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Chapter 5

Abstract

Patient-derived cellular models are a powerful approach to study human disease,
especially neurodegenerative diseases, such as Parkinson’s disease, where affected
primary neurons, e.g., substantia nigra dopaminergic neurons, are almost
inaccessible. Induced pluripotent stem cell-derived models of midbrain-specific
dopaminergic neurons are increasingly used to investigate Parkinson’s disease.
Starting with the comprehensive generic reconstruction of human metabolism,
Recon3D, we generated the first constraint-based, genome-scale, in silico model of
human dopaminergic neuronal metabolism (iNESC2DN). Transcriptomic data,
obtained by RNA sequencing, and quantitative exometabolomic data, obtained by
targeted mass spectrometry-based metabolomics were generated for in vitro
neuroepithelial stem cell-derived cultures and supplemented by extensive manual
curation of the literature on dopaminergic neurons. The predictions of the INESC2DN
model are consistent with neurobiochemical prior information and in concordance
with measured fluxes of uptake and secretion of many extracellular metabolites by
dopaminergic neurons in vitro. We leverage it to rank order the most important
metabolite concentrations to quantify to maximally reduce the uncertainty
associated with current predictions of normal dopaminergic neuronal metabolism in
vitro, as well as optimally design experiments to measure metabolic perturbations
associated with Parkinson’s Disease. Finally, the iNESCZDN model provides a
foundation for future targeted metabolomic and tracer-based metabolomic analyses
of dopaminergic neurons. This illustrates the synergy between constraint-based
computational modelling of metabolism and biology-driven quantitative

bioanalytical chemistry.
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Chapter 5

Background

Patient specific induced pluripotent stem cells (iPSCs)-derived, neuroepithelial stem
cells (NESC)39 466,17 differentiated into neurons33, offer an accessible approach to
study neurodegenerative disorders in vitro. These neurons exhibit certain features,
such as extensive arborisation and spontaneous electrophysiological activity!?, that
mimic nigrostriatal dopaminergic neurons, the cell type most vulnerable to
degeneration in Parkinson’s Disease (PD) 25. It has been hypothesised that this
selective vulnerability is due to an imbalance between the high energy demand of,
for example, maintaining tonic electrophysiological activity, and low energy supply
as a result of, for example, mitochondrial dysfunction2®’. Therefore, characterisation
of the normal metabolic status of a dopaminergic neuron is of major interest but has

not yet been reported.

COnstraint-Based Reconstruction and Analysis (COBRA)?8 provides a mathematical
and mechanistic computational modelling framework for experimental design,
integrative analysis of prior biochemical knowledge with experimental data as well
as the generation of novel hypotheses. In particular, quantitative bioanalytical
chemistry?7 3532 has been effectively combined with constraint-based modelling of
metabolism3 to enable context-specific biochemical interpretation of metabolomic
data, e.g., to discover differences in glycolytic versus oxidative metabolism in
different lymphoblastic leukaemia cell lines*, and to characterise metabolic changes

influencing pluripotency and cell fate in stem cells®.

In this study, Recon3D® the most comprehensive generic human metabolic
reconstruction to date, was rendered context-specific by a combination of manual
curation and omics data integration, to generate a constraint-based model of
metabolism in human neuroepithelial stem cell-derived dopaminergic neurons,
denoted iNESC2DN. Manual literature curation and transcriptomic data were used to
establish the activity, or inactivity, of a core set of metabolic genes and reactions. In
parallel, liquid chromatography-mass spectrometry (LC-MS) and gas
chromatography-mass spectrometry (GC-MS) were used to quantify biogenic amines
and organic acids in fresh and spent culture media from NESC-derived dopaminergic
neurons in macroscopic cell culture. Different subsets of the obtained
exometabolomic data, were used to refine the iNESC2DN model and test its

predictions. The predicted metabolite uptake and secretion fluxes of the INESC2DN
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model were broadly consistent with bioanalytical quantification of metabolite
consumption and secretion fluxes. A novel approach was developed to predict the
most informative extracellular metabolites to target for future bioanalytical
quantification as well as predict the effect of condition-specific metabolic
perturbations as a mean to design future targeted metabolomic and tracer-based
metabolomic experiments. Taken together, the iNESC2DN model provides a
foundation for a systems approach to investigate metabolic dysfunction in patient-
derived cellular models of PD, and the approach taken can serve as a template for the

study of other neurodegenerative diseases.
Materials and methods

The following summary is complemented by essential methodological details as

Supporting Information.

Invitro experiments. The iPSC derived NESC were differentiated towards midbrain-
specific dopaminergic neurons using an established protocol33. Calcium imaging and
automated image analysis using an established pipeline!® was used to assess
electrophysiological activity at day 23 of differentiation (Figure S4). Additionally, at
day 23 of differentiation, transcriptomic and exometabolomic data were generated
from separate in vitro cultures using the same differentiation protocol33 (Figure S4).
Transcriptomic data was obtained by RNA-sequencing. Targeted exometabolomic
data was generated from fresh and spent culture media, for 74 biogenic amines and
amino acids, using an established LC-MS method?4, and for 24 organic acids by

adapting an established GC-MS platform! (supplementary information section S1).
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Figure 5.1: Overview of the model generation pipeline. From the Recon3D metabolic
model®, a turnover model was generated by the integration of constraints representing
the minimum cellular turnover of key metabolites. A preconditioned model was then
generated by applying qualitative media constraints. Transcriptomic and manually
curated data revealed the active and inactive reactions and genes in the cell culture and
in dopaminergic neurons, which were integrated to generate a context-specific model
using a model extraction algorithm*3. The final iNESCZDN model, used for design of
future experiments, includes all exometabolomically derived constraints on uptake and

secretion reactions.

