] Fatty Acid Retinol 
 

HMR_1735 
 

o2[c]+ h[c]+ nadph[c]+ chsterol[c] -> h2o[c]+ nadp[c]+ xol24oh[c] 

CLS_hs 
 

cdpdag_hs[c]+ pglyc_hs[c] -> h[c]+ cmp[c]+ clpn_hs[c] 

PIK4 
 

atp[c]+ pail_hs[c] -> h[c]+ adp[c]+ pail4p_hs[c] 

PSDm_hs 
 

h[m]+ ps_hs[m]-> co2[m]+ pe_hs[m] 

HMR_0653 
 

amet[c]+ pe_hs[c] -> 2 h[c]+ ahcys[c]+ M02686[c] 

PCHOLP_hs 
 

h2o[c]+ pchol_hs[c] -> h[c]+ pa_hs[c]+ chol[c] 

PLA2_2 
 

h2o[c]+ pchol_hs[c] -> h[c]+ Rtotal2[c]+ lpchol_hs[c] 

SMS 
 

pchol_hs[c]+ crm_hs[c] -> dag_hs[c]+ sphmyln_hs[c] 

HMR_0795 
 

h2o[c]+ sphmyln_hs[c] -> h[c]+ crm_hs[c]+ cholp[c] 

NTD4 
 

h2o[c]+ cmp[c] -> pi[c]+ cytd[c] 

AMPDA 
 

h2o[c]+ h[c]+ amp[c] -> nh4[c]+ imp[c] 

NTD7 
 

h2o[c]+ amp[c] -> pi[c]+ adn[c] 

NTD9 
 

h2o[c]+ gmp[c] -> pi[c]+ gsn[c] 

NTD2 
 

h2o[c]+ ump[c] -> pi[c]+ uri[c] 

ASPTA 
 

akg[c]+ asp_L[c] <=> glu_L[c]+ oaa[c] 

FPGS2 
 

atp[c]+ glu_L[c]+ 5thf[c] -> h[c]+ adp[c]+ pi[c]+ 6thf[c] 

FPGS3 
 

atp[c]+ glu_L[c]+ 6thf[c] -> h[c]+ adp[c]+ pi[c]+ 7thf[c] 

FPGS4 
 

atp[c]+ 4 glu_L[c]+ dhf[c] -> 3 h2o[c]+ h[c]+ adp[c]+ pi[c]+ 5dhf[c] 

FPGS5 
 

atp[c]+ glu_L[c]+ 5dhf[c] -> h[c]+ adp[c]+ pi[c]+ 6dhf[c] 

FPGS6 
 

atp[c]+ glu_L[c]+ 6dhf[c] -> h[c]+ adp[c]+ pi[c]+ 7dhf[c] 

FPGS8 
 

10fthf5glu[c]+ atp[c]+ glu_L[c] -> 10fthf6glu[c]+ h[c]+ adp[c]+ 

pi[c] 

FPGS9 
 

10fthf6glu[c]+ atp[c]+ glu_L[c] -> 10fthf7glu[c]+ h[c]+ adp[c]+ 

pi[c] 

r1382 
 

6 atp[c]+ 6 glu_L[c]+ thf[c] -> 6 h[c]+ 6 adp[c]+ 6 pi[c]+ 7thf[c] 

FPGS7 
 

10fthf[c]+ atp[c]+ 4 glu_L[c] -> 10fthf5glu[c]+ 3 h2o[c]+ h[c]+ 

adp[c]+ pi[c] 

FPGS 
 

atp[c]+ 4 glu_L[c]+ thf[c] -> 3 h2o[c]+ h[c]+ adp[c]+ pi[c]+ 5thf[c] 

HMR_9726 
 

glu_L[c]+ 5fthf[c] -> thf[c]+ forglu[c] 

ALATA_L 
 

akg[c]+ ala_L[c] <=> pyr[c]+ glu_L[c] 

GLUCYS 
 

atp[c]+ glu_L[c]+ cys_L[c] -> h[c]+ adp[c]+ pi[c]+ glucys[c] 

ILETA 
 

akg[c]+ ile_L[c] <=> glu_L[c]+ 3mop[c] 

LEUTA 
 

akg[c]+ leu_L[c] <=> glu_L[c]+ 4mop[c] 

VALTA 
 

akg[c]+ val_L[c] <=> glu_L[c]+ 3mob[c] 

ARGSS 
 

atp[c]+ asp_L[c]+ citr_L[c] -> h[c]+ amp[c]+ ppi[c]+ argsuc[c] 

ASPTA 
 

akg[c]+ asp_L[c] <=> glu_L[c]+ oaa[c] 

ALATA_L 
 

akg[c]+ ala_L[c] <=> pyr[c]+ glu_L[c] 

