
Searching by learning: Exploring artificial general intelligence on small
board games by deep reinforcement learning
Wang, H.

Citation
Wang, H. (2021, September 7). Searching by learning: Exploring artificial general intelligence
on small board games by deep reinforcement learning. Retrieved from
https://hdl.handle.net/1887/3209232

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3209232

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3209232

Cover Page

The handle https://hdl.handle.net/1887/3209232 holds various files of this Leiden
University dissertation.

Author: Wang, H.
Title: Searching by learning: Exploring artificial general intelligence on small board games
by deep reinforcement learning
Issue Date: 2021-09-07

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3209232
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 6

Adaptive Warm-Start
AlphaZero-like Self-play

6.1 Introduction

Following Chapter 5, in this chapter, we will further propose an adaptive warm-
start method on AlphaZero-like deep reinforcement learning framework.

The combination of online MCTS [7] in self-play and offline neural network train-
ing has been widely applied as a deep reinforcement learning technique, in par-
ticular for solving game-related problems by means of the AlphaGo series pro-
grams [10, 16, 17]. The approach of this paradigm is to use game playing records
from self-play by MCTS as training examples to train the neural network, whereas
this trained neural network is used to inform the MCTS value and policy. Note
that in contrast to AlphaGo Zero or AlphaZero, the original AlphaGo also uses
large amounts of expert data to train the neural network and a fast rollout pol-
icy together with the policy provided by neural network to guide the MCTS
search.

However, although the transition from a combination of using expert data and
self-play (AlphaGo) to only using self-play (AlphaGo Zero and AlphaZero) ap-
pears to have only positive results, it does raise some questions.

The first question is: ‘should all human expert data be abandoned?’ In other
games we have seen that human knowledge is essential for mastering complex

73

6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

games, such as StarCraft [23]. Then when should expert data be taken into
consideration while training neural networks?

The second question is: ‘should the fast rollout policy be abandoned?’ Chap-
ter 5 has proposed to use warm-start search enhancements at the start phase
in AlphaZero-like self-play, which improves performance in 3 small board games.
Instead of only using the neural network for value and policy, in the first few iter-
ations, classic rollout can be used (or RAVE, or a combination, or a combination
with the neural network). This can improve training especially at the start phase
of self-play training.

In fact, the essence of the warm-start search enhancement is to re-generate expert
knowledge in the start phase of self-play training, to reduce the cold-start problem
of playing against untrained agents. The method uses rollout (which can be seen
as experts) instead of a randomly initialized neural network, up until a number of
I ′ iterations, when it switches to the regular value network. In their experiments,
the I ′ was fixed at 5. Obviously, a fixed I ′ may not be optimal. Therefore, in this
work, we propose an adaptive switch method. The method uses an arena in the
self-play stage (see Algorithm 6), where the search enhancement and the default
MCTS are matched, to judge whether to switch or not. With this mechanism,
we can dynamically switch off the enhancement if it is no longer better than the
default MCTS player, as the neural network is being trained.

Our main contributions can be summarized as follows:

1. Warm-start method improves the Elo of AlphaZero-like self-play in small
games, but it introduces a new hyper-parameter. Adaptive warm-start fur-
ther improves performance and removes the hyper-parameter.

2. For deep games (with a small branching factor) warm-start works better
than for shallow games. This indicates that the effectiveness of warm-start
method may increase for larger games.

The rest of this chapter is designed as follows. An overview of the most rele-
vant literature is given in Sect. 6.2. Before proposing our adaptive switch method
in Sect. 6.4, we describe the warm-start AlphaZero-like self-play algorithm in
Sect. 6.3. Thereafter, we set up the experiments in Sect. 6.5 and present their re-
sults in Sect. 6.6. Finally, we conclude the chapter and discuss future work.

