
Searching by learning: Exploring artificial general intelligence on small
board games by deep reinforcement learning
Wang, H.

Citation
Wang, H. (2021, September 7). Searching by learning: Exploring artificial general intelligence
on small board games by deep reinforcement learning. Retrieved from
https://hdl.handle.net/1887/3209232

Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3209232

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3209232

Cover Page

The handle https://hdl.handle.net/1887/3209232 holds various files of this Leiden
University dissertation.

Author: Wang, H.
Title: Searching by learning: Exploring artificial general intelligence on small board games
by deep reinforcement learning
Issue Date: 2021-09-07

https://openaccess.leidenuniv.nl/handle/1887/1
https://hdl.handle.net/1887/3209232
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 5

Warm-Starting AlphaZero-like
Self-Play

5.1 Introduction

In Chapter 2, we showed that MCS enhancements can improve table based Q-
learning, which suggests whether MCTS enhancements could also improve neural
network based deep reinforment learning? We have seen that the AlphaGo series
of programs [10, 16, 17] achieve impressive super human level performance in
board games. Subsequently, there is much interest among deep reinforcement
learning researchers in self-play, and self-play is applied to many applications [61,
62]. In self-play, MCTS [7] is used to train a deep neural network, that is then
employed in tree searches, in which MCTS uses the network that it helped train
in previous iterations.

On the one hand, self-play is utilized to generate game playing records and assign
game rewards for each training example automatically. Next, these examples
are fed to the neural network for improving the model. No database of labeled
examples is used. Self-play learns tabula rasa, from scratch. However, self-play
suffers from a cold-start problem, and may also easily suffer from bias since only
a small part of the search space is used for training, and training samples in
reinforcement learning are heavily correlated [17, 44].

On the other hand, the MCTS search enhances performance of the trained model
by providing improved training examples. There has been much research into
enhancements to improve MCTS [7, 74], but to the best of our knowledge, few of

59

5. WARM-STARTING ALPHAZERO-LIKE SELF-PLAY

these are used in Alphazero-like self-play, which we find surprising, given the large
computational demands of self-play and the cold-start and bias problems.

A reason may be that AlphaZero-like self-play is still young. Another reason could
be that the original AlphaGo paper [16] remarks about AMAF and RAVE [18],
two of the best known MCTS enhancements, that "AlphaGo does not employ the
all-moves-as-first (AMAF) or rapid action value estimation (RAVE) [24] heuris-
tics used in the majority of Monte Carlo Go programs; when using policy networks
as prior knowledge, these biased heuristics do not appear to give any additional
benefit". Our experiments indicate otherwise, and we believe there is merit in
exploring warm-start MCTS in an AlphaZero-like self-play setting.

We agree that when the policy network is well trained, then heuristics may not
provide significant added benefit. However, when this policy network has not
been well trained, especially at the beginning of the training, the neural network
provides approximately random values for MCTS, which can lead to bad perfor-
mance or biased training. The MCTS enhancements or specialized evolutionary
algorithms such as RHEA [102] may benefit the searcher by compensating the
weakness of the early neural network, providing better training examples at the
start of iterative training for self-play, and quicker learning. Therefore, in this
work, we first test the possibility of MCTS enhancements and RHEA for improv-
ing self-play, and then choose MCTS enhancements to do full scale experiments,
the results show that MCTS with warm-start enhancements in the start period
of AlphaZero-like self-play improve iterative training with tests on 3 different
regular board games, using an AlphaZero re-implementation [65].

Our main contributions can be summarized as follows:

1. We test MCTS enhancements and RHEA, and then choose warm-start en-
hancements (Rollout, RAVE and their combinations) to improve MCTS
in the start phase of iterative training to enhance AlphaZero-like self-play.
Experimental results show that in all 3 tested games, the enhancements
can achieve significantly higher Elo ratings, indicating that warm-start en-
hancements can improve AlphaZero-like self-play.

2. In our experiments, a weighted combination of Rollout and RAVE with a
value from the neural network always achieves better performance, suggest-
ing also for how many iterations to enable the warm-start enhancement.

This chapter is structured as follows. After giving an overview of the most rele-
vant literature in Sect. 5.2, we describe the AlphaZero-like self-play algorithm in

60

5.2 Related Work

Sect. 5.3. Before the full length experiments in Sect. 5.5, an orientation experi-
ment is performed in Sect. 5.4. Finally, we summarize the chapter and discuss
future work.