GHMT2r 
 

ser_L[c]+ thf[c] <=> h2o[c]+ gly[c]+ mlthf[c] 

GLYAMDTRc 
 

gly[c]+ arg_L[c] <=> orn[c]+ gudac[c] 
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r0060 
 

ser_L[c] -> nh4[c]+ pyr[c] 

THRD_L 
 

thr_L[c] -> nh4[c]+ 2obut[c] 

GHMT2r 
 

ser_L[c]+ thf[c] <=> h2o[c]+ gly[c]+ mlthf[c] 

GLYAMDTRc 
 

gly[c]+ arg_L[c] <=> orn[c]+ gudac[c] 

ARGN 
 

h2o[c]+ arg_L[c] -> orn[c]+ urea[c] 

r0145 
 

2 o2[c]+ 2 nadph[c]+ arg_L[c] -> 2 h2o[c]+ 2 nadp[c]+ citr_L[c]+ 

no[c] 

THRD_L 
 

thr_L[c] -> nh4[c]+ 2obut[c] 

PHETHPTOX2 
 

o2[c]+ thbpt[c]+ phe_L[c] -> tyr_L[c]+ thbpt4acam[c] 

PROD2 
 

fad[c]+ pro_L[c] -> h[c]+ fadh2[c]+ 1pyr5c[c] 

HMR_6728 
 

o2[c]+ thbpt[c]+ tyr_L[c] -> h2o[c]+ 34dhphe[c]+ dhbpt[c] 

HMR_6874 
 

o2[c]+ tyr_L[c] -> h2o[c]+ dopaqn[c] 

TYR3MO2 
 

o2[c]+ thbpt[c]+ tyr_L[c] -> 34dhphe[c]+ thbpt4acam[c] 

TYRCBOX 
 

h[c]+ tyr_L[c] -> co2[c]+ tym[c] 

TYRTA 
 

akg[c]+ tyr_L[c] <=> 34hpp[c]+ glu_L[c] 

LYSOXp 
  

HISDC 
 

h[c]+ his_L[c] -> co2[c]+ hista[c] 

HISD 
 

his_L[c] -> nh4[c]+ urcan[c] 

LEUTA 
 

akg[c]+ leu_L[c] <=> glu_L[c]+ 4mop[c] 

ILETA 
 

akg[c]+ ile_L[c] <=> glu_L[c]+ 3mop[c] 

VALTA 
 

akg[c]+ val_L[c] <=> glu_L[c]+ 3mob[c] 

METAT 
 

h2o[c]+ atp[c]+ met_L[c] -> pi[c]+ amet[c]+ ppi[c] 

GLUDxm glutamate dehydrogenase (NAD) (mitochondrial)  h2o[m]+ nad[m]+ glu_L[m]<=> h[m]+ akg[m]+ nadh[m]+ nh4[m]   

GLUDym glutamate dehydrogenase (NADP), mitochondrial    

h2o[m]+ nadp[m]+ glu_L[m]<=> h[m]+ nadph[m]+ akg[m]+ 

nh4[m]  

ACONTm 
  

r0426 
  

r1109 
  

MTHFR3 
  

METS 
  

DOPAOQNOX     
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Table S3. List of metabolites predicted to be secreted along with their psychochemical 

nature and biological class. 