74

6.2 Related Work

6.2 Related Work

There are a lot of early successful works in reinforcement learning [6], e.g. us-
ing temporal difference learning with a neural network to play backgammon [70].
MCTS has also been well studied, and many variants/enhancements were de-
signed to solve problems in the domain of sequential decisions, especially on
games. For example, enhancements such as RAVE and All Moves as First (AMAF)
have been conceived to improve MCTS [18, 24]. The AlphaGo series algorithms
replace the table based model with a deep neural network based model, where the
neural network has a policy head (for evaluating of a state) and a value head (for
learning a best action) [34], enabled by the GPU hardware development. There-
after, the structure that combines MCTS with neural network training has be-
come a typical approach for reinforcement learning tasks and many successful
applications [37, 89] of this kind model-based deep reinforcement learning [68].
Comparing AlphaGo with AlphaGo Zero and AlphaZero, the latter did not use
any expert data to train the neural network, and abandoned the fast rollout
policy for improving the MCTS on the trained neural network. Therefore, all
training data is generated purely by self-play, which is also a very important fea-
ture of reinforcement learning. We base our work on an open reimplementation
of AlphaZero, AlphaZero General [65].

There are many interesting works on self-play in reinforcement learning [70, 74,
107]. Temporal difference learning for acquiring position evaluation in small board
Go with co-evolution has been compared to self-play [107]. These works demon-
strated the impressive results for self-play and emphasized its importance.

Within a GGP framework, in order to improve training examples efficiency, [31]
assessed the potential of classical Q-learning by introducing MCS enhancements.
In an AlphaZero-like self-play framework, [108] used domain-specific features and
optimizations, starting from random initialization and no preexisting data, to
accelerate the training.

However, AlphaStar, the acclaimed algorithm for beating human professionals
at StarCraft [23], went back to utilizing human expert data, thereby suggest-
ing that this is still an option at the start phase of training. Apart from this,
there are few studies on applying MCTS enhancements in AlphaZero-like self-
play. Only [35] (presented in Chapter 5), which proposed a warm-start search
enhancement method, pointed out the promising potential of utilizing MCTS en-
hancements (like a rollout policy) to re-generate expert data at the start phase of
training. Our approach differs from AlphaStar, as we generate expert data using
MCTS enhancements other than collecting it from humans; further, compared to

75

6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

the static warm-start in Chapter 5, we propose an adaptive method to control
the iteration length of using such enhancements instead of a fixed I ′.

6.3 Warm-Start AlphaZero Self-play

Based on Chapter 5, we will now briefly recall the warm-start enhancement
method.

6.3.1 The Algorithm Framework

Based on [10, 34] and Chapter 5, the core of AlphaZero-like self-play (see Algo-
rithm 5) is an iterative loop which consists of three different stages within the
single iteration as follows:

1. self-play: The first stage is playing several games against with itself to
generate training examples.

2. neural network training: The second stage is feeding the neural network
with training examples (generated in the first stage) to train a new model.

3. arena comparison: The last stage is employing a tournament to compare
the newly trained model and the old model to decide whether to update or
not.

The detail description of these 3 stages can be found in Chapter 5 (Sect. 5.3.1).
Note that in the Algorithm 5, line 5, a fixed I ′ is employed to control whether
to use neural network MCTS or MCTS enhancements, the I ′ should be set as
relatively smaller than I, which is known as warm-start search. The MCTS
algorithm and MCTS enhancements will be introduced in next subsections.

6.3.2 MCTS

Classical MCTS has shown successful performance to solve complex games, by
taking random samples in the search space to evaluate the state value. Basically,
the classical MCTS algorithm can be divided into 4 stages, which are known
as selection, expansion, rollout and backpropagate [7]. However, for the default
MCTS in AlphaZero-like self-play (eg. our Baseline), the neural network directly
informs the MCTS state policy and value to guide the search instead of running
a rollout (see Algorithm 4).