5.2 Related Work

Since MCTS was created [103], many variants have been studied [7, 104], espe-
cially in games [105]. In addition, enhancements such as RAVE and AMAF have
been created to improve MCTS [18, 24]. Specifically, [24] can be regarded as one
of the early prologues of the AlphaGo series, in the sense that it combines on-
line search (MCTS with enhancements like RAVE) and offline knowledge (table
based model) in playing small board Go.

In self-play, the large number of parameters in the deep network as well as the
large number of hyper-parameters (see Table 5.2) are a black-box that precludes
understanding. The high decision accuracy of deep learning [106], however, is un-
deniable [68], as the results in Go (and many other applications) have shown [69].
After AlphaGo Zero [17], which uses an MCTS searcher for training a neural
network model in a self-play loop, the role of self-play has become more and more
important. The neural network has two heads: a policy head and a value head,
aimed at learning the best next move, and the assessment of the current board
state, respectively.

Earlier works on self-play in reinforcement learning are [70, 71, 72, 73, 107]. An
overview is provided in [74]. For instance, [70, 72] compared self-play and using
an expert to play backgammon with temporal difference learning. [107] studied
co-evolution versus self-play temporal difference learning for acquiring position
evaluation in small board Go. All these works suggest promising results for self-
play.

More recently, [30] assessed the potential of classical Q-learning by introducing
MCS enhancement to improve training examples efficiency. [108] uses domain-
specific features and optimizations, but still starts from random initialization and
makes no use of outside strategic knowledge or preexisting data, that can accel-
erate the AlphaZero-like self-play. Cazenave et al. improved the Zero learning
using different structure of neural networks [109]. And Albert Silver improved
the Fat Fritz by learning from the surgical precision of Stockfish’s [10] legendary
search with a massive new neural network [110].

61

5. WARM-STARTING ALPHAZERO-LIKE SELF-PLAY

However, to the best of our knowledge there is no further study on applying
MCTS enhancements in AlphaZero-like self-play despite the existence of many
practical and powerful enhancements.

5.3 AlphaZero-like Self-play Algorithms

5.3.1 The Algorithm Framework

According to [10, 34], the basic structure of warm-start AlphaZero-like self-play
is also an iterative process over three different stages (see Algorithm 3).

Algorithm 3 Warm-Start AlphaZero-like Self-play Algorithm
1: function AlphaZeroGeneralwithEnhancements
2: Initialize fθ with random weights; Initialize retrain buffer D with capacity N
3: for iteration=1, . . . ,I ′, . . . , I do . play curriculum of I tournaments
4: for episode=1,. . . , E do . stage 1, play tournament of E games
5: for t=1, . . . , T ′, . . . , T do . play game of T moves
6: πt ← MCTS Enhancement before I ′ or MCTS after I ′ iteration
7: at =randomly select on πt before T ′ or argmaxa(πt) after T ′ step
8: executeAction(st, at)

9: Store every (st, πt, zt) with game outcome zt (t ∈ [1, T]) in D

10: Randomly sample minibatch of examples (sj , πj , zj) from D . stage 2
11: Train fθ′ ← fθ

12: fθ = fθ′ if fθ′ is better than fθ using MCTS mini-tournament . stage 3

13: return fθ;

The first stage is a self-play tournament. The player plays several games against
itself to generate game playing records as training examples. In each step of a
game episode, the player runs MCTS (or one of the MCTS enhancements before I’
iteration) to obtain, for each move, an enhanced policy π based on the probability
p provided by the policy network fθ. The hyper-parameters, and the abbreviation
that we use in this chapter is given in Table 5.2. In MCTS, hyper-parameter Cp is
used to balance exploration and exploitation of the tree search, and we abbreviate
it to c. Hyper-parameter m is the number of times to search down from the root
for building the game tree, where the value (v) of the states is provided by fθ.
In (self-)play game episode, from T’ steps on, the player always chooses the
best action based on π. Before that, the player always chooses a random move
according to the probability distribution of π to obtain more diverse training

62

5.3 AlphaZero-like Self-play Algorithms

examples. After the game ends, the new examples are normalized as a form of
(st, πt, zt) and stored in D.

