

## Developing metabolomics for a systems biology approach to understand Parkinson's disease

Willacey, C.C.W.

#### Citation

Willacey, C. C. W. (2021, September 8). *Developing metabolomics for a systems biology approach to understand Parkinson's disease*. Retrieved from https://hdl.handle.net/1887/3209244

| Version:         | Publisher's Version                                                                                                                    |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| License:         | <u>Licence agreement concerning inclusion of doctoral thesis in the</u><br><u>Institutional Repository of the University of Leiden</u> |
| Downloaded from: | <u>https://hdl.handle.net/1887/3209244</u>                                                                                             |

Note: To cite this publication please use the final published version (if applicable).

Cover Page



## Universiteit Leiden



The handle <u>https://hdl.handle.net/1887/3209244</u> holds various files of this Leiden University dissertation.

Author: Willacey, C.C.W. Title: Developing metabolomics for a systems biology approach to understand Parkinson's disease Issue Date: 2021-09-08

# Developing metabolomics for a systems biology approach to understand Parkinson's disease

The publication of this thesis was financially supported by:

Leiden Academic Centre for Drug Research (LACDR)

Leiden University Libraries

SCIEX

Cover design: Alisa L. Willacey

Thesis layout: Cornelius C. W. Willacey

Printing: Ede Printservice

© Copyright, Cornelius C. W. Willacey, 2021

ISBN: 978-90-831713-8-8

All rights are reserved. No part of this book may be reproduced in any form or by any means without permission of the author.

# Developing metabolomics for a systems biology approach to understand Parkinson's disease

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof.dr.ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op woensdag 8 september 2021 klokke 10:00 uur

door

#### **Cornelius Carmichael William Willacey**

Geboren te Nottingham, Verenigd Koninkrijk

in 1992

#### PROMOTOR

Prof. dr. T. Hankemeier

#### **CO-PROMOTORS**

Dr. A. C. Harms

Dr. R. M. T. Fleming

#### PROMOTIECOMMMISIE

Prof. dr. H. Irth (Chair) Leiden University, the Netherlands

Prof. dr. J. A. Bouwstra (Secretary) Leiden University, the Netherlands

- Prof. Dr Christine Klein University of Lübeck, Germany
- Prof. dr. M. van der Stelt Leiden University, the Netherlands
- Prof. dr. C. Knibbe

Leiden University, the Netherlands

Prof. dr. B.M. Bakker

University of Groningen, the Netherlands

The research described in this thesis was performed at the division of Systems Biomedicine and Pharmacology of the Leiden Academic Centre for Drug Research (LACDR), Leiden University (Leiden, The Netherlands). The research was financially supported by the SysMedPD project, which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 668738.

### Contents

| Chapter 1 | Introduction1                                                       |
|-----------|---------------------------------------------------------------------|
|           | Metabolomics method development                                     |
| Chapter 2 | LC-MS/MS analysis of the central energy and carbon metabolites      |
|           | in biological samples following derivatization by                   |
|           | dimethylaminophenacyl bromide                                       |
|           | Journal of Chromatography A (2019) <b>29</b>                        |
| Chapter 3 | Metabolic profiling of material-limited cell samples by             |
|           | dimethylaminophenacyl bromide derivatization with UPLC-             |
|           | MS/MS analysis                                                      |
|           | Microchemical Journal (2020) <b>73</b>                              |
|           | <b>Biological application</b>                                       |
| Chapter 4 | A quantitative atlas of metabolites across regions of the rat brain |
|           | Manuscript submitted113                                             |
| Chapter 5 | Mechanistic model-driven exometabolomic characterisation of         |
|           | human dopaminergic neuronal metabolism                              |
|           | Manuscript in preparation167                                        |
|           | Conclusions                                                         |
| Chapter 6 | Concluding discussion and future prospects263                       |
| Addendum  | Summary                                                             |
|           | Nederlandse samenvatting288                                         |
|           | Curriculum vitae293                                                 |
|           | List of publications295                                             |
|           | Acknowledgments296                                                  |
|           |                                                                     |