76

6.3 Warm-Start AlphaZero Self-play

Algorithm 5 Warm-start AlphaZero-like Self-play Algorithm
1: Randomly initialize fθ, assign retrain buffer D
2: for iteration=1, . . . ,I ′, . . . , I do
3: for episode=1,. . . , E do . self-play
4: for t=1, . . . , T ′, . . . , T do
5: if I ≤ I ′ then πt ← MCTS Enhancement
6: else πt ← default MCTS

7: if t ≤ T ′ then at = randomly select on πt
8: else at = argmaxa(πt)

9: executeAction(st, at)

10: D ← (st, πt, zt) with outcome zt∈[1,T]

11: Sample minibatch (sj , πj , zj) from D . training
12: Train fθ′ ← fθ

13: fθ = fθ′ if fθ′ is better, using default MCTS . arena

14: return fθ;

6.3.3 MCTS enhancements

In this chapter, we adopt the same two individual enhancements and three com-
binations to improve neural network training as were used in Chapter 5. Here we
briefly recall them again with a possible minor change for weight calculation.

Rollout is running a classic MCTS random rollout to get a value that provides
more meaningful information than a value from random initialized neural net-
work.

RAVE is a well-studied enhancement to cope with the cold-start of MCTS in
games like Go [18], where the playout-sequence can be transposed. The core
idea of RAVE is using AMAF to update the state visit count Nrave and Q-value
Qrave, which are written as: Nrave(st1 , at2)← Nrave(st1 , at2) + 1, Qrave(st1 , at2)←
Nrave(st1 ,at2)∗Qrave(st1 ,at2)+v

Nrave(st1 ,at2)+1
, where st1 ∈ V isitedPath, and at2 ∈ A(st1), and for

∀t < t2, at 6= at2 . The P-UCT of RAVE is calculated as follows:

PUCTrave(s, a) = (1− β) ∗ U(s, a) + β ∗ Urave(s, a) (6.1)

where

Urave(s, a) = Qrave(s, a) + c ∗ P (s, a)
√
Nrave(s, ·)

Nrave(s, a) + 1
(6.2)

77

6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

and

β =

√
equivalence

3 ∗N(s, ·) + equivalence
(6.3)

The value of equivalence is usually set to the number of MCTS simulations (i.e
m=100 in our experiments).

RoRa is the combination which simply adds the random rollout to enhance
RAVE.

WRo introduces a weighted sum of rollout value and the neural network value
as the return value to guide MCTS. In our experiments, v(s) is computed as
follows:

v(s) = (1− weight) ∗ vnetwork + weight ∗ vrollout (6.4)

WRoRa also employs a weighted sum to combine the value from the neural net-
work and the value of RoRa. The v(s) for MCTS search in WRoRa is computed
as follows:

v(s) = (1− weight) ∗ vnetwork + weight ∗ vrora (6.5)

Different from Chapter 5, since there is no pre-determined I ′, in our work, weight
is simply calculated as 1/i, i ∈ [1, I], where i is the current iteration number.

6.4 Adaptive Warm-Start Switch Method

The fixed I ′ to control the length of using warm-start search enhancements as
suggested in Chapter 5, but seems to require different parameter values for differ-
ent games. In consequence, a costly tuning process would be necessary for each
game. Thus, an adaptive method would have multiple advantages.

We notice that the core of the warm-start method is re-generating expert data
to train the neural network at the start phase of self-training to avoid learning
from weak (random or near random) self-play. We suggest to stop the warm-
start when the neural network is on average playing stronger than the enhance-
ments. Therefore, in the self-play, we employ a tournament to compare the
standard AlphaZero-like self-play model (Baseline) and the enhancements (see
Algorithm 6). The switch occurs once the Baseline MCTS wins more than 50%.
In order to avoid spending too much time on this, these arena game records will
directly be used as training examples, indicating that the training data is played
by the enhancements and the Baseline. This scheme enables to switch at indi-
vidual points in time for different games and even different training runs.

