Searching by learning: Exploring artificial general intelligence on small board games by deep reinforcement learning

Wang, H.

Citation

Version: Publisher's Version
License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/3209232

Note: To cite this publication please use the final published version (if applicable).
The handle https://hdl.handle.net/1887/3209232 holds various files of this Leiden University dissertation.

Author: Wang, H.
Title: Searching by learning: Exploring artificial general intelligence on small board games by deep reinforcement learning
Issue Date: 2021-09-07
Appendix A

A.1 Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Type</th>
<th>Description</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>$0 \leq \gamma \leq 1$</td>
<td>the discount factor of $\max_{a'} Q(s', a')$</td>
<td>Eq. (2.1)</td>
</tr>
<tr>
<td>α</td>
<td>$0 \leq \alpha \leq 1$</td>
<td>the learning rate of Q-learning</td>
<td>Eq. (2.2)</td>
</tr>
<tr>
<td>ϵ</td>
<td>$0 \leq \epsilon \leq 1$</td>
<td>ϵ-greedy for exploration and exploitation</td>
<td>Eq. (2.3)</td>
</tr>
<tr>
<td>l</td>
<td>\mathbb{N}^+</td>
<td>match number used to control decaying speed of ϵ</td>
<td>Eq. (2.3)</td>
</tr>
<tr>
<td>d</td>
<td>\mathbb{N}^+</td>
<td>dimension of action space</td>
<td>Eq. (3.1)</td>
</tr>
<tr>
<td>\mathbf{p}</td>
<td>\mathbb{R}^d</td>
<td>policy provided by the neural network</td>
<td>Eq. (3.1)</td>
</tr>
<tr>
<td>π</td>
<td>\mathbb{R}^d</td>
<td>improved estimate policy after performing MCTS</td>
<td>Eq. (3.1)</td>
</tr>
<tr>
<td>v</td>
<td>\mathbb{R}</td>
<td>state value prediction</td>
<td>Eq. (3.1)</td>
</tr>
<tr>
<td>z</td>
<td>${-1, 0, 1}$</td>
<td>real game end reward</td>
<td>Eq. (3.1)</td>
</tr>
<tr>
<td>λ</td>
<td>$0 \leq \lambda \leq 1$</td>
<td>a weight to balance policy and value loss function</td>
<td>Eq. (4.1)</td>
</tr>
<tr>
<td>β</td>
<td>\mathbb{R}</td>
<td>a weight number to balance $U(s, a)$ and $U_{rave}(s, a)$</td>
<td>Eq. (5.4)</td>
</tr>
<tr>
<td>L</td>
<td>\mathbb{N}^+</td>
<td>the length of the reward list</td>
<td>Eq. (7.1)</td>
</tr>
<tr>
<td>τ</td>
<td>$0 \leq \tau \leq 1$</td>
<td>a ratio to locate game length threshold in reward list</td>
<td>Eq. (7.1)</td>
</tr>
<tr>
<td>r_τ</td>
<td>\mathbb{N}^+</td>
<td>threshold reward of game length to judge win or loss</td>
<td>Eq. (7.1)</td>
</tr>
</tbody>
</table>
A.2 Abbreviations

Table A.2: Abbreviations

<table>
<thead>
<tr>
<th>Abb.</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>AGI</td>
<td>Artificial General Intelligence</td>
</tr>
<tr>
<td>MCS</td>
<td>Monte Carlo Search</td>
</tr>
<tr>
<td>MCTS</td>
<td>Monte Carlo Tree Search</td>
</tr>
<tr>
<td>GGP</td>
<td>General game playing</td>
</tr>
<tr>
<td>RAVE</td>
<td>Rapid Action Value Estimation</td>
</tr>
<tr>
<td>GDL</td>
<td>Game Description Language</td>
</tr>
<tr>
<td>DQN</td>
<td>Deep Q-networks</td>
</tr>
<tr>
<td>GM</td>
<td>Game Manager</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>UCT</td>
<td>Upper Confidence bound applied to Trees</td>
</tr>
<tr>
<td>AMAF</td>
<td>All Moves As First</td>
</tr>
<tr>
<td>RHEA</td>
<td>Rolling Horizon Evolutionary Algorithm</td>
</tr>
<tr>
<td>P-UCT</td>
<td>Policy-Upper Confidence bound applied to Trees</td>
</tr>
<tr>
<td>HPC</td>
<td>High Performance Computing</td>
</tr>
<tr>
<td>TSP</td>
<td>Travelling Salesman Problems</td>
</tr>
<tr>
<td>BPP</td>
<td>Bin Packing Problems</td>
</tr>
<tr>
<td>R2</td>
<td>Ranked Reward</td>
</tr>
<tr>
<td>MDP</td>
<td>Markov Decision Process</td>
</tr>
<tr>
<td>NRPA</td>
<td>Nested Rollout Policy Adaptation</td>
</tr>
</tbody>
</table>
A.3 Algorithms

