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Systems biology in human health 

Healthcare is constantly reaching new heights in the treatment of acute and chronic 

illnesses. These developments come in several forms; they can be economical1, 

political2, technological3 or scientific. With this ongoing progression, human 

longevity is lengthened with each generation that passes4. Mortality rates have 

decreased due to improved healthcare, understanding of diseases and therapeutic 

treatment options. For example, causal factors have been associated with diseases 

such as smoking with lung cancer5,6, high fat diet with cardiovascular disease7 and 

alcohol with liver disease8. Moreover, landmark therapeutic treatments that vastly 

reduce mortality can be seen in the discovery of antibiotics, introduction of vaccines, 

and insulin treatment for diabetes. However, the reduced mortality rate comes at a 

cost with an increased morbidity rate. It has been estimated that the population of 

people in Europe aged 65 years and over will increase from 90.5 million in 2019 to 

129.8 million in 2050 (shown in Figure 1.1)9. Unfortunately, the human body is 

limited due to time-dependent physiological changes, i.e. ageing. These changes 

occur during the maturation processes, both genetically and metabolically10. Many of 

the age-related illnesses are neurodegenerative diseases that result in the loss of 

function or homeostasis within the brain. Neurological disorders have been 

identified by the World Health Organization (WHO)11 as a public health challenge and 

can manifest over a broad demographic in the form of conditions such as depression, 

schizophrenia, addiction and epilepsy. However, there are specific conditions that 

are associated with aging; these are neurodegenerative diseases including 

Parkinson’s, Huntington’s and Alzheimer’s disease. As mentioned above, these 

diseases are becoming more prevalent as human longevity increases which in turn 

has created a surge in the demand for improved disease interpretation, 

comprehensive diagnostic procedures and available treatment options11. Systems 

biology is a useful tool that has the ability to produce an encyclopedic evaluation of 

neurological disorders and diseases. 
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Figure 1.1. presents the aging demographic of the population in Europe across 27 

nations between the year 2019 (shown in solid colours) and 2050 (shown in bordered 

colours). We see men in dark grey on the left and women in light grey on the right. This 

figure has been adapted from Eurostat9. [accessed on 24/11/2020]  

Systems biology is a mathematical and computational research field that involves the 

construction of models to analyse and evaluate biological systems by integration of 

experimental and computational data12,13. In recent years, there has been an incline 

in the application of systems biology due to the technological growth in the “omics” 

research fields14 and modelling approaches. Systems biology has the ability to detail 

biological systems with a breadth and depth that would otherwise be challenging, if 

not impossible, for the human mind15. It achieves this by not only investigating a 

single gene, protein or metabolite, but by assessing and evaluating the system 

holistically16. Models are usually constructed using data from genomics, 

transcriptomics, proteomics and, more recently, metabolomics. One modelling 

approach that is useful for improving the understanding of specific illnesses is 

genome-scale constraint-based modelling which uses genetic information to predict 

human metabolism (Step E, Figure 1.2). Constraint-based modelling is an approach 

that requires absolute quantitative metabolomics data to identify the 

physicochemical and biochemical bounds that exist within a biological system, 

identifying the steady-state metabolic fluxes17. After integration of omics data, the 

model can be used to predict metabolic exchange fluxes which provides insight into 
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the biological function18. Several models have been created using this principle, with 

the main modelling approach demonstrated by Recon3D19 which contains organ-

specific data from several scientific disciplines. After the network is constructed, 

disease-specific models can be established. Examples of this have modelled human 

metabolism and gut microbiota in the virtual metabolic human (available online at 

VMH.life). After construction of these disease-specific models, they can be utilised for 

biomarker discovery, therapeutic treatment strategy identification and drug 

repurposing19. The general workflow of this thesis has been visually represented in 

Figure 1.2. We are going to focus on the metabolomics developments and application 

along with systems biology approaches to improve our understanding of the disease 

state and potentially identify new therapies of neurological disorders with a specific 

focus on Parkinson’s disease (Step F, Figure 1.2). 

 

Figure 1.2. A schematic workflow of the systems biology approach with the use of 

metabolically constraint-based modelling. This figure highlights the workflow that is 

used throughout this thesis. 