78

6.5 Experimental Setup

Algorithm 6 Adaptive Warm-Start Switch Algorithm
1: Initialize fθ with random weights; Initialize retrain buffer D, Switch←False, rmcts ← 0

2: for iteration=1, . . . , I do . no I ′

3: if not Switch then . not switch
4: for episode=1,. . . , E do . arena with enhancements
5: for t=1, . . . , T ′, . . . , T do
6: if episode ≤ E/2 then
7: if t is odd then πt ← MCTS Enhancement
8: else πt ← default MCTS

9: else
10: if t is odd then πt ← default MCTS
11: else πt ← MCTS Enhancement

12: if t ≤ T ′ then at = randomly select on πt
13: else at = argmaxa(πt)

14: executeAction(st, at)

15: D ← (st, πt, zt) with outcome zt∈[1,T]

16: rmcts+= reward of default MCTS in this episode

17: else . switch
18: for episode=1,. . . , E do . purely self-play
19: for t=1, . . . , T ′, . . . , T do
20: πt ← default MCTS
21: if t ≤ T ′ then at = randomly select on πt
22: else at = argmaxa(πt)

23: executeAction(st, at)

24: D ← (st, πt, zt) with outcome zt∈[1,T]

25: Set Switch←True if rmcts >0, and set rmcts ← 0

26: Sample minibatch (sj , πj , zj) from D . training
27: Train fθ′ ← fθ

28: fθ = fθ′ if fθ′ is better, using default MCTS . arena

29: return fθ;

6.5 Experimental Setup

Since Chapter 5 only studied the winrate of single rollout and RAVE against a
random player, this can be used as a test to check whether rollout and RAVE
work. However, it does not reveal any information about relative playing strength,
which is necessary to explain how good training examples provided by MCTS
enhancements actually are. Therefore, at first we let all 5 enhancements and the
baseline MCTS (in this test, the neural network for each player is randomly

79

6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

initialized) play 100 games with each other on the same 3 games (6×6 Connect
Four, Othello and Gobang, game description can be found in Chapter 4) in order
to investigate the relative playing strength of each pair.

In the second experiment, we tune the fixed I ′, where I ′ ∈ {1, 3, 5, 7, 9}, for differ-
ent search enhancements, based on Algorithm 5 to play 6×6 Connect Four.

In our last experiment, we use new adaptive switch method Algorithm 6 to play
6×6 Othello, Connect Four and Gobang. We set parameters values according to
Table 4.1. The parameter choices are based on [33].

Our experiments are run on a high-performance computing (HPC) server, which
is a cluster consisting of 20 CPU nodes (40 TFlops) and 10 GPU nodes (40 GPU,
20 TFlops CPU + 536 TFlops GPU). We use small versions of games (6×6) in
order to perform a medium number of repetitions. In the following, our figures
show error bars of 8 runs, of 100 iterations of self-play. Each single run is deployed
in a single GPU which takes several days for different games.

6.6 Results

We list results for a tournament of Baseline and enhancements (Table 6.1). Dig-
ging deeper, we also report the effect of the hyper-parameter I ′ (Fig 6.1). And
results for the adaptive warm-start switch are shown in Table 6.2, Fig 6.2 and
Fig 6.3.

6.6.1 MCTS vs MCTS Enhancements

Here, we compare the Baseline player (the neural network is initialized randomly
which can be regarded as an arena in the first iteration self-play) to the other
five MCTS enhancements players on 3 different games. Each pair performs 100
repetitions. In Table 6.1, we can see that for Connect Four, the highest winrate is
achieved by WRoRa, the lowest by Rave. Except Rave, others are all higher than
50%, showing that the enhancements (except Rave) are better than the untrained
Baseline. In Gobang, it is similar, Rave is the lowest, RoRa is the highest. But
the winrates are relatively lower than that in other 2 games. It is interesting
that in Othello, all winrates are relatively the highest compared to the 2 other
games (nearly 100%), although Rave still achieves the lowest winrate which is
higher than 50%.