Reconstruction. Following an established protocol*?, the generic human metabolic
reconstruction, Recon24!, was refined with additional manual curation of metabolic
literature specific to dopaminergic neurons, and included in an update to the generic
human metabolic reconstruction, Recon3D8. Further manual curation was performed
to define active and inactive reactions and genes, transport reactions, degradation
pathways and quantitative constraints necessary to represent the requirement for
molecular turnover in a non-growing, non-dividing dopaminergic neuron. When
specific information on dopaminergic neurons was not present in the literature,
information from other neuronal types, cerebral tissue, or rodent data was used

(supplementary information section S2).

Model generation. A stoichiometrically consistent, flux consistent, constraint-based
metabolic model, specific to in vitro NESC-derived dopaminergic neurons, was

generated using the results of manual curation combined with transcriptomic and
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exometabolomic data. Active and inactive genes, obtained from manual curation, or
transcriptomic data, or both, were constrained in Recon3D, with manual curation
given priority if a discrepancy arose0. This integration was completed using the
COBRA Toolbox!¢, a software tool for modelling genome-scale biochemical networks
and integrative analysis of omics data in a network context. In particular,
FASTCORE®*3, was used as the model extraction algorithm. Models were refined by
comparing biochemical literature with the results of Flux Balance Analysis?¢. The
workflow for model generation is illustrated in Figure 5.1 and described in more

detail in supplementary information section S3 and section 4.

Model testing. Two test models were generated, termed ModelUpt and ModelSec,
which included a subset of quantitative metabolomic data as constraints on uptake
reaction fluxes or secretion reaction fluxes, respectively, while the excluded
metabolomic data was used for comparison with model predictions. Flux Variability
Analysis (FVA)?° and uniform sampling?5, were used to test the ability of these test
models to predict the fluxes of extracellular secretion or uptake reactions, or both
(supplementary information section S5). Uniform sampling provides a quantitative
prediction of the probability of each quantitative flux value, between the same
minimum and maximum flux predicted by flux variability analysis, assuming that

each feasible steady-state flux vector is equi-probable.

Experimental design. Three distinct pipelines were developed that use the
iNESC2DN model for experimental design. An uncertainty reduction pipeline rank
orders exchanged metabolites according to those whose quantitative
exometabolomic measurement would maximally shrink the feasible steady-state
solution space. A phenotypic perturbation pipeline rank orders exchange reactions
according to those whose rates are predicted to be most likely to change in response
to a perturbation to an internal reaction rate. Finally, a tracer-based metabolomic
pipeline was used to identify the non-elementary conserved moieties* exchanged
across the boundary of the iNESC2DN model that could be isotopically labelled to
quantify the activity of metabolic pathways of specific importance to dopaminergic

neurons (supplementary information section S6).
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Results

Experimental characterisation. Differentiated neurons were identified by TUBSIII
immunoreactivity and those also positive for tyrosine hydroxylase indicated the
presence of neurons capable of converting tyrosine to L-DOPA, the penultimate step
in dopamine synthesis (Figure 5.6a). Analysis of calcium imaging data revealed
spontaneously active neurons (Figure 5.6b, c, d). In the transcriptomic data,
fragments were detected from 18,530 genes, but only 12,698 of these were
sufficiently abundant to be considered expressed. That is, above a threshold of one
Fragment per Kilobase of exon per Million reads3*. Of the expressed genes, 1,202
could be mapped to metabolic genes in Recon3D and were considered active, unless
manual curation of the literature revealed otherwise. The selected metabolomic
platforms target a total of 98 metabolites present in Recon3D. In the spent medium,
only 50 metabolites were quantified above the lower limit of detection. However, the
iNESC2DN model contains 49 metabolites with constraints on their corresponding
exchange reaction fluxes as there was one two measured metabolite (Glutaric acid)
that could not be integrated with the model as there are no stoichiometrically and
flux consistent reactions that correspond to them in Recon3D (supplementary

information section S7).

Dopaminergic neuronal reconstruction and model generation. Literature
curation revealed evidence for the activity, or inactivity, of 252 metabolic genes
(Table S-1) and 445 metabolic reactions (Table S-2) in dopaminergic neurons.
Turnover constraints were added to represent the maintenance of a dopaminergic
neuron (supplementary information section S4.3, Table S-2). Subsequently,
differences in metabolite concentrations over time, were either converted into
constraints on exchange reaction fluxes to generate a context-specific model, or kept
independent from the model generation pipeline and used to test in silico model
predictions (supplementary information section S7). Exometabolomic concentration
changes for two metabolites (L-proline and serine), could not be directly integrated
with the draft context-specific model as it became infeasible, therefore, as described
in supplementary information section S4.6, relaxation of exometabolomic
constraints on reactions corresponding to these two metabolites was required. The
iNESC2DN model, i.e, the context-specific model using all exometabolomic

constraints compatible with a feasible model, consists of 1,791 biochemical
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reactions, between 828 unique metabolites, representing the activity of 1,853
metabolic genes from 90 biological pathways. In addition, the model contained 246
exchange reactions, 20 for uptake of metabolites from the media, 161 to secrete
metabolites into spent media, 63 reversible exchange reactions (e.g., for transport of
water), which were open, and 5 ionic external reactions, e.g., for sodium, calcium and
potassium (Table S-3), which were closed as the model currently ignores ion

transport associated with electrophysiolgical activity.