Recon3D Names Hydrophobicity Chemical Class 

Lipoamide Apolar /  hydrophobic Lipoamide 

17beta-hydroxy-5alpha-androstan-3-one Apolar /  hydrophobic Steroid 

Dolichol Apolar /  hydrophobic Polyprenol 

Lanosterin Apolar /  hydrophobic Sterol 

Bilirubin 
Predicted informative 

metabolites 
Bilirubin 

Thromboxane A2 Apolar /  hydrophobic Eicosanoid 

Retinoyl b-glucuronide Apolar /  hydrophobic Terpene glycoside 

21-Hydroxypregnenolone Apolar /  hydrophobic Steroid 

7-a,27-Dihydroxycholesterol Apolar /  hydrophobic Bile acid 

(24S)-7Alpha,24-Dihydroxycholesterol Apolar /  hydrophobic Bile acid 

Hexanoyl-CoA Apolar /  hydrophobic 
Fatty acyl 

Coenzyme 

Ceramide 1-Phosphate Apolar /  hydrophobic Sphingolipid 

Stearidonic acid Apolar /  hydrophobic Fatty acid 

12,13-DHOME Apolar /  hydrophobic Fatty acid 

24-Hydroxycholesterol Apolar /  hydrophobic Sterol 

Cholesterol Apolar /  hydrophobic Sterol 

Cholesterol ester Apolar /  hydrophobic Sterol 

Gamma-Linolenic acid Apolar /  hydrophobic Fatty acid 

Vitamin K1 Apolar /  hydrophobic Prenol Lipid 

Sphinganine 1-phosphate Apolar /  hydrophobic Sphingolipid 

Cholestane-3,7,12,24,25-pentol Apolar /  hydrophobic Sterol 

7Z,10Z-Hexadecadienoic Acid Apolar /  hydrophobic Fatty acid 

Linoelaidic Acid (All Trans C18:2) Apolar /  hydrophobic Fatty acid 

13-cis-Retinoic acid Apolar /  hydrophobic Prenol lipid 

Retinal Apolar /  hydrophobic Prenol Lipid 

5-Amino-1-(5-Phospho-D-ribosyl)imidazole-

4-carboxamide 
Polar / hydrophilic Nucleotide 

5-Methylthioadenosine Polar / hydrophilic Nucleoside 

S-Adenosyl-L-homocysteine Polar / hydrophilic Nucleoside 

Urocanate Polar / hydrophilic 
Imidazoyl 

carboxylic acid 



Mechanistic model of dopaminergic neuron metabolism 

251 
 

5 

Recon3D Names Hydrophobicity Chemical Class 

Kynurenate Polar / hydrophilic 
Quinoline 

carboxylic acid 

2-Oxobutanoate Polar / hydrophilic Keto acid 

2-Oxoadipate(2-) Polar / hydrophilic Keto acid 

Leucylleucine  Polar / hydrophilic Dipeptide 

Dehydroascorbic acid Polar / hydrophilic Sugar acid 

4-Acetamidobutanoic acid Polar / hydrophilic Amino acid 

Lactose Polar / hydrophilic Sugar 

D-Xylose Polar / hydrophilic Sugar 

D-Iduronic acid Polar / hydrophilic Sugar acid 

4-Methylpentanal Polar / hydrophilic Aldehyde 

D-Glucuronic acid Polar / hydrophilic Sugar acid 

Orotidylic acid Polar / hydrophilic Nucleotide 

Galactose Polar / hydrophilic Sugar 

Adenosine triphosphate Polar / hydrophilic Nucleotide 

N-Acetylmannosamine Polar / hydrophilic Amino sugar 

Isomaltose Polar / hydrophilic Sugar 

Nicotinic acid mononucleotide Polar / hydrophilic Nucleotide 

N-Acetyl-L-aspartic acid Polar / hydrophilic Amino acid 

N-Acetylglutamic acid Polar / hydrophilic Amino acid 

1-Methylnicotinamide Polar / hydrophilic Nicotinamide 

Tetrahydrobiopterin Polar / hydrophilic Pterin 

D-Gluconate Polar / hydrophilic Sugar acid 

Inosine Polar / hydrophilic Nucleoside 

Xanthine  Polar / hydrophilic Nucleobase 

Alpha-D-Glucose 1,6-bisphosphate Polar / hydrophilic Sugar phosphate 

1,5-D-Gluconolactone Polar / hydrophilic Sugar lactone 

2-Methyl-3-Hydroxy-Valerate Polar / hydrophilic Carboxylic acid 

Hydroxytyrosol Polar / hydrophilic Phenyl alcohol 

 

  



Chapter 5 

252 
 

5 

Supplementary References 

1. Inglis A.S. and Teh-Yung Liu. “The Stability of Cysteine and Cystine during 

Acid Hydrolysis of Proteins and Peptides”. In: The Journal of Biological 

Chemistry 245.1 (1970), pp. 112–116. url: 

http://w/ww.jbc.org/content/245/1/112 (visited on 04/13/2018). 

2. Linda Ahonen et al. “Analysis of Oxysterols and Vitamin D Metabolites in 

Mouse Brain and Cell Line Samples by Ultra-High-Performance Liquid 

Chromatography-Atmospheric Pressure Photoionization–

MassSpectrometry”.In: Journal of Chromatography A 

1364(Oct.2014),pp.214– 222. doi: 10.1016/j.chroma.2014.08.088. pmid: 

25204266. 

3. Rodrigo D. A. M. Alvesetal. “Global Profiling of the Muscle Metabolome : 

Method Optimization, Validation and Application to Determine Exercise-

Induced Metabolic Effects”. In: Metabolomics 11.2 (Apr. 1, 2015), pp. 271–

285. doi: 10.1007/s11306-014-0701-7. 

4. Maike K. Aurich, Ronan M. T. Fleming, and Ines Thiele. “MetaboTools: A 

Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models”. In: 

Frontiers in Physiology 7 (2016). doi: 10.3389/fphys.2016.00327. 

5. M. Banay-Schwartz et al. “Protein Content of Various Regions of Rat Brain 

and Adult and Aging Human Brain”. In: AGE 15.2 (Apr. 1, 1992), pp. 51–54. 

doi: 10.1007/BF02435024. 

