Searching by learning: Exploring artificial general intelligence on small board games by deep reinforcement learning
Wang, H.

Citation

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3209232

Note: To cite this publication please use the final published version (if applicable).
The handle https://hdl.handle.net/1887/3209232 holds various files of this Leiden University dissertation.

Author: Wang, H.
Title: Searching by learning: Exploring artificial general intelligence on small board games by deep reinforcement learning
Issue Date: 2021-09-07
Stellingen
doorg Hui Wang, auteur van

Searching by Learning: Exploring Artificial General
Intelligence on Small Board Games by Deep
Reinforcement Learning

1. Classical Q-learning converges in General Game Playing slowly, and a
 simple Monte Carlo Search improves the speed. [This thesis. Chapter 2.]

2. The interaction impact between hyper-parameters suggests the need for
 balancing searching and learning in AlphaZero. [This thesis. Chapter 3.]

3. Summation of policy loss and value loss is not always the best loss function;
 it can serve as a default compromise choice. [This thesis. Chapter 4.]

4. Monte Carlo Tree Search enhancements can improve the start phase of Al-
 phaZero. Properly determining the length of the start phase of using such
 enhancements can further improve the training. [This thesis. Chapter 5
 & 6.]

5. AlphaZero-like self-play can be used to master complex single player com-
 binatorial optimization game with a ranked reward mechanism which re-
 shapes game outcome as win or loss. [This thesis. Chapter 7]

6. In deep reinforcement learning, searching and learning are usually com-
 bined to master different complex tasks, but it is hard to say which one is
 more important.

7. Self-play training heavily depends on the self-play examples, which sug-
 gests the importance of generating high quality training data, which can
 be provided by expert players.

8. We are still far away from achieving Artificial General Intelligence, al-
 though deep reinforcement learning has shown impressive ability of mas-
 tering a part of specific complex problems.

9. Just do it and never give up.

10. Life is like a game, everyone is a player. You can not change the game rules,
 but you can determine the objective you wish to achieve. It is impossible
 that every player is a winner, but it is possible that every player enjoys
 the process of playing the game.