Model testing. A model generated using quantitative exometabolomic data on the
uptake of metabolites (ModelUpt) could reasonably well quantitatively predict the
flux of most secretion reactions, determined from exometabolomic data on
metabolite secretion. Likewise, a model constrained with exometabolomic data on
secretion reactions (ModelSec) could reasonably well predict the flux of most uptake
reactions, determined from exometabolomic data. In both cases, the peak of the
sample distribution for each exchange reaction, obtained from uniform sampling,
was substantially better at quantitatively predicting the independent
exometabolomic data, when compared with the ranges of exchange fluxes
determined by flux variability analysis. Figure 5.2 illustrates representative
comparisons for either uptakes or secretions, while Figures S12 and S13 illustrate
comparisons for all reactions. In Figure 5.2, the measured secretion reaction fluxes
were within the range predicted by flux variability analysis of ModelUpt for 26
metabolites, as in (a) and (b), and outside the range for 3 metabolites, as in (c). The
measured uptake reaction fluxes were within the range predicted by flux variability
analysis of ModelSec for 14 metabolites, as in (d) and (e), and outside the range for 5

metabolites, as in (f).
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Figure 5.2: Comparison of predicted and measured metabolite exchange reaction
rates. An uptake constrained model (ModelUpt) was tested for its ability to predict
measured rates of 30 secreted metabolites, with three representatives illustrated in (a-
c). A secretion constrained model (ModelSec) to test its ability to predict measured rates
of 19 metabolites taken up from the fresh medium, with three representatives
illustrated in (d-f). A measured range for each exchange reaction rate (pink) was
obtained from quantitative exometabolomic measurements and includes one standard
deviation of measurement uncertainty. Predicted probability of exchange reaction flux
obtained by uniform sampling (dark blue). Predicted exchange reaction flux, derived
from the mean of the sampling distribution (red star). Predicted maximum and

minimum fluxes obtained by flux variability analysis (FVA).

Model characterisation. The iNESC2DN model has the potential to secrete 161
metabolites (Table S-2), including hydrophilic metabolites such as sugars, amino
acids, carboxylic acids, keto acids, and nucleobases/nucleosides/nucleotides, while
the lipophilic metabolites include free fatty acids, oxylipins, sterol lipids,
sphingolipids, prenol lipids and fat soluble vitamins. The properties of these
metabolites are an analytical chemistry consideration when selecting or developing
targeted platforms for future exometabolomic experiments (Table S-3). Out of 161
metabolites predicted to be secreted, 17 were expected based on their assignment as
active reactions during manual curation (Table S-2). A minimal set of reactions

required to satisfy the constraints on the INESC2DN model, e.g., turnover constraints,
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is predicted to consist of 363 reactions (Table S-2). These reactions are involved in
major metabolic pathways and pathways specific to neurons and dopaminergic
neurons (Figure S14). Of the minimal reactions, about half (151/363) were manually
curated to be active in dopaminergic neurons, with 32 involved the metabolism of
dopamine. Twenty minimal reactions correspond to exchange reactions including 7
metabolites that can be taken up or secreted. The other 13 minimal uptake reactions
predict the set of minimal medium metabolites for an in vitro dopaminergic neuron.
These metabolites are glucose, the major source of energy, inorganic phosphate,
ammonia, reduced glutathione, hydrogen carbonate and 15 amino acids, 9 of which
are essential. Two amino acids, glutamine and arginine, are predicted to be
conditionally essential with respect to dopaminergic neurons, as their uptake is
essential for the feasibility of the model, but they can be synthesised by other tissues
in the human body.
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Figure 5.3: Experimental design. Uncertainty reduction. a) The steady-state flux
space, L :={v € Rn | Sv =0, [ < v < u}, of the INESC2ZDN model was sampled. b) The

covariance matrix of the sampled flux vectors v € Q was computed. c) The Euclidean

norm for each row of the covariance matrix was calculated. d) The most informative
exchange metabolites to measure were rank ordered by decreasing size of the Euclidean
norm(blue), after taking into account the reduction in uncertainty (red) associated
with measurement of higher ranked metabolites. The variance reduction due to
cumulative measurement of higher ranked metabolite exchanges (orange) is taken into
account in the ranking. Phenotypic perturbation. e) In the iNESC2DN model, certain
internal reaction rates were perturbed, by changing reaction bounds, to represent, e.g.,
a gene deletion or a decrease in the maximum rate of a reaction. f) The steady-state flux
space of the original and perturbed models are sampled. g) A two-sample Kolmogorov-
Smirnov test was used to test for significant differences between the control and
perturbed flux probability distributions. h) Significantly perturbed reactions were
hierarchically clustered according to the magnitude of the increase (blue) or decrease

(red), in the mean of the flux probability distribution for each exchanged metabolite.

Exometabolomic experimental design. Using the uncertainty reduction pipeline,
we rank ordered 20 unmeasured exchange metabolites by the degree to which their
measurement would shrink the feasible set of steady-state flux vectors for the
iNESC2DN model (Figure 5.3a and Table S-3). The three top informative extracellular
metabolites identified were phylloquinone (Vitamin K1, phyQ), 5-betacholestane-3-
alpha (link), which is a bile acid synthesis pathway intermediate, and biotin (btn),
which is a small vitamin molecule that acts as a cofactor in oxidative metabolism. The
phenotypic perturbation pipeline predicted a set of exchange reactions that

consistently vary as a result of knock-out of either the GBA1l gene, encoding
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lysosomal and cytoplasmic glucocerebrosidase, or complete inhibition of

mitochondrial complex 1 (Figure 5.3b).