6. O. Begou et al. “Hyphenated MS-Based Targeted Approaches in 

Metabolomics”. In: The Analyst 2011 (2017), pp. 3079–3100. doi: 

10.1039/C7AN00812K. pmid: 28792021. 

7. Elizabeth Brunketal. “Recon3D Enables a Three-Dimensional View of Gene 

Variation in Human  Metabolism”. In: Nature Biotechnology 36 (Feb. 19, 

2018), p. 272. url: http://dx.doi.org/ 10.1038/nbt.4072. 

8. Tomas Cajka and Oliver Fiehn. “Comprehensive Analysis of Lipids in 

Biological Systems by Liquid Chromatography-Mass Spectrometry”. In: TrAC 

Trends in Analytical Chemistry 61 (Oct. 2014), pp. 192–206. doi: 

10.1016/j.trac.2014.04.017. pmid: 25309011.  

9. Tomas Cajka, Jennifer T. Smilowitz, and Oliver Fiehn. “Validating 

Quantitative Untargeted LipidomicsAcrossNineLiquidChromatography–High 

ResolutionMassSpectrometryPlatforms”. In: Analytical Chemistry 89.22 (Nov. 



Mechanistic model of dopaminergic neuron metabolism 

253 
 

5 

2017), pp. 12360–12368. doi: 10.1021/acs.analchem. 7b03404. pmid: 

29064229. 

10. AlexiesDagnino-Subiabreetal.“Glutathione Transferase M22 Catalyzes 

Conjugation of Dopamine and Dopa o-Quinones”. In: Biochemical and 

Biophysical Research Communications 274.1 (July 21, 2000), pp. 32–36. doi: 

10.1006/bbrc.2000.3087. 

11. Carola W. N. Damen et al. “Enhanced Lipid Isomer Separation in Human 

Plasma Using Reversed-Phase UPLC with Ion-Mobility/High-Resolution MS 

Detection”. In: Journal of Lipid Research 55.8 (Aug. 2014), pp. 1772–1783. 

doi: 10.1194/jlr.D047795. pmid: 24891331. 

12. F. Diego et al. “Automated Identification of Neuronal Activity from Calcium 

Imaging by Sparse Dictionary Learning”. In: 2013 IEEE 10th International 

Symposium on Biomedical Imaging (ISBI). 2013 IEEE 10th International 

Symposium on Biomedical Imaging (ISBI). Apr. 2013, pp. 1058–1061. doi: 

10.1109/ISBI.2013.6556660. 

13. Arthur Edelstein et al. “Computer Control of Microscopes Using µManager”. 

In: Current Protocols in Molecular Biology. John Wiley & Sons, Inc., 2001. url: 

http://onlinelibrary.wiley. 

com/doi/10.1002/0471142727.mb1420s92/abstract (visited on 

04/14/2015). 

14. Graeme Eisenhofer, Irwin J. Kopin, and David S. Goldstein. “Catecholamine 

Metabolism: A Contemporary View with Implications for Physiology and 

Medicine”. In: Pharmacological Reviews 56.3 (Jan. 9, 2004), pp. 331–349. doi: 

10.1124/pr.56.3.1. pmid: 15317907. 

15. Adam M Feist and Bernhard O Palsson. “The Biomass Objective Function”. In: 

Current Opinion in Microbiology. Ecology and Industrial Microbiology • 

Special Section: Systems Biology 13.3 (June 2010), pp. 344–349. doi: 

10.1016/j.mib.2010.03.003. 

16. Junzeng Fu et al. “Metabolomics Profiling of the Free and Total Oxidised 

Lipids in Urine by LCMS/MS: Application in Patients with Rheumatoid 

Arthritis”. In: Analytical and Bioanalytical Chemistry 408.23 (2016), pp. 

6307–6319. doi: 10.1007/s00216-016-9742-2. pmid: 27405874. 

17. Juan C. García-Cañaveras et al. “Targeted Profiling of Circulating and Hepatic 

Bile Acids in Human, Mouse, and Rat Using a UPLC-MRM-MS-Validated 



Chapter 5 

254 
 

5 

Method”. In: Journal of Lipid Research 53.10 (2012), pp. 2231–2241. doi: 

10.1194/jlr.D028803. pmid: 22822028. 

18. Teresa A. Garrett, Ziqiang Guan, and Christian R H Raetz. “Analysis of 

Ubiquinones, Dolichols, and Dolichol Diphosphate-Oligosaccharides by 

Liquid Chromatography-Electrospray IonizationMass Spectrometry”. In: 

Methods in Enzymology 432.07 (2007), pp. 117–143. doi: 10.1016/ S0076-

6879(07)32005-3. pmid: 17954215. 