Algorithm 8 Time Limited Monte Carlo Search Algorithm

1: function MONTECARLOSEARCH(time_limit)
2: get legal actions set A of current state s
3: get next states set S' where $s' \in S'$
4: $z(s')=0$, $count(s')=0$
5: while time_cost \leq time_limit do
6: for each s' in S' do
7: outcome(s')\leftarrow random simulation from s' to game end.
8: $z(s') += outcome(s')$
9: $count(s') += 1$
10: selected_action\leftarrow getActionFromStates(s, arg max$_{s' \in S'}$ $\frac{z(s')}{count(s')})$
11: return selected_action
Algorithm 9 QM-learning Enhancement

1: function QMPLAYER(current state \(s \), learning rate \(\alpha \), discount factor \(\gamma \), Q table: \(Q(S, A) \))

2: for each match do

3: if \(s \) terminates then

4: for each \((s, a)\) from end to the start in current match record do

5: \(R(s,a) = \text{\textnormal{is terminal state? getGoal}(s', \text{myrole}) : 0} \)

6: Update \(Q(s,a) \leftarrow (1-\alpha) Q(s,a) + \alpha (R(s,a) + \gamma \max_{a'} Q(s',a')) \)

7: else

8: if \(\epsilon \)-greedy is enabled then

9: \text{selected_action = Random()} \text{\textnormal{else}}

10: \text{selected_action = SelectFromQTable()}

11: if no \text{\textnormal{s record in}} \(Q(S, A) \) then

12: \text{MonteCarloSearch(time_limit)}

13: \text{performAction}(s, selected_action)

14: \text{\textnormal{return}} \(Q(S, A) \)
Algorithm 10 Neural Network Based MCTS with Only Rollout Simulation Value

1: function Rollout \(s, f_{\theta} \)
2: Search \(s \)
3: \(\pi_s \leftarrow \text{normalize}(Q(s, \cdot)) \)
4: return \(\pi_s \)
5: function Search \(s \)
6: Return game end result if \(s \) is a terminal state
7: if \(s \) is not in the Tree then
8: Add \(s \) to the Tree, initialize \(Q(s, \cdot) \) and \(N(s, \cdot) \) to 0
9: Get \(P(s, \cdot) \) and \(v(s) \) by looking up \(f_{\theta}(s) \)
10: Get result \(v(s) \) by performing random rollout until the game ends
11: return \(v(s) \)
12: else
13: Select an action \(a \) with highest UCT value
14: \(s' \leftarrow \text{getNextState}(s, a) \)
15: \(v \leftarrow \text{Search}(s') \)
16: \(Q(s, a) \leftarrow \frac{N(s, a) \cdot Q(s, a) + v}{N(s, a) + 1} \)
17: \(N(s, a) \leftarrow N(s, a) + 1 \)
18: return \(v; \)
Algorithm 11 Neural Network Based MCTS with Only RAVE Value

1: function RAVE(s, f_θ)
2: Search(s)
3: π_s ← normalize(Q_{rave}(s, \cdot))
4: return π_s

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree,
9: Initialize Q(s, \cdot), N(s, \cdot), Q_{rave}(s, \cdot) and N_{rave}(s, \cdot) to 0.
10: Get P(s, \cdot) and v(s) by looking up f_θ(s)
11: return v(s)
12: else
13: Select an action a with highest UCT_{rave} value
14: s' ← getNextState(s, a)
15: v ← Search(s')
16: Q(s, a) ← \frac{N(s, a) \times Q(s, a) + v}{N(s, a) + 1}
17: N(s, a) ← N(s, a) + 1
18: N_{rave}(s_t, a_{t_2}) ← N_{rave}(s_t, a_{t_2}) + 1
19: Q_{rave}(s_t, a_{t_2}) ← \frac{N_{rave}(s_t, a_{t_2}) \times Q_{rave}(s_t, a_{t_2}) + v}{N_{rave}(s_t, a_{t_2}) + 1}
20: ▷ where s_t ∈ VisitedPath, and a_{t_2} ∈ A(s_t), and for ∀t < t_2, a_t ≠ a_{t_2}
21: return v;
Algorithm 12 Neural Network Based MCTS with Rollout Simulation and RAVE Value