  



Introduction 

5 
 

1 

Parkinson’s disease 

Parkinson’s disease (PD) is a progressive neurodegenerative condition which leads 

to a loss of fine motor movements, creating symptoms such as tremor, bradykinesia, 

postural instability and rigidity. In addition to these symptoms, PD patients also 

experience non-motor symptoms such as depression, memory loss and sleep 

disturbances20. Parkinsonism and PD are often confused to be the same. However, 

Parksinonism is the group term for neurological conditions which present movement 

disorders. A range of these conditions manifest with similar symptoms. Clinical 

determination of PD is only possible by post-mortem examination of the neural 

tissue, proving PD to be diagnostically challenging to physicians and specialists alike. 

Currently there are 6.9 million people in the world suffering from PD. This number is 

set to increase to 14.2 million by 2040, highlighting the importance for further 

research in the future21. There has been extensive research into PD for many years, 

though this has not translated into drug therapies on the market that are able to cure 

the condition. Symptomatic treatments are available such as levodopa, dopamine 

agonists, COMT inhibitors and anticholinergic agents, but these treatments do little 

to halt the progression of PD. Additionally, drugs such as dopamine agonists (i.e. 

ropinirole) can have undesirable adverse effects causing impulsive control disorders, 

such as gambling, binge eating and hypersexuality22.  

Parkinson’s disease is caused by the loss of dopaminergic neurons within the 

substantia nigra par compacta (SNpc); this area of dopaminergic neurons is allocated 

the term A923. The cause of PD is still unknown, but all associated causes lead to the 

depletion of the neurotransmitter dopamine which produces the distinctive motor 

symptoms that have been described above. Parkinson’s disease has also been 

associated with mitochondrial dysfunction which is said to be present in 

approximately 10-20% of all PD patients24. Currently, several genes have been linked 

to PD; PINK125, Parkin26, LRRK227, SNCA28, DJ-129, ATP13A2 and GBA30,31. Here, we 

hypothesise (Step A, Figure 1.2) that the analysis of PD samples using metabolomics 

methods which target central carbon and energy metabolism will identify a disease 

phenotype. With this, we believe that we can identify biomarkers and create disease 

assays that can distinguish between the different genetic mutations that affect PD. 

This has opened new possibilities to understand the cause of PD and can identify new 

potential pathways for therapeutic targeting. 
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Metabolomics 

Metabolomics is the study of the molecular phenotype of biological organisms; it is 

defined as the “the comprehensive study of the metabolome, the repertoire of 

biochemicals (or small molecules) present in cells, tissues, and body fluids” by Beger 

et al. 32. The small molecules are usually those below 1.5 kDa including but not limited 

to amino acids, nucleic acids, organic acids, small peptides (dipeptides, tripeptides), 

sugars, fatty acids, hormones, minerals and vitamins. Our understanding of 

physiological function, disease states and therapeutic target sites has been derived 

from genomics, transcriptomics and proteomics. Metabolomics provides an 

alternative yet complementary technique with the other omics approaches. With 

techniques such as genomics, we have the ability to understand the potential of the 

biological system, however, metabolomics provides us with the ability to assess the 

functional status of the system 33.  

The diverse physiochemical properties of metabolites within the human metabolome 

and differing matrices can provide challenges for analytical chemistry34 from an 

identification and quantitation perspective. Within metabolomics, there are four 

main techniques used to quantify metabolites; these are Near-infrared spectroscopy 

(NIRS), ultraviolet–visible spectroscopy (UV-VIS), nuclear magnetic resonance 

(NMR) and mass spectrometry (MS)35. The most commonly used techniques are MS 

and NMR. Both techniques are used to identify and quantify metabolites in biological 

samples, with NMR providing better quantitative results with high reproducibility. 

Additionally, NMR has the ability to elucidate the structure of metabolites, aiding 

identification of isomers, and analyse samples that are challenging to ionise in MS or 

require derivatization36. However, another issue with the human metabolome is that 

some metabolites exist at very low concentrations – sub-nanoMolar. This is where 

MS emerges in superiority as it provides sensitivity when measuring low abundant 

metabolites in a quantitative manner. Moreover, MS is also better than NMR at 

identifying compounds in complex mixtures. 

The metabolome reflects the combination of biological and environmental factors. 