One reason that enhancements work best in Othello is that the Othello game tree
is the longest and narrowest (low branching factor). Enhancements like Rollout

80

6.6 Results

Table 6.1: Results of comparing default MCTS with Rollout, Rave, RoRa, WRo
and WRoRa, respectively on the three games with random neural network, weight
as 1/2, T ′=0, win rates in percent (row vs column), each pair played 100 games.

Default MCTS
ConnectFour Othello Gobang

Rollout 64 93 65
Rave 27.5 53 43
RoRa 76 98 70
WRo 82 96 57
WRoRa 82.5 99 62

can provide relatively accurate estimations for these trees. In contrast, Gobang
has the shortest game length and the most legal action options. Enhancements
like Rollout do not contribute much to the search in short but wide search tree
with limited MCTS simulation. As in shorter games it is more likely to reach a
terminal state, both Baseline and enhancements get the true result. Therefore,
in comparison to MCTS, enhancements like Rollout work better while it does not
terminate too fast. Rave is filling more state action pairs based on information
from the neural network, its weaknesses at the beginning are more emphasized.
After some iterations of training, the neural network becomes smarter, and Rave
can therefore enhance the performance as shown in Chapter 5 .

6.6.2 Fixed I ′ Tuning

Taking Connect Four as an example, in this experiment we search for an optimal
fixed I ′ value, utilizing the warm-start search method proposed in Chapter 5. We
set I ′ as 1, 3, 5, 7, 9 respectively (the value should be relatively small since the
enhancement is only expected to be used at the start phase of training). The
Elo ratings of each enhancements using different I ′ are presented in Fig 6.1. The
Elo ratings are calculated based on the tournament results using a Bayesian Elo
computation system [82], same for Fig 6.3. We can see that for Rave and WRoRa,
it turns out that I ′ = 7 is the optimal value for fixed I ′ warm-start framework,
for others, it is still unclear which value is the best, indicating that the tuning is
inefficient and costly.

81

6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

Baseline I’=1 I’=3 I’=5 I’=7 I’=9
−100

−80

−60

−40

−20

0

20

40

60

80

E
lo

ra
tin

g

(a) Rollout

Baseline I’=1 I’=3 I’=5 I’=7 I’=9
−100

−80

−60

−40

−20

0

20

40

60

80

E
lo

ra
tin

g

(b) Rave

Baseline I’=1 I’=3 I’=5 I’=7 I’=9
−100

−80

−60

−40

−20

0

20

40

60

80

E
lo

ra
tin

g

(c) RoRa

Baseline I’=1 I’=3 I’=5 I’=7 I’=9
−100

−80

−60

−40

−20

0

20

40

60

80

E
lo

ra
tin

g

(d) WRo

Baseline I’=1 I’=3 I’=5 I’=7 I’=9
−100

−80

−60

−40

−20

0

20

40

60

80

E
lo

ra
tin

g

(e) WRoRa

Figure 6.1: Elo ratings for different warm-start phase iterations with different
search enhancement on 6×6 Connect Four

82

6.6 Results

6.6.3 Adaptive Warm-Start Switch

In this final experiment, we apply the newly suggested adaptive switch warm-start
search enhancement method and compare it to the fixed I ′. We are especially
interested in the averages and variances of the switching times that result from
adaptive switching.

We train models with the parameters in Table 4.1 and then let them compete
against each other in different games. In addition, we record the specific iteration
number where the switch occurs for every training run and the corresponding
self-play arena rewards of MCTS before this iteration. A statistic of the iteration
number for 3 games is shown in Table 6.2.