The second stage consists of neural network training, using data from stage
1. Several epochs are usually employed for the training. In each epoch (ep),
training examples are randomly selected as several small batches [79] based on
the specific batch size (bs). The neural network is trained with a learning rate (lr)
and dropout (d) by minimizing [80] the value of the loss function which is the
sum of the mean-squared error between predicted outcome and real outcome and
the cross-entropy losses between p and π. Dropout is a probability to randomly
ignore some nodes of the hidden layer to avoid overfitting [81].

The last stage is the arena comparison, where a competition between the newly
trained neural network model (f ′θ) and the previous neural network model (fθ)
is run. The winner is adopted for the next iteration. In order to achieve this,
the competition runs n rounds of the game. If fθ′ wins more than a fraction of
u games, it is accepted to replace the previous best fθ. Otherwise, fθ′ is rejected
and fθ is kept as current best model. Compared with AlphaGo Zero, AlphaZero
does not employ this stage anymore. However, we keep it to make sure that we
can safely recognize improvements.

Algorithm 4 Neural Network Based MCTS
1: function MCTS(s, fθ)
2: Search(s)
3: πs ←normalize(Q(s, ·))
4: return πs

5: function Search(s)
6: Return game end result if s is a terminal state
7: if s is not in the Tree then
8: Add s to the Tree, initialize Q(s, ·) and N(s, ·) to 0
9: Get P (s, ·) and v(s) by looking up fθ(s)
10: return v(s)

11: else
12: Select an action a with highest UCT value
13: s′ ←getNextState(s, a)
14: v ←Search(s′)
15: Q(s, a)← N(s,a)∗Q(s,a)+v

N(s,a)+1

16: N(s, a)← N(s, a) + 1

17: return v;

63

5. WARM-STARTING ALPHAZERO-LIKE SELF-PLAY

5.3.2 MCTS

In self-play, MCTS is used to generate high quality examples for training the
neural network. A recursive MCTS pseudo code is given in Algorithm 4. For
each search, the value from the value head of the neural network is returned (or
the game termination reward, if the game terminates). During the search, for
each visit of a non-leaf node, the action with the highest P-UCT value is selected
to investigate next [17, 111]. After the search, the average win rate value Q(s, a)
and visit count N(s, a) in the followed trajectory are updated correspondingly.
The P-UCT formula that is used is as follows (with c as constant weight that
balances exploitation and exploration):

U(s, a) = Q(s, a) + c ∗ P (s, a)
√
N(s, ·)

N(s, a) + 1
(5.1)

In the whole training iterations (including the first I’ iterations), the Baseline
player always runs neural network based MCTS (i.e line 6 in Algorithm 3 is simply
replaced by πt ←MCTS).

5.3.3 MCTS Enhancements

In this chapter, we introduce 2 individual enhancements and 3 combinations to
improve neural network training based on MCTS (Algorithm 4).

Rollout Algorithm 4 uses the value from the value network as return value at
leaf nodes. However, if the neural network is not yet well trained, the values are
not accurate, and even random at the start phase, which can lead to biased and
slow training. Therefore, as warm-start enhancement we perform a classic MCTS
random rollout to get a value that provides more meaningful information. We
thus simply add a random rollout function which returns a terminal value after
line 9 in Algorithm 4, written as Get result v(s) by performing random rollout
until the game ends.1 See Algorithm 10 in Appendix A.3.

RAVE is a well-studied enhancement for improving the cold-start of MCTS in
games like Go (for details see [18]). The same idea can be applied to other
domains where the playout-sequence can be transposed. Standard MCTS only
updates the (s, a)-pair that has been visited. The RAVE enhancement extends
this rule to any action a that appears in the sub-sequence, thereby rapidly col-
lecting more statistics in an off-policy fashion. The idea to perform RAVE at

1In contrast to AlphaGo [16], where random rollouts were mixed in with all value-lookups,
in our scheme they replace the network lookup at the start of the training.