Tracer-based metabolomic experimental design. A subset of the iNESC2DN
model was atomically resolved using the COBRA Toolbox v3.0%¢. Specifically, a
submodel was generated from the majority (1,091/1,533) internal reactions where
a balanced atom mapping could be algorithmically predicted using the Reaction
Decoder Tool3!, including manual correction of R-group specification in appropriate
substrate-reactant pairs, not previously done for the atom mappings reported in
Recon3D8. No balanced atom mappings could be computed for 442 reactions in the
iNESC2DN model, as at least one molecular structure was not available for each
reaction or the corresponding reaction was unbalanced. In the submodel, a total of
215 conserved moieties, their corresponding chemical structures and moiety
subnetworks were identified. Using this subModel we predicted the non-trivial
conserved moieties associated with all of the metabolites that could be taken up from
the fresh medium, which therefore could be used in future tracer-based metabolomic
experiments. For example, a conserved moiety, with molecular formula N4C4, is
predicted to be taken up from the medium within hypoxanthine and is present in 90
different metabolites in the subModel including 5-Methylthioadenosine, AMP, ATP
and hexanoyl coenzyme A, each of which have the potential to be secreted by the
iNESC2DN model.

Discussion

Advances in constraint-based reconstruction and analysis. Completion of this
study required several advances in constraint-based reconstruction and analysis. For
example, this modelling approach is most commonly applied to biochemical systems
where one predicts a feasible steady state flux vector that also satisfies a biologically
motivated cellular objective, e.g., maximisation of biomass production flux for an
exponentially growing culture of bacteria?. However, neither substantia nigra
dopaminergic neurons nor differentiated dopaminergic neurons divide, and it is not
known what the cellular objective is for such neurons. Therefore, we added new
constraints that enforce certain internal reactions, or combinations thereof, to
operate above a certain flux, e.g., constraints on the turnover rate for metabolites and
constraints representing the energetic requirements for biomass maintenance and

electrophysiological signalling. As no cellular objective is assumed, uniform
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sampling*? was applied, e.g., to reliably predict the sets of reaction fluxes that vary
most in response to a PD relevant perturbation. This required the development and
application of a novel algorithm, guaranteed to uniform sampling of the steady state
solution space of high-dimensional metabolic networks?5, such as those derived from
Recon3D.

Another example of a novel advance in constraint-based reconstruction and analysis
is our pipeline (Figure 5.1) to generate a constraint-based metabolic model of a non-
dividing cell that starts with the most comprehensive generic metabolic network to
date, Recon3D8, and integrates biochemical, transcriptomic, exometabolomic and
manually curated data. It allows the generation of a variety of in silico models of
neuronal metabolism, in a more comprehensive manner than previously described
methods?? and models'8. The pipeline is sufficiently flexible that it can be used to
generate context-specific, genome-scale metabolic models using data from
dopaminergic neurons with different genetic backgrounds and different conditions,
e.g., mitochondrial monogenic PD patient-derived cultures (e.g., PINK1) and isogenic

control cultures exposed to mitochondrial stressors.

Biochemical interpretation of well predicted metabolic characteristics.
Variants of the INESC2DN model performed well at quantitatively predicting
metabolite secretion fluxes, given quantitative bounds on metabolite uptake fluxes,
and at quantitatively predicting metabolite uptake fluxes, given quantitative bounds
on metabolite secretion fluxes (Figure 5.2). Of the analysis methods tested, uniform
sampling of steady state fluxes yielded the best predictions of quantitative secretion
fluxes, especially for proline, putrescine and asparagine. The iNESC2DN model
predicts the potential to uptake or secrete many metabolites that are not constrained
by our quantitative exometabolomic data. Of the unmeasured metabolites predicted
to be secreted by the iNESC2DN model, at least 30 are specifically associated with
neuronal disorders (Table S-3), e.g., increased pyroglutamic acid is an indicator of
glutathione deficiency and is associated with brain toxicity due to formation of amino

acid adducts and dopamine quinones?3.

All vulnerable neuronal populations in Parkinson’s disease seem to either use
monoamine neurotransmitters, such as dopamine (dopaminergic neurons within
substantia nigra pars compacta), norepinephrine (noradrenergic neurons in locus

coeruleus), and serotonin (serotonergic neurons in raphe nucleus), or produce
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cytosolic monoamines, such as the cholinergic neurons of the dorsal motor nucleus
of the vagus3® 25. Also, high levels of cytosolic monoamines are hypothesised to
underlie selective degeneration, since vulnerable neuronal populations generally
include a catecholamine-derived neuromelanin pigment3¢ 44 Consistent with
phenylalanine being the precursor of monoamine neurotransmitters, the iNESC2DN
model includes a high representation of reactions from the phenylalanine, tyrosine

and tetrahydrobiopterin metabolism.

Most of the cellular phenotypic traits that are shared between vulnerable neuronal
populations in Parkinson’s disease, can be associated with a metabolic burden3é. Such
neurons require a high supply of energy in order to meet the demand to tonically
propagate action potentials over a large axonal arbour and for the synthesis, release
and reuptake of neurotransmitters#’. 36, This intrinsic need to produce and consume
a large amount of energy is thought to makes these neurons especially vulnerable to
any impairment of energy metabolism#7 45, therefore mitochondrial deficits could
drive pathogenesis in Parkinson’s disease3® 37. 36, Consistent with this, in the
iNESC2DN model we observe an increased representation of reactions related with
oxidative phosphorylation, mitochondrial transport and the metabolism of cofactors,

such as NAD metabolism.