1: function RoRa(s, f_θ)
2: Search(s)
3: $\pi_s \leftarrow \text{normalize}(Q_{rave}(s, \cdot))$
4: return π_s
5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree,
9: Initialize $Q(s, \cdot)$, $N(s, \cdot)$, $Q_{rave}(s, \cdot)$ and $N_{rave}(s, \cdot)$ to 0.
10: Get $P(s, \cdot)$ and $v(s)$ by looking up $f_\theta(s)$
11: Get result $v(s)$ by performing random rollout until the game ends
12: return $v(s)$
13: else
14: Select an action a with highest UCT_{rave} value
15: $s' \leftarrow \text{getNextState}(s, a)$
16: $v \leftarrow \text{Search}(s')$
17: $Q(s, a) \leftarrow \frac{N(s, a) \cdot Q(s, a) + v}{N(s, a) + 1}$
18: $N(s, a) \leftarrow N(s, a) + 1$
19: $N_{rave}(s_{t_1}, a_{t_2}) \leftarrow N_{rave}(s_{t_1}, a_{t_2}) + 1$
20: $Q_{rave}(s_{t_1}, a_{t_2}) \leftarrow \frac{N_{rave}(s_{t_1}, a_{t_2}) \cdot Q_{rave}(s_{t_1}, a_{t_2}) + v}{N_{rave}(s_{t_1}, a_{t_2}) + 1}$
21: \triangleright where $s_{t_1} \in VisitedPath$, and $a_{t_2} \in A(s_{t_1})$, and for $\forall t < t_2, a_t \neq a_{t_2}$
22: return v.
Algorithm 13 Neural Network Based MCTS with Neural Network and Rollout Simulation Value

1: function WRO(s, f_θ)
2: Search(s)
3: $\pi_s \leftarrow \text{normalize}(Q(s, \cdot))$
4: return π_s

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree, initialize $Q(s, \cdot)$ and $N(s, \cdot)$ to 0
9: Get $P(s, \cdot)$ and $v(s)_{\text{network}}$ by looking up $f_\theta(s)$
10: Get result $v(s)_{\text{rollout}}$ by performing random rollout until the game ends
11: $v(s) = (1 - \text{weight}) * v_{\text{network}} + \text{weight} * v_{\text{rollout}}$
12: return $v(s)$
13: else
14: Select an action a with highest UCT value
15: $s' \leftarrow \text{getNextState}(s, a)$
16: $v \leftarrow \text{Search}(s')$
17: $Q(s, a) \leftarrow \frac{N(s, a)Q(s, a) + v}{N(s, a) + 1}$
18: $N(s, a) \leftarrow N(s, a) + 1$
19: return v;
Algorithm 14 Neural Network Based MCTS with Neural Network, Rave and Rollout Simulation Value

1: function WRoRa(s, f_\theta)
2: Search(s)
3: π_s ← normalize(Q(s, ·))
4: return π_s
5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree,
9: Initialize Q(s, ·), N(s, ·), Q_{rave}(s, ·) and N_{rave}(s, ·) to 0.
10: Get P(s, ·) and v(s)_{network} by looking up f_\theta(s)
11: Get result v(s)_{rollout} by performing random rollout until the game ends
12: random rollout path added to VisitedPath
13: v(s) = (1 - weight) * v_{network} + weight * v_{rollout}
14: else
15: Select an action a with highest UCT_{rave} value
16: s' ← getNextState(s, a)
17: v ← Search(s')
18: Q(s, a) ← \frac{N(s,a) * Q(s,a) + v}{N(s,a) + 1}
19: N(s, a) ← N(s, a) + 1
20: N_{rave}(s_{t1}, a_{t2}) ← N_{rave}(s_{t1}, a_{t2}) + 1
21: Q_{rave}(s_{t1}, a_{t2}) ← \frac{N_{rave}(s_{t1}, a_{t2}) * Q_{rave}(s_{t1}, a_{t2}) + v}{N_{rave}(s_{t1}, a_{t2}) + 1}
22: \triangleright where s_{t1} ∈ VisitedPath, and a_{t2} ∈ A(s_{t1}), and for ∀t < t_2, a_t ≠ a_{t2}
23: return v;
Algorithm 15 Rolling Horizon Evolutionary Algorithm