64

5.3 AlphaZero-like Self-play Algorithms

startup is adapted from AMAF in the game of Go [18]. The main pseudo code of
RAVE is similar to Algorithm 4, the differences are in line 3, line 12 and line 16.
For RAVE, in line 3, policy πs is normalized based on Qrave(s, ·). In line 12, the
action a with highest UCTrave value, which is computed based on Equation 5.2,
is selected. After line 16, the idea of AMAF is applied to update Nrave and
Qrave, which are written as: Nrave(st1 , at2)← Nrave(st1 , at2) + 1, Qrave(st1 , at2)←
Nrave(st1 ,at2)∗Qrave(st1 ,at2)+v

Nrave(st1 ,at2)+1
, where st1 ∈ V isitedPath, and at2 ∈ A(st1), and for

∀t < t2, at 6= at2 . More specifically, under state st, in the visited path, a state
st1 , all legal actions at2 of st1 that appear in its sub-sequence (t ≤ t1 < t2) are
considered as a (st1 , at2) tuple to update their Qrave and Nrave. See Algorithm 11
in Appendix A.3.

UCTrave(s, a) = (1− β) ∗ U(s, a) + β ∗ Urave(s, a) (5.2)

where

Urave(s, a) = Qrave(s, a) + c ∗ P (s, a)
√
Nrave(s, ·)

Nrave(s, a) + 1
, (5.3)

and

β =

√
equivalence

3 ∗N(s, ·) + equivalence
(5.4)

Usually, the value of equivalence is set to the number of MCTS simulations (i.e
m), as is also the case in our following experiments.

RoRa Based on Rollout and Rave enhancement, the first combination is to
simply add the random rollout to enhance RAVE. See Algorithm 12 in Ap-
pendix A.3.

WRo As the neural network model is getting better, we introduce a weighted
sum of rollout value and the value network as the return value. See Algorithm 13
in Appendix A.3. In our experiments, v(s) is computed as follows:

v(s) = (1− weight) ∗ vnetwork + weight ∗ vrollout (5.5)

WRoRa In addition, we also employ a weighted sum to combine the value a
neural network and the value of RoRa. See Algorithm 14 in Appendix A.3. In our
experiments, weight weight is related to the current iteration number i, i ∈ [0, I ′].
v(s) is computed as follows:

v(s) = (1− weight) ∗ vnetwork + weight ∗ vrora (5.6)

where
weight = 1− i

I ′
(5.7)

65

5. WARM-STARTING ALPHAZERO-LIKE SELF-PLAY

5.4 Initial Experiment: MCTS(RAVE) vs. RHEA

Before running full scale experiments on warm-start self-play that take days to
weeks, we consider other possibilities for methods that could be used instead of
MCTS variants. Justesen et al. [102] have recently shown that depending on
the type of game that is played, RHEA can actually outperform MCTS variants
also on adversarial games. Especially for long games, RHEA seems to be strong
because MCTS is not able to reach a good tree/opening sequence coverage.

The general idea of RHEA has been conceived by Perez et al. [112] and is simple:
they directly optimize an action sequence for the next actions and apply the first
action of the best found sequence for every move. Originally, this has been applied
to one-player settings only, but recently different approaches have been tried also
for adversarial games, as the co-evolutionary variant of Liu et al. [113] that shows
to be competitive in 2 player competitions [114]. The current state of RHEA is
documented in [115], where a large number of variants, operators and parameter
settings is listed. No one-beats-all variant is known at this moment.

Generally, the horizon (number of actions in the planned sequence) is often much
too short to reach the end of the game. In this case, either a value function is
used to assess the last reached state, or a rollout is added. For adversarial games,
opponent moves are either co-evolved, or also played randomly. We do the latter,
with a horizon size of 10. In preliminary experiments, we found that a number
of 100 rollouts is already working well for MCTS on our problems, thus we also
applied this for the RHEA. In order to use these 100 rollouts well, we employ
a population of only 10 individuals, using only cloning+mutation (no crossover)
and a (10+1) truncation selection (the worst individual from 10 parents and 1
offspring is removed). The mutation rate is set to 0.2 per action in the sequence.
However, parameters are not sensitive, except rollouts. RHEA already works with
50 rollouts, albeit worse than with 100. As our rollouts always reach the end of
the game, we usually get back Qi(as) = {1,−1} for the i-th rollout for the action
sequence as, meaning we win or lose. Counting the number of steps until this
happens h, we compute the fitness of an individual to Q(as) =

∑n
i=1Qi(as)/h

n
over

multiple rollouts, thereby rewarding quick wins and slow losses. We choose n = 2

(rollouts per individual) as it seems to perform a bit more stable than n = 1. We
thus evaluate 50 individuals per run.

In our comparison experiment, we pit a random player, MCTS, RAVE (both
without neural network support but a standard random rollout), and RHEA (see
Algorithm 15 in Appendix A.3) against each other with 500 repetitions over all

66

5.5 Full Length Experiment

three games, with 100 rollouts per run for all methods. The results are shown in
Table 5.1.