The predicted minimal medium, which is the minimum number of metabolites
required to be taken up by the model, consists of typical energetic substrates,
essential amino acids and certain nonessential amino acids. In particular, L-
glutamine is a non-essential amino acid that can be converted into nucleotides that
then serve as a source of energy. Recently, a novel link has been described between
glycolysis and mitochondrial dysfunction, which is mediated by reductive
carboxylation of L-glutamine'?. A decrease in utilisation of reduced nicotinamide
adenine dinucleotide (NADH) by the mitochondrial respiratory chain results in
cytosolic reductive carboxylation of glutamine and thereby cytosol-confined NADH
recycling. It is not known if this mechanism is of particular interest for PD. The
minimal set of active reactions also predicted the activity of many reactions in
dopamine metabolism, reflecting the importance of these reactions within the
metabolic network. The set of minimal medium metabolites for an in vitro
dopaminergic neuron provides a basis for the rational design of defined fresh

medium specific for neuronal cell cultures®.
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Biochemical interpretation of poorly predicted metabolic characteristics.
When disparate biochemical information from different experiments is integrated
into a constraint-based model, they must be made consistent because inconsistent
constraints will lead to an infeasible model, that is, one which does not admit any
steady state flux. Therefore, it is important to achieve a balance between integration
of further prior information, with the aim to improve quantitative predictions, and
the risk of infeasibility due to inconsistency. As an example, the glutathione
transferase (VMH link) reaction in dopamine metabolism was manually curated to
be active since it is present in dopaminergic neurons'?’, but it was excluded during
model generation as it was not part of any flux consistent pathway in the generic
Recon3D model. This indicates a metabolic pathway that requires future manual
curation in the next iteration of the generic human metabolic reconstruction.
Furthermore, qualitative metabolic predictions were made concerning secreted
metabolites that may be important for dopaminergic neurons, but they were not
tested because the targeted metabolomic platforms were initially chosen before the

model existed.

Exometabolomic concentration changes for L-proline and serine, could not be
directly integrated with the preconditioned model without making it inconsistent
with the existence of a steady state flux. Recon3D allows reversible transport of the
conditionally essential amino acid, L-proline. Prior to addition of exometabolomic
data, the context-specific model includes extracellular transport reactions for L-
proline, e.g., via proton symport PROT2r, but does not require secretion of L-proline,
only either uptake or secretion is required. Therefore, when the exometabolomic
data, which observes secretion of L-proline, is attempted to be integrated with the
draft context-specific model, it may not be, and in this case is not feasible to obtain a
steady state flux that secretes L-proline. Therefore, relaxation of the exometabolomic
constraint, to permit L-proline uptake by the model, is required to render the model
feasible. The situation is the same for serine, a non-essential amino acid. Essentially
the common issue here is that data on the presence of gene products only provides
information that the corresponding reaction may be active, but not the direction that

the corresponding reaction is active in.

Relationship between in vivo, in vitro and in silico. Manual curation of the

literature focused on quantification of neuronal molecular composition, turnover
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fluxes, active genes, active reactions and inactive reactions specific to neurons, and
substantia nigra dopaminergic neurons in particular. In parallel, we integrated
transcriptomic and metabolomic data from human neuroepithelial stem cell derived
neurons in macroscopic culture. As such, the iNESC2DN model is an in silico model
that particularly emphasises the properties of human substantia nigra dopaminergic
neurons and the properties of human neuroepithelial stem cell derived neurons3s.
The macroscopic culture is a state of the art in vitro model of a human substantia
nigra dopaminergic neuron in vivo. However, a single DN emanating from the
substantia nigra is characterised by a massive axonal arbour?!, much larger than
other neuronal types, and projects to ~200k terminals in the striatum?°. In contrast,
the in vitro neurons do have extensive neuronal projections, but not to the same
extent as in vivo. Like this morphological divergence, there may be a molecular
divergence between the in vivo neuron, on which manual curation was based, and on
the in vitro neuronal culture used for generation of transcriptomic and metabolomic
data, which is not pure culture of DN and may have a different extracellular
metabolome. It will be interesting to compare this version of the iNESC2DN model
with future versions generated using protocols already in development for

generation of higher purity dopaminergic neuronal cultures.

Exometabolomic experimental design. Algorithmic experimental design was used
to propose designs that optimise the information obtained in future exometabolomic
and tracer-based metabolomic experiments. Algorithmic design of exometabolomic
experiments enables optimal selection and development of targeted mass
spectrometry platforms for future analyses. This is important as one targeted
analytical platform cannot quantify the concentration of all of the metabolites within
the iNESC2DN model (supplementary information section S15). Our uncertainty
reduction pipeline rank orders unmeasured exchanged metabolites by the degree to
which their measurement would shrink the feasible set of steady-state flux vectors.
The top ranked metabolites include biotin, which is known to be enriched in select
areas of the central nervous system, including the substantia nigra?2. Phylloquinone
interacts with the N-terminus of alpha-synuclein, inhibits fibril formation in vitro and
is being investigated with a view toward development of new therapies targeting

alpha-synuclein aggregation?®.
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Design of tracer-based metabolomic experiments. The pipeline for tracer-based
metabolomic experiment design is hampered by the absence of molecular structures
for some reactants?’, e.g,, those with R groups in the structure, as they precluded the
atomic resolution of all reactions in the iNESC2DN model. However, it was possible
to atom map the majority of internal reactions, which permitted the identification of
the majority of conserved moieties'* in the iNESC2DN model. Identification of
conserved moieties has strong potential for use in design of tracer-based
metabolomic experiments*6. By isotopically labelling any single atom in a conserved
moiety, one can use the iINESC2DN model to predict the reachable set of metabolites
that could contain that isotopic label, or any other isotopically labelled atom in the
same conserved moiety. For a single conserved moiety, this approach for the design
of an isotopic labelling strategy has been explored with the related concept of an
elementary metabolic unit?. This will facilitate future study of metabolic pathways
particularly significant for identified by our exometabolomic approach in more