1: function RHEA(s, time_limit)
2: Set up population of n valid action sequences of length l: \(A_{n,l} \)
3: for all \(A_{i<n} \) do Evaluate\((A_i) \)
4: repeat
5: \hspace{1em} new action sequence \(A_j \) = mutate one randomly chosen action sequence
6: \hspace{2em} by changing every move with a small random chance
7: \hspace{1em} \(f(A_j) = \text{Evaluate}(A_j) \)
8: \hspace{1em} add \(A_j \) to population
9: \hspace{1em} remove \(A_i \) with worst \(f(A_i) \) from population
10: until time_cost \(\geq \) time_limit
11: return first action of best sequence in population

12: function Evaluate\((A_i) \)
13: repeat
14: \hspace{1em} Play action sequence in \(A_i \)
15: \hspace{2em} Get result success, game_steps by performing random rollout until
16: \hspace{3em} the game ends
17: until repetitions \(\geq 2 \)
18: compute fitness \(f(A_i) \) from average success probability with sequence
19: \hspace{1em} length penalty (line 117)
20: return \(f(A_i) \)
A.4 Elo Computation

In this dissertation, like AlphaZero series papers did, a whole history Bayesian Elo computation \[82\] is also employed to present the relative competence of playing the game of different trained models instead of a win or loss rate. In this section, a full computation process will be described in detail based on the Bayesian Elo computation system (called Bayeselo) provided on github \[131\].

Bayeselo is a free software tool to compute Elo ratings. It receives a file containing game records written in PGN (Portable Game Notation) format \[132\], and produces a rating list \[131\]. Therefore, a full process can be simply described in Fig. A.1.

An example of part of a PGN file (arena_othello_final.pgn) generated based on win/loss results recorded during AlphaZero-like self-play arena competition is shown as Fig. A.2.

![Figure A.1: a full Bayesian Elo Computation Process.](image_url)
An example of elo rating list generated by operating Bayeselo system with PGN file (arena_othello_final.pgn) as input is shown as follows. See Fig. A.3. The figures of elo ratings in this dissertation are visualized based on such elo rating lists.
Table A.3: An example of Generated Elo Rating List by Bayeselo