Table 6.2: Switching iterations for training on different games with different en-
hancements over 8 repetitions (average iteration number ± standard deviation)

Connect Four Othello Gobang
Rollout 6.625± 3.039 5.5± 1.732 1.375±0.484
Rave 2.375±1.218 3.125 ±2.667 1.125±0.331
RoRa 7.75 ±4.74 5.125 ±1.364 1.125±0.331
WRo 4.25±1.561 4.375±1.654 1.125±0.331
WRoRa 4.375±1.576 4.0±1.0 1.25±0.433

The table shows that, generally, the iteration number is relatively small compared
to the total length of the training (100 iterations), and in these small games the
neural network is quickly getting stronger. Besides, not only for different games,
the switch iteration is different, but also for different training runs on the same
game, the switch iteration also varies. This is because for different training runs,
the neural network training progresses differently (we already start from different
random initializations). Therefore, a fixed I ′ can not be used for each specific
training. Note that for Gobang, a game with a large branching factor, with
the default setting, it always switches at the first iteration. Therefore, we also
test with larger m = 200, thereby providing more time to the MCTS. With this
change, there are several runs keeping the enhancements see Table 6.2, but it still
shows a small influence on this game.

In addition, we show the arena results (wins of default MCTS minus wins of en-
hancement) in each training iteration before switch happens in each run over
8 repetitions on Othello as an example in Fig 6.2. In most curves, we can

83

6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

0 4 8 12 16 20
Training iteration

40

30

20

10

0

10

20

Re
w

ar
d

Ba
la

nc
e

of
 B

as
el

in
e

run1
run2
run3
run4
run5
run6
run7
run8
Balance=0

(a) Rollout

0 4 8 12 16 20
Training iteration

40

30

20

10

0

10

20

Re
w

ar
d

Ba
la

nc
e

of
 B

as
el

in
e

run1
run2
run3
run4
run5
run6
run7
run8
Balance=0

(b) Rave

0 4 8 12 16 20
Training iteration

40

30

20

10

0

10

20

Re
w

ar
d

Ba
la

nc
e

of
 B

as
el

in
e

run1
run2
run3
run4
run5
run6
run7
run8
Balance=0

(c) RoRa

0 4 8 12 16 20
Training iteration

40

30

20

10

0

10

20

Re
w

ar
d

Ba
la

nc
e

of
 B

as
el

in
e

run1
run2
run3
run4
run5
run6
run7
run8
Balance=0

(d) WRo

0 4 8 12 16 20
Training iteration

40

30

20

10

0

10

20

Re
w

ar
d

Ba
la

nc
e

of
 B

as
el

in
e

run1
run2
run3
run4
run5
run6
run7
run8
Balance=0

(e) WRoRa

Figure 6.2: Reward balances of default MCTS while competing with different
enhancements in self-play arena for 6×6 Othello. Exceeding 0 means default MCTS
defeats the enhancement, switch occurs.

84

6.6 Results

Baseline Rollout Rave RoRa WRo WRoRa
−150

−125

−100

−75

−50

−25

0

25

50

75

100

125

E
lo

ra
tin

g

Baseline
Fixed I’
AdaptiveSwitch

(a) Connect Four

Baseline Rollout Rave RoRa WRo WRoRa
−150

−125

−100

−75

−50

−25

0

25

50

75

100

125

E
lo

ra
tin

g

Baseline
Fixed I’
AdaptiveSwitch

(b) Othello

Figure 6.3: Comparison of adaptive switch method versus fixed I ′ based on a full
tournament for 6×6 Connect Four and Othello

see improving reward balances achieved by default MCTS since it is getting
stronger.

More importantly, we collect all trained models based on our adaptive method,
and let them compete with the models trained using fixed I ′ = 5 in a full round-
robin tournament where each 2 players play 20 games.

From Fig 6.3, we see that, generally, on both Connect Four and Othello, all
fixed I ′ achieve higher Elo ratings than the Baseline, which was also reported in
Chapter 5. And all adaptive switch models also perform better than the Baseline.
Besides, for each enhancement, it is important that the Elo ratings of the adaptive
switch models are higher than for the fixed I ′ method, which suggests that our
adaptive switch method leads to better performance than the fixed I ′ method
when controlling the warm-start iteration length. Specifically, we find that for
Connect Four, WRo and RoRa achieve the higher Elo Ratings (see Fig 6.3(a))
and for Othello, WRoRa performs best (see Fig 6.3(b)), which reproduces the
consistent conclusion (at least one combination enhancement performs better in
different games) as Chapter 5).