detail.
Conclusions

We have developed the first, mechanistic, genome-scale, metabolic model of a
pluripotent stem cell derived dopaminergic neuronal culture, denoted iNESC2DN. It
combines extensive manual curation of biochemical literature with genome-scale
quantification of transcripts and extracellular metabolite concentration changes. The
model also atomically resolves metabolic transformations at genome-scale. Variants
of the model, tested against subsets of independent exometabolomic data, could
quantitatively predict metabolite uptake and secretion fluxes for many fresh and
spent medium metabolites. With a view towards future metabolomic experiments to
refine the model in an iterative systems biology cycle, we demonstrate its utility for
experimental design of targeted metabolomic and tracer-based metabolomic
experiments. As such, the INESCZDN model establishes a solid foundation for
comparative analyses of neuroepithelial stem cell derived dopaminergic neurons
from PD patients and controls via mechanistic model-driven metabolomic and
tracer-based metabolomic approaches, and we expect, that this strategy will be very

useful also for other neurodegenerative diseases.
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Supporting Information

Part1

Methods

S1 Experiments
S1.1 Cell culture

An overview of the experimental approach is given in Figure S4.
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Figure S4: Experimental protocol overview.

Human neuroepithelial stem cells (hNESC) were differentiated into midbrain
dopaminergic neurons. The cell number in each culture well was counted on day 1,
13,19 and estimated for day 23. Spent media samples for metabolomic analyses were
collected at days 10, 13, 19 and 23. Samples were analysed with both GC-MS and LC-
MS. At day 23, live cells were subjected to calcium imaging followed by
immunostaining assays, and collection of parallel samples for transcriptomic
analysis. The media composition at the various stages of cell culture were as follows;
Maintenance stage (red): maintenance medium containing ascorbic acid,
purmorphamine (PMA) and the aminopyrimidine CHIR-99021(CHIR).
Differentiation stage (green): differentiation medium containing ascorbic acid, Brain-
derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF),
Transforming Growth Factor Beta 3 (TGFS3), dbcAMP and PMA. Maturation stage
(blue): differentiation media without PMA.

$1.1.1 Human neuroepithelial stem cell-derived dopaminergic
neuronal differentiation.

A human neuroepithelial stem cell line from a healthy human donor (Identifier:
3.0.0.10.0 Acronym: hNESCs K7/ NPBSCs/NEs, wild-type) was maintained and

differentiated into DNs, using an established protocol®*, summarised below.

N2B27 Medium preparation. The culture medium, denoted N2B27 medium, was

used as the basis to prepare both maintenance and differentiation media and was
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obtained by mixing equal amounts of Neurobasal medium (Invitrogen/Life
Technologies) and DMEM/F12 medium (Invitrogen/Life = Technologies)
supplemented with 1% penicillin and streptomycin (Life Technologies), 2 mM L-
glutamine (Life Technologies), 0.5 X B27 supplement without Vitamin A (Life
Technologies) and 0.5 X N2 supplement (Life Technologies). The final concentration

of the media composition is fully detailed in Table S-4.

Plate coating. Nunc cell-culture treated 6-well plates (ThermoFisher scientific,
Roskilde, Denmark) were coated with 1% Matrigel (Discovery Labware, Inc., Two
Oak Park, Bedford, MA, USA, Catalogue number 354277, lot number 3318549) in 600
p L of knockout DMEM (1X) medium.

Cell seeding and maintenance. At the time of cell seeding, the knockout DMEM (1X)
medium from the coating step, was removed from each well and the K7 hNESC line
was seeded in three replicate wells. The medium to maintain the hNESC in culture,
denoted maintenance medium (red in Figure S4: Overview of the experimental
protocol), is based on N2B27 medium with 0.5 uM PMA (Enzo life sciences), 3 uM
CHIR (Axon Medchem) and 150 uM ascorbic acid (Sigma Aldrich). The cell seeding
was done by preparing 5 x 106 million cells/mL in 50% matrigel in maintenance
medium and adding 200 uL of this preparation to obtain approximately 0.2 mm or
200 pm thick layer of cells in three dimensions within Matrigel, with 4 x 105cells per
well. After the Matrigel and cell mixture was added to the well, the plate was
incubated for 2 min at 37 °C to gelate the matrigel layer, the plate was then taken out
of the incubator and 2.8 mL of maintenance medium was added and the plate was
incubated at 37 °C and 5% COz for 48 h.

Neuronal differentiation and maturation. The differentiation medium with PMA
preparation to induce the differentiation of hNESC towards midbrain dopaminergic
neurons consisted of N2B27 medium with 200 p M ascorbic acid, 0.01 ng/ p L BDNF
(Peprotech), 0.01 ng/ p L GDNF (Peprotech), 0.001 ng/ u L TGF 8 3 (Peprotech), 2.5
p M dbcAMP (Sigma Aldrich) and 1 p M PMA. This medium preparation was
completely replaced every 2 days during the next 6 days of culture in the
differentiation process. For the maturation of differentiated neurons, PMA is

required to be absent from the differentiation medium. This differentiation medium
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without PMA was used from day 9 onwards and 50% media replacement every 2 days

for 3 weeks.

