
Searching by learning: Exploring artificial general intelligence on small
board games by deep reinforcement learning
Wang, H.

Citation
Wang, H. (2021, September 7). Searching by learning: Exploring artificial general intelligence
on small board games by deep reinforcement learning. Retrieved from
https://hdl.handle.net/1887/3209232

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3209232

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3209232

Cover Page

The handle https://hdl.handle.net/1887/3209232 holds various files of this Leiden
University dissertation.

Author: Wang, H.
Title: Searching by learning: Exploring artificial general intelligence on small board games
by deep reinforcement learning
Issue Date: 2021-09-07

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3209232
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 7

Ranked Reward Reinforcement
Learning

7.1 Introduction

In previous chapters, we mainly test our approaches on relatively small two-player
board games. This chapter will however deal with single-player games and form
thereby a bridge to combinatorial optimization.

In recent years, the interest in combinatorial games as a challenge in AI has in-
creased after the first AlphaGo program [16] defeated the human world champion
of Go [74]. The great success of the AlphaGo and AlphaZero programs [10, 16, 17]
in two-player games, has inspired attempts in other domains [35, 89]. So far, one
of the most challenging single player games, Morpion Solitaire [116] has not yet
been studied with this promising deep reinforcement learning approach.

Morpion Solitaire is a popular single player game since 1960s [27, 116], because
of its simple rules and simple equipment, requiring only paper and pencil. Due
to its large state space it is also an interesting AI challenge in single player
games, just like the game of Go challenge in two-player turn-based games. Could
the AlphaZero self-play approach, that turned out to be so successful in Go,
also work in Morpion Solitaire? For ten years little progress has been made in
Morpion Solitaire. It is time to take up the challenge and to see if a self-play
deep reinforcement learning approach will work in this challenging game as a few
works on applying reinforcement learning are studied to deal with combinatorial
tasks [117, 118, 119].

89

7. RANKED REWARD REINFORCEMENT LEARNING

AlphaGo and AlphaZero combine deep neural networks [68] and MCTS [7] in
a self-play framework that learns by curriculum learning [95]. Unfortunately,
these approaches can not be directly used to play single agent combinatorial
games, such as Travelling Salesman Problems (TSP) [120] and Bin Packing Prob-
lems (BPP) [121], where cost minimization is the goal of the game. To apply
self-play for single player games, Laterre et al. proposed a Ranked Reward (R2)
algorithm. R2 creates a relative performance metric by means of ranking the
rewards obtained by a single agent over multiple games. In two-dimensional and
three-dimensional bin packing R2 is reported to out-perform MCTS [122]. In
this chapter we use this idea for Morpion Solitaire. Our contributions can be
summarized as follows:

1. We present the first implementation1 of Ranked Reward AlphaZero-style
self-play for Morpion Solitaire.

2. On this implementation, we report our current best solution, of 67 steps (see
Fig 7.2).

This result is very close to the human record, and shows the potential of the self-
play reinforcement learning approach in Morpion Solitaire, and other hard single
player combinatorial problems. Our result is even more remarkable, because it
has been achieved in a tabula rasa setting, that is starting only with the knowl-
edge [123] about the rules of the game and not encoding strategies and tactics of
human players.

This chapter is structured as follows. After giving an overview of related work
in Sect. 7.2, we introduce the Morpion Solitaire challenge in Sect. 7.3. Then we
present how to integrate the idea of R2 into AlphaZero self-play in Sect. 7.4.
Thereafter, we set up the experiment in Sect. 7.5, and show the result and analysis
in Sect. 7.6. Finally, we conclude this chapter and discuss future work.

7.2 Related Work

Recent successes of AlphaGo series spark the interest of creating new self-play
deep reinforcement learning approaches to deal with problems in the field of game
AI, especially for other two player games [30, 31, 33, 64].

However, for single player games, self-play deep reinforcement learning approaches
are not yet well studied since the approaches used for two-player games can not di-
rectly be used in single player games [122], since the goal of the task changes from

1Source code: https://github.com/wh1992v/R2RRMopionSolitaire

90

7.3 Morpion Solitaire

winning from an opponent, to minimizing the solution cost. Nevertheless, some
researchers did initial works on single games with self-play deep reinforcement
learning [124]. The main difficulty is representing single player games in ways that
allow the use of a deep reinforcement learning approach. In order to get over this
difficulty, Vinyals et al. [125] proposed a neural architecture (Pointer Networks)
to represent combinatorial optimization problems as sequence-to-sequence learn-
ing problems. Early Pointer Networks achieved decent performance on TSP, but
this approach is computationally expensive and requires handcrafted training ex-
amples for supervised learning methods. Replacing supervised learning methods
by actor-critic methods removed this requirement [126]. In addition, Laterre et
al. proposed the R2 algorithm through ranking the rewards obtained by a single
agent over multiple games to label win or loss for each search, and this algorithm
reportedly outperformed plain MCTS in the bin packing problem (BPP) [122].
Besides, Feng et al. recently used curriculum-driven deep reinforcement learning
to cope with hard Sokoban instances [127]. The key of R2 is a progressing (like
curriculum learning style) ranked reward list.