Table 5.1: Comparison of random player, MCTS, Rave, and RHEA on the three
games, win rates in percent (column vs row), 500 repetitions each.

Gobang Connect Four Othello
adv rand mcts rave rhea rand mcts rave rhea rand mcts rave rhea

random 97.0 100.0 90.0 99.6 100.0 80.0 98.50 98.0 48.0
mcts 3.0 89.4 34.0 0.4 73.0 3.0 1.4 46.0 1.0
rave 0.0 10.6 17.0 0.0 27.0 4.0 2.0 54.0 5.0
rhea 10.0 66.0 83.0 20.0 97.0 96.0 52.0 99.0 95.0

The results indicate that in nearly all cases, RAVE is better than MCTS is better
than RHEA is better than random, according to a binomial test at a significance
level of 5%. Only for Othello, RHEA does not convincingly beat the random
player. We can conclude from these results that RHEA is no suitable alternative
in our case. The reason for this may be that the games are rather short so that
we always reach the end, providing good conditions for MCTS and even more so
for RAVE that more aggressively summarizes rollout information. Besides, start
sequence planning is certainly harder for Othello where a single move can change
large parts of the board.

5.5 Full Length Experiment

Taking into account the results of the comparison of standard MCTS/RAVE and
RHEA at small scale, we now focus on the previously defined neural network based
MCTS and its enhancements and run them over the full scale training.

5.5.1 Experiment Setup

For all 3 tested games and all experimental training runs based on Algorithm 3,
we set parameters values in Table 5.2. Since tuning I’ requires enormous com-
putation resources, we set the value to 5 based on an initial experiment test,
which means that for each self-play training, only the first 5 iterations will use
one of the warm-start enhancements, after that, there will be only the MCTS in
Algorithm 4. Other parameter values are set based on [32, 33].

Our experiments are run on a GPU-machine with 2x Xeon Gold 6128 CPU at
2.6GHz, 12 core, 384GB RAM and 4x NVIDIA PNY GeForce RTX 2080TI. We
use small versions of games (6×6) in order to perform a sufficiently high number

67

5. WARM-STARTING ALPHAZERO-LIKE SELF-PLAY

of computationally demanding experiments. Shown are graphs with errorbars of
8 runs, of 100 iterations of self-play. Each single run takes 1 to 2 days.

Table 5.2: Default Parameter Setting
Para Description Value Para Description Value
I number of iteration 100 rs number of retrain iteration 20
I’ iteration threshold 5 ep number of epoch 10
E number of episode 50 bs batch size 64
T’ step threshold 15 lr learning rate 0.005
m MCTS simulation times 100 d dropout probability 0.3
c weight in UCT 1.0 n number of comparison games 40
u update threshold 0.6

5.5.2 Results

After training, we collect 8 repetitions for all 6 categories players. Therefore we
obtain 49 players in total (a Random player is included for comparison). In a
full round robin tournament, every 2 of these 49 players are set to pit against
each other for 20 matches on 3 different board games (Gobang, Connect Four and
Othello). The Elo ratings are calculated based on the competition results using
the same Bayesian Elo computation [82] as AlphaGo papers.

Baseline Rollout Rave RoRa WRo WRoRa
−300

−250

−200

−150

−100

−50

0

50

100

150

200

250

E
lo

ra
tin

g

(a) 6×6 Gobang

Baseline Rollout Rave RoRa WRo WRoRa
−100

−80

−60

−40

−20

0

20

40

60

80

E
lo

ra
tin

g

(b) 6×6 Connect Four

Figure 5.1: Tournament results for 6×6 Gobang and 6×6 Connect Four among
Baseline, Rollout, Rave, RoRa, WRo and WRoRa. Training with enhancements
tends to be better than baseline MCTS.

68

5.6 Summary

Fig. 5.1(a) displays results for training to play the 6×6 Gobang game. We can
clearly see that all players with the enhancement achieve higher Elo ratings than
the Baseline player. For the Baseline player, the average Elo rating is about -100.
For enhancement players, the average Elo ratings are about 50, except for Rave,
whose variance is larger. Rollout players and its combinations are better than
the single Rave enhancement players in terms of the average Elo. In addition,
the combination of Rollout and RAVE does not achieve significant improvement
of Rollout, but is better than RAVE. This indicates than the contribution of the
Rollout enhancement is larger than RAVE in Gobang game.