$.1.1.2 Microscopy and calcium imaging

To monitor cellular morphology during differentiation, bright field images were
acquired every 48h for 23 days of differentiation using a Zeiss Axiovert 40 CFL
microscope equipped with a cooled charge-coupled device based camera (Zeiss
AxioCam MRm, Zeiss). At day 23 in culture, calcium imaging was done with a Fluo-4
AM green-fluorescent calcium indicator dye. After removing the differentiation
medium, 1 mL of 5uM cell permeant Fluo-4 AM (Invitrogen/Life Technologies,
F14201) in neurobasal medium, was added to selected wells of a 6-well plate at room
temperature. Full frame fluorescence images, of size 2560x2160 pixels, were
acquired using an epifluorescence microscope (Leica DMI6000 B, Germany)
equipped with a cooled sCMOS camera (Neo 5.5, Andor technology, UK) and both
were controlled with Micro-manager (version 1.4)'3. Images were sampled at a rate
of approximately 10 Hz for about 2 min, stored as image stacks and analysed off-line
using MATLAB (release 2013b; Mathworks). To automatically detect the neurons, we
used the ADINA toolbox!? (https://bitbucket.org/jakirkham/adina-toolbox-
v0.1/src), which is a set of MATLAB functions specifically developed for the analysis
of calcium imaging data. This includes a segmentation step where regions of interest
corresponding to individual neurons are selected. For each segmented neuron, we

measured fluorescence traces as relative changes in fluorescence intensity over time.

$1.1.3 Immunofluorescence staining assay

Immunostaining for a dopaminergic marker, tyrosine hydroxylase (TH) and a pan
neuronal marker, Class III S-tubulin (TUBbIII) were used to identify differentiated
dopaminergic neurons. Immunostaining for tyrosine hydroxylase (TH) positive
differentiated neurons was performed on wells of a 6-well plate after day 25 of
differentiation. Differentiated cells were fixed with 4 % PFA in 1x phosphate-
buffered saline (PBS) (15 min), followed by permeabilisation with 0.05% Triton-X
100 in 1x PBS (3 min on ice), and blocking with 10% fetal calf serum (FCS) in 1x PBS
(1 h). After washing with 1x PBS, the primary antibodies mouse anti-TUBSIII
(1:1000, Covance, Germany), rabbit anti TH (1:1000, Santa Cruz biotechnology,
Germany) and chicken anti-GFAP (1:1000, Merck Millipore, Germany), were
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incubated for 90 min at 25 °C. After washing with 1x PBS, the secondary antibodies
Alexa Fluor 488 Goat Anti-Rabbit (1:1000, Invitrogen), Alexa Fluor 568 Goat Anti-
Mouse (1:1000, Invitrogen), Alexa Fluor 647 Goat Anti-chicken (1:1000, Invitrogen)
and Hoechst 33342 to stain DNA (1:10000, Invitrogen), were incubated overnight at
4 °C. After washing with 1x PBS, confocal images of areas of selected wells were

acquired, using a confocal microscope (Zeiss LSM 710).

$1.2 Transcriptomic analyses

$1.2.1 Cell culture

A human neuroepithelial stem cell line from a healthy donor was maintained and
differentiated into DNs, using an established protocol>4, described in supplementary
information section S1.1.1, with the following adaptions. The hNESCs were cultivated
in mTESR1 medium (StemCell technologies, #05850) on 6-well dishes coated with
Matrigel (Corning, #354263). The media composition, to the extent that it has been
defined by the manufacturer, is detailed in Table S-4. At 23 days of the protocol
(Figure S4), the percentage of TH positive cell was estimated between 15-20%. Since
protein content per cell can vary from 2.46 x 10-5to 4.71 x 10-5ug/cell, protein

content was measured using a Bradford protein assay.

$1.2.2 RNA preparation

RNA extraction The Ambion Magmax™-96 total RNA isolation kit (Life Sciences) was
used for RNA extraction. Magnetic beads were used to isolate nucleic acids.
Afterwards, the samples were washed and purified with DNAase. The RNA obtained
was eluted in 50uM elution buffer. Fragment Analyzer (Aligent Technologies Inc.)

was used to measure RNA quality and concentration.

RNA-sequencing protocol RNA-sequencing data was generate from a hNESC-
derived dopaminergic neuronal cell culture at day 23 in culture. The sequencing
library preparation was done using 200 ng of total RNA input with the TrueSeq RNA
Sample Prep Kit v3-Set B (RS-122-2002, llumina Inc, San Diego, CA) producinga 275
bp fragment including adapters in average size. In the final step before sequencing,
twelve individual libraries were normalised and pooled together using the adapter

indices supplied by the manufacturer. Pooled libraries have then been clustered on

195




Chapter 5

the cBot Instrument (Illumina Inc, San Diego, CA) using the TruSeq SR Cluster Kit v3-
cBot-HS (GD-401-3001, [llumina Inc, San Diego, CA) sequencing was then performed
as 78 bp, single reads and 7 bases index read on an Illumina HiSeq3000 instrument
using the TruSeq SBS Kit HS- v3 (50-cycle) (FC-401-3002, Illumina Inc, San Diego,
CA).