19. Helen G. Gika et al. “Quantitative Profiling of Polar Primary Metabolites 

Using Hydrophilic Interaction Ultrahigh Performance Liquid 

Chromatography-Tandem Mass Spectrometry”. In: Journal of 

Chromatography A 1259 (2012), pp. 121–127. doi: 

10.1016/j.chroma.2012.02.010. pmid: 22381888. 

20. Nicola Gray et al. “High-Speed Quantitative UPLC-MS Analysis of Multiple 

Amines in Human PlasmaandSerumviaPrecolumnDerivatizationwith6-

Aminoquinolyl-N-Hydroxysuccinimidyl Carbamate: Application to 

Acetaminophen-Induced Liver Failure”. In: Analytical Chemistry 89.4 (Feb. 

2017), pp. 2478–2487. doi: 10.1021/acs.analchem.6b04623. pmid: 

28194962. 

21. Steinn Gudmundsson and Ines Thiele. “Computationally Efficient Flux 

Variability Analysis”. In: BMC Bioinformatics 11.1 (Sept. 29, 2010), p. 489. 

doi: 10.1186/1471-2105-11-489. 

22. Jennifer Haggarty and Karl EV Burgess. “Recent Advances in Liquid and Gas 

Chromatography Methodology for Extending Coverage of the Metabolome”. 

In: Current Opinion in Biotechnology 43 (2017), pp. 77–85. doi: 

10.1016/j.copbio.2016.09.006. pmid: 27771607. 

23. J. A. Hanley and B. J. McNeil. “The Meaning and Use of the Area under a 

Receiver Operating Characteristic (ROC) Curve”. In: Radiology 143.1 (Apr. 

1982), pp. 29–36. doi: 10.1148/ radiology.143.1.7063747. pmid: 7063747. 

24. Hulda S. Haraldsdóttir and Ronan M. T. Fleming. “Identification of Conserved 

Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom 

Transition Networks”. In: PLOS Computational Biology 12.11 (Nov. 21, 2016), 

e1004999. doi: 10.1371/journal.pcbi.1004999. 



Mechanistic model of dopaminergic neuron metabolism 

255 
 

5 

25. Hulda S. Haraldsdóttir et al. “CHRR: Coordinate Hit-and-Run with Rounding 

for Uniform Sampling of Constraint-Based Models”. In: Bioinformatics 33.11 

(Jan. 6, 2017), pp. 1741–1743. doi: 10.1093/bioinformatics/btx052. 

26. Laurent Heirendt et al. “Creation and Analysis of Biochemical Constraint-

Based Models: The COBRA Toolbox v3.0”. In: Nature Protocols (accepted) 

(2018). url: https://arxiv.org/abs/ 1710.04038 (visited on 07/28/2017). 

27. Katriina Itäaho et al. “Dopamine Is a Low-Affinity and High-Specificity 

Substrate for the Human UDP-Glucuronosyltransferase 1A10”. In: Drug 

Metabolism and Disposition 37.4 (Jan. 4, 2009), pp. 768–775. doi: 

10.1124/dmd.108.025692. pmid: 19116261. 

28. Gregory Kapatos. “The Neurobiology of Tetrahydrobiopterin Biosynthesis: A 

Model for Regulation of GTP Cyclohydrolase I Gene Transcription within 

Nigrostriatal Dopamine Neurons”. In: IUBMB Life 65.4 (Apr. 1, 2013), pp. 

323–333. doi: 10.1002/iub.1140. 

29. Hiroko Kato et al. “Widely Targeted Metabolic Profiling Analysis of Yeast 

Central Metabolites”. In: Journal of Bioscience and Bioengineering 113.5 (May 

2012), pp. 665–673. doi: 10.1016/j. jbiosc.2011.12.013. pmid: 22280965. 

30. Daehwan Kim et al. “TopHat2: Accurate Alignment of Transcriptomes in the 

Presence of Insertions, Deletions and Gene Fusions”. In: Genome Biology 14.4 

(2013), R36. doi: 10.1186/gb2013-14-4-r36. pmid: 23618408. 

31. Hee-Yong Kim, Bill X. Huang, and Arthur A. Spector. “Phosphatidylserine in 

the Brain: Metabolism and Function”. In: Progress in lipid research 0 (Oct. 

2014), pp. 1–18. doi: 10.1016/j. plipres.2014.06.002. pmid: 24992464. 

32. Maud M Koek et al. “Microbial Metabolomics with Gas 

Chromatography/Mass Spectrometry.” In: Analytical Chemistry 78.4 (Feb. 

2006), pp. 1272–81. doi: 10.1021/ac051683+. pmid: 16478122. 

33. Michael J. Kuhar. “On the Use of Protein Turnover and Half-Lives”. In: 

Neuropsychopharmacology 34.5 (Oct. 15, 2008), pp. 1172–1173. doi: 

10.1038/npp.2008.190. 