The overall governance of the metabolome is directly influenced by the genome and, 

in turn, the transcriptome and proteome. The genome is influenced by factors such 

as genetic mutations, age, sex and ethnicity. Several diseases are associated with 

genetic risk factors across a broad range of illnesses, such as cancer, cardiovascular 
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disease and neurological disorders. All of these diseases manifest with an altered 

metabolome that are being studied extensively within the metabolomics field37-39. 

The second major influence on the metabolome is the exposome, i.e. the impact of 

environmental factors on  a biological system40,41. Common factors include: diet, gut 

microbiota, employment, drugs, exercise, geographical location, pollutants, 

cosmetics, smoking and alcohol consumption. The study of the exposome is complex 

and challenging due to the multifactorial effects on the metabolome. Researchers are 

faced with the underlying genetics plus these environmental factors experienced by 

the host over a lifetime. To truly understand the human metabolome, the interaction 

between both genetic and environmental factors must be considered. An example of 

these environmental effects includes the microbiota in the gut that has been 

associated with motor deficits and neuroinflammation in models relevant to PD42. 

Pollutants and toxins can also influence the human disease state as seen in PD that 

can be induced by exposure to the naturally occuring pesticide rotenone43 or the 

illicit drug by-product MPTP44. The impact of pesticide rotenone on the human 

metabolome45 will also be discussed further in chapter 2 where we use it as a 

chemical perturbation to mimic mitochondrial dysfunction (Step G, Figure 1.2). In 

this thesis, we quantitatively capture the broad metabolome, which requires the 

appropriate selection of metabolites that holistically capture the genome-exposome 

interaction. 

Metabolite selection 

The human metabolome is vast in size and new metabolites are being identified each 

year. As it currently stands, databases such as the Human Metabolome Database 

(HMDB 4.0) have identified 114,100 metabolites using a combination of 

measurements, expectations and predictions. Each metabolite has its own biological 

role, metabolic pathway(s), transport mechanism and physiological concentration46. 

Metabolic pathways contain metabolites in an intricate and dynamic system that is 

constantly adapting to the physiological demands. Within the human body, 

metabolites range from core metabolites, such as amino acids, to TCA cycle 

metabolites that control energy production within the mitochondria, to metabolites 

that exist only to facilitate the intermediate stages of a pathway. Other metabolites 

are present in their metabolised form awaiting excretion via the liver and kidney, 
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such as sulphated dopamine. Despite these differences in role and function, the 

majority of the metabolites are essential to support and sustain life.  

 

Figure 1.3. Metabolites associated with the energy processes within the cell. Glycolysis, 

the Krebs cycle and intermediate metabolites as well as amino acids involved in the 

energy process are detailed. Reprinted DeBerardinis and Chandel (2016)37 © The 

Authors, some rights reserved; exclusive licensee AAAS. Distributed under a CC BY-NC 

4.0 License.. 

Neurological disorders, as with all diseases, each have their own characteristic 

metabolic profile which can further vary in relation to an individual. These disease 

phenotypes respond to the chemical cues created by the metabolite levels in the 

corresponding pathways and functions. For this reason, the relevant metabolic 

targets must be specifically chosen for study (Step C, Figure 1.2). Burte et al. (2017) 

identified several metabolites associated with PD that are involved in the energy 

metabolism and Krebs cycle, which corresponds to PD being associated with 
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mitochondrial function24; thus, metabolite selection must cover the energy 

metabolism. One of the main energy processes that occurs within the mitochondria 

is the electron-transport chain which involves a range of organic acids within the 

Krebs cycle, such as succinate and malate (Figure 1.3). Another important metabolic 

pathway is energy generation by glycolysis. This metabolite can enter the Krebs cycle 

in the form of oxaloacetate produced by pyruvate carboxylase from pruvate or acetyl-

CoA following conversion with pyruvate dehydrogenase. Pyruvate also has a role in 

anaerobic respiration where it can be converted into lactate for a simple energy 

supply. Other metabolites associated with the energy metabolism include amino 

acids, such as aspartic acid, glycine, serine, glutamine and glutamate, and other 

common metabolites, such as acylcarnitines39 and N-acetylated amino acids39,47. 