S$1.3  Analysis of RNA sequencing data

The raw RNA-seq data were analysed with a custom-made RNA-seq analysis pipeline,
which included publicly available software (SAMtools, version 0.1.18; FASTX-ToolKkit,
version 0.0.14)3¢ and custom-made python scripts. The RNA-seq analysis pipeline
consists of six main steps: (i) quality control for the raw RNA-seq reads; (ii)
prepossessing of the raw RNA-seq reads to remove adapters and low-quality
sequences; (iii) alignment of the reads to the human reference genome; (iv) assembly
of the alignments into transcripts and (v) quantification of the expression levels of
each gene. Briefly, the raw RNA-seq reads (length 52 nucleotides, single-end) of each
sample were checked by FastQC (version 0.11.2) to determine the read quality.
Adapter sequences and low quality sequences were removed by cutadapt (version
1.10)3° using default settings. Reads with length less than 25 nucleotides were
excluded from further analysis. Next, the alignment of RNA- seq reads against the
human reference genome (NCBI build37.2, downloaded from iGenome of Illumina,
https://support.illumina.com/sequencing/sequencing_software/igenome.html)
was performed using TopHat2 (version 2.0.13)30. Alignment results were processed
by Cufflinks (version 2.2.1)¢7 for assembly of transcripts with default parameter
settings. The quantification of gene expression was estimated by normalised FPKM
(Fragments per kilobase of transcript per Million mapped reads) and counts at gene
level by cuffnorm (version 2.2.1)¢7. In order to obtain one expression value per gene,
we used the transcript with the largest average expression as representative for the
corresponding gene, since measurements for low-abundance transcripts are less
reliable. In case of replicated genes, the maximum value expression from replicates

was averaged.

S1.4 Exometabolomic data
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Table S-3 contains a list of target metabolites analysed with both LC-MS and GC-MS
platforms: 75 biogenic amines and amino acids, and 24 organic acids. Aspartic acid is

targeted in both platforms, therefore a total of 98 metabolites were targeted.

$1.4.1 LC-MS profiling of biogenic amines and amino acids

The analysis of 75 biogenic amines (Table S-3) was performed with an established
LC-MS method*¢. Briefly, 15 uL of culture medium was extracted by adding 400 uL of
ice-cold methanol, 55 uL of ice-cold milliQ water, 10 uL of tris(2-
carboxyethyl)phosphine (TCEP; 1ug/uL) and 10 uL of a mixture of stable isotope
labelled internal standards (Table S-3). The samples were vortexed for 10-20
seconds and centrifuged at 16000xg and 4 °C for 10 min. For the the calibration
samples, 80 uL of each calibrant sample was mixed with 10 uL of TCEP (1 ug/uL) and
10 uL of internal standard mix and extracted with 400 uL of ice-cold methanol as for
medium samples. After centrifugation, all supernatants were transferred into 1.5 mL
tubes and the liquid extracts were evaporated in a vacuum concentrator (Labconco,
Kansas City, MO, USA) to dryness. The dried extracts were first dissolved in 80 uL
borate buffer (pH 9) and mixed with 20 uL of pure acetonitrile containing 3 ug/uL
AccQ-Tag derivatisation reagent (Waters, Etten-Leur, Netherlands) to start the
chemical derivatisation of the primary and/or secondary amine groups. The
derivatisation reaction was performed at 55 °C for 30 min in a temperature-
controlled orbital shaker (VWR Incubating Microplate Shaker, Germany). After
completion of derivatisation, the samples were centrifuged at 16000xg and 4 °C for
2 min and 80 uL of the supernatant was transferred into LC vials for sample injection.

1 uL of the liquid extract was injected onto the analytical column for the analysis.

All measurements were performed with a Waters Acquity ultra-high pressure liquid
chromatography (UPLC) (Milford, MA, USA) hyphenated with Agilent 6460 triple-
quadrupole mass spectrometer (Palo Alto, CA, USA). Chromatographic separation
was achieved on a Water Acquity HSS T3 C18 UPLC column (2.1x100 mm, 1.7 um)
and the metabolites were identified based on their retention time and via multiple
reaction monitoring (MRM) transitions from their protonated precursor ions of the
AccQ-Tag derivates into common product ion of 171 m/z with corresponding linear
ranges and LOD values (Table S-3). The peak detection and integration were

performed with Agilent MassHunter Quantitative Software v7.0 (Palo Alto, CA, USA).
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For the concentration determination, the calibration lines were drawn on a
concentration range over three orders of magnitude (0.1 uM - 100 uM). The calibrant
and internal standards were spiked into blank solvent (methanol/water, 80%/20%;
v/v) in which the area ratio of each target analyte to its corresponding internal
standard was used to define the ordinate values of the calibration curve. In total,
sixteen calibration points were selected where each six calibration point covers one
order of magnitude (e.g. 100 nM - 1 uM: 100 nM, 200 nM, 400 nM, 600 nM, 800 nM,
1 uM). After linear regression, the linear response range for each metabolite was
determined by Pearson’s correlation coefficient (R?20.95) except dopamine and
levodopa. The linear equation for each calibration line was used to convert area
ratios obtained in samples into absolute quantities (in uM) by using a Macro formula
in Microsoft Office 2010.

$1.4.2 GC-MS profiling of polar metabolites

Twenty-four polar metabolites (Table S-3) were analysed in culture media using a
modified version of an in-house built GC-MS platform3. Because of the high
abundance of D-glucose and L-lactic acid in culture media, samples were diluted
1:299 (v/v) in milliQ water. Fifty microliters of both diluted and non-diluted culture
medium was extracted with 425 uL of an extraction solvent (methanol/water,
94%/6%; volume/volume) containing stable isotope labelled internal standards
(Table S-3). After vortexing the samples for 10 min on a multivortex, the samples
were centrifuged at 16000xg and 4 °C for 10 min. Four hundred microliters of the
supernatant was transferred into a 1.5 mL tube and the solvent was evaporated in a
vacuum concentrator (Labconco, Kansas City, MO, USA). Dry samples were
resuspended for the oximation reaction in 35 ulL of pyridine containing
methoxyamine