In addition, for Connect Four, comparing the tuning results in Fig 6.1 and the
switch iterations by our method in Table 6.2, we find that our method generally
needs a shorter warm-start phase than employing a fixed I ′. The reason could be
that in our method, there are always 2 different players playing the game, and they
provide more diverse training data than a pure self-play player. In consequence,
the neural network also improves more quickly, which is highly desired.

85

6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

Note that while we use the default parameter setting for training in the Gobang
game, the switch occurs at the first iteration. And even though we enlarge the
simulation times for MCTS, only a few training runs shortly keep using the en-
hancements. We therefore presume that it is meaningless to further perform the
tournament comparison for Gobang.

6.7 Summary

Since AlphaGo Zero’ results, self-play has become a default approach for gen-
erating training data tabula rasa, disregarding other information for training.
However, if there is a way to obtain better training examples from the start, why
not use them, as has been done recently in StarCraft (see DeepMind’s AlphaS-
tar [23]). In addition, Chapter 5 investigated the possibility of utilizing MCTS
enhancements to improve AlphaZero-like self-play. They embed Rollout, RAVE
and combinations as enhancements at the start period of iterative self-play train-
ing and tested this on small board games. Since the neural network and the
MCTS statistics are initialized to random weights and zero, self-play suffers from
a cold-start problem, and starting from scratch can lead to unstable learning at
the start of the training. These problems can be cured by feeding human expert
data or running MCTS enhancements or similar methods in order to generate
expert data for training the neural network before switching to pure self-play.
(Not unlike RAVE warm-starts the winrate statistics of the original MCTS in
2007.)

Confirming Chapter 5, we find that finding an optimal value of fixed I ′ is dif-
ficult, therefore, we propose an adaptive method for deciding when to switch.
We also use Rollout, RAVE, and combinations with network values to quickly
improve MCTS tree statistics (using RAVE) with meaningful information (using
Rollout) before we switch to Baseline-like self-play training. We employed the
same games, namely the 6x6 versions of Gobang, Connect Four, and Othello. In
these experiments, we find that, for different games, and even different training
runs for the same game, the new adaptive method generally switches at different
iterations. This indicates the noise in the neural network training progress for
different runs. After 100 self-play iterations, we still see the effects of the warm-
start enhancements as playing strength has improved in many cases, and for all
enhancements, our method performs better than the method proposed in Chap-
ter 5 with I ′ set to 5. In addition, some conclusions are consistent to Chapter 5,
for example, there is also at least one combination that performs better.

86

6.7 Summary

The new adaptive method works especially well on Othello and Connect Four,
"deep" games with a moderate branching factor, and less well on Gobang, which
has a larger branching factor. In the self-play arena, the default MCTS is already
quite strong, and for games with a short and wide episode, the MCTS enhance-
ments do not benefit much. Short game lengths reach terminal states early, and
MCTS can use the true reward information more often, resulting in a higher
chance of winning. Since, Rollout still needs to simulate, with a limited simula-
tion count it is likely to not choose a winning terminal state but a state that has
the same average value as the terminal state. In this situation, in a short game
episodes, MCTS works better than the enhancement with T ′=15. With ongoing
training of the neural network, both players become stronger, and as the game
length becomes longer, I ′ = 5 works better than the the Baseline.

Our experiments are with small games. Adaptive warm-start works best in deeper
games, suggesting a larger benefit for bigger games with deeper lines. Future
work includes larger games with deeper lines, and using different but stronger
enhancements to generate training examples. Beside, it is also promising to
apply the adaptive warm-start idea to master single agent or multi-agent deep
reinforcement learning problems.

87

6. ADAPTIVE WARM-START ALPHAZERO-LIKE SELF-PLAY

88