These metabolites are all investigated within this thesis, specifically in chapter 2, 

chapter 3 and chapter 5. 

Neurological disorders can be profiled using metabolites that are more specific to 

neurons. For example, neurotransmitters such as dopamine, GABA, serotonin, 

epinephrine, norepinephrine and glutamate have roles in the maintenance of 

homeostasis within neurons but also in the communication network across the 

neuronal cells. The brain is composed of several types of neuronal cells such as 

neurons and glial cells (oligodendrocytes, astrocytes, ependymal cells and microglia). 

The glial cells are distributed throughout the brain and are difficult to distinguish by 

metabolic profile. To date, the number of identified neurotransmitter molecules is 

over 100. The neurotransmitters are physicochemically diverse and exist in the form 

of amino acids (glutamate, D-serine and aspartic acid), monoamines, purines, 

neuropeptides (N-acetylaspartic acid) and others. Neurotransmitters such as GABA, 

glutamate and dopamine are key in the functionality of the substantia nigra and they 

exist in a complicated balance23. Deciphering the function of these neurotransmitters 

can help improve the understanding of PD and other neurodegenerative diseases. In 

this thesis, key neurochemicals and neurotransmitters are investigated in chapter 4 

and chapter 5.   

Biological samples in metabolomics 

The metabolome can be measured from a range of biological fluids (matrices) that 

are extracted from human subjects; for example, blood serum and plasma48, urine45, 

faeces49, sweat50, tissue48, semen51 and breast milk52. The most commonly used 



Chapter 1 

10 
 

1 

biological matrix is blood plasma due to the safe and simple extraction procedures 

that exist. Furthermore, the majority of the metabolites that are excreted from cells 

and organs are transported through the blood, providing a broad overview of the 

metabolome. However, not all metabolites are excreted into the blood or pass the 

blood brain barrier; for example, tissue-specific metabolites and those excreted by 

the gut microbiota53. Additionally, some metabolites exist in their modified forms, 

such as sulphated dopamine, or experience degradation, which provide analytical 

challenges. 

In addition to human models, another common approach to study disease is animal 

modelling. One of the main strengths of animal models is the reduction of exposome 

influences which allows the researcher to focus on the genetic influence on the 

metabolome whilst providing a full organism with functional organs54. Additionally, 

animal studies have fewer ethical considerations compared to studies that are 

designed in humans. Animal models unfortunately suffer from the fact that they do 

not fully represent the human physiological system and there are clear differences 

within the metabolome. Despite this, they provide a useful tool for scientific research. 

In vitro cell culture work is similar to animal models by which they also minimise the 

exposome influence. In addition, it requires the least amount of ethical 

considerations. There are a range of cell lines available for the study of diseases; 

specific cell lines can be investigated according to the disease of interest, from 

oncology, endocrinology to neurology. Cell culture approaches allow the researcher 

to investigate single cell lines or use a co-culture in the attempt to make them more 

physiologically relevant. Cell cultures can also be 2-dimensional or 3-dimensional, 

with the latter said to provide a more physiologically realistic environment55. 

However, cell culture has limitations which include existing in an artificial 

environment (cell culture media), variation in performance between scientists and 

simple cell lines not sufficiently representing complex organs. One approach to get 

closer to physiologically relevant cell lines is the use of induced pluripotent stem cell-

derived cell lines which carry the genetics of an individual56. A summary of the pros 

and cons of each study sample type is listed in Table 1.1. 

In this thesis, we utilise cell culture and human urine in chapter 2, cell culture in 

chapter 3, animal models in chapter 4, and induced pluripotent stem cell-derived 
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neurons in chapter 5 to demonstrate the need to match the most appropriate 

biological matrix with the hypothesis (Step B, figure 1.2). 

 

Table 1.1. Examples of common study sample type that can be used in metabolomics for 

the study of diseases. The strengths and weaknesses associated with each sample type 

are also detailed. 

Metabolomics analysis 

There are two main approaches used in metabolomics; untargeted and targeted. 

Untargeted is the global overview of the metabolism without a specific class or 

pathway of metabolites being identified – chemical unknowns57. Using this approach 

provides a large amount of data that captures as much of the metabolome as possible. 