<table>
<thead>
<tr>
<th>Rank</th>
<th>Name</th>
<th>Elo</th>
<th>+</th>
<th>-</th>
<th>games</th>
<th>score</th>
<th>oppo.</th>
<th>draws</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bestmodel_mcts_rave_rollout_run6</td>
<td>117</td>
<td>22</td>
<td>22</td>
<td>960</td>
<td>62%</td>
<td>-2</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>bestmodel_weight_mcts_rave_rollout_run5</td>
<td>102</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>57%</td>
<td>-2</td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>bestmodel_weight_mcts_rave_rollout_run2</td>
<td>100</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>58%</td>
<td>-2</td>
<td>0%</td>
</tr>
<tr>
<td>4</td>
<td>bestmodel_weight_mcts_rollout_run5</td>
<td>97</td>
<td>22</td>
<td>21</td>
<td>960</td>
<td>58%</td>
<td>-2</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>bestmodel_mcts_rave_run1</td>
<td>86</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>58%</td>
<td>-2</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>bestmodel_weight_mcts_rave_rollout_run8</td>
<td>81</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>55%</td>
<td>-2</td>
<td>0%</td>
</tr>
<tr>
<td>7</td>
<td>bestmodel_pi_v_run1</td>
<td>77</td>
<td>22</td>
<td>21</td>
<td>960</td>
<td>61%</td>
<td>-2</td>
<td>0%</td>
</tr>
<tr>
<td>8</td>
<td>bestmodel_weight_mcts_rave_rollout_run3</td>
<td>71</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>54%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>9</td>
<td>bestmodel_mcts_rave_rollout_run2</td>
<td>62</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>57%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>10</td>
<td>bestmodel_weight_mcts_rave_rollout_run1</td>
<td>54</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>53%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>11</td>
<td>bestmodel_weight_mcts_rave_rollout_run6</td>
<td>53</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>52%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>12</td>
<td>bestmodel_mcts_rave_run4</td>
<td>53</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>54%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>13</td>
<td>bestmodel_weight_mcts_rave_rollout_run4</td>
<td>52</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>52%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>14</td>
<td>bestmodel_weight_mcts_rave_rollout_run3</td>
<td>44</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>52%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>15</td>
<td>bestmodel_weight_mcts_rollout_run8</td>
<td>39</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>51%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>16</td>
<td>bestmodel_pi_v_run4</td>
<td>39</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>56%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>17</td>
<td>bestmodel_weight_mcts_rave_rollout_run7</td>
<td>36</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>50%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>18</td>
<td>bestmodel_weight_mcts_rollout_run7</td>
<td>34</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>51%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>19</td>
<td>bestmodel_mcts_rave_rollout_run7</td>
<td>32</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>51%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>20</td>
<td>bestmodel_weight_mcts_rollout_run2</td>
<td>30</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>51%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>21</td>
<td>bestmodel_mcts_rave_rollout_run5</td>
<td>28</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>52%</td>
<td>-1</td>
<td>0%</td>
</tr>
<tr>
<td>22</td>
<td>bestmodel_mcts_rave_run2</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>51%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>23</td>
<td>bestmodel_weight_mcts_rollout_run4</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>49%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>24</td>
<td>bestmodel_weight_mcts_rollout_run1</td>
<td>20</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>50%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>25</td>
<td>bestmodel_pi_v_run6</td>
<td>18</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>53%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>26</td>
<td>bestmodel_mcts_rollout_run3</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>53%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>27</td>
<td>bestmodel_weight_mcts_rollout_run7</td>
<td>15</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>51%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>28</td>
<td>bestmodel_mcts_rollout_run1</td>
<td>11</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>52%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>29</td>
<td>bestmodel_mcts_rave_run8</td>
<td>10</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>49%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>30</td>
<td>bestmodel_weight_mcts_rollout_run6</td>
<td>8</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>48%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>31</td>
<td>bestmodel_mcts_rollout_run2</td>
<td>7</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>52%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>32</td>
<td>bestmodel_mcts_rollout_run8</td>
<td>6</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>49%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>33</td>
<td>bestmodel_mcts_rave_run5</td>
<td>5</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>49%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>34</td>
<td>bestmodel_mcts_rave_run6</td>
<td>4</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>48%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>35</td>
<td>bestmodel_mcts_rollout_run3</td>
<td>2</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>50%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>36</td>
<td>bestmodel_pi_v_run7</td>
<td>-2</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>51%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>37</td>
<td>bestmodel_mcts_rollout_run6</td>
<td>-6</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>49%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>38</td>
<td>bestmodel_pi_v_run3</td>
<td>-7</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>51%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>39</td>
<td>bestmodel_mcts_rollout_run5</td>
<td>-8</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>49%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>40</td>
<td>bestmodel_mcts_rave_rollout_run4</td>
<td>-10</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>48%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>41</td>
<td>bestmodel_mcts_rave_rollout_run7</td>
<td>-11</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>49%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>42</td>
<td>bestmodel_mcts_rave_rollout_run1</td>
<td>-17</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>48%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>43</td>
<td>bestmodel_pi_v_run8</td>
<td>-17</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>49%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>44</td>
<td>bestmodel_mcts_rollout_run8</td>
<td>-43</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>45%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>45</td>
<td>bestmodel_pi_v_run5</td>
<td>-65</td>
<td>21</td>
<td>21</td>
<td>960</td>
<td>44%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>46</td>
<td>bestmodel_mcts_rave_run3</td>
<td>-66</td>
<td>22</td>
<td>22</td>
<td>960</td>
<td>41%</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>47</td>
<td>bestmodel_pi_v_run2</td>
<td>-100</td>
<td>22</td>
<td>22</td>
<td>960</td>
<td>41%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>48</td>
<td>bestmodel_mcts_rollout_run4</td>
<td>-109</td>
<td>22</td>
<td>22</td>
<td>960</td>
<td>38%</td>
<td>2</td>
<td>0%</td>
</tr>
<tr>
<td>49</td>
<td>randomplayer</td>
<td>-988</td>
<td>124</td>
<td>204</td>
<td>960</td>
<td>0%</td>
<td>21</td>
<td>0%</td>
</tr>
</tbody>
</table>
Bibliography