In addition to TSP and BPP, Morpion Solitaire has long been a challenge in
NP-hard single player problems [27]. In brief, the goal in Morpion Solitaire is to
maximally extend a given geometrical structure performing certain legal moves,
and given a set of rules. Previous works on Morpion Solitaire mainly employ tra-
ditional heuristic search algorithms [116]. Cazenave created Nested Monte-Carlo
Search and found an 80 moves record [128]. After that, a new Nested Rollout
Policy Adaptation algorithm achieved a new 82 steps record [29]. Thereafter,
Cazenave applied Beam Nested Rollout Policy Adaptation [129], which reached
the same 82 steps record but did not exceed it, indicating the difficulty of making
further progress on Morpion Solitaire using traditional search heuristics.

It is interesting to develop a new approach, applying (self-play) deep reinforce-
ment learning to train a Morpion Solitaire player. The combination of the R2
algorithm with the AlphaZero self-play framework could be a first alternative for
above mentioned approaches.

7.3 Morpion Solitaire

Morpion Solitaire is a single player game played on an unlimited grid. The rules
of the game are simple. There are 36 black circles as the initial state (see Fig 7.1).
A move for Morpion Solitaire consists of two parts: a) placing a new circle on
the paper so that this new circle can be connected with four other existing circles
horizontally, vertically or diagonally, and then b) drawing a line to connect these

91

7. RANKED REWARD REINFORCEMENT LEARNING

five circles (see action 1, 2, 3 in the figure). Lines are allowed to cross other
lines (action 4), but not allowed to overlap. There are two versions: the Touch-
ing (5T) version and the Disjoint (5D) version. For the 5T version, it is allowed
to touch (action 5, green circle and green line), but for the 5D version, touching
is illegal (any circle can not belong to two lines that have the same direction).
After a legal action the circle and the line are added to the grid. This chapter
focuses on the 5D version.

The best human score for the 5D version is 68 moves [27]. A score of 80 moves
was found by means of Nested Monte-Carlo Search [128]. In addition, [29] found
a new record with 82 steps, and [129] also found a 82 steps solution. It has been
proven mathematically that the 5D version has an upper bound of 121 [28].

7.4 Ranked Reward Reinforcement Learning

AlphaZero self-play achieved milestone successes in two-player games, but can
not be directly used for single player cost minimization games. Therefore, the
R2 algorithm has been created to use self-play for generic single player MDPs.
R2 reshapes the rewards according to player’s relative performance over recent
games [122]. The pseudo code of R2 is given in Algorithm 7.

Following AlphaZero-like self-play [34], we demonstrate the typical three stages as
shown in the pseudo code. Since self-play in Morpion Solitaire MCTS is too time
consuming due to the large state space. Thus, we rely on the policy directly from
fθ without tree search (line 6). For stage 3, we directly replace the previous neural
network model with the newly trained model and let the newly trained model play
a single time with MCTS enhancement (line 15). The R2 idea is integrated (see
line 9 to line 11). The reward list B stores the recent game rewards. According
to a ratio τ , the threshold of rτ is calculated. We then compare rτ to the game
reward rT to reshape the ranked reward z according to Equation 7.1.

z =

1 rT > rτ

−1 rT < rτ

random(1,−1) rT = rτ

(7.1)

where rτ is the stored reward value in B indexed by L× τ , L is the length of B,
τ is a ratio parameter set to control the index of rτ in B.

92

7.4 Ranked Reward Reinforcement Learning

5

3

4

21

Figure 7.1: Moves Example: Moves 1, 2, 3, 4 are legal moves, move 5 is illegal
for the 5D version, but legal for the 5T version. Move 1 is the first move, Move 2
is the second move, and so on.