After this, the data can be compared to identify patterns in the human metabolism or 

disease state. However, as it currently stands, we are only able to identify < 2% of 

peak identified using the untargeted mass MS workflow58. Additionally, the 

metabolites presented by untargeted metabolomics are not absolute quantitative 

values, thus, they cannot be integrated into constraint-based metabolic models in 
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systems biology. However, untargeted metabolism is highly desirable in exploratory 

research to identify new metabolites and pathways associated with illnesses. Within 

this thesis, we focus on the application of targeted metabolomics using absolute 

quantitative values. 

Targeted metabolomics 

Targeted metabolomics is where a specific metabolic pathway or class of metabolites 

are selected prior to analysis and the methods are optimised around the desired 

candidates to ensure accurate qualitative and quantitative results. An ideal 

instrumental setup for targeted quantitative analysis of abundant metabolites, such 

as amino acids, sugars and organic acids, from a biological matrix that is high in 

volume would be NMR36. However, as mentioned previously, to truly understand the 

metabolome, you need to delve deeper using a range of biological matrices (some of 

which are low in volume/material-limited) with low concentrations of metabolites, 

thus LC-MS/MS using a triple quadrupole (QqQ) MS becomes the gold standard. One 

limitation of QqQ MS, is the lack of mass resolution, reducing the specificity and 

qualitative performance. There is where Quadrupole Time-of-Flight MS (qToF) MS 

provides a solution for this problem to provide high-resolution accurate mass data 

and improve the identification of metabolites at the expense of losing sensitivity 

compared to QqQ MS. 

One of the main challenges with QqQ mass spectrometry is distinguishing 

metabolites with non-unique masses. One way this is addressed is the hyphenation 

with a separation science such as gas chromatography (GC), liquid chromatography 

(LC), supercritical fluid chromatography (SPF) or capillary electrophoresis (CE). 

With the utilisation of a separation science hyphenated to MS, it reduces the risk of 

mass interference from isomeric compounds, such as amino acids isoleucine and 

leucine. In this thesis, we focus on the use of LC-MS/MS. The most common system 

setup for metabolomics methods is LC hyphenated to MS. 

A major issue with quantitative workflows using RPLC-MS/MS is matrix effect. This 

occurs during the electrospray ionisation (ESI), prior to MS detection. Matrix effect 

(Figure 1.4) is the result of several metabolites, salts or proteins eluting 

simultaneously, which can either lead to ion suppression (reduced charging of target 

analyte) or ion enhancement (increased charging of target analyte)59. Furthermore, 
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negative ionisation is more susceptible to ion suppression when compared with 

positive ionisation. This unpredictable ionisation variable introduces challenges 

when it comes to accurate quantitation and reproducible analysis of the target 

analyte as the matrix changes (inter-sample). Moreover, the ion suppression can be 

so severe that the analyte of interest is suppressed below the detection level. One 

approach to characterise matrix effect is the use of isotopically labelled internal 

standard pairs for analytes of interest. For example, alanine-D3 could be injected 

simultaneously as an analyte pair with alanine to characterise matrix effect. 

However, the cost of isotopically labelled metabolites is expensive and not all 

metabolites have an available isotopically labelled form. Therefore, analytical 

scientists tend to extend their internal standards to cover more than the analyte pair. 

Methods have been developed that use 10 internal standards to characterise matrix 

effect for 70 metabolites, however, this yields poor quantitative quality assurance 

due to the difference in elution time and physiochemical properties. The utilisation 

of the internal standard pair also does not reduce ion suppression, therefore, the 

issue of suppression below the limit of detection (LOD) still exists. Moreover, the 

issue of detection sensitivity is not addressed when it comes to the quantitation of 

material-limited samples. 

  



Chapter 1 

14 
 

1 

 

 

Figure 1.4.  Signal response comparisons (m/z 195) for caffeine added to serum extracts 

prepared by solid-phase extraction, solvent extraction, and protein precipitation. (A, C, 

and E), 1 mg/L caffeine solution. (B), solid-phase extract with 1 mg/L caffeine added. 

(D), methylene chloride extract with 1 mg/L caffeine added. (F), serum protein 

precipitation extract with 1 mg/L caffeine added. Figure extracted from Annesley et al 

(2003)59 and produced following the copyright permission from Oxford University Press 

Journals for personal thesis non-commercial use. 