34. Petri Kylli, Thomas Hankemeier, and Risto Kostiainen. “Feasibility of Ultra-

Performance Liquid Chromatography–Ion Mobility–Time-of-Flight Mass 

Spectrometry in Analyzing Oxysterols”. In: Journal of Chromatography A 

1487 (2017), pp. 147–152. doi: 10.1016/j.chroma.2017.01.039. 



Chapter 5 

256 
 

5 

35. Ruth Landolt, Helen H. Hess, and Caroline Thalheimer. “Regional 

Distribution of Some Chemical Structural Components of the Human 

Nervous System—I”. In: Journal of Neurochemistry 13.12 (Dec. 1, 1966), pp. 

1441–1452. doi: 10.1111/j.1471-4159.1966.tb04305.x. 

36. Heng Li et al. “The Sequence Alignment/Map Format and SAMtools”. In: 

Bioinformatics 25.16 (Aug. 15, 2009), pp. 2078–2079. doi: 

10.1093/bioinformatics/btp352. pmid: 19505943. 

37. Gerhard Liebisch et al. “High Throughput Quantification of Cholesterol and 

Cholesteryl Ester by Electrospray Ionization Tandem Mass Spectrometry 

(ESI-MS/MS)”. In: Biochimica et Biophysica Acta - Molecular and Cell Biology 

of Lipids 1761.1 (2006), pp. 121–128. doi: 10.1016/ j.bbalip.2005.12.007. 

38. R. Mahadevan and C. H. Schilling. “The Effects of Alternate Optimal Solutions 

in ConstraintBased Genome-Scale Metabolic Models”. In: Metabolic 

Engineering 5.4 (Oct. 2003), pp. 264–276.doi: 10.1016/j.ymben.2003.09.002. 

39. MarcelMartin.“CutadaptRemovesAdapterSequencesfromHigh-

ThroughputSequencingReads”. In: EMBnet.journal 17.1 (May 2, 2011), pp. 

10-12. doi: 10.14806/ej.17.1.200. 

40. C. A. Mawson. “Meaning of ‘Turnover’ in Biochemistry”. In: Nature 176.4476 

(Aug. 13, 1955), pp. 317–317. doi: 10.1038/176317a0. 

41. Johannes Meiser, Daniel Weindl, and Karsten Hiller. “Complexity of 

Dopamine Metabolism”. In: Cell Communication and Signaling : CCS 11 (May 

17, 2013), p. 34. doi: 10.1186/1478811X-11-34. 

42. Alfred H. Merrill et al. “Sphingolipidomics: High-Throughput, Structure-

Specific, and Quantitative Analysis of Sphingolipids by Liquid 

Chromatography Tandem Mass Spectrometry”. In: Methods 36 (2 SPEC. ISS. 

2005), pp. 207–224. doi: 10.1016/j.ymeth.2005.01.009. pmid: 15894491. 

43. Patricia Muñoz et al. “Dopamine Oxidation and Autophagy”. In: Parkinson’s 

Disease 2012 (2012). doi: 10.1155/2012/920953. 

44. A. Napolitano, P. Manini, and M. d’Ischia. “Oxidation Chemistry of 

Catecholamines and Neuronal Degeneration: An Update”. In: Current 

Medicinal Chemistry 18.12 (2011), pp. 1832–1845. pmid: 21466469. 

45. Alessandra Napolitano, Alessandro Pezzella, and Giuseppe Prota. “New 

Reaction Pathways of Dopamine under Oxidative Stress Conditions: 

Nonenzymatic Iron-Assisted Conversion to Norepinephrine and the 



Mechanistic model of dopaminergic neuron metabolism 

257 
 

5 

Neurotoxins 6-Hydroxydopamine and 6,7-

Dihydroxytetrahydroisoquinoline”. In: Chemical Research in Toxicology 

12.11 (Nov. 1, 1999), pp. 1090–1097. doi: 10.1021/ tx990079p. 

46. Marek J. Noga et al. “Metabolomics of Cerebrospinal Fluid Reveals Changes in 

the Central Nervous System Metabolism in a Rat Model of Multiple 

Sclerosis”. In: Metabolomics 8.2 (Apr. 2011), pp. 253–263. doi: 

10.1007/s11306-011-0306-3. 

47. Alberto Noronha et al. “The Virtual Metabolic Human Database: A 

Comprehensive Metabolic Resource of Human and Human Associated 

Microbes.” In: In preparation (2016). 

48. William T. Norton et al. “The Lipid Composition of Isolated Brain Cells and 

Axons”. In: Journal of Neuroscience Research 1.1 (Jan. 1, 1975), pp. 57–75. 

doi: 10.1002/jnr.490010106. 