93

7. RANKED REWARD REINFORCEMENT LEARNING

Algorithm 7 Ranked Reward Reinforcement Learning within AlphaZero-like
Self-play Framework
1: function RankedRewardReinforcementLearning
2: Initialize fθ with random weights; Initialize retrain buffer D and reward list B
3: for iteration=1, , I do . self-play curriculum of I tournaments
4: for episode=1,. . . , E do . stage 1, self-play tournament of E games
5: for t=1, . . . , T ′, . . . , T do . play game of T moves
6: πt ← perform MCTS based on fθ or directly get policy from fθ

7: at =randomly select on πt before T ′ or argmaxa(πt) after T ′ step
8: executeAction(st, at)

9: Calculate game reward rT and store it in B
10: Calculate threshold rτ based on the recent games rewards in B
11: Reshape the ranked reward z following Equation 7.1 . Ranked Reward
12: Store every (st, πt, zt) with ranked rewards zt (t ∈ [1, T]) in D

13: Randomly sample minibatch of examples (sj , πj , zj) from D . stage 2
14: Train a new model fθ′ based on fθ and examples
15: Play once with MCTS enhancement on fθ′ . stage 3
16: Replace fθ ← f ′θ

17: return fθ;

7.5 Experiment Setup

We perform our experiments on a GPU server with 128G RAM, 3TB local stor-
age, 20 Intel Xeon E5-2650v3 cores (2.30GHz, 40 threads), 2 NVIDIA Titanium
GPUs (each with 12GB memory) and 6 NVIDIA GTX 980 Ti GPUs (each with
6GB memory). And the code of framework interface is based on [65].

The hyper-parameters of our current R2 implementation are as much as possible
equal to previous work. In this work, all neural network models share the same
structure as in [34]. The hyper-parameter values for Algorithm 7 used in our
experiments are given in Table 7.1. Partly, these values are set based on the
work reported in [32] and the R2 approach for BPP [122]. T ′ is set to half of
the current best record. m is set to 100 if using MCTS in self-play, but 20000
for MCTS in stage 3. Due to that MCTS needs too much computation in our
setting, we do not use MCTS to enhance model in self-play (get policy from fθ
directly), but we use MCTS once for every 10 iterations in stage 3. Furthermore,
as there is an upper bound of the best score (121), we did experiments on 16×16,
20×20 and 22×22 boards respectively. Training time for every algorithm is about
a week.

94

7.6 Result and Analysis

Table 7.1: Default Parameter Settings

Parameter Brief Description Default Value
I number of iterations 100
E number of episodes 50
T’ step threshold 41
m MCTS simulation times 20000
c weight in UCT 1.0
rs number of retrain iterations 10
ep number of epochs 5
bs batch size 64
lr learning rate 0.005
d dropout probability 0.3
L length of B 200
τ ratio to compute rτ 0.75

7.6 Result and Analysis

As we mentioned above, the best score for Morpion Solitaire of 82 steps has been
achieved by Nested Rollout Policy Adaptation (NRPA) in 2010. The best score
achieved by human is 68. Our first attempt with limited computation resources
on a large size board (22×22) achieved a score of 67, very close to the best human
score. The resulting solution is shown in Fig 7.2.

Based on these promising results with Ranked Reward Reinforcement Learning we
identify areas for further improvement. First, parameter values for the Morpion
Solitaire game can be fine-tuned using results of small board games. Especially
the parameter m = 100 seems not sufficient for large boards. Second, the neural
network could be changed to Pointer Networks and the size of neural network
should be deeper.

Note that the tuning of parameters is critical; if the reward list B is too small,
the reward list can be easily filled up by scores close to 67. The training will
then be stuck in a locally optimal solution. As good solutions are expected to be
sparsely distributed over the search space, this increases the difficulty to get rid
of a locally optimal solution once the algorithm has focused on it.

95

7. RANKED REWARD REINFORCEMENT LEARNING

60

1

61

59

58

57

56

55

54

53

52

51

50

49

48

47

46

45 44

43

42

41

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22 21

20

19

18

17

1615

14

13

12

11

10

9

8

7

6

5

4

3

2

64

65

67

66

63

62

Figure 7.2: Detailed Steps of Our Best Solution

96

7.7 Summary

7.7 Summary

In this work, we apply a Ranked Reward Reinforcement Learning AlphaZero-like
approach to play Morpion Solitaire, an important NP-hard single player game
challenge. We train the player on 16×16, 20×20 and 22×22 boards, and find a
near best human performance solution with 67 steps. As a first attempt of uti-
lizing self-play deep reinforcement learning approach to tackle Morpion Solitaire,
achieving near-human performance is a promising result.

To summarize, although the problem is difficult due to its large state space and
sparsity of good solutions, applying a Ranked Reward self-play Reinforcement
Learning approach to tackle Morpion Solitaire is a promising and learns from
tabula rasa. We present our promising near-human result to stimulate future work
on Morpion Solitaire and other single agent games with self-play reinforcement
learning.

97

7. RANKED REWARD REINFORCEMENT LEARNING

98