Material-limited samples 

The use of modern techniques to assess the metabolome function in a more realistic 

biological environment compared to 2D cell culture has been increasing in recent 

years. Approaches such as 3D cell culture55,60, human cell transplantation into animal 

models61 and microdialysate62,63 are becoming increasingly common. This has 

improved our physiological representation of the metabolome and enabled dynamic 

sampling in a high-throughput manner.  However, this has led to a reduction in 

sample volume and reduced metabolite concentrations. Several approaches exist to 

increase sensitivity such as sheathless CE-MS64 and nanoLC-ESI-MS65 but these 

approaches are limited in their coverage or quantitative profile. To evaluate the 

metabolome of PD samples and other neurological disorders, sensitive quantitative 

analysis method are required that can still capture the broad metabolome66. In 



Introduction 

15 
 

1 

chapter 3, we use chemical derivatization as an approach to increase sensitivity of 

material-limited sample whilst maintaining the quantitative coverage.  

Chemical derivatization 

Above, we have discussed the main analytical methods using LC-MS for quantitative 

metabolomics and the need for improved quantitation and sensitivity. However, 

limitations exist that reduce the quantitation and detection. The main issues have 

been summarised here: 

 Chromatography robustness 

 Ionisation characteristics 

 Metabolite physiochemical properties – suited to different separation 

sciences 

 Metabolite stability 

 Matrix effect 

 Detection limit 

One method that can be used to solve the issues listed above is chemical 

derivatization. This approach is our method of choice for accurate quantitation 

throughout this thesis. 
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Fig 1.5. The schematic workflow used with ICD derivatization for qualitative 

differential analysis (a: left workflow) and absolute quantitative (b: right workflow). 

Figure extracted and modified from Higashi et al. (2016)67 and produced following the 

copyright permission from Elsevier Journals for personal thesis non-commercial use. 

Chemical derivatization is the process of adding a chemical group to the analyte to 

enhance the separation and detection within LC-MS. By changing the physiochemical 

properties of the analyte of interest, characteristics such as volatility, hydrophobicity, 

detectability, stability and polarity can be adjusted. GC-MS commonly uses chemical 

derivatization by alkylation and silylation, to improve the volatility and retention for 

metabolites such as amino acids and organic acids68. Additionally, aliphatic 

metabolites have no UV or fluorescence properties – thus pose challenges with LC-

UV69. For this reason, derivatization can be used, introducing aromatic groups which 

have a UV absorbance. Three common reagents used for UV detection are benzoyl 

chloride69, dansyl chloride70, phenacyl bromide71,72, and AccQ-tag73,74. Additionally, 
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metabolites such as catecholamines (i.e. dopamine), have phenol groups which are 

highly vulnerable to degradation outside of the cell75, presenting difficulties in the 

analytical community. Reagents such as benzoyl chloride have the ability to 

derivatize these functional groups thus stabilising the metabolite for analysis76,77. 

Therefore, to stabilise, detect and quantify metabolites relevant to PD in a simple and 

cost-effect method, we were required to develop and apply this approach through 

this thesis (Step D, Figure 1.2). 
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Aim and scope of thesis 

With our hypothesis that a mitochondrial phenotype can be identified in a subset of 

Parkinson’s disease (PD) patients using metabolomics, we aim to develop and 

improve quantitative metabolomics methods using a targeted MS workflow and 

integrate the obtained data into constraint-based metabolic models for the study of 

PD. The association of PD with mitochondrial dysfunction and energy imbalance will 

create an identifiable metabolic phenotype. To achieve this, we must first target 

the appropriate metabolites associated with the central carbon and energy 

metabolism as well as the neurochemical communication and homeostasis. With this 

selection, we form the backbone of this thesis from which we can derive further 

understanding into the functional roles of the metabolism associated with PD. We 

pursue the need for the ability to detect and quantify metabolites with a method that 

has maximized coverage of all relevant targets and optimised quantitation. Thus, we 

focus on the development and application of targeted LC-MS/MS workflow, utilising 

chemical derivatization to achieve this.  

In chapter 2, we aim to create an absolute quantitative method to study the energy 

and central carbon metabolism using a single separation and analysis technique. 