49. John S. O’Brien and E. Lois Sampson. “Lipid Composition of the Normal 

Human Brain: Gray Matter, White Matter, and Myelin”. In: Journal of Lipid 

Research 6.4 (Jan. 10, 1965), pp. 537– 544. pmid: 5865382. url: 

http://w/ww.jlr.org/content/6/4/537 (visited on 08/12/2014). 

50. G. Paglia et al. “Monitoring Metabolites Consumption and Secretion in 

Cultured Cells Using Ultra-Performance Liquid Chromatography 

Quadrupole-Time of Flight Mass Spectrometry (UPLC-Q-ToF-MS).” In: 

Analytical and Bioanalytical Chemistry 402.3 (2012), pp. 1183–98. doi: 

10.1007/s00216-011-5556-4. pmid: 22159369. 

51. Leslie B. Poole. “The Basics of Thiols and Cysteines in Redox Biology and 

Chemistry”. In: Free Radical Biology & Medicine 80 (Mar. 2015), pp. 148–157. 

doi: 10.1016/j.freeradbiomed. 2014.11.013. pmid: 25433365. 

52. German A. Preciat Gonzalez et al. “Comparative Evaluation of Atom Mapping 

Algorithms for Balanced Metabolic Reactions: Application to Recon3D”. In: 

Journal of Cheminformatics 9 (2017), p. 39. doi: 10.1186/s13321-017-0223-

1. 

53. Syed Asad Rahman et al. “Reaction Decoder Tool (RDT): Extracting Features 

from Chemical Reactions”.In: Bioinformatics 32.13(Jan.7,2016),pp.2065–

2066. doi:10.1093/bioinformatics/ btw096. pmid: 27153692. 

54. Peter Reinhardt et al. “Derivation and Expansion Using Only Small Molecules 

of Human Neural Progenitors for Neurodegenerative Disease Modeling”. In: 



Chapter 5 

258 
 

5 

PLoS ONE 8.3 (Mar. 22, 2013). Ed. by Marcel Daadi, e59252. doi: 

10.1371/journal.pone.0059252. 

55. KoenSandraetal.“ComprehensiveBloodPlasmaLipidomicsbyLiquidChromato

graphy/Quadrupole Time-of-Flight Mass Spectrometry”. In: Journal of 

Chromatography A 1217.25 (June 2010), pp. 4087–4099. doi: 

10.1016/j.chroma.2010.02.039. pmid: 20307888. 

56. Augustin Scalbert et al. “Mass-Spectrometry-Based Metabolomics: 

Limitations and Recommendations for Future Progress with Particular 

Focus on Nutrition Research”. In: Metabolomics 5.4 (Dec. 2009), pp. 435–

458. doi: 10.1007/s11306-009-0168-0. pmid: 20046865. 

57. Jan Schellenberger et al. “Quantitative Prediction of Cellular Metabolism 

with Constraint-Based Models: The COBRA Toolbox v2.0”. In: Nature 

Protocols 6.9 (Sept. 2011), pp. 1290–1307. doi: 10.1038/nprot.2011.308. 

58. Juan Segura-Aguilar et al. “Protective and Toxic Roles of Dopamine in 

Parkinson’s Disease”. In: Journal of Neurochemistry 129.6 (June 1, 2014), pp. 

898–915. doi: 10.1111/jnc.12686. 

59. Kirti Sharma et al. “Cell Type- and Brain Region-Resolved Mouse Brain 

Proteome”. In: Nature Neuroscience advance online publication (Nov. 2, 

2015). doi: 10.1038/nn.4160. 

60. David Siegel et al. “Integrated Quantification and Identification of Aldehydes 

and Ketones in Biological Samples”. In: Analytical Chemistry 86.10 (May 

2014), pp. 5089–5100. doi: 10.1021/ ac500810r. pmid: 24745975. 

61. KatrinStrassburgetal.“QuantitativeProfilingofOxylipinsthroughComprehensi

veLC-MS/MS Analysis: Application in Cardiac Surgery”. In: Analytical and 

Bioanalytical Chemistry 404.5 (2012), pp. 1413–1426. doi: 10.1007/s00216-

012-6226-x. pmid: 22814969. 

62. Lloyd W. Sumner et al. “Proposed Minimum Reporting Standards for 

Chemical Analysis”. In: Metabolomics 3.3 (2007), pp. 211–221. url: 

http://link.springer.com/article/10.1007/ s11306-007-0082-2 (visited on 

03/19/2015). 

63. Ruben T’Kindt et al. “Profiling over 1500 Lipids in Induced Lung Sputum and 

the Implications in Studying Lung Diseases”. In: Analytical Chemistry 87.9 

(May 2015), pp. 4957–4964. doi: 10.1021/acs.analchem.5b00732. pmid: 

25884268. 