Figure 5.1(b) shows that all players with warm-start enhancement achieve higher
Elo ratings in training to play the 6×6 Connect Four game. In addition, we find
that comparing Rollout with WRo, a weighted sum of rollout value and neural
network value achieves higher performance. Comparing Rave and WRoRa, we
see the same. We conclude that in 5 iterations, for Connect Four, enhancements
that combine the value derived from the neural network contribute more than
the pure enhancement value. Interestingly, in Connect Four, the combination of
Rollout and RAVE shows improvement, in contrast to Othello (next figure) where
we do not see significant improvement. However, this does not apply to WRoRa,
the weighted case.

In Fig 5.2 we see that in Othello, except for Rollout which holds the similar Elo
rating as Baseline setting, all other investigated enhancements are better than the
Baseline. Interestingly, the enhancement with weighted sum of RoRa and neural
network value achieves significant highest Elo rating. The reason that Rollout
does not show much improvement could be that the rollout number is not large
enough for the game length (6×6 Othello needs 32 steps for every episode to
reach the game end, other 2 games above may end up with vacant positions). In
addition, Othello does not have many transposes as Gobang and Connect Four
which means that RAVE can not contribute to a significant improvement. We
can definitively state that the improvements of these enhancements are sensitive
to the different games. In addition, for all 3 tested games, at least WRoRa
achieves the best performance according to a binomial test at a significance level
of 5%.

5.6 Summary

Self-play has achieved much interest due to the AlphaGo Zero results. How-
ever, self-play is currently computationally very demanding, which hinders re-
producibility and experimenting for further improvements. In order to improve

69

5. WARM-STARTING ALPHAZERO-LIKE SELF-PLAY

Baseline Rollout Rave RoRa WRo WRoRa
−150

−125

−100

−75

−50

−25

0

25

50

75

100

125
E

lo
ra

tin
g

Figure 5.2: Tournament results for 6×6 Othello among Baseline, Rollout, Rave,
RoRa, WRo and WRoRa. Training with enhancements is mostly better than the
baseline setting.

performance and speed up training, in this chapter, we investigate the possibility
of utilizing MCTS enhancements to improve AlphaZero-like self-play. We embed
Rollout, RAVE and their possible combinations as enhancements at the start pe-
riod of iterative self-play training. The hypothesis is, that self-play suffers from
a cold-start problem, as the neural network and the MCTS statistics are initial-
ized to random weights and zero, and that this can be cured by prepending it
with running MCTS enhancements or similar methods alone in order to train the
neural network before "switching it on" for playing.

We introduce Rollout, RAVE, and combinations with network values, in order to
quickly improve MCTS tree statistics before we switch to Baseline-like self-play
training, and test these enhancements on 6x6 versions of Gobang, Connect Four,
and Othello. We find that, after 100 self-play iterations, we still see the effects of
the warm-start enhancements as playing strength has improved in many cases.
For different games, different methods work best; there is at least one combination
that performs better. It is hardly possible to explain the performance coming
from the warm-start enhancements and especially to predict for which games
they perform well, but there seems to be a pattern: Games that enable good
static opening plans probably benefit more. For human players, it is a common
strategy in Connect Four to play a middle column first as this enables many good
follow-up moves. In Gobang, the situation is similar, only in 2D. It is thus harder
to counter a good plan because there are so many possibilities. This could be
the reason why the warm-start enhancements work so well here. For Othello, the
situation is different, static openings are hardly possible, and are thus seemingly

70

5.6 Summary

not detected. One could hypothesize that the warm-start enhancements recover
human expert knowledge in a generic way. Recently, we have seen that human
knowledge is essential for mastering complex games as StarCraft [23], whereas
others as Go [17] can be learned from scratch. Re-generating human knowledge
may still be an advantage, even in the latter case.

We also find that often, a single enhancement may not lead to significant im-
provement. There is a tendency for the enhancements that work in combination
with the value of the neural network to be stronger, but that also depends on
the game. Concluding, we can state that we find moderate performance im-
provements when applying warm-start enhancements and that we expect there is
untapped potential for more performance gains here.

71

5. WARM-STARTING ALPHAZERO-LIKE SELF-PLAY

72