Chemical derivatization is a technique that can be employed to achieve this goal. This 

derivatization technique described simultaneously labels carboxylic acids, thiols and 

amines using the reagent dimethylaminophenacyl bromide (DmPABr) in a high-

throughput, reliable single RPLC-MS/MS analysis with a 10-minute acquisition time 

using only positive ionization mode. Few published methods can target carboxylic 

acids and amines simultaneously – both of which form a large proportion of the 

human metabolome. In addition, quantitation is further enhanced by isotope-coded 

derivatization (ICD), which uses internal standards derivatized with an isotopically 

labelled reagent (DmPABr-D6). Sixty-four central carbon and energy-related 

metabolites were detected and quantified from human urine and SUIT-2 cells, 

including amino acids, N-acetylated amino acids, metabolites from the Krebs cycle 

and pyruvate metabolism, acylcarnitines and medium-/long-chain fatty acids. 

In chapter 3, the derivatization method described in chapter 2 is applied to 

material-limited cell samples. Sensitivity is a common hindrance when faced with 

low sample concentrations. Previous studies have attempted to overcome this issue 

in the form of costly microscale separation such as CE and micro/nano-LC coupled to 
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mass spectrometers with low-diameter ionization emitter sources. By employing 

chemical derivatization, it is possible to improve chromatographic separation and 

enhance MS ionization. Favourable, sensitive and specific fragmentation is also 

achievable. Our novel method applies RPLC-MS/MS analysis to HepG2 cells, ranging 

from 250 cells to 1 × 105 cells, after fast and accessible derivatization DmPABr. The 

primary amine, secondary amine, thiol and carboxyl submetabolome are labelled, 

and we also utilize ICD as done previously. Thirty-seven metabolites were detected 

and quantified in a sub-10,000 HepG2 cells extract, with an additional 11 metabolites 

detected below LLOQ. 

We discovered a lack of absolute quantitative metabolite reference values in relation 

to the mammalian brain whilst trying to study neurological disorders. Therefore, in 

chapter 4, we pursued the quantitation of neurochemicals across 25 regions of the 

rat brain. However, as highlighted previously, analytical methods have their pros and 

cons. Here, we utilised the benzoyl chloride derivatization technique as it has the 

ability to stabilise vulnerable catecholamines and capture neuroactive metabolites. 

To achieve this, we optimised LLE extraction and followed it with the derivatization 

LC-MS/MS technique. After the analysis, we obtained a comprehensive profile of 43 

metabolites including important neurotransmitters such as dopamine, epinephrine, 

norepinephrine, GABA and serotonin. Additionally, we covered the urea cycle, and 

polyamine and tyrosine metabolism extensively. The brain regions investigated 

range from the frontal lobe to the brain stem, covering regions such as the 

orbitofrontal cortex, cerebral cortex, ventromedial prefrontal cortex and subcortical 

structure. After generation of the absolute quantitative reference values, we believe 

this data can be integrated into metabolic models, thus improving our understanding 

of the mammalian brain. 

In chapter 5, utilising induced pluripotent stem cell (iPSC)-derived dopaminergic 

neurons, we conducted a multi-omics data investigation to understand the 

functionality and potentially identify vulnerabilities in Parkinson’s disease. We then 

integrated the multi-omics data into a genome scale constraint-based reconstruction 

and analysis model that focused on the metabolism. With the focus being heavily 

dependent on absolute quantitative metabolomics, applying AccQ-tag derivatization 

with RPLC-MS. AccQ-Tag was used to capture the biogenic amine and neurochemical 

profile. Additionally, we used GC-MS to quantify sugars. With these values, the 
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Recon3D reconstruction of the generic human metabolome was used to generate 

stoichiometrically and flux consistent constraint-based model of dopaminergic 

neuron metabolism. The metabolism was constrained using manual literature 

curation, transcriptomics, and the metabolomics input. With this, we constructed the 

iNESC2DN model that can be used for biomarker discovery, therapeutic treatment 

strategy identification and drug repurposing19. 

Finally, we conclude this thesis with chapter 6, where we revisit the content of our 

work and address the future prospective of quantitative metabolomics in the 

application to human diseases and, specifically, neurological disorders. We also 

discuss the creation of disease-specific constraint-based models. 
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