Mechanistic model of dopaminergic neuron metabolism 

259 
 

5 

64. Ines Thiele and Bernhard Ø Palsson. “A Protocol for Generating a High-

Quality Genome-Scale Metabolic Reconstruction”. In: Nature Protocols 5.1 

(Jan. 2010), pp. 93–121. doi: 10.1038/ nprot.2009.203. 

65. Ines Thiele et al. “A Community-Driven Global Reconstruction of Human 

Metabolism”. In: Nature Biotechnology 31.5 (May 2013), pp. 419–425. doi: 

10.1038/nbt.2488. 

66. Ines Thiele et al. “Candidate Metabolic Network States in Human 

Mitochondria. Impact of Diabetes, Ischemia,andDiet.” In: Journal of Biological 

Chemistry 280.12(Mar. 25, 2005), pp. 11683– 11695. doi: 

10.1074/jbc.M409072200. 

67. Cole Trapnell et al. “Differential Gene and Transcript Expression Analysis of 

RNA-Seq Experiments with TopHat and Cufflinks”. In: Nature Protocols 7.3 

(Mar. 1, 2012), pp. 562–578. doi: 10.1038/nprot.2012.016. pmid: 22383036. 

68. HiroshiTsugawaetal.“HighlySensitiveandSelectiveAnalysisofWidelyTargeted

Metabolomics Using Gas Chromatography/Triple-Quadrupole Mass 

Spectrometry”. In: Journal of Bioscience and Bioengineering 117.1 (Jan. 

2014), pp. 122–128. doi: 10.1016/j.jbiosc.2013.06.009. pmid: 23867096. 

69. Monica Villa et al. “One-Electron Reduction of 6-Hydroxydopamine Quinone 

Is Essential in 6-Hydroxydopamine Neurotoxicity”. In: Neurotoxicity 

Research 24.1 (Feb. 6, 2013), pp. 94–101. doi: 10.1007/s12640-013-9382-7. 

70. Christina Virgiliou et al. “Development and Validation of a HILIC- MS/MS 

Multi-Targeted Method for Metabolomics Applications.” In: Electrophoresis 

36.18 (July 2015), pp. 2215–2225. doi: 10.1002/elps.201500208. pmid: 

26180020. 

71. Nikos Vlassis, Maria Pires Pacheco, and Thomas Sauter. “Fast Reconstruction 

of Compact Context-Specific Metabolic Network Models”. In: PLoS Comput 

Biol 10.1 (Jan. 16, 2014), e1003424. doi: 10.1371/journal.pcbi.1003424. 

72. Sharon J. Wiback et al. “Monte Carlo Sampling Can Be Used to Determine the 

Size and Shape of the Steady-State Flux Space”. In: Journal of Theoretical 

Biology 228.4 (June 2004), pp. 437– 447. doi: 10.1016/j.jtbi.2004.02.006. 

73. Jenny Marie T. Wong et al. “Benzoyl Chloride Derivatization with Liquid 

Chromatography1531 Mass Spectrometry for Targeted Metabolomics 

of Neurochemicals in Biological Samples”. In: Journal of Chromatography A 



Chapter 5 

260 
 

5 

1446 (2016), pp. 78–90. doi: 10.1016/j.chroma.2016.04.006. pmid: 

27083258. 

74. Takayuki Yamada et al. “Development of a Lipid Profiling System Using 

Reverse-Phase Liquid  Chromatography Coupled to High-Resolution Mass 

Spectrometry with Rapid Polarity Switching and an Automated Lipid 

Identification Software”. In: Journal of Chromatography A 1292 (May 1537 

2013), pp. 211–218. doi: 10.1016/j.chroma.2013.01.078. pmid: 23411146. 

75. Min Yuan et al. “A Positive/Negative Ion–Switching, Targeted Mass 

Spectrometry–Based Meta1539 bolomics Platform for Bodily Fluids, Cells, 

and Fresh and Fixed Tissue”. In: Nature Protocols 1540 7.5 (Apr. 2012), pp. 

872–881. doi: 10.1038/nprot.2012.024. pmid: 22498707. 

76. L Zecca et al. “Substantia Nigra Neuromelanin: Structure, Synthesis, and 

Molecular Behaviour”. 1542 In: Molecular Pathology 54.6 (Dec. 2001), pp. 

414–418. pmid: 11724917. url: http://w/ww.ncbi. 1543 

nlm.nih.gov/pmc/articles/PMC1187132/ (visited on 11/04/2015). 

77. Jiangjiang Zhu et al. “Colorectal Cancer Detection Using Targeted Serum 

Metabolic Profiling”. 1545 In: Journal of Proteome Research 13.9 (Sept. 

2014), pp. 4120–4130. doi: 10.1021/pr500494u. 

 

 

  



Mechanistic model of dopaminergic neuron metabolism 

261 
 

5 

 



 

262